1
|
Zhang X, Bian A, Yang J, Liang Y, Zhang Z, Yan M, Yuan S, Zhang Q. Morphological Innovation Drives Sperm Release in Bryophytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306767. [PMID: 38552153 PMCID: PMC11132054 DOI: 10.1002/advs.202306767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/17/2024] [Indexed: 05/29/2024]
Abstract
Plant movements for survival are nontrivial. Antheridia in the moss Physcomitrium patens (P. patens) use motion to eject sperm in the presence of water. However, the biological and mechanical mechanisms that actuate the process are unknown. Here, the burst of the antheridium of P. patens, triggered by water, results from elastic instability and is determined by an asymmetric change in cell geometry. The tension generated in jacket cell walls of antheridium arises from turgor pressure, and is further promoted when the inner walls of apex burst in hydration, causing water and cellular contents of apex quickly influx into sperm chamber. The outer walls of the jacket cells are strengthened by NAC transcription factor VNS4 and serve as key morphomechanical innovations to store hydrostatic energy in a confined space in P. patens. However, the antheridium in liverwort Marchantia polymorpha (M. polymorpha) adopts a different strategy for sperm release; like jacket cell outer walls of P. patens, the cells surrounding the antheridium of M. polymorpha appear to play a similar role in the storage of energy. Collectively, the work shows that plants have evolved different ingenious devices for sperm discharge and that morphological innovations can differ.
Collapse
Affiliation(s)
- Xinxin Zhang
- Institute of BotanyChinese Academy of SciencesBeijing100093China
| | - Ang Bian
- College of Computer ScienceSichuan UniversityChengdu610065China
| | - Junbo Yang
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdong518120China
| | - Ye Liang
- Core Facility of the State Key Laboratory of Membrane BiologyPeking UniversityBeijing100871China
| | - Zhe Zhang
- Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyClear Water BayHong Kong999077China
| | - Meng Yan
- School of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiang310024China
| | - Siqi Yuan
- College of Life SciencesState Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
| | - Qun Zhang
- College of Life SciencesState Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
2
|
Bowman JL, Moyroud E. Reflections on the ABC model of flower development. THE PLANT CELL 2024; 36:1334-1357. [PMID: 38345422 PMCID: PMC11062442 DOI: 10.1093/plcell/koae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/07/2024] [Indexed: 05/02/2024]
Abstract
The formulation of the ABC model by a handful of pioneer plant developmental geneticists was a seminal event in the quest to answer a seemingly simple question: how are flowers formed? Fast forward 30 years and this elegant model has generated a vibrant and diverse community, capturing the imagination of developmental and evolutionary biologists, structuralists, biochemists and molecular biologists alike. Together they have managed to solve many floral mysteries, uncovering the regulatory processes that generate the characteristic spatio-temporal expression patterns of floral homeotic genes, elucidating some of the mechanisms allowing ABC genes to specify distinct organ identities, revealing how evolution tinkers with the ABC to generate morphological diversity, and even shining a light on the origins of the floral gene regulatory network itself. Here we retrace the history of the ABC model, from its genesis to its current form, highlighting specific milestones along the way before drawing attention to some of the unsolved riddles still hidden in the floral alphabet.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, VIC 3800, Australia
| | - Edwige Moyroud
- The Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
3
|
Kean-Galeno T, Lopez-Arredondo D, Herrera-Estrella L. The Shoot Apical Meristem: An Evolutionary Molding of Higher Plants. Int J Mol Sci 2024; 25:1519. [PMID: 38338798 PMCID: PMC10855264 DOI: 10.3390/ijms25031519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The shoot apical meristem (SAM) gives rise to the aerial structure of plants by producing lateral organs and other meristems. The SAM is responsible for plant developmental patterns, thus determining plant morphology and, consequently, many agronomic traits such as the number and size of fruits and flowers and kernel yield. Our current understanding of SAM morphology and regulation is based on studies conducted mainly on some angiosperms, including economically important crops such as maize (Zea mays) and rice (Oryza sativa), and the model species Arabidopsis (Arabidopsis thaliana). However, studies in other plant species from the gymnosperms are scant, making difficult comparative analyses that help us understand SAM regulation in diverse plant species. This limitation prevents deciphering the mechanisms by which evolution gave rise to the multiple plant structures within the plant kingdom and determines the conserved mechanisms involved in SAM maintenance and operation. This review aims to integrate and analyze the current knowledge of SAM evolution by combining the morphological and molecular information recently reported from the plant kingdom.
Collapse
Affiliation(s)
- Tania Kean-Galeno
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX 79409, USA; (T.K.-G.); (D.L.-A.)
| | - Damar Lopez-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX 79409, USA; (T.K.-G.); (D.L.-A.)
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX 79409, USA; (T.K.-G.); (D.L.-A.)
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36821, Mexico
| |
Collapse
|
4
|
Zhang L, Sasaki-Sekimoto Y, Kosetsu K, Aoyama T, Murata T, Kabeya Y, Sato Y, Koshimizu S, Shimojima M, Ohta H, Hasebe M, Ishikawa M. An ABCB transporter regulates anisotropic cell expansion via cuticle deposition in the moss Physcomitrium patens. THE NEW PHYTOLOGIST 2024; 241:665-675. [PMID: 37865886 DOI: 10.1111/nph.19337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Anisotropic cell expansion is crucial for the morphogenesis of land plants, as cell migration is restricted by the rigid cell wall. The anisotropy of cell expansion is regulated by mechanisms acting on the deposition or modification of cell wall polysaccharides. Besides the polysaccharide components in the cell wall, a layer of hydrophobic cuticle covers the outer cell wall and is subjected to tensile stress that mechanically restricts cell expansion. However, the molecular machinery that deposits cuticle materials in the appropriate spatiotemporal manner to accommodate cell and tissue expansion remains elusive. Here, we report that PpABCB14, an ATP-binding cassette transporter in the moss Physcomitrium patens, regulates the anisotropy of cell expansion. PpABCB14 localized to expanding regions of leaf cells. Deletion of PpABCB14 resulted in impaired anisotropic cell expansion. Unexpectedly, the cuticle proper was reduced in the mutants, and the cuticular lipid components decreased. Moreover, induced PpABCB14 expression resulted in deformed leaf cells with increased cuticle lipid accumulation on the cell surface. Taken together, PpABCB14 regulates the anisotropy of cell expansion via cuticle deposition, revealing a regulatory mechanism for cell expansion in addition to the mechanisms acting on cell wall polysaccharides.
Collapse
Affiliation(s)
- Liechi Zhang
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Yuko Sasaki-Sekimoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Ken Kosetsu
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Tsuyoshi Aoyama
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Takashi Murata
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Yukiko Kabeya
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Yoshikatsu Sato
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | | | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Masaki Ishikawa
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| |
Collapse
|
5
|
Li Y, Zhao M, Cai K, Liu L, Han R, Pei X, Zhang L, Zhao X. Phytohormone biosynthesis and transcriptional analyses provide insight into the main growth stage of male and female cones Pinus koraiensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1273409. [PMID: 37885661 PMCID: PMC10598626 DOI: 10.3389/fpls.2023.1273409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
The cone is a crucial component of the whole life cycle of gymnosperm and an organ for sexual reproduction of gymnosperms. In Pinus koraiensis, the quantity and development process of male and female cones directly influence seed production, which in turn influences the tree's economic value. There are, however, due to the lack of genetic information and genomic data, the morphological development and molecular mechanism of female and male cones of P. koraiensis have not been analyzed. Long-term phenological observations were used in this study to document the main process of the growth of both male and female cones. Transcriptome sequencing and endogenous hormone levels at three critical developmental stages were then analyzed to identify the regulatory networks that control these stages of cones development. The most significant plant hormones influencing male and female cones growth were discovered to be gibberellin and brassinosteroids, according to measurements of endogenous hormone content. Additionally, transcriptome sequencing allowed the identification of 71,097 and 31,195 DEGs in male and female cones. The synthesis and control of plant hormones during cones growth were discovered via enrichment analysis of key enrichment pathways. FT and other flowering-related genes were discovered in the coexpression network of flower growth development, which contributed to the growth development of male and female cones of P. koraiensis. The findings of this work offer a cutting-edge foundation for understanding reproductive biology and the molecular mechanisms that control the growth development of male and female cones in P. koraiensis.
Collapse
Affiliation(s)
- Yan Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Minghui Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Kewei Cai
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Lin Liu
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Xiaona Pei
- College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Lina Zhang
- School of Information Technology, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Yoro E, Koshimizu S, Murata T, Sakakibara K. Protocol: an improved method for inducing sporophyte generation in the model moss Physcomitrium patens under nitrogen starvation. PLANT METHODS 2023; 19:100. [PMID: 37752568 PMCID: PMC10521525 DOI: 10.1186/s13007-023-01077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Land plants exhibit a haplodiplontic life cycle, whereby multicellular bodies develop in both the haploid and diploid generations. The early-diverging land plants, known as bryophytes, have a haploid-dominant life cycle, in which a short-lived multicellular body in the diploid generation, known as the sporophyte, develops on the maternal haploid gametophyte tissues. The moss Physcomitrium (Physcomitrella) patens has become one of the most powerful model systems in evolutionary plant developmental studies. To induce diploid sporophytes of P. patens, several protocols are implemented. One of the conventional approaches is to grow approximately one-month-old gametophores for another month on Jiffy-7 pellets made from the peat moss that is difficult to fully sterilize. A more efficient method to obtain all tissues throughout the life cycle should accelerate studies of P. patens. RESULTS Here, we investigated the effect of nitrogen conditions on the growth and development of P. patens. We provide an improved protocol for the sporophyte induction of P. patens using a BCD-based solid culture medium without Jiffy-7 pellets, based on the finding that the formation of gametangia and subsequent sporophytes is promoted by nitrogen-free growth conditions. The protocol consists of two steps; first, culture the protonemata and gametophores on nitrogen-rich medium under continuous light at 25 °C, and then transfer the gametophores onto nitrogen-free medium under short-day and at 15 °C for sporophyte induction. The protocol enables to shorten the induction period and reduce the culture space. CONCLUSIONS Our more efficient and shortened protocol for inducing the formation of sporophytes will contribute to future studies into the fertilization or the diploid sporophyte generation of P. patens.
Collapse
Affiliation(s)
- Emiko Yoro
- Department of Life Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Shizuka Koshimizu
- Division of Evolutionary Biology, National Institute for Basic Biology (NIBB), Okazaki, 444-8585, Japan
- Bioinformation & DDBJ Center, National Institute of Genetics (NIG), Mishima, 411-8540, Japan
| | - Takashi Murata
- Division of Evolutionary Biology, National Institute for Basic Biology (NIBB), Okazaki, 444-8585, Japan
- Department of Applied Bioscience, Kanagawa Institute of Technology, Atsugi, Kanagawa, 243-0292, Japan
| | - Keiko Sakakibara
- Department of Life Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan.
| |
Collapse
|
7
|
Lüth VM, Rempfer C, van Gessel N, Herzog O, Hanser M, Braun M, Decker EL, Reski R. A Physcomitrella PIN protein acts in spermatogenesis and sporophyte retention. THE NEW PHYTOLOGIST 2023; 237:2118-2135. [PMID: 36696950 DOI: 10.1111/nph.18691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The auxin efflux PIN-FORMED (PIN) proteins are conserved in all land plants and important players in plant development. In the moss Physcomitrella (Physcomitrium patens), three canonical PINs (PpPINA-C) are expressed in the leafy shoot (gametophore). PpPINA and PpPINB show functional activity in vegetative growth and sporophyte development. Here, we examined the role of PpPINC in the life cycle of Physcomitrella. We established reporter and knockout lines for PpPINC and analysed vegetative and reproductive tissues using microscopy and transcriptomic sequencing of moss gametangia. PpPINC is expressed in immature leaves, mature gametangia and during sporophyte development. The sperm cells (spermatozoids) of pinC knockout mutants exhibit increased motility and an altered flagella phenotype. Furthermore, the pinC mutants have a higher portion of differentially expressed genes related to spermatogenesis, increased fertility and an increased abortion rate of premeiotic sporophytes. Here, we show that PpPINC is important for spermatogenesis and sporophyte retention. We propose an evolutionary conserved way of polar growth during early moss embryo development and sporophyte attachment to the gametophore while suggesting the mechanical function in sporophyte retention of a ring structure, the Lorch ring.
Collapse
Affiliation(s)
- Volker M Lüth
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Christine Rempfer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Oliver Herzog
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Melanie Hanser
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Marion Braun
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
8
|
Moriya KC, Shirakawa M, Loue-Manifel J, Matsuda Y, Lu YT, Tamura K, Oka Y, Matsushita T, Hara-Nishimura I, Ingram G, Nishihama R, Goodrich J, Kohchi T, Shimada T. Stomatal regulators are co-opted for seta development in the astomatous liverwort Marchantia polymorpha. NATURE PLANTS 2023; 9:302-314. [PMID: 36658391 DOI: 10.1038/s41477-022-01325-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The evolution of special types of cells requires the acquisition of new gene regulatory networks controlled by transcription factors (TFs). In stomatous plants, a TF module formed by subfamilies Ia and IIIb basic helix-loop-helix TFs (Ia-IIIb bHLH) regulates stomatal formation; however, how this module evolved during land plant diversification remains unclear. Here we show that, in the astomatous liverwort Marchantia polymorpha, a Ia-IIIb bHLH module regulates the development of a unique sporophyte tissue, the seta, which is found in mosses and liverworts. The sole Ia bHLH gene, MpSETA, and a IIIb bHLH gene, MpICE2, regulate the cell division and/or differentiation of seta lineage cells. MpSETA can partially replace the stomatal function of Ia bHLH TFs in Arabidopsis thaliana, suggesting that a common regulatory mechanism underlies setal and stomatal formation. Our findings reveal the co-option of a Ia-IIIb bHLH TF module for regulating cell fate determination and/or cell division of distinct types of cells during land plant evolution.
Collapse
Affiliation(s)
- Kenta C Moriya
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Makoto Shirakawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Jeanne Loue-Manifel
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCB Lyon 1, Lyon, France
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, UK
| | - Yoriko Matsuda
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yen-Ting Lu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, UK
| | - Kentaro Tamura
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoshito Oka
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCB Lyon 1, Lyon, France
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Justin Goodrich
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, UK
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
9
|
Ge Y, Gao Y, Jiao Y, Wang Y. A conserved module in the formation of moss midribs and seed plant axillary meristems. SCIENCE ADVANCES 2022; 8:eadd7275. [PMID: 36399581 PMCID: PMC9674282 DOI: 10.1126/sciadv.add7275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Different evolutionary lineages have evolved distinct characteristic body plans and anatomical structures, but their origins are largely elusive. For example, seed plants evolve axillary meristems to enable lateral branching. In moss, the phyllid (leaf) midrib containing specialized cells is responsible for water conduction and support. Midribs function like vascular tissues in flowering plants but may have risen from a different evolutionary path. Here, we demonstrate that midrib formation in the model moss Physcomitrium patens is regulated by orthologs of Arabidopsis LATERAL SUPPRESSOR (LAS), a key regulator of axillary meristem initiation. Midribs are missing in loss-of-function mutants, and ectopic formation of midrib-like structures is induced in overexpression lines. Furthermore, the PpLAS/AtLAS genes have conserved functions in the promotion of cell division in both lineages, which alleviates phenotypes in both Physcomitrium and Arabidopsis las mutants. Our results show that a conserved regulatory module is reused in divergent developmental programs, water-conducting and supporting tissues in moss, and axillary meristem initiation in seed plants.
Collapse
Affiliation(s)
- Yanhua Ge
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Koshimizu S, Minamino N, Nishiyama T, Yoro E, Sato M, Wakazaki M, Toyooka K, Ebine K, Sakakibara K, Ueda T, Yano K. Phylogenetic distribution and expression pattern analyses identified a divergent basal body assembly protein involved in land plant spermatogenesis. THE NEW PHYTOLOGIST 2022; 236:1182-1196. [PMID: 35842793 DOI: 10.1111/nph.18385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Land plant spermatozoids commonly possess characteristic structures such as the spline, which consists of a microtubule array, the multilayered structure (MLS) in which the uppermost layer is a continuum of the spline, and multiple flagella. However, the molecular mechanisms underpinning spermatogenesis remain to be elucidated. We successfully identified candidate genes involved in spermatogenesis, deeply divergent BLD10s, by computational analyses combining multiple methods and omics data. We then examined the functions of BLD10s in the liverwort Marchantia polymorpha and the moss Physcomitrium patens. MpBLD10 and PpBLD10 are required for normal basal body (BB) and flagella formation. Mpbld10 mutants exhibited defects in remodeling of the cytoplasm and nucleus during spermatozoid formation, and thus MpBLD10 should be involved in chromatin reorganization and elimination of the cytoplasm during spermiogenesis. We identified orthologs of MpBLD10 and PpBLD10 in diverse Streptophyta and found that MpBLD10 and PpBLD10 are orthologous to BLD10/CEP135 family proteins, which function in BB assembly. However, BLD10s evolved especially quickly in land plants and MpBLD10 might have acquired additional functions in spermatozoid formation through rapid molecular evolution.
Collapse
Affiliation(s)
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, 920-0934, Japan
| | - Emiko Yoro
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Keiko Sakakibara
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Kentaro Yano
- School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| |
Collapse
|
11
|
Schreiber M, Rensing SA, Gould SB. The greening ashore. TRENDS IN PLANT SCIENCE 2022; 27:847-857. [PMID: 35739050 DOI: 10.1016/j.tplants.2022.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
More than half a billion years ago a streptophyte algal lineage began terraforming the terrestrial habitat and the Earth's atmosphere. This pioneering step enabled the subsequent evolution of all complex life on land, and the past decade has uncovered that many traits, both morphological and genetic, once thought to be unique to land plants, are conserved across some streptophyte algae. They provided the common ancestor of land plants with a repertoire of genes, of which many were adapted to overcome the new biotic and abiotic challenges. Exploring these molecular adaptations in non-tracheophyte species may help us to better prepare all green life, including our crops, for the challenges precipitated by the climate change of the Anthropocene because the challenges mostly differ by the speed with which they are now being met.
Collapse
Affiliation(s)
- Mona Schreiber
- Plant Cell Biology, University of Marburg, 35043 Marburg, Germany.
| | - Stefan A Rensing
- Plant Cell Biology, University of Marburg, 35043 Marburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University (HHU) Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
12
|
Minamino N, Norizuki T, Mano S, Ebine K, Ueda T. Remodeling of organelles and microtubules during spermiogenesis in the liverwort Marchantia polymorpha. Development 2022; 149:276198. [DOI: 10.1242/dev.200951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Gametogenesis is an essential event for sexual reproduction in various organisms. Bryophytes employ motile sperm (spermatozoids) as male gametes, which locomote to the egg cells to accomplish fertilization. The spermatozoids of bryophytes harbor distinctive morphological characteristics, including a cell body with a helical shape and two flagella. During spermiogenesis, the shape and cellular contents of the spermatids are dynamically reorganized. However, the reorganization patterns of each organelle remain obscure. In this study, we classified the developmental processes during spermiogenesis in the liverwort Marchantia polymorpha according to changes in cellular and nuclear shapes and flagellar development. We then examined the remodeling of microtubules and the reorganization of endomembrane organelles. The results indicated that the state of glutamylation of tubulin changes during formation of the flagella and spline. We also found that the plasma membrane and endomembrane organelles are drastically reorganized in a precisely regulated manner, which involves the functions of endosomal sorting complexes required for transport (ESCRT) machineries in endocytic and vacuolar transport. These findings are expected to provide useful indices to classify developmental and subcellular processes of spermiogenesis in bryophytes.
Collapse
Affiliation(s)
- Naoki Minamino
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Takuya Norizuki
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Shoji Mano
- National Institute for Basic Biology 2 Laboratory of Organelle Regulation , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
- SOKENDAI (The Graduate University for Advanced Studies) 3 Department of Basic Biology , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Kazuo Ebine
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
- SOKENDAI (The Graduate University for Advanced Studies) 3 Department of Basic Biology , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Takashi Ueda
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
- SOKENDAI (The Graduate University for Advanced Studies) 3 Department of Basic Biology , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| |
Collapse
|
13
|
Liu HR, Shen C, Hassani D, Fang WQ, Wang ZY, Lu Y, Zhu RL, Zhao Q. Vacuoles in Bryophytes: Properties, Biogenesis, and Evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:863389. [PMID: 35747879 PMCID: PMC9209779 DOI: 10.3389/fpls.2022.863389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Vacuoles are the most conspicuous organelles in plants for their indispensable functions in cell expansion, solute storage, water balance, etc. Extensive studies on angiosperms have revealed that a set of conserved core molecular machineries orchestrate the formation of vacuoles from multiple pathways. Usually, vacuoles in seed plants are classified into protein storage vacuoles and lytic vacuoles for their distinctive morphology and physiology function. Bryophytes represent early diverged non-vascular land plants, and are of great value for a better understanding of plant science. However, knowledge about vacuole morphology and biogenesis is far less characterized in bryophytes. In this review, first we summarize known knowledge about the morphological and metabolic constitution properties of bryophytes' vacuoles. Then based on known genome information of representative bryophytes, we compared the conserved molecular machinery for vacuole biogenesis among different species including yeast, mammals, Arabidopsis and bryophytes and listed out significant changes in terms of the presence/absence of key machinery genes which participate in vacuole biogenesis. Finally, we propose the possible conserved and diverged mechanism for the biogenesis of vacuoles in bryophytes compared with seed plants.
Collapse
Affiliation(s)
- Hao-ran Liu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Chao Shen
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Danial Hassani
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Wan-qi Fang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhi-yi Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Lu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Rui-liang Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming, Shanghai, China
| |
Collapse
|
14
|
Gu N, Chen C, Kabeya Y, Hasebe M, Tamada Y. Topoisomerase 1α is required for synchronous spermatogenesis in Physcomitrium patens. THE NEW PHYTOLOGIST 2022; 234:137-148. [PMID: 35067949 DOI: 10.1111/nph.17983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
DNA topoisomerase 1 (TOP1) plays general roles in DNA replication and transcription by regulating DNA topology in land plants and metazoans. TOP1 is also involved in specific developmental events; however, whether TOP1 plays a conserved developmental role among multicellular organisms is unknown. Here, we investigated the developmental roles of TOP1 in the moss Physcomitrium (Physcomitrella) patens with gene targeting, microscopy, 3D image segmentation and crossing experiments. We discovered that the disruption of TOP1α, but not its paralogue TOP1β, leads to a defect in fertilisation and subsequent sporophyte formation in P. patens. In the top1α mutant, the egg cell was functional for fertilisation, while sperm cells were fewer and infertile with disordered structures. We observed that the nuclei volume of wild-type sperm cells synchronously decreases during antheridium development, indicating chromatin condensation towards the compact sperm head. By contrast, the top1α mutant exhibited attenuated cell divisions and asynchronous and defective contraction of the nuclei of sperm cells throughout spermatogenesis. These results indicate that TOP1α is involved in cell division and chromatin condensation during spermatogenesis in P. patens. Our results suggest that the regulation of DNA topology by TOP1 plays a key role in spermatogenesis in both land plants and metazoans.
Collapse
Affiliation(s)
- Nan Gu
- Robotics, Engineering and Agriculture-technology Laboratory (REAL), Utsunomiya University, Utsunomiya, 321-8585, Japan
- School of Engineering, Utsunomiya University, Utsunomiya, 321-8585, Japan
- Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Chunli Chen
- Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang, 550025, China
| | - Yukiko Kabeya
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, 444-8585, Japan
| | - Yosuke Tamada
- Robotics, Engineering and Agriculture-technology Laboratory (REAL), Utsunomiya University, Utsunomiya, 321-8585, Japan
- School of Engineering, Utsunomiya University, Utsunomiya, 321-8585, Japan
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, 444-8585, Japan
- Center for Optical Research & Education (CORE), Utsunomiya University, Utsunomiya, 321-8585, Japan
| |
Collapse
|
15
|
Althoff F, Wegner L, Ehlers K, Buschmann H, Zachgo S. Developmental Plasticity of the Amphibious Liverwort Riccia fluitans. FRONTIERS IN PLANT SCIENCE 2022; 13:909327. [PMID: 35677239 PMCID: PMC9168770 DOI: 10.3389/fpls.2022.909327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/27/2022] [Indexed: 05/21/2023]
Abstract
The colonization of land by ancestors of embryophyte plants was one of the most significant evolutionary events in the history of life on earth. The lack of a buffering aquatic environment necessitated adaptations for coping with novel abiotic challenges, particularly high light intensities and desiccation as well as the formation of novel anchoring structures. Bryophytes mark the transition from freshwater to terrestrial habitats and form adaptive features such as rhizoids for soil contact and water uptake, devices for gas exchange along with protective and repellent surface layers. The amphibious liverwort Riccia fluitans can grow as a land form (LF) or water form (WF) and was employed to analyze these critical traits in two different habitats. A combination of light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies was conducted to characterize and compare WF and LF morphologies. A complete phenotypic adaptation of a WF plant to a terrestrial habitat is accomplished within 15 days after the transition. Stable transgenic R. fluitans lines expressing GFP-TUBULIN and mCherry proteins were generated to study cell division and differentiation processes and revealed a higher cell division activity in enlarged meristematic regions at LF apical notches. Morphological studies demonstrated that the R. fluitans WF initiates air pore formation. However, these pores are arrested at an early four cell stage and do not develop further into open pores that could mediate gas exchange. Similarly, also arrested rhizoid initial cells are formed in the WF, which exhibit a distinctive morphology compared to other ventral epidermal cells. Furthermore, we detected that the LF thallus has a reduced surface permeability compared to the WF, likely mediated by formation of thicker LF cell walls and a distinct cuticle compared to the WF. Our R. fluitans developmental plasticity studies can serve as a basis to further investigate in a single genotype the molecular mechanisms of adaptations essential for plants during the conquest of land.
Collapse
Affiliation(s)
- Felix Althoff
- Department of Botany, Osnabrück University, Osnabrück, Germany
| | - Linus Wegner
- Department of Botany, Justus-Liebig University, Gießen, Germany
| | - Katrin Ehlers
- Department of Botany, Justus-Liebig University, Gießen, Germany
| | - Henrik Buschmann
- Department of Molecular Biotechnology, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Sabine Zachgo
- Department of Botany, Osnabrück University, Osnabrück, Germany
- *Correspondence: Sabine Zachgo,
| |
Collapse
|
16
|
Yamaoka S, Inoue K, Araki T. Regulation of gametangia and gametangiophore initiation in the liverwort Marchantia polymorpha. PLANT REPRODUCTION 2021; 34:297-306. [PMID: 34117568 DOI: 10.1007/s00497-021-00419-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
The liverwort Marchantia polymorpha regulates gametangia and gametangiophore development by using evolutionarily conserved regulatory modules that are shared with angiosperm mechanisms regulating flowering and germ cell differentiation. Bryophytes, the earliest diverged lineage of land plants comprised of liverworts, mosses, and hornworts, produce gametes in gametangia, reproductive organs evolutionarily conserved but lost in extant angiosperms. Initiation of gametangium development is dependent on environmental factors such as light, although the underlying mechanisms remain elusive. Recent studies showed that the liverwort Marchantia polymorpha regulates development of gametangia and stalked receptacles called gametangiophores by using conserved regulatory modules which, in angiosperms, are involved in light signaling, microRNA-mediated flowering regulation, and germ cell differentiation. These findings suggest that these modules were acquired by a common ancestor of land plants before divergence of bryophytes, and were later recruited to flowering mechanism in angiosperms.
Collapse
Affiliation(s)
- Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
17
|
Lin W, Wang Y, Coudert Y, Kierzkowski D. Leaf Morphogenesis: Insights From the Moss Physcomitrium patens. FRONTIERS IN PLANT SCIENCE 2021; 12:736212. [PMID: 34630486 PMCID: PMC8494982 DOI: 10.3389/fpls.2021.736212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/02/2021] [Indexed: 05/17/2023]
Abstract
Specialized photosynthetic organs have appeared several times independently during the evolution of land plants. Phyllids, the leaf-like organs of bryophytes such as mosses or leafy liverworts, display a simple morphology, with a small number of cells and cell types and lack typical vascular tissue which contrasts greatly with flowering plants. Despite this, the leaf structures of these two plant types share many morphological characteristics. In this review, we summarize the current understanding of leaf morphogenesis in the model moss Physcomitrium patens, focusing on the underlying cellular patterns and molecular regulatory mechanisms. We discuss this knowledge in an evolutionary context and identify parallels between moss and flowering plant leaf development. Finally, we propose potential research directions that may help to answer fundamental questions in plant development using moss leaves as a model system.
Collapse
Affiliation(s)
- Wenye Lin
- IRBV, Department of Biological Sciences, University of Montréal, Montréal, Montréal, QC, Canada
| | - Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yoan Coudert
- Laboratoire Reproduction et Développement des Plantes, Ecole Normale Supérieure de Lyon, CNRS, INRA, Université Claude Bernard Lyon 1, INRIA, Lyon, France
| | - Daniel Kierzkowski
- IRBV, Department of Biological Sciences, University of Montréal, Montréal, Montréal, QC, Canada
| |
Collapse
|
18
|
Nayar S, Thangavel G. CsubMADS1, a lag phase transcription factor, controls development of polar eukaryotic microalga Coccomyxa subellipsoidea C-169. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1228-1242. [PMID: 34160095 DOI: 10.1111/tpj.15380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/30/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
MADS-box transcription factors (TFs) have not been functionally delineated in microalgae. In this study, the role of CsubMADS1 from microalga Coccomyxa subellipsoidea C-169 has been explored. Unlike Type II MADS-box proteins of seed plants with MADS, Intervening, K-box, and C domains, CsubMADS1 only has MADS and Intervening domains. It forms a group with MADS TFs from algae in the phylogenetic tree within the Type II MIKCC clade. CsubMADS1 is expressed strongly in the lag phase of growth. The CsubMADS1 monomer does not have a specific localization in the nucleus, and it forms homodimers to localize exclusively in the nucleus. The monomer has two nuclear localization signals (NLSs): an N-terminal NLS and an internal NLS. The internal NLS is functional, and the homodimer requires two NLSs for specific nuclear localization. Overexpression (OX) of CsubMADS1 slows down the growth of the culture and leads to the creation of giant polyploid multinucleate cells, resembling autospore mother cells. This implies that the release of autospores from autospore mother cells may be delayed. Thus, in wild-type (WT) cells, CsubMADS1 may play a crucial role in slowing down growth during the lag phase. Due to starvation in 2-month-old colonies on solid media, the WT colonies produce mucilage, whereas OX colonies produce significantly less mucilage. Thus, CsubMADS1 also negatively regulates stress-induced mucilage production and probably plays a role in stress tolerance during the lag phase. Taken together, our results reveal that CsubMADS1 is a key TF involved in the development and stress tolerance of this polar microalga.
Collapse
Affiliation(s)
- Saraswati Nayar
- Division of Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Gokilavani Thangavel
- Division of Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| |
Collapse
|
19
|
Carey SB, Jenkins J, Lovell JT, Maumus F, Sreedasyam A, Payton AC, Shu S, Tiley GP, Fernandez-Pozo N, Healey A, Barry K, Chen C, Wang M, Lipzen A, Daum C, Saski CA, McBreen JC, Conrad RE, Kollar LM, Olsson S, Huttunen S, Landis JB, Burleigh JG, Wickett NJ, Johnson MG, Rensing SA, Grimwood J, Schmutz J, McDaniel SF. Gene-rich UV sex chromosomes harbor conserved regulators of sexual development. SCIENCE ADVANCES 2021; 7:7/27/eabh2488. [PMID: 34193417 PMCID: PMC8245031 DOI: 10.1126/sciadv.abh2488] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/14/2021] [Indexed: 05/19/2023]
Abstract
Nonrecombining sex chromosomes, like the mammalian Y, often lose genes and accumulate transposable elements, a process termed degeneration. The correlation between suppressed recombination and degeneration is clear in animal XY systems, but the absence of recombination is confounded with other asymmetries between the X and Y. In contrast, UV sex chromosomes, like those found in bryophytes, experience symmetrical population genetic conditions. Here, we generate nearly gapless female and male chromosome-scale reference genomes of the moss Ceratodon purpureus to test for degeneration in the bryophyte UV sex chromosomes. We show that the moss sex chromosomes evolved over 300 million years ago and expanded via two chromosomal fusions. Although the sex chromosomes exhibit weaker purifying selection than autosomes, we find that suppressed recombination alone is insufficient to drive degeneration. Instead, the U and V sex chromosomes harbor thousands of broadly expressed genes, including numerous key regulators of sexual development across land plants.
Collapse
Affiliation(s)
- Sarah B Carey
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Florian Maumus
- Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Adam C Payton
- Department of Biology, University of Florida, Gainesville, FL, USA
- RAPiD Genomics, Gainesville, FL, USA
| | - Shengqiang Shu
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | - Adam Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cindy Chen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mei Wang
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Jordan C McBreen
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Roth E Conrad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Leslie M Kollar
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Sanna Olsson
- Department of Forest Ecology and Genetics, INIA-CIFOR, Madrid, Spain
| | - Sanna Huttunen
- Department of Biology and Biodiversity Unit, University of Turku, Turku, Finland
| | - Jacob B Landis
- L.H. Bailey Hortorium and Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Norman J Wickett
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, USA
| | - Matthew G Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Stefan A Rensing
- Plant Cell Biology, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg im Breisgau, Germany
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
20
|
Takechi K, Nagase H, Furuya T, Hattori K, Sato Y, Miyajima K, Higuchi T, Matsuda R, Takio S, Tsukaya H, Takano H. Two atypical ANGUSTIFOLIA without a plant-specific C-terminus regulate gametophore and sporophyte shapes in the moss Physcomitrium (Physcomitrella) patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1390-1399. [PMID: 33280196 DOI: 10.1111/tpj.15121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
ANGUSTIFOLIA (AN) is a plant-specific subfamily of the CtBP/BARS/AN family, characterized by a plant-specific C-terminal domain of approximately 200 amino acids. Previously, we revealed that double knockout (DKO) lines of Physcomitrium (Physcomitrella) patens ANGUSTIFOLIA genes (PpAN1-1 and PpAN1-2) show defects in gametophore height and the lengths of the seta and foot region of sporophytes, by reduced cell elongation. In addition to two canonical ANs, the genome of P. patens has two atypical ANs without a coding region for a plant-specific C-terminus (PpAN2-1 and PpAN2-2); these were investigated in this study. Similar to PpAN1s, both promoters of the PpAN2 genes were highly active in the stems of haploid gametophores and in the middle-to-basal region of young diploid sporophytes that develop into the seta and foot. Analyses of PpAN2-1/2-2 DKO and PpAN quadruple knockout (QKO) lines implied that these four AN genes have partially redundant functions to regulate cell elongation in their expression regions. Transgenic strains harboring P. patens α-tubulin fused to green fluorescent protein, which were generated from a QKO line, showed that the orientation of the microtubules in the gametophore tips in the PpAN QKO lines was unchanged from the wild-type and PpAN1-1/1-2 DKO plants. In addition to both PpAN2-1 and PpAN2-2, short Arabidopsis AN without the C-terminus of 200 amino acids could rescue the Arabidopsis thaliana an-1 phenotypes, implying AN activity is dependent on the N-terminal regions.
Collapse
Affiliation(s)
- Katsuaki Takechi
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Hiroaki Nagase
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Tomoyuki Furuya
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Koro Hattori
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Kensuke Miyajima
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Tomofumi Higuchi
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Ryuya Matsuda
- Center for Water Cycle, Marine Environment and Disaster Management, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Susumu Takio
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
- Center for Water Cycle, Marine Environment and Disaster Management, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroyoshi Takano
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| |
Collapse
|
21
|
Yi XG, Yu XQ, Chen J, Zhang M, Liu SW, Zhu H, Li M, Duan YF, Chen L, Wu L, Zhu S, Sun ZS, Liu XH, Wang XR. The genome of Chinese flowering cherry ( Cerasus serrulata) provides new insights into Cerasus species. HORTICULTURE RESEARCH 2020; 7:165. [PMID: 33082971 PMCID: PMC7527954 DOI: 10.1038/s41438-020-00382-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 05/11/2023]
Abstract
Cerasus serrulata is a flowering cherry germplasm resource for ornamental purposes. In this work, we present a de novo chromosome-scale genome assembly of C. serrulata by the use of Nanopore and Hi-C sequencing technologies. The assembled C. serrulata genome is 265.40 Mb across 304 contigs and 67 scaffolds, with a contig N50 of 1.56 Mb and a scaffold N50 of 31.12 Mb. It contains 29,094 coding genes, 27,611 (94.90%) of which are annotated in at least one functional database. Synteny analysis indicated that C. serrulata and C. avium have 333 syntenic blocks composed of 14,072 genes. Blocks on chromosome 01 of C. serrulata are distributed on all chromosomes of C. avium, implying that chromosome 01 is the most ancient or active of the chromosomes. The comparative genomic analysis confirmed that C. serrulata has 740 expanded gene families, 1031 contracted gene families, and 228 rapidly evolving gene families. By the use of 656 single-copy orthologs, a phylogenetic tree composed of 10 species was constructed. The present C. serrulata species diverged from Prunus yedoensis ~17.34 million years ago (Mya), while the divergence of C. serrulata and C. avium was estimated to have occurred ∼21.44 Mya. In addition, a total of 148 MADS-box family gene members were identified in C. serrulata, accompanying the loss of the AGL32 subfamily and the expansion of the SVP subfamily. The MYB and WRKY gene families comprising 372 and 66 genes could be divided into seven and eight subfamilies in C. serrulata, respectively, based on clustering analysis. Nine hundred forty-one plant disease-resistance genes (R-genes) were detected by searching C. serrulata within the PRGdb. This research provides high-quality genomic information about C. serrulata as well as insights into the evolutionary history of Cerasus species.
Collapse
Affiliation(s)
- Xian-Gui Yi
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment; Cerasus Research Center, Nanjing Forestry University, 210037 Nanjing, Jiangsu China
| | - Xia-Qing Yu
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
| | - Jie Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment; Cerasus Research Center, Nanjing Forestry University, 210037 Nanjing, Jiangsu China
| | - Min Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment; Cerasus Research Center, Nanjing Forestry University, 210037 Nanjing, Jiangsu China
| | - Shao-Wei Liu
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
| | - Hong Zhu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment; Cerasus Research Center, Nanjing Forestry University, 210037 Nanjing, Jiangsu China
| | - Meng Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment; Cerasus Research Center, Nanjing Forestry University, 210037 Nanjing, Jiangsu China
| | - Yi-Fan Duan
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment; Cerasus Research Center, Nanjing Forestry University, 210037 Nanjing, Jiangsu China
| | - Lin Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment; Cerasus Research Center, Nanjing Forestry University, 210037 Nanjing, Jiangsu China
| | - Lei Wu
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Shun Zhu
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Zhong-Shuai Sun
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 318000 Taizhou, Zhejiang China
| | - Xin-Hong Liu
- Zhejiang Academy of Forestry, 310023 Hangzhou, Zhejiang China
| | - Xian-Rong Wang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment; Cerasus Research Center, Nanjing Forestry University, 210037 Nanjing, Jiangsu China
| |
Collapse
|
22
|
Spencer V, Nemec Venza Z, Harrison CJ. What can lycophytes teach us about plant evolution and development? Modern perspectives on an ancient lineage. Evol Dev 2020; 23:174-196. [PMID: 32906211 DOI: 10.1111/ede.12350] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
All Evo-Devo studies rely on representative sampling across the tree of interest to elucidate evolutionary trajectories through time. In land plants, genetic resources are well established in model species representing lineages including bryophytes (mosses, liverworts, and hornworts), monilophytes (ferns and allies), and seed plants (gymnosperms and flowering plants), but few resources are available for lycophytes (club mosses, spike mosses, and quillworts). Living lycophytes are a sister group to the euphyllophytes (the fern and seed plant clade), and have retained several ancestral morphological traits despite divergence from a common ancestor of vascular plants around 420 million years ago. This sister relationship offers a unique opportunity to study the conservation of traits such as sporophyte branching, vasculature, and indeterminacy, as well as the convergent evolution of traits such as leaves and roots which have evolved independently in each vascular plant lineage. To elucidate the evolution of vascular development and leaf formation, molecular studies using RNA Seq, quantitative reverse transcription polymerase chain reaction, in situ hybridisation and phylogenetics have revealed the diversification and expression patterns of KNOX, ARP, HD-ZIP, KANADI, and WOX gene families in lycophytes. However, the molecular basis of further trait evolution is not known. Here we describe morphological traits of living lycophytes and their extinct relatives, consider the molecular underpinnings of trait evolution and discuss future research required in lycophytes to understand the key evolutionary innovations enabling the growth and development of all vascular plants.
Collapse
Affiliation(s)
- Victoria Spencer
- School of Biological Sciences, The University of Bristol, Bristol, UK
| | - Zoe Nemec Venza
- School of Biological Sciences, The University of Bristol, Bristol, UK
| | | |
Collapse
|
23
|
Carey SB, Jenkins J, Lovell JT, Maumus F, Sreedasyam A, Payton AC, Shu S, Tiley GP, Fernandez-pozo N, Barry K, Chen C, Wang M, Lipzen A, Daum C, Saski CA, Mcbreen JC, Conrad RE, Kollar LM, Olsson S, Huttunen S, Landis JB, Burleigh JG, Wickett NJ, Johnson MG, Rensing SA, Grimwood J, Schmutz J, Mcdaniel SF. The Ceratodon purpureus genome uncovers structurally complex, gene rich sex chromosomes.. [PMID: 0 DOI: 10.1101/2020.07.03.163634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
AbstractNon-recombining sex chromosomes, like the mammalian Y, often lose genes and accumulate transposable elements, a process termed degeneration1,2. The correlation between suppressed recombination and degeneration is clear in animal XY systems1,2, but the absence of recombination is confounded with other asymmetries between the X and Y. In contrast, UV sex chromosomes, like those found in bryophytes, experience symmetrical population genetic conditions3,4. Here we test for degeneration in the bryophyte UV sex chromosome system through genomic comparisons with new female and male chromosome-scale reference genomes of the moss Ceratodon purpureus. We show that the moss sex chromosomes evolved over 300 million years ago and expanded via two chromosomal fusions. Although the sex chromosomes show signs of weaker purifying selection than autosomes, we find suppressed recombination alone is insufficient to drive gene loss on sex-specific chromosomes. Instead, the U and V sex chromosomes harbor thousands of broadly-expressed genes, including numerous key regulators of sexual development across land plants.
Collapse
|
24
|
Meyberg R, Perroud PF, Haas FB, Schneider L, Heimerl T, Renzaglia KS, Rensing SA. Characterisation of evolutionarily conserved key players affecting eukaryotic flagellar motility and fertility using a moss model. THE NEW PHYTOLOGIST 2020; 227:440-454. [PMID: 32064607 PMCID: PMC8224819 DOI: 10.1111/nph.16486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/07/2020] [Indexed: 05/18/2023]
Abstract
Defects in flagella/cilia are often associated with infertility and disease. Motile male gametes (sperm cells) are an ancestral eukaryotic trait that has been lost in several lineages like flowering plants. Here, we made use of a phenotypic male fertility difference between two moss (Physcomitrella patens) ecotypes to explore spermatozoid function. We compare genetic and epigenetic variation as well as expression profiles between the Gransden and Reute ecotype to identify a set of candidate genes associated with moss male infertility. We generated a loss-of-function mutant of a coiled-coil domain containing 39 (ccdc39) gene that is part of the flagellar hydin network. Defects in mammal and algal homologues of this gene coincide with a loss of fertility, demonstrating the evolutionary conservation of flagellar function related to male fertility across kingdoms. The Ppccdc39 mutant resembles the Gransden phenotype in terms of male fertility. Potentially, several somatic (epi-)mutations occurred during prolonged vegetative propagation of Gransden, causing regulatory differences of for example the homeodomain transcription factor BELL1. Probably these somatic changes are causative for the observed male fertility defect. We propose that moss spermatozoids might be employed as an easily accessible system to study male infertility of humans and animals in terms of flagellar structure and movement.
Collapse
Affiliation(s)
- Rabea Meyberg
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Pierre-François Perroud
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Fabian B. Haas
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Lucas Schneider
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Thomas Heimerl
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Karen S. Renzaglia
- Department of Plant Biology, Southern Illinois University, Mail Code 6509, 1125 Lincoln Drive, Carbondale, IL 62901, USA
| | - Stefan A. Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| |
Collapse
|
25
|
Radial or Bilateral? The Molecular Basis of Floral Symmetry. Genes (Basel) 2020; 11:genes11040395. [PMID: 32268578 PMCID: PMC7230197 DOI: 10.3390/genes11040395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 01/10/2023] Open
Abstract
In the plant kingdom, the flower is one of the most relevant evolutionary novelties. Floral symmetry has evolved multiple times from the ancestral condition of radial to bilateral symmetry. During evolution, several transcription factors have been recruited by the different developmental pathways in relation to the increase of plant complexity. The MYB proteins are among the most ancient plant transcription factor families and are implicated in different metabolic and developmental processes. In the model plant Antirrhinum majus, three MYB transcription factors (DIVARICATA, DRIF, and RADIALIS) have a pivotal function in the establishment of floral dorsoventral asymmetry. Here, we present an updated report of the role of the DIV, DRIF, and RAD transcription factors in both eudicots and monocots, pointing out their functional changes during plant evolution. In addition, we discuss the molecular models of the establishment of flower symmetry in different flowering plants.
Collapse
|
26
|
Campos ML, Prado GS, Dos Santos VO, Nascimento LC, Dohms SM, da Cunha NB, Ramada MHS, Grossi-de-Sa MF, Dias SC. Mosses: Versatile plants for biotechnological applications. Biotechnol Adv 2020; 41:107533. [PMID: 32151692 DOI: 10.1016/j.biotechadv.2020.107533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 02/03/2023]
Abstract
Mosses have long been recognized as powerful experimental tools for the elucidation of complex processes in plant biology. Recent increases in the availability of sequenced genomes and mutant collections, the establishment of novel technologies for targeted mutagenesis, and the development of viable protocols for large-scale production in bioreactors are now transforming mosses into one of the most versatile tools for biotechnological applications. In the present review, we highlight the astonishing biotechnological potential of mosses and how these plants are being exploited for industrial, pharmaceutical, and environmental applications. We focus on the biological features that support their use as model organisms for basic and applied research, and how these are being leveraged to explore the biotechnological potential in an increasing number of species. Finally, we also provide an overview of the available moss cultivation protocols from an industrial perspective, offering insights into batch operations that are not yet well established or do not even exist in the literature. Our goal is to bolster the use of mosses as factories for the biosynthesis of molecules of interest and to show how these species can be harnessed for the generation of novel and commercially useful bioproducts.
Collapse
Affiliation(s)
- Marcelo Lattarulo Campos
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Guilherme Souza Prado
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Vanessa Olinto Dos Santos
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Lara Camelo Nascimento
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasília, Brasilia, DF, Brazil
| | - Stephan Machado Dohms
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| | - Nicolau Brito da Cunha
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasília, Brasilia, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Marcelo Henrique Soller Ramada
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasília, Brasilia, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| | - Maria Fatima Grossi-de-Sa
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| | - Simoni Campos Dias
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasília, Brasilia, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Biologia Animal, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil.
| |
Collapse
|
27
|
Hashida Y, Takechi K, Abiru T, Yabe N, Nagase H, Hattori K, Takio S, Sato Y, Hasebe M, Tsukaya H, Takano H. Two ANGUSTIFOLIA genes regulate gametophore and sporophyte development in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1318-1330. [PMID: 31674691 DOI: 10.1111/tpj.14592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/06/2019] [Accepted: 10/17/2019] [Indexed: 05/08/2023]
Abstract
In Arabidopsis thaliana the ANGUSTIFOLIA (AN) gene regulates the width of leaves by controlling the diffuse growth of leaf cells in the medio-lateral direction. In the genome of the moss Physcomitrella patens, we found two normal ANs (PpAN1-1 and 1-2). Both PpAN1 genes complemented the A. thaliana an-1 mutant phenotypes. An analysis of spatiotemporal promoter activity of each PpAN1 gene, using transgenic lines that contained each PpAN1-promoter- uidA (GUS) gene, showed that both promoters are mainly active in the stems of haploid gametophores and in the middle to basal region of the young sporophyte that develops into the seta and foot. Analyses of the knockout lines for PpAN1-1 and PpAN1-2 genes suggested that these genes have partially redundant functions and regulate gametophore height by controlling diffuse cell growth in gametophore stems. In addition, the seta and foot were shorter and thicker in diploid sporophytes, suggesting that cell elongation was reduced in the longitudinal direction, whereas no defects were detected in tip-growing protonemata. These results indicate that both PpAN1 genes in P. patens function in diffuse growth of the haploid and diploid generations but not in tip growth. To visualize microtubule distribution in gametophore cells of P. patens, transformed lines expressing P. patens α-tubulin fused to sGFP were generated. Contrary to expectations, the orientation of microtubules in the tips of gametophores in the PpAN1-1/1-2 double-knockout lines was unchanged. The relationships among diffuse cell growth, cortical microtubules and AN proteins are discussed.
Collapse
Affiliation(s)
- Yoshikazu Hashida
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Katsuaki Takechi
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Tomomi Abiru
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Noriyuki Yabe
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Hiroaki Nagase
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Koro Hattori
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Susumu Takio
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
- Center for Water Cycle, Marine Environment and Disaster Management, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology and SOKENDAI (Graduate School for Advanced Studies), Okazaki, 444-8585, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroyoshi Takano
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
- Institute of Pulsed Power Science, Kumamoto University, Kumamoto, 860-8555, Japan
| |
Collapse
|
28
|
Kirbis A, Waller M, Ricca M, Bont Z, Neubauer A, Goffinet B, Szövényi P. Transcriptional Landscapes of Divergent Sporophyte Development in Two Mosses, Physcomitrium (Physcomitrella) patens and Funaria hygrometrica. FRONTIERS IN PLANT SCIENCE 2020; 11:747. [PMID: 32587596 PMCID: PMC7299128 DOI: 10.3389/fpls.2020.00747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/11/2020] [Indexed: 05/03/2023]
Abstract
Understanding the molecular basis of morphological shifts is a fundamental question of evolutionary biology. New morphologies may arise through the birth/death of genes (gene gain/loss) or by reutilizing existing gene sets. Yet, the relative contribution of these two processes to radical morphological shifts is still poorly understood. Here, we use the model system of two mosses, Funaria hygrometrica and Physcomitrium (Physcomitrella) patens, to investigate the molecular mechanisms underlying contrasting sporophyte architectures. We used comparative analysis of time-series expression data for four stages of sporophyte development in both species to address this question in detail. We found that large-scale differences in sporophytic architecture are mainly governed by orthologous (i.e., shared) genes frequently experiencing temporal gene expression shifts between the two species. While the absolute number of species-specific genes expressed during sporophyte development is somewhat smaller, we observed a significant increase of their proportion in preferentially sporophyte expressed genes, suggesting a fundamental role in the sporophyte phase. However, further functional studies are necessary to determine their contribution to diverging sporophyte morphologies. Our results add to the growing set of studies suggesting that radical changes in morphology may rely on the heterochronic expression of conserved regulators.
Collapse
Affiliation(s)
- Alexander Kirbis
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Mariana Ricca
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Zoe Bont
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Anna Neubauer
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich and Zurich-Basel Plant Science Center, Zurich, Switzerland
- *Correspondence: Péter Szövényi,
| |
Collapse
|
29
|
Falz AL, Müller-Schüssele SJ. Physcomitrella as a model system for plant cell biology and organelle-organelle communication. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:7-13. [PMID: 31254720 DOI: 10.1016/j.pbi.2019.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
In multicellular eukaryotic cells, metabolism and growth are sustained by the cooperative functioning of organelles in combination with cell-to-cell communication at the organism level. In land plants, multiple strategies have evolved to adapt to life outside water. As basal land plant, the moss Physcomitrella patens is used for comparative genomics, allowing to study lineage-specific features, as well as to track the evolution of fundamental parameters of plant cell organisation and physiology. P. patens is a versatile model for cell biology research, especially to investigate adaptive growth, stress biology as well as organelle dynamics and interactions. Recent advances include the use of genetically encoded biosensors for in vivo imaging of physiological parameters.
Collapse
Affiliation(s)
- Anna-Lena Falz
- INRES - Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | | |
Collapse
|
30
|
Maeda H, Akagi T, Onoue N, Kono A, Tao R. Evolution of Lineage-Specific Gene Networks Underlying the Considerable Fruit Shape Diversity in Persimmon. PLANT & CELL PHYSIOLOGY 2019; 60:2464-2477. [PMID: 31350891 PMCID: PMC6839372 DOI: 10.1093/pcp/pcz139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
The shapes of plant organs reflect the evolution of each lineage and have been diversified according to lineage-specific adaptations to environment. Research on the molecular pathways responsible for organ shapes has traditionally been focused mainly on leaves or flowers. Thus, little is known about the pathways controlling fruit shapes, despite their diversity in some plant species. In this study, we analyzed oriental persimmon (Diospyros kaki), which exhibits considerable diversity in fruit shapes among cultivars, to elucidate the underlying molecular mechanism using transcriptomic data and quantitative evaluation. First, to filter the candidate genes associated with persimmon fruit shapes, the whole gene expression patterns obtained using mRNA-Seq analysis from 100 individuals, including a segregated population and various cultivars, were assessed to detect correlations with principal component scores for fruit shapes characterized with elliptic Fourier descriptors. Next, a gene co-expression network analysis with weighted gene co-expression network analysis (WGCNA) package revealed that class 1 KNOX family genes and SEEDSTICK function as integrators along with some phytohormone-related genes, to regulate the fruit shape diversity. On the other hand, the OVATE family genes also contribute to fruit shape diversity, of which pathway would be potentially shared with other plant species. Evolutionary aspects suggest that acquisition of a high lineage-specific and variable expression of class 1 KNOX gene, knotted-like homeobox of Arabidopsis thaliana 1 (KNAT1), in young fruit is important for establishing the persimmon-specific mechanism that determines fruit shape diversity.
Collapse
Affiliation(s)
- Haruka Maeda
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Akagi
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi-shi, Saitama, Japan
| | - Noriyuki Onoue
- Institute of Fruit Tree and Tea Science, NARO, Higashihiroshima, Japan
| | - Atsushi Kono
- Institute of Fruit Tree and Tea Science, NARO, Higashihiroshima, Japan
| | - Ryutaro Tao
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
31
|
Ishikawa M, Morishita M, Higuchi Y, Ichikawa S, Ishikawa T, Nishiyama T, Kabeya Y, Hiwatashi Y, Kurata T, Kubo M, Shigenobu S, Tamada Y, Sato Y, Hasebe M. Physcomitrella STEMIN transcription factor induces stem cell formation with epigenetic reprogramming. NATURE PLANTS 2019; 5:681-690. [PMID: 31285563 DOI: 10.1038/s41477-019-0464-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/28/2019] [Indexed: 05/18/2023]
Abstract
Epigenetic modifications, including histone modifications, stabilize cell-specific gene expression programmes to maintain cell identities in both metazoans and land plants1-3. Notwithstanding the existence of these stable cell states, in land plants, stem cells are formed from differentiated cells during post-embryonic development and regeneration4-6, indicating that land plants have an intrinsic ability to regulate epigenetic memory to initiate a new gene regulatory network. However, it is less well understood how epigenetic modifications are locally regulated to influence the specific genes necessary for cellular changes without affecting other genes in a genome. In this study, we found that ectopic induction of the AP2/ERF transcription factor STEMIN1 in leaf cells of the moss Physcomitrella patens decreases a repressive chromatin mark, histone H3 lysine 27 trimethylation (H3K27me3), on its direct target genes before cell division, resulting in the conversion of leaf cells to chloronema apical stem cells. STEMIN1 and its homologues positively regulate the formation of secondary chloronema apical stem cells from chloronema cells during development. Our results suggest that STEMIN1 functions within an intrinsic mechanism underlying local H3K27me3 reprogramming to initiate stem cell formation.
Collapse
Affiliation(s)
- Masaki Ishikawa
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan.
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.
- ERATO, Japan Science and Technology Agency, Okazaki, Japan.
| | - Mio Morishita
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Yohei Higuchi
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- ERATO, Japan Science and Technology Agency, Okazaki, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Shunsuke Ichikawa
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - Takaaki Ishikawa
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- ERATO, Japan Science and Technology Agency, Okazaki, Japan
| | - Tomoaki Nishiyama
- ERATO, Japan Science and Technology Agency, Okazaki, Japan
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Yukiko Kabeya
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Yuji Hiwatashi
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
- School of Food Industrial Sciences, Miyagi University, Sendai, Japan
| | - Tetsuya Kurata
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- ERATO, Japan Science and Technology Agency, Okazaki, Japan
| | - Minoru Kubo
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- ERATO, Japan Science and Technology Agency, Okazaki, Japan
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Shuji Shigenobu
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Yosuke Tamada
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Yoshikatsu Sato
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- ERATO, Japan Science and Technology Agency, Okazaki, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan.
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.
- ERATO, Japan Science and Technology Agency, Okazaki, Japan.
| |
Collapse
|
32
|
Abstract
The reproductive adaptations of land plants have played a key role in their terrestrial colonization and radiation. This encompasses mechanisms used for the production, dispersal and union of gametes to support sexual reproduction. The production of small motile male gametes and larger immotile female gametes (oogamy) in specialized multicellular gametangia evolved in the charophyte algae, the closest extant relatives of land plants. Reliance on water and motile male gametes for sexual reproduction was retained by bryophytes and basal vascular plants, but was overcome in seed plants by the dispersal of pollen and the guided delivery of non-motile sperm to the female gametes. Here we discuss the evolutionary history of male gametogenesis in streptophytes (green plants) and the underlying developmental biology, including recent advances in bryophyte and angiosperm models. We conclude with a perspective on research trends that promise to deliver a deeper understanding of the evolutionary and developmental mechanisms of male gametogenesis in plants.
Collapse
Affiliation(s)
- Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
33
|
Reski R. Quantitative moss cell biology. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:39-47. [PMID: 30036707 DOI: 10.1016/j.pbi.2018.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Research on mosses has provided answers to many fundamental questions in the life sciences, with the model moss Physcomitrella patens spearheading the field. Recent breakthroughs in cell biology were obtained in the quantification of chlorophyll fluorescence, signalling via calcium waves, the creation of designer organelles, gene identification in cellular reprogramming, reproduction via motile sperm and egg cells, asymmetric cell division, visualization of the actin cytoskeleton, identification of genes responsible for the shift from 2D to 3D growth, the structure and importance of the cell wall, and in the live imaging and modelling of protein networks in general. Highly standardized growth conditions, simplicity of most moss tissues, and an outstandingly efficient gene editing facilitate quantitative moss cell biology.
Collapse
Affiliation(s)
- Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany; SGBM - Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstr. 19A, 79104 Freiburg, Germany; FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.
| |
Collapse
|
34
|
Liu C, Xue Z, Tang D, Shen Y, Shi W, Ren L, Du G, Li Y, Cheng Z. Ornithine δ-aminotransferase is critical for floret development and seed setting through mediating nitrogen reutilization in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:842-854. [PMID: 30144334 DOI: 10.1111/tpj.14072] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 05/13/2023]
Abstract
Nitrogen is one of the most important nutrient element that is essential for plant growth and development. Many genes have been reported to contribute to nitrogen absorption and transportation. However, genes involved in nitrogen reutilization are seldom reported. Ornithine δ-aminotransferase (δOAT) is the enzyme connecting arginine cycling and proline cycling. Here, we found that OsOAT, the homologue of δOAT in rice, is essential for nitrogen reutilization through mediating arginase activity. In the Osoat mutant, metabolic abnormality induced by nitrogen deficiency in floret causes malformed glumes, incapable glume opening and anther indehiscence. These defects in the mutant affect the pollination process and lead to a low seed setting rate as well as abnormal seed shape. Intriguingly, urea can rescue the phenotypes of the Osoat mutant. Therefore, OsOAT is crucial for nitrogen reutilization and plays a critical role in floret development and seed setting in rice.
Collapse
Affiliation(s)
- Changzhen Liu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihui Xue
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenqing Shi
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lijun Ren
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guijie Du
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Abstract
The female sex organ of the liverwort (Marchantia polymorpha) has a characteristic parasol-like form highly suitable for collecting water droplets containing sperm for fertilization. Motivated by this observation and using three-dimensional printing techniques, we develop a parasol-like rigid object that can grab, transport and release water droplets of a maximum size of about 1 cm. By combining experiments and scaling theory, we quantify the object's fundamental wetting and fluid dynamical properties. We construct a stability phase diagram and suggest that it is largely insensitive to properties of liquids such as surface tension and viscosity. A simple scaling argument is developed to explain the phase boundary. Our study provides basic design rules of a simple pipette-like device with bubble-free capture and drop of liquids, which can be used in laboratory settings and has applications within soft robotics. Through systematic experimental investigations, we suggest the optimal design criteria of the liverwort-inspired object to achieve maximal pipetting performance. We also provide, based on our scalable model experiments, a biological implication for the mechanistic advantage of this structure in liverwort reproduction.
Collapse
Affiliation(s)
- Keigo Nakamura
- Department of Physics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tetsuya Hisanaga
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Koichi Fujimoto
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| | - Keiji Nakajima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Hirofumi Wada
- Department of Physics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
36
|
Affiliation(s)
- Ralf Reski
- Chair Plant Biotechnology and the Excellence Cluster BIOSS-Centre for Biological Signalling Studies, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
37
|
Thangavel G, Nayar S. A Survey of MIKC Type MADS-Box Genes in Non-seed Plants: Algae, Bryophytes, Lycophytes and Ferns. FRONTIERS IN PLANT SCIENCE 2018; 9:510. [PMID: 29720991 PMCID: PMC5915566 DOI: 10.3389/fpls.2018.00510] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/03/2018] [Indexed: 05/22/2023]
Abstract
MADS box transcription factors have been studied extensively in flowering plants but remain less studied in non-seed plants. MADS box is one such example of a gene which is prevalent across many classes of plants ranging from chlorophyta to embryophyta as well as fungi and animals. MADS box transcription factors are of two types, Type I and Type II. Type II transcription factors (TF) that consist of a MADS domain, I region, K domain, and C terminal domain are discussed in this review. The Type II/ MIKC class is widespread across charophytes and all major lineages of land plants but unknown in green and red algae. These transcription factors have been implicated in floral development in seed plants and thus the question arises, "What is their role in non-seed plants?" From the studies reviewed here it can be gathered that unlike seed plants, MIKCC genes in non-seed plants have roles in both gametophytic and sporophytic generations and contribute to the development of both vegetative and reproductive structures. On the other hand as previously observed in seed plants, MIKC* genes of non-seed plants have a conserved role during gametophyte development. With respect to evolution of MIKC genes in non-seed plants, the number of common ancestors is probably very few at each branch. The expansion of this gene family in seed plants and increased plant complexity seem to be correlated. As gradually the genomes of non-seed plants are becoming available it is worthwhile to gather the existing information about MADS box genes in non-seed plants. This review highlights various MIKC MADS box genes discovered so far in non-seed plants, their possible roles and an insight into their evolution.
Collapse
|