1
|
Wang L, Zheng W, Sun Y, Ren X, Yan C, Song S, Ai C. Fucoidan ameliorates alcohol-induced liver injury in mice through Parabacteroides distasonis-mediated regulation of the gut-liver axis. Int J Biol Macromol 2024; 279:135309. [PMID: 39236962 DOI: 10.1016/j.ijbiomac.2024.135309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Polysaccharides can benefit the liver via modulation of the gut microbiota, but the exact mechanism is still unclear. This study demonstrated that the effect of Scytosiphon lomentaria fucoidan (SLF) on alcohol-induced liver injury can be closely related to the level of Parabacteroides distasonis (Pd) via in vivo and in vitro models. Further mice experiment showed that Pd alleviated liver injury and inflammation by suppressing the NF-κB/MAPK pathways and activating Nrf2 pathway. The underlying mechanism can be closely associated with modulation of the gut microbiota, particularly an increase in microbiota diversity and beneficial bacteria and a reduction in Proteobacteria. Targeted metabolomics indicated that Pd ameliorated alcohol-induced dysbiosis of microbiota metabolites profile, primarily affecting amino acid metabolism. Moreover, Pd reduced the level of total bile acids (BAs) and improved BAs profile, affecting the expression levels of BA-associated genes in the liver and ileum involved in BA synthesis, transport, and reabsorption. This study suggests that SLF can benefit alcohol-induced liver injury via P. distasonis-mediated regulation of the gut-liver axis.
Collapse
Affiliation(s)
- Lu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Weiyun Zheng
- School of Agronomy and Life Science, Shanxi Datong University, Datong 037009, PR China
| | - Yiyun Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiaomeng Ren
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunhong Yan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
2
|
Wang Y, Yan F, Chen Q, Liu F, Xu B, Liu Y, Huo G, Xu J, Li B, Wang S. High-fat diet promotes type 2 diabetes mellitus by disrupting gut microbial rhythms and short-chain fatty acid synthesis. Food Funct 2024; 15:10838-10852. [PMID: 39405046 DOI: 10.1039/d4fo02957g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Diabetes ranks among the top 10 causes of death globally, with over 90% of individuals diagnosed with diabetes having type 2 diabetes mellitus (T2DM). It is acknowledged that a high-fat diet (HFD) poses a serious risk for T2DM. The imbalance of intestinal flora, mediated by HFD, can potentially exacerbate the onset and progression of T2DM. However, the impact of HFD on pathological indicators and the intestinal microbiome in the development of T2DM has not been systematically investigated. Therefore, a HFD mouse model and a T2DM mouse model were established, respectively, in this study. The role of HFD as a driving factor in the development of T2DM was assessed using various measures, including basic pathological indicators of T2DM, lipid metabolism, liver oxidative stress, intestinal permeability, levels of inflammatory factors, gut microbiota, and short-chain fatty acids (SCFAs). The findings indicated that HFD could influence the aforementioned measures to align with T2DM changes, but the contribution of HFD varied across different pathological metrics of T2DM. The impact of HFD on low-density lipoprotein cholesterol, glutathione peroxidase, malondialdehyde, and tumor necrosis factor-α did not show a statistically significant difference from those observed in T2DM during its development. In addition, regarding gut microbes, HFD primarily influenced the alterations in bacteria capable of synthesizing SCFAs. The notable decrease in SCFA content in both serum and cecal matter further underscored the effect of HFD on SCFA-synthesising bacteria in mice. Hence, this research provided a systematic assessment of HFD's propelling role in T2DM's progression. It was inferred that gut microbes, particularly those capable of synthesizing SCFAs, could serve as potential targets for the future prevention and treatment of T2DM instigated by HFD.
Collapse
Affiliation(s)
- Yangrui Wang
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fenfen Yan
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Qingxue Chen
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fei Liu
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baofeng Xu
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yuanyuan Liu
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Guicheng Huo
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jinsheng Xu
- Shanghai Binhan International Trade Co., Ltd, Shanghai, 200000, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Song Wang
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Shandong Yuwang Ecological Food Industry Co., Ltd, Dezhou, Shandong, 251200, China
| |
Collapse
|
3
|
Liu J, Zhang S, Weng H. Effects of Clostridium butyricum and inulin supplementation on intestinal microbial composition in high-fat diet fed mice. Food Funct 2024; 15:10870-10884. [PMID: 39415545 DOI: 10.1039/d4fo02963a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Obesity has become a serious epidemic problem in the world, and probiotics and prebiotics have been used to treat obesity. The effectiveness of diet therapy such as Clostridium butyricum (CB) and inulin supplementation in obesity and whether they can cooperate to produce better effects are still unclear. And during this process, intestinal flora play an important role, while the bacteria involved and the metabolic mechanism need to be explored. In this study, we successfully established a mouse obesity model with a high-fat diet (HFD) and divided it into three experimental groups: 7% CB (CB7), 7% CB + 1% inulin (C7G1), and 10% CB + 1% inulin (C10G). Dietary supplementation with CB and inulin could improve the glucose tolerance and intestinal microbial composition of obese mice, among which the simultaneous supplementation with 7% CB and 1% inulin (C7G1) has the most significant effect on obese mice fed with a HFD. It could significantly reduce the amount of total cholesterol, triglyceride, and low-density lipoprotein, improve abnormal glucose tolerance, and reduce abnormal blood glucose in obese mice. The intestinal flora of obese mice changed significantly, among which Lachnospiraceae_unclassified, Porphyromonaceae_unclassified, Olsenella, Bacteria_unclassified and Clostridiales_unclassified decreased due to the HFD, while Megamonas and Clostridium XIVa increased. After the supplementation with CB and inulin, the enrichment of three kinds of beneficial bacteria, Parabacteroides, Bacteroides, and Ruminococcaceae unclassified increased. The high-fat diet could upregulate the expression of FGF21, and the Clostridium butyricum and inulin supplemented diet could decrease the upregulation.
Collapse
Affiliation(s)
- Jing Liu
- Department of Research, Shanghai University of Medicine and Health Sciences Affliated Zhoupu Hospital, The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Suhua Zhang
- Department of Research, Shanghai University of Medicine and Health Sciences Affliated Zhoupu Hospital, The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Huachun Weng
- Department of Research, Shanghai University of Medicine and Health Sciences Affliated Zhoupu Hospital, The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
4
|
Lin J, Liu H, Sun Y, Zou J, Nie Q, Nie S. Arabinoxylan Alleviates Obesity by Regulating Gut Microbiota and Bile Acid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23295-23305. [PMID: 39400044 DOI: 10.1021/acs.jafc.4c06392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Overweight and obesity are major and increasingly global public health concern. High intake of dietary fiber is negatively correlated with obesity and obesity-related metabolic diseases. Here, we investigated the impact of arabinoxylan on obesity based on the modification of gut microecology. Arabionxylan reduced body weight and improved glucose metabolism, as well as intestinal barrier function and metabolic endotoxemia in obese mice. Supplementation with arabinoxylan increased the relative abundance of Prevotellaceae_UCG_001, Lachnospiraceae_NK4A136_group, Clostridia_UCG_014, Alistipes, Bacteroides, and Ruminococcus, which was associated with the upregulated 7α-dehydroxylation function and production of secondary bile acids (deoxycholic acid and lithocholic acid). The modification of gut microbiota by arabinoxylan also influenced the production of SCFAs, genistein, daidzein, indolelactic acid, and indoleacetic acid, contributing to the amelioration of obesity. Our study highlights the antiobesity effects of arabinoxylan through the modification of gut microbiota and the production of bioactive metabolites.
Collapse
Affiliation(s)
- Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yonggan Sun
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Jianqiao Zou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| |
Collapse
|
5
|
He TB, Bao Y, Liu HJ, Jiang JN, Jiang GD, Xu DH, Shen XJ, Yang QS, Hu JM. The general glycan profiling of Dendrobium officinale and their protective effects on MIN6 cells via ERK signaling pathway. Int J Biol Macromol 2024; 281:136413. [PMID: 39395523 DOI: 10.1016/j.ijbiomac.2024.136413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Based on structural elucidation of natural and hydrolyzed glycans, the general glycans profiling of D. officinale were unequivocally established for the first time as follows: The results indicated that the structure of D. officinale glycans with low degree of polymerization (DP ≤ 22) was linear α-D-1,4-glucan, whereas the structure of glycans with high degree of polymerization (DP > 24) was linear acetylated 1,4-glucomannan. The content of acetyl groups and mannose to glucose (M/G) ratio increased with the degree of polymerization of D. officinale glycans. In addition, this study showed that natural D. officinale glycans protected pancreatic β-cell damage induced by glucotoxicity through the extracellular signal-regulated kinase (ERK)1/2 pathway.
Collapse
Affiliation(s)
- Tao-Bin He
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - Yu Bao
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; College of Ethnic Medicine, Yunnan Minzu University, Kunming 650000, Yunnan, People's Republic of China
| | - Hong-Jun Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; College of Ethnic Medicine, Yunnan Minzu University, Kunming 650000, Yunnan, People's Republic of China
| | - Jia-Nan Jiang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - Guo Dong Jiang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - De Hong Xu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - Xiao-Jiang Shen
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - Qing-Song Yang
- College of Ethnic Medicine, Yunnan Minzu University, Kunming 650000, Yunnan, People's Republic of China
| | - Jiang-Miao Hu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China.
| |
Collapse
|
6
|
Lei L, Deng D, Xu W, Yue M, Wu D, Fu K, Shi Z. Increased intestinal permeability and lipopolysaccharide contribute to swainsonine-induced systemic inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116912. [PMID: 39181073 DOI: 10.1016/j.ecoenv.2024.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Long-term consumption of swainsonine could be poisonous to livestock, including facilitating apoptosis by impairing lysosomal function and inhibiting autophagic degradation, leading to liver inflammation and even death in livestock. However, the mechanism by swainsonine induced systemic inflammatory responses remained unclear, especially the effects of swainsonine on intestinal permeability, lipopolysaccharide (LPS) level and oxidative stress response were unknown. In this study, swainsonine increased intestinal permeability as evidenced by the significant down-regulation of colonic goblet cells, Akkermansia muciniphila and intestinal tight junction protein Occludin, Claudin 1 and ZO-1, and the significant up-regulation of mRNA expression level of the intestinal permeability indicator protein tyrosine phosphatase receptor type H (Ptprh) in the ileum of mice. Simultaneously, the elevated LPS biosynthetic genes in intestinal microbiota and increased intestinal permeability facilitated more bacterial endotoxin LPS to enter the blood. High concentration of free-form LPS induced high levels of proinflammatory cytokines and oxidative stress response, thereby causing the systemic inflammation. These findings provided a new perspective on swainsonine-induced systemic inflammation, suggesting that intestinal permeability and free-form LPS level may be the potential trigger factors.
Collapse
Affiliation(s)
- Ling Lei
- Clinical Psychology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
| | - Dazhi Deng
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Wenqian Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Mingyuan Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Dandan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
7
|
Zhang S, Nie Q, Sun Y, Zuo S, Chen C, Li S, Yang J, Hu J, Zhou X, Yu Y, Huang P, Lian L, Xie M, Nie S. Bacteroides uniformis degrades β-glucan to promote Lactobacillus johnsonii improving indole-3-lactic acid levels in alleviating colitis. MICROBIOME 2024; 12:177. [PMID: 39300532 DOI: 10.1186/s40168-024-01896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/30/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Intake of dietary fiber is associated with a reduced risk of inflammatory bowel disease. β-Glucan (BG), a bioactive dietary fiber, has potential health-promoting effects on intestinal functions; however, the underlying mechanism remains unclear. Here, we explore the role of BG in ameliorating colitis by modulating key bacteria and metabolites, confirmed by multiple validation experiments and loss-of-function studies, and reveal a novel bacterial cross-feeding interaction. RESULTS BG intervention ameliorates colitis and reverses Lactobacillus reduction in colitic mice, and Lactobacillus abundance was significantly negatively correlated with the severity of colitis. It was confirmed by further studies that Lactobacillus johnsonii was the most significantly enriched Lactobacillus spp. Multi-omics analysis revealed that L. johnsonii produced abundant indole-3-lactic acid (ILA) leading to the activation of aryl hydrocarbon receptor (AhR) responsible for the mitigation of colitis. Interestingly, L. johnsonii cannot utilize BG but requires a cross-feeding with Bacteroides uniformis, which degrades BG and produces nicotinamide (NAM) to promote the growth of L. johnsonii. A proof-of-concept study confirmed that BG increases L. johnsonii and B. uniformis abundance and ILA levels in healthy individuals. CONCLUSIONS These findings demonstrate the mechanism by which BG ameliorates colitis via L. johnsonii-ILA-AhR axis and reveal the important cross-feeding interaction between L. johnsonii and B. uniformis. Video Abstract.
Collapse
Affiliation(s)
- Shanshan Zhang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yonggan Sun
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Sheng Zuo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Chunhua Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Song Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jingrui Yang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yongkang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Ping Huang
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lu Lian
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China.
| |
Collapse
|
8
|
Pi Y, Fang M, Li Y, Cai L, Han R, Sun W, Jiang X, Chen L, Du J, Zhu Z, Li X. Interactions between Gut Microbiota and Natural Bioactive Polysaccharides in Metabolic Diseases: Review. Nutrients 2024; 16:2838. [PMID: 39275156 PMCID: PMC11397228 DOI: 10.3390/nu16172838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The gut microbiota constitutes a complex ecosystem, comprising trillions of microbes that have co-evolved with their host over hundreds of millions of years. Over the past decade, a growing body of knowledge has underscored the intricate connections among diet, gut microbiota, and human health. Bioactive polysaccharides (BPs) from natural sources like medicinal plants, seaweeds, and fungi have diverse biological functions including antioxidant, immunoregulatory, and metabolic activities. Their effects are closely tied to the gut microbiota, which metabolizes BPs into health-influencing compounds. Understanding how BPs and gut microbiota interact is critical for harnessing their potential health benefits. This review provides an overview of the human gut microbiota, focusing on its role in metabolic diseases like obesity, type II diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. It explores the basic characteristics of several BPs and their impact on gut microbiota. Given their significance for human health, we summarize the biological functions of these BPs, particularly in terms of immunoregulatory activities, blood sugar, and hypolipidemic effect, thus providing a valuable reference for understanding the potential benefits of natural BPs in treating metabolic diseases. These properties make BPs promising agents for preventing and treating metabolic diseases. The comprehensive understanding of the mechanisms by which BPs exert their effects through gut microbiota opens new avenues for developing targeted therapies to improve metabolic health.
Collapse
Affiliation(s)
- Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyu Fang
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruyi Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Jun Du
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Zhigang Zhu
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Nie X, Li Q, Chen X, Onyango S, Xie J, Nie S. Bacterial extracellular vesicles: Vital contributors to physiology from bacteria to host. Microbiol Res 2024; 284:127733. [PMID: 38678680 DOI: 10.1016/j.micres.2024.127733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Bacterial extracellular vesicles (bEVs) represent spherical particles with diameters ranging from 20 to 400 nm filled with multiple parental bacteria-derived components, including proteins, nucleic acids, lipids, and other biomolecules. The production of bEVs facilitates bacteria interacting with their environment and exerting biological functions. It is increasingly evident that the bEVs play integral roles in both bacterial and host physiology, contributing to environmental adaptations to functioning as health promoters for their hosts. This review highlights the current state of knowledge on the composition, biogenesis, and diversity of bEVs and the mechanisms by which different bEVs elicit effects on bacterial physiology and host health. We posit that an in-depth exploration of the mechanistic aspects of bEVs activity is essential to elucidate their health-promoting effects on the host and may facilitate the translation of bEVs into applications as novel natural biological nanomaterials.
Collapse
Affiliation(s)
- Xinke Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xinyang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | | | - Junhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
10
|
Zhang J, Zhang C, Yu L, Tian F, Chen W, Zhai Q. Analysis of the key genes of Lactobacillus reuteri strains involved in the protection against alcohol-induced intestinal barrier damage. Food Funct 2024; 15:6629-6641. [PMID: 38812427 DOI: 10.1039/d4fo01796j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Gastrointestinal inflammation and intestinal barrier function have important effects on human health. Alcohol, an important foodborne hazard factor, damages the intestinal barrier, increasing the risk of disease. Lactobacillus reuteri strains have been reported to reduce gastrointestinal inflammation and strengthen the intestinal barrier. In this study, we selected three anti-inflammatory L. reuteri strains to evaluate their role in the protection of the intestinal barrier and their immunomodulatory activity in a mouse model of gradient alcohol intake. Among the three strains tested (FSCDJY33M3, FGSZY33L6, and FCQHCL8L6), L. reuteri FSCDJY33M3 was found to protect the intestinal barrier most effectively, possibly due to its ability to reduce the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) and increase the expression of tight junction proteins (occludin, claudin-3). Genomic analysis suggested that the protective effects of L. reuteri FSCDJY33M3 may be related to functional genes and glycoside hydrolases associated with energy production and conversion, amino acid transport and metabolism, carbohydrate transport and metabolism, and DNA replication, recombination, and repair. These genes include COG2856, COG1804, COG2071, and COG1061, which encode adenine deaminase, acyl-CoA transferases, glutamine amidotransferase, RNA helicase, and glycoside hydrolases, including GH13_20, GH53, and GH70. Our results identified functional genes that may be related to protection against alcohol-induced intestinal barrier damage, which might be useful for screening lactic acid bacterial strains that can protect the intestinal barrier.
Collapse
Affiliation(s)
- Jiayi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
11
|
Xia J, Zhang Y, Zhang S, Lu C, Huan H, Guan X. Oat Dietary Fiber Delays the Progression of Chronic Kidney Disease in Mice by Modulating the Gut Microbiota and Reducing Uremic Toxin Levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38836841 DOI: 10.1021/acs.jafc.4c02591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Chronic kidney disease (CKD) has emerged as a significant public health concern. In this article, we investigated the mechanism of oat dietary fiber in regulating CKD. Our findings indicated that the gut microbiota of CKD patients promoted gut microbiota dysbiosis and kidney injury in CKD mice. Intervention with oat-resistant starch prepared by ultrasonic combined enzymatic hydrolysis (ORSU) and oat β-glucan with a molecular weight of 5 × 104 Da (OBGM) elevated the levels of short-chain fatty acids (SCFAs) and regulated gut dysbiosis in the gut-humanized CKD mice. ORSU and OBGM also reduced CKD-related uremic toxins such as creatinine, indoxyl sulfate (IS), and p-cresol sulfate (PCS) levels; reinforced the intestinal barrier function of the gut-humanized CKD mice; and mitigated renal inflammation and fibrosis via the NF-κB/TGF-β pathway. Therefore, ORSU and OBGM might delay the progression of CKD by modulating the gut microbiota to reduce uremic toxins levels. Our results explain the mechanism of oat dietary fiber aimed at mitigating CKD.
Collapse
Affiliation(s)
- Ji'an Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Suhua Zhang
- Suzhou Kowloon Hospital Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu 215028, China
| | - Chunlai Lu
- The 905th Hospital of People's Liberation Army Navy, Shanghai 200050, China
| | - Hongdi Huan
- The 905th Hospital of People's Liberation Army Navy, Shanghai 200050, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| |
Collapse
|
12
|
Zheng HY, Wang L, Zhang R, Ding R, Yang CX, Du ZQ. Valine induces inflammation and enhanced adipogenesis in lean mice by multi-omics analysis. Front Nutr 2024; 11:1379390. [PMID: 38803448 PMCID: PMC11128663 DOI: 10.3389/fnut.2024.1379390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction The branched-chain amino acids (BCAAs) are essential to mammalian growth and development but aberrantly elevated in obesity and diabetes. Each BCAA has an independent and specific physio-biochemical effect on the host. However, the exact molecular mechanism of the detrimental effect of valine on metabolic health remains largely unknown. Methods and results This study showed that for lean mice treated with valine, the hepatic lipid metabolism and adipogenesis were enhanced, and the villus height and crypt depth of the ileum were significantly increased. Transcriptome profiling on white and brown adipose tissues revealed that valine disturbed multiple signaling pathways (e.g., inflammation and fatty acid metabolism). Integrative cecal metagenome and metabolome analyses found that abundances of Bacteroidetes decreased, but Proteobacteria and Helicobacter increased, respectively; and 87 differential metabolites were enriched in several molecular pathways (e.g., inflammation and lipid and bile acid metabolism). Furthermore, abundances of two metabolites (stercobilin and 3-IAA), proteins (AMPK/pAMPK and SCD1), and inflammation and adipogenesis-related genes were validated. Discussion Valine treatment affects the intestinal microbiota and metabolite compositions, induces gut inflammation, and aggravates hepatic lipid deposition and adipogenesis. Our findings provide novel insights into and resources for further exploring the molecular mechanism and biological function of valine on lipid metabolism.
Collapse
Affiliation(s)
- Hui-Yi Zheng
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| | - Li Wang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| | - Rong Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| | - Ran Ding
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| | - Cai-Xia Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| |
Collapse
|
13
|
Ma Y, Xie H, Xu N, Li M, Wang L, Ge H, Xie Z, Li D, Wang H. Large Yellow Tea Polysaccharide Alleviates HFD-Induced Intestinal Homeostasis Dysbiosis via Modulating Gut Barrier Integrity, Immune Responses, and the Gut Microbiome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7230-7243. [PMID: 38494694 DOI: 10.1021/acs.jafc.4c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Long-term high-fat diet (HFD) will induce dysbiosis and a disturbance of intestinal homeostasis. Large yellow tea polysaccharide (LYP) has been shown to improve obesity-associated metabolic disease via modulation of the M2 polarization. However, the contribution of LYP to intestinal barrier impairment and improvement mechanisms in obesity caused by an HFD are still not clear. In this study, we evaluated the impacts of LYP on the mucosal barrier function and microbiota composition in HFD-feeding mice. Results exhibited that dietary LYP supplement could ameliorate the physical barrier function via maintaining intestinal mucosal integrity and elevating tight-junction protein production, strengthen the chemical barrier function via up-regulating the levels of glucagon-like peptide-1 and increasing mucin-producing goblet cell numbers, and enhance the intestinal immune barrier function though suppressing immune cell subsets and cytokines toward pro-inflammatory phenotypes. Moreover, LYP reshaped the constitution and metabolism of intestinal flora by enriching probiotics that produce short-chain fatty acids. Overall, LYP might be used as a critical regulator of intestinal homeostasis to improve host health by promoting gut barrier integrity, modulating intestinal immune response, and inhibiting bowel inflammation.
Collapse
Affiliation(s)
- Yan Ma
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Hai Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Na Xu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Minni Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Lan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Huifang Ge
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Hongyan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| |
Collapse
|
14
|
Caffrey EB, Sonnenburg JL, Devkota S. Our extended microbiome: The human-relevant metabolites and biology of fermented foods. Cell Metab 2024; 36:684-701. [PMID: 38569469 DOI: 10.1016/j.cmet.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
One of the key modes of microbial metabolism occurring in the gut microbiome is fermentation. This energy-yielding process transforms common macromolecules like polysaccharides and amino acids into a wide variety of chemicals, many of which are relevant to microbe-microbe and microbe-host interactions. Analogous transformations occur during the production of fermented foods, resulting in an abundance of bioactive metabolites. In foods, the products of fermentation can influence food safety and preservation, nutrient availability, and palatability and, once consumed, may impact immune and metabolic status, disease expression, and severity. Human signaling pathways perceive and respond to many of the currently known fermented food metabolites, though expansive chemical novelty remains to be defined. Here we discuss several aspects of fermented food-associated microbes and metabolites, including a condensed history, current understanding of their interactions with hosts and host-resident microbes, connections with commercial probiotics, and opportunities for future research on human health and disease and food sustainability.
Collapse
Affiliation(s)
- Elisa B Caffrey
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA.
| | - Suzanne Devkota
- F. Widjaja Foundation Inflammatory Bowel Diseases Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Yang Y, Ke Y, Liu X, Zhang Z, Zhang R, Tian F, Zhi L, Zhao G, Lv B, Hua S, Wu H. Navigating the B vitamins: Dietary diversity, microbial synthesis, and human health. Cell Host Microbe 2024; 32:12-18. [PMID: 38211561 DOI: 10.1016/j.chom.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
B vitamins are intricately involved in various physiological processes vital for health. Their significance is complicated by the heterogeneous landscape of B vitamin distribution in diets and the contributions of the gut microbiota. Here, we delve into the impact of these factors on B vitamins and introduce strategies, with a focus on microbiota-based therapeutic options, to enhance their availability for improved well-being. Additionally, we provide an ecological and evolutionary perspective on the importance of B vitamins to human-microbiota interactions. In the dynamic realms of nutrition and microbiome science, these essential micronutrients continue to play a fundamental role in our understanding of disease development.
Collapse
Affiliation(s)
- Yudie Yang
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Yize Ke
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Xinyan Liu
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Zhidong Zhang
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Rongji Zhang
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Fang Tian
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Luqian Zhi
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Guoping Zhao
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Bomin Lv
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China.
| | - Sha Hua
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hao Wu
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
16
|
Singh V, West G, Fiocchi C, Good CE, Katz J, Jacobs MR, Dichosa AEK, Flask C, Wesolowski M, McColl C, Grubb B, Ahmed S, Bank NC, Thamma K, Bederman I, Erokwu B, Yang X, Sundrud MS, Menghini P, Basson AR, Ezeji J, Viswanath SE, Veloo A, Sykes DB, Cominelli F, Rodriguez-Palacios A. Clonal Parabacteroides from Gut Microfistulous Tracts as Transmissible Cytotoxic Succinate-Commensal Model of Crohn's Disease Complications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574896. [PMID: 38260564 PMCID: PMC10802508 DOI: 10.1101/2024.01.09.574896] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Crohn's disease (CD) has been traditionally viewed as a chronic inflammatory disease that cause gut wall thickening and complications, including fistulas, by mechanisms not understood. By focusing on Parabacteroides distasonis (presumed modern succinate-producing commensal probiotic), recovered from intestinal microfistulous tracts (cavernous fistulous micropathologies CavFT proposed as intermediate between 'mucosal fissures' and 'fistulas') in two patients that required surgery to remove CD-damaged ilea, we demonstrate that such isolates exert pathogenic/pathobiont roles in mouse models of CD. Our isolates are clonally-related; potentially emerging as transmissible in the community and mice; proinflammatory and adapted to the ileum of germ-free mice prone to CD-like ileitis (SAMP1/YitFc) but not healthy mice (C57BL/6J), and cytotoxic/ATP-depleting to HoxB8-immortalized bone marrow derived myeloid cells from SAMP1/YitFc mice when concurrently exposed to succinate and extracts from CavFT-derived E. coli , but not to cells from healthy mice. With unique genomic features supporting recent genetic exchange with Bacteroides fragilis -BGF539, evidence of international presence in primarily human metagenome databases, these CavFT Pdis isolates could represent to a new opportunistic Parabacteroides species, or subspecies (' cavitamuralis' ) adapted to microfistulous niches in CD.
Collapse
|
17
|
Gao R, Li P, Ni Y, Peng X, Ren J, Chen L. mNFE: microbiome network flow entropy for detecting pre-disease states of type 1 diabetes. Gut Microbes 2024; 16:2327349. [PMID: 38512768 PMCID: PMC10962612 DOI: 10.1080/19490976.2024.2327349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
In the development of Type 1 diabetes (T1D), there are critical states just before drastic changes, and identifying these pre-disease states may predict T1D or provide crucial early-warning signals. Unlike gene expression data, gut microbiome data can be collected noninvasively from stool samples. Gut microbiome sequencing data contain different levels of phylogenetic information that can be utilized to detect the tipping point or critical state in a reliable manner, thereby providing accurate and effective early-warning signals. However, it is still difficult to detect the critical state of T1D based on gut microbiome data due to generally non-significant differences between healthy and critical states. To address this problem, we proposed a new method - microbiome network flow entropy (mNFE) based on a single sample from each individual - for detecting the critical state before seroconversion and abrupt transitions of T1D at various taxonomic levels. The numerical simulation validated the robustness of mNFE under different noise levels. Furthermore, based on real datasets, mNFE successfully identified the critical states and their dynamic network biomarkers (DNBs) at different taxonomic levels. In addition, we found some high-frequency species, which are closely related to the unique clinical characteristics of autoantibodies at the four levels, and identified some non-differential 'dark species' play important roles during the T1D progression. mNFE can robustly and effectively detect the pre-disease states at various taxonomic levels and identify the corresponding DNBs with only a single sample for each individual. Therefore, our mNFE method provides a new approach not only for T1D pre-disease diagnosis or preventative treatment but also for preventative medicine of other diseases by gut microbiome.
Collapse
Affiliation(s)
- Rong Gao
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, China
- Big Data Institute, Central South university, Changsha, China
| | - Peiluan Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, China
- Longmen Laboratory, Luoyang, Henan, China
| | - Yueqiong Ni
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Xueqing Peng
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, China
| | - Jing Ren
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|