1
|
Hailemariam S, Liao CJ, Mengiste T. Receptor-like cytoplasmic kinases: orchestrating plant cellular communication. TRENDS IN PLANT SCIENCE 2024; 29:1113-1130. [PMID: 38816318 DOI: 10.1016/j.tplants.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
The receptor-like kinase (RLK) family of receptors and the associated receptor-like cytoplasmic kinases (RLCKs) have expanded in plants because of selective pressure from environmental stress and evolving pathogens. RLCKs link pathogen perception to activation of coping mechanisms. RLK-RLCK modules regulate hormone synthesis and responses, reactive oxygen species (ROS) production, Ca2+ signaling, activation of mitogen-activated protein kinase (MAPK), and immune gene expression, all of which contribute to immunity. Some RLCKs integrate responses from multiple receptors recognizing distinct ligands. RLKs/RLCKs and nucleotide-binding domain, leucine-rich repeats (NLRs) were found to synergize, demonstrating the intertwined genetic network in plant immunity. Studies in arabidopsis (Arabidopsis thaliana) have provided paradigms about RLCK functions, but a lack of understanding of crop RLCKs undermines their application. In this review, we summarize current understanding of the diverse functions of RLCKs, based on model systems and observations in crop species, and the emerging role of RLCKs in pathogen and abiotic stress response signaling.
Collapse
Affiliation(s)
- Sara Hailemariam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Cho H, Seo D, Kim M, Nam BE, Ahn S, Kang M, Bang G, Kwon CT, Joo Y, Oh E. SERKs serve as co-receptors for SYR1 to trigger systemin-mediated defense responses in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2273-2287. [PMID: 39041927 DOI: 10.1111/jipb.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
Systemin, the first peptide hormone identified in plants, was initially isolated from tomato (Solanum lycopersicum) leaves. Systemin mediates local and systemic wound-induced defense responses in plants, conferring resistance to necrotrophic fungi and herbivorous insects. Systemin is recognized by the leucine-rich-repeat receptor-like kinase (LRR-RLK) receptor SYSTEMIN RECEPTOR1 (SYR1), but how the systemin recognition signal is transduced to intracellular signaling pathways to trigger defense responses is poorly understood. Here, we demonstrate that SERK family LRR-RLKs function as co-receptors for SYR1 to mediate systemin signal transduction in tomato. By using chemical genetic approaches coupled with engineered receptors, we revealed that the association of the cytoplasmic kinase domains of SYR1 with SERKs leads to their mutual trans-phosphorylation and the activation of SYR1, which in turn induces a wide range of defense responses. Systemin stimulates the association between SYR1 and all tomato SERKs (SlSERK1, SlSERK3A, and SlSERK3B). The resulting SYR1-SlSERK heteromeric complexes trigger the phosphorylation of TOMATO PROTEIN KINASE 1B (TPK1b), a receptor-like cytoplasmic kinase that positively regulates systemin responses. Additionally, upon association with SYR1, SlSERKs are cleaved by the Pseudomonas syringae effector HopB1, further supporting the finding that SlSERKs are activated by systemin-bound SYR1. Finally, genetic analysis using Slserk mutants showed that SlSERKs are essential for systemin-mediated defense responses. Collectively, these findings demonstrate that the systemin-mediated association of SYR1 and SlSERKs activates defense responses against herbivorous insects.
Collapse
Affiliation(s)
- Hyewon Cho
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Dain Seo
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Minsoo Kim
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Bo Eun Nam
- Research, Institute of Basic Sciences, Seoul National University, Seoul, 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Soyoun Ahn
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Minju Kang
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Geul Bang
- Digital Omics Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute, Cheongju, 28119, Korea
| | - Choon-Tak Kwon
- Department of Smart Farm Science, Kyung Hee University, Yongin, 17104, Korea
| | - Youngsung Joo
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| |
Collapse
|
3
|
Snoeck S, Lee HK, Schmid MW, Bender KW, Neeracher MJ, Fernández-Fernández AD, Santiago J, Zipfel C. Leveraging coevolutionary insights and AI-based structural modeling to unravel receptor-peptide ligand-binding mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2400862121. [PMID: 39106311 PMCID: PMC11331138 DOI: 10.1073/pnas.2400862121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/05/2024] [Indexed: 08/09/2024] Open
Abstract
Secreted signaling peptides are central regulators of growth, development, and stress responses, but specific steps in the evolution of these peptides and their receptors are not well understood. Also, the molecular mechanisms of peptide-receptor binding are only known for a few examples, primarily owing to the limited availability of protein structural determination capabilities to few laboratories worldwide. Plants have evolved a multitude of secreted signaling peptides and corresponding transmembrane receptors. Stress-responsive SERINE RICH ENDOGENOUS PEPTIDES (SCOOPs) were recently identified. Bioactive SCOOPs are proteolytically processed by subtilases and are perceived by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) in the model plant Arabidopsis thaliana. How SCOOPs and MIK2 have (co)evolved, and how SCOOPs bind to MIK2 are unknown. Using in silico analysis of 350 plant genomes and subsequent functional testing, we revealed the conservation of MIK2 as SCOOP receptor within the plant order Brassicales. We then leveraged AI-based structural modeling and comparative genomics to identify two conserved putative SCOOP-MIK2 binding pockets across Brassicales MIK2 homologues predicted to interact with the "SxS" motif of otherwise sequence-divergent SCOOPs. Mutagenesis of both predicted binding pockets compromised SCOOP binding to MIK2, SCOOP-induced complex formation between MIK2 and its coreceptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1, and SCOOP-induced reactive oxygen species production, thus, confirming our in silico predictions. Collectively, in addition to revealing the elusive SCOOP-MIK2 binding mechanism, our analytic pipeline combining phylogenomics, AI-based structural predictions, and experimental biochemical and physiological validation provides a blueprint for the elucidation of peptide ligand-receptor perception mechanisms.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Plant and Microbial Biology (IPMB), Zurich-Basel Plant Science Center, University of Zurich, Zurich8008, Switzerland
| | - Hyun Kyung Lee
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne1015, Switzerland
| | | | - Kyle W. Bender
- Department of Plant and Microbial Biology (IPMB), Zurich-Basel Plant Science Center, University of Zurich, Zurich8008, Switzerland
| | - Matthias J. Neeracher
- Department of Plant and Microbial Biology (IPMB), Zurich-Basel Plant Science Center, University of Zurich, Zurich8008, Switzerland
| | - Alvaro D. Fernández-Fernández
- Department of Plant and Microbial Biology (IPMB), Zurich-Basel Plant Science Center, University of Zurich, Zurich8008, Switzerland
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne1015, Switzerland
| | - Cyril Zipfel
- Department of Plant and Microbial Biology (IPMB), Zurich-Basel Plant Science Center, University of Zurich, Zurich8008, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| |
Collapse
|
4
|
Del Corpo D, Coculo D, Greco M, De Lorenzo G, Lionetti V. Pull the fuzes: Processing protein precursors to generate apoplastic danger signals for triggering plant immunity. PLANT COMMUNICATIONS 2024; 5:100931. [PMID: 38689495 PMCID: PMC11371470 DOI: 10.1016/j.xplc.2024.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The apoplast is one of the first cellular compartments outside the plasma membrane encountered by phytopathogenic microbes in the early stages of plant tissue invasion. Plants have developed sophisticated surveillance mechanisms to sense danger events at the cell surface and promptly activate immunity. However, a fine tuning of the activation of immune pathways is necessary to mount a robust and effective defense response. Several endogenous proteins and enzymes are synthesized as inactive precursors, and their post-translational processing has emerged as a critical mechanism for triggering alarms in the apoplast. In this review, we focus on the precursors of phytocytokines, cell wall remodeling enzymes, and proteases. The physiological events that convert inactive precursors into immunomodulatory active peptides or enzymes are described. This review also explores the functional synergies among phytocytokines, cell wall damage-associated molecular patterns, and remodeling, highlighting their roles in boosting extracellular immunity and reinforcing defenses against pests.
Collapse
Affiliation(s)
- Daniele Del Corpo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Daniele Coculo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Marco Greco
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Vincenzo Lionetti
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Zheng K, Lyu JC, Thomas EL, Schuster M, Sanguankiattichai N, Ninck S, Kaschani F, Kaiser M, van der Hoorn RAL. The proteome of Nicotiana benthamiana is shaped by extensive protein processing. THE NEW PHYTOLOGIST 2024; 243:1034-1049. [PMID: 38853453 PMCID: PMC11494411 DOI: 10.1111/nph.19891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
Processing by proteases irreversibly regulates the fate of plant proteins and hampers the production of recombinant proteins in plants, yet only few processing events have been described in agroinfiltrated Nicotiana benthamiana, which has emerged as the main transient protein expression platform in plant science and molecular pharming. Here, we used in-gel digests and mass spectrometry to monitor the migration and topography of 5040 plant proteins within a protein gel. By plotting the peptides over the gel slices, we generated peptographs that reveal where which part of each protein was detected within the protein gel. These data uncovered that 60% of the detected proteins have proteoforms that migrate at lower than predicted molecular weights, implicating extensive proteolytic processing. This analysis confirms the proteolytic removal and degradation of autoinhibitory prodomains of most but not all proteases, and revealed differential processing within pectinemethylesterase and lipase families. This analysis also uncovered intricate processing of glycosidases and uncovered that ectodomain shedding might be common for a diverse range of receptor-like kinases. Transient expression of double-tagged candidate proteins confirmed processing events in vivo. This large proteomic dataset implicates an elaborate proteolytic machinery shaping the proteome of N. benthamiana.
Collapse
Affiliation(s)
- Kaijie Zheng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchun130102China
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RDUK
| | - Joy C. Lyu
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RDUK
| | - Emma L. Thomas
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RDUK
| | - Mariana Schuster
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RDUK
| | | | - Sabrina Ninck
- Chemical Biology, Center of Medical Biotechnology (ZMB), Faculty of BiologyUniversity of Duisburg‐EssenEssen45141Germany
| | - Farnusch Kaschani
- Chemical Biology, Center of Medical Biotechnology (ZMB), Faculty of BiologyUniversity of Duisburg‐EssenEssen45141Germany
| | - Markus Kaiser
- Chemical Biology, Center of Medical Biotechnology (ZMB), Faculty of BiologyUniversity of Duisburg‐EssenEssen45141Germany
| | | |
Collapse
|
6
|
Pastor-Fernández J, Sanmartín N, Manresa-Grao M, Cassan C, Pétriacq P, Gibon Y, Gamir J, Romero-Rodriguez B, Castillo AG, Cerezo M, Flors V, Sánchez-Bel P. Deciphering molecular events behind Systemin-induced resistance to Botrytis cinerea in tomato plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4111-4127. [PMID: 38581374 DOI: 10.1093/jxb/erae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/05/2024] [Indexed: 04/08/2024]
Abstract
Plant defence peptides are paramount endogenous danger signals secreted after a challenge, intensifying the plant immune response. The peptidic hormone Systemin (Sys) was shown to participate in resistance in several plant pathosystems, although the mechanisms behind Sys-induced resistance when exogenously applied remain elusive. We performed proteomic, metabolomic, and enzymatic studies to decipher the Sys-induced changes in tomato plants in either the absence or the presence of Botrytis cinerea infection. Sys treatments triggered direct proteomic rearrangement mostly involved in carbon metabolism and photosynthesis. However, the final induction of defence proteins required concurrent challenge, triggering priming of pathogen-targeted proteins. Conversely, at the metabolomic level, Sys-treated plants showed an alternative behaviour following a general priming profile. Of the primed metabolites, the flavonoids rutin and isorhamnetin and two alkaloids correlated with the proteins 4-coumarate-CoA-ligase and chalcone-flavanone-isomerase triggered by Sys treatment. In addition, proteomic and enzymatic analyses revealed that Sys conditioned the primary metabolism towards the production of available sugars that could be fuelling the priming of callose deposition in Sys-treated plants; furthermore, PR1 appeared as a key element in Sys-induced resistance. Collectively, the direct induction of proteins and priming of specific secondary metabolites in Sys-treated plants indicated that post-translational protein regulation is an additional component of priming against necrotrophic fungi.
Collapse
Affiliation(s)
- Julia Pastor-Fernández
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Neus Sanmartín
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Maria Manresa-Grao
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Cédric Cassan
- Univ Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d'Ornon, France
| | - Pierre Pétriacq
- Univ Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d'Ornon, France
| | - Yves Gibon
- Univ Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d'Ornon, France
| | - Jordi Gamir
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Beatriz Romero-Rodriguez
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM 'La Mayora'), Universidad de Málaga-Consejo Superior de Investigaciones Cientificas (UMA-CSIC), Campus Teatinos, 29010 Málaga, Spain
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM 'La Mayora'), Universidad de Málaga-Consejo Superior de Investigaciones Cientificas (UMA-CSIC), Campus Teatinos, 29010 Málaga, Spain
| | - Miguel Cerezo
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Victor Flors
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Paloma Sánchez-Bel
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| |
Collapse
|
7
|
Yang W, Zhai H, Wu F, Deng L, Chao Y, Meng X, Chen Q, Liu C, Bie X, Sun C, Yu Y, Zhang X, Zhang X, Chang Z, Xue M, Zhao Y, Meng X, Li B, Zhang X, Zhang D, Zhao X, Gao C, Li J, Li C. Peptide REF1 is a local wound signal promoting plant regeneration. Cell 2024; 187:3024-3038.e14. [PMID: 38781969 DOI: 10.1016/j.cell.2024.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/10/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Plants frequently encounter wounding and have evolved an extraordinary regenerative capacity to heal the wounds. However, the wound signal that triggers regenerative responses has not been identified. Here, through characterization of a tomato mutant defective in both wound-induced defense and regeneration, we demonstrate that in tomato, a plant elicitor peptide (Pep), REGENERATION FACTOR1 (REF1), acts as a systemin-independent local wound signal that primarily regulates local defense responses and regenerative responses in response to wounding. We further identified PEPR1/2 ORTHOLOG RECEPTOR-LIKE KINASE1 (PORK1) as the receptor perceiving REF1 signal for plant regeneration. REF1-PORK1-mediated signaling promotes regeneration via activating WOUND-INDUCED DEDIFFERENTIATION 1 (WIND1), a master regulator of wound-induced cellular reprogramming in plants. Thus, REF1-PORK1 signaling represents a conserved phytocytokine pathway to initiate, amplify, and stabilize a signaling cascade that orchestrates wound-triggered organ regeneration. Application of REF1 provides a simple method to boost the regeneration and transformation efficiency of recalcitrant crops.
Collapse
Affiliation(s)
- Wentao Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Huawei Zhai
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Fangming Wu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Deng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| | - Yu Chao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianwen Meng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Qian Chen
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Chenhuan Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Bie
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Chuanlong Sun
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yang Yu
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xiaofei Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyue Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeqian Chang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Xue
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yajie Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xiangbing Meng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Boshu Li
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiansheng Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Dajian Zhang
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xiangyu Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Caixia Gao
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanyou Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
8
|
Harris FM, Mou Z. Damage-Associated Molecular Patterns and Systemic Signaling. PHYTOPATHOLOGY 2024; 114:308-327. [PMID: 37665354 DOI: 10.1094/phyto-03-23-0104-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cellular damage inflicted by wounding, pathogen infection, and herbivory releases a variety of host-derived metabolites, degraded structural components, and peptides into the extracellular space that act as alarm signals when perceived by adjacent cells. These so-called damage-associated molecular patterns (DAMPs) function through plasma membrane localized pattern recognition receptors to regulate wound and immune responses. In plants, DAMPs act as elicitors themselves, often inducing immune outputs such as calcium influx, reactive oxygen species generation, defense gene expression, and phytohormone signaling. Consequently, DAMP perception results in a priming effect that enhances resistance against subsequent pathogen infections. Alongside their established function in local tissues, recent evidence supports a critical role of DAMP signaling in generation and/or amplification of mobile signals that induce systemic immune priming. Here, we summarize the identity, signaling, and synergy of proposed and established plant DAMPs, with a focus on those with published roles in systemic signaling.
Collapse
Affiliation(s)
- Fiona M Harris
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| |
Collapse
|
9
|
Maier LP, Felix G, Fliegmann J. LuBiA (Luciferase-Based Binding Assay): Glowing Peptides as Sensitive Probes to Study Ligand-Receptor Interactions. Methods Mol Biol 2024; 2731:265-278. [PMID: 38019441 DOI: 10.1007/978-1-0716-3511-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The quantitative and qualitative biochemical description of molecular interactions is fundamental to the study of ligand/receptor pairs and their structure/function relationships. Bioactive peptides often are active at (sub-)nanomolar concentrations, indicating they have a high affinity for their sites of action, notably binding sites on receptors. Since such receptor proteins are commonly of low abundance, highly sensitive detection methods are required to study these ligand/receptor interactions. We present a protocol for an inexpensive luminescence-based detection setup in which the peptide ligand of interest is extended with the 11-amino acid HiBiT tag. This tag can be quantified easily down to fmol amounts by its ability to reconstitute the enzymatic activity of LgBiT, a truncated version of the Oplophorus gracilirostris luciferase.
Collapse
Affiliation(s)
- Louis-Philippe Maier
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
- Department of Plant Molecular Biology (DBMV), University of Lausanne, Lausanne, Switzerland
| | - Georg Felix
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Judith Fliegmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Daubermann AG, Dressano K, de Oliveira Ceciliato PH, Moura DS. Acridinium-Based Chemiluminescent Receptor-Ligand Binding Assay for Protein/Peptide Hormones. Methods Mol Biol 2024; 2731:253-263. [PMID: 38019440 DOI: 10.1007/978-1-0716-3511-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Chemiluminescent acridinium esters (AE) have been extensively used for oligonucleotide probing and peptide-binding assays in molecular research due to labeling efficiency, lack of radioactivity, and ease of application. In addition to being a powerful and reliable alternative to radiolabeling, AE can be directly bound to the target molecule, with high specificity. Here, we describe an AE-based protein/peptide labeling method and the use of the labeled protein/peptide in a ligand-binding assay.
Collapse
Affiliation(s)
- André Guilherme Daubermann
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - Keini Dressano
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, Brazil
- Centro de Tecnologia Canavieira - CTC, Piracicaba, Brazil
| | - Paulo Henrique de Oliveira Ceciliato
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, Brazil
- Centro de Tecnologia Canavieira - CTC, Piracicaba, Brazil
| | - Daniel S Moura
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, Brazil.
| |
Collapse
|
11
|
Burggraf R, Albert M. In-vivo Cross-linking of Biotinylated Peptide Ligands to Cell Surface Receptors. Methods Mol Biol 2024; 2731:217-230. [PMID: 38019437 DOI: 10.1007/978-1-0716-3511-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
In-vivo cross-linking of biotinylated peptides is a technique to analyze the interaction of small proteins or peptide ligands with their corresponding receptors. Here, we describe an in-vivo method in which leaves of living plants, transiently expressing receptor proteins, are infiltrated with biotinylated peptides. The interaction between ligand and receptor is irreversibly fixed by the infiltration of a cross-linking agent. Subsequently, co-immunoprecipitation is used to pull down the receptor-ligand pair. After western blotting, the biotin tag of the ligand peptide cross-linked to the receptor can be detected by streptavidin-AP conjugate on the membrane.
Collapse
Affiliation(s)
- Ronja Burggraf
- Department of Biology, Chair of Molecular Plant Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Albert
- Department of Biology, Chair of Molecular Plant Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
12
|
Wang L, Erb M. Feeding Assay to Study the Effect of Phytocytokines on Direct and Indirect Defense in Maize. Methods Mol Biol 2024; 2731:133-142. [PMID: 38019431 DOI: 10.1007/978-1-0716-3511-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Phytocytokines mediate defense against pests and pathogens. Many methods have been developed to study the physiological responses triggered by phytocytokines in dicot plants. Here, we describe a detailed peptide feeding protocol to study the effect of phytocytokines on direct and indirect anti-herbivore defense in maize. This method relies on peptide uptake by the excised maize seedling or leaves via the transpiration stream. The headspace volatiles from plant samples are then analyzed by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS), or by gas chromatography-mass spectrometry (GC-MS). The samples can also be further processed to evaluate phytocytokine-induced defense gene expression or phytohormone production.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Hou S, Rodrigues O, Liu Z, Shan L, He P. Small holes, big impact: Stomata in plant-pathogen-climate epic trifecta. MOLECULAR PLANT 2024; 17:26-49. [PMID: 38041402 PMCID: PMC10872522 DOI: 10.1016/j.molp.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The regulation of stomatal aperture opening and closure represents an evolutionary battle between plants and pathogens, characterized by adaptive strategies that influence both plant resistance and pathogen virulence. The ongoing climate change introduces further complexity, affecting pathogen invasion and host immunity. This review delves into recent advances on our understanding of the mechanisms governing immunity-related stomatal movement and patterning with an emphasis on the regulation of stomatal opening and closure dynamics by pathogen patterns and host phytocytokines. In addition, the review explores how climate changes impact plant-pathogen interactions by modulating stomatal behavior. In light of the pressing challenges associated with food security and the unpredictable nature of climate changes, future research in this field, which includes the investigation of spatiotemporal regulation and engineering of stomatal immunity, emerges as a promising avenue for enhancing crop resilience and contributing to climate control strategies.
Collapse
Affiliation(s)
- Shuguo Hou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China; School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, China.
| | - Olivier Rodrigues
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université de Toulouse Midi-Pyrénées, INP-PURPAN, 31076 Toulouse, France
| | - Zunyong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Skripnikov A. Bioassays for Identifying and Characterizing Plant Regulatory Peptides. Biomolecules 2023; 13:1795. [PMID: 38136666 PMCID: PMC10741408 DOI: 10.3390/biom13121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Plant peptides are a new frontier in plant biology, owing to their key regulatory roles in plant growth, development, and stress responses. Synthetic peptides are promising biological agents that can be used to improve crop growth and protection in an environmentally sustainable manner. Plant regulatory peptides identified in pioneering research, including systemin, PSK, HypSys, RALPH, AtPep1, CLV3, TDIF, CLE, and RGF/GLV/CLEL, hold promise for crop improvement as potent regulators of plant growth and defense. Mass spectrometry and bioinformatics are greatly facilitating the discovery and identification of new plant peptides. The biological functions of most novel plant peptides remain to be elucidated. Bioassays are an essential part in studying the biological activity of identified and putative plant peptides. Root growth assays and cultivated plant cell cultures are widely used to evaluate the regulatory potential of plant peptides during growth, differentiation, and stress reactions. These bioassays can be used as universal approaches for screening peptides from different plant species. Development of high-throughput bioassays can facilitate the screening of large numbers of identified and putative plant peptides, which have recently been discovered but remain uncharacterized for biological activity.
Collapse
Affiliation(s)
- Alexander Skripnikov
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya St. 16/10, 119997 Moscow, Russia;
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
15
|
Ontiveros I, Fernández-Pozo N, Esteve-Codina A, López-Moya JJ, Díaz-Pendón JA. Enhanced Susceptibility to Tomato Chlorosis Virus (ToCV) in Hsp90- and Sgt1-Silenced Plants: Insights from Gene Expression Dynamics. Viruses 2023; 15:2370. [PMID: 38140611 PMCID: PMC10747942 DOI: 10.3390/v15122370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The emerging whitefly-transmitted crinivirus tomato chlorosis virus (ToCV) causes substantial economic losses by inducing yellow leaf disorder in tomato crops. This study explores potential resistance mechanisms by examining early-stage molecular responses to ToCV. A time-course transcriptome analysis compared naïve, mock, and ToCV-infected plants at 2, 7, and 14 days post-infection (dpi). Gene expression changes were most notable at 2 and 14 dpi, likely corresponding to whitefly feeding and viral infection. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed key genes and pathways associated with ToCV infection, including those related to plant immunity, flavonoid and steroid biosynthesis, photosynthesis, and hormone signaling. Additionally, virus-derived small interfering RNAs (vsRNAs) originating from ToCV predominantly came from RNA2 and were 22 nucleotides in length. Furthermore, two genes involved in plant immunity, Hsp90 (heat shock protein 90) and its co-chaperone Sgt1 (suppressor of the G2 allele of Skp1) were targeted through viral-induced gene silencing (VIGS), showing a potential contribution to basal resistance against viral infections since their reduction correlated with increased ToCV accumulation. This study provides insights into tomato plant responses to ToCV, with potential implications for developing effective disease control strategies.
Collapse
Affiliation(s)
- Irene Ontiveros
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08913 Bellaterra, Spain
| | - Noé Fernández-Pozo
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain;
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08913 Bellaterra, Spain
| | - Juan Antonio Díaz-Pendón
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
| |
Collapse
|
16
|
Nietzschmann L, Smolka U, Perino EHB, Gorzolka K, Stamm G, Marillonnet S, Bürstenbinder K, Rosahl S. The secreted PAMP-induced peptide StPIP1_1 activates immune responses in potato. Sci Rep 2023; 13:20534. [PMID: 37996470 PMCID: PMC10667265 DOI: 10.1038/s41598-023-47648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Treatment of potato plants with the pathogen-associated molecular pattern Pep-13 leads to the activation of more than 1200 genes. One of these, StPIP1_1, encodes a protein of 76 amino acids with sequence homology to PAMP-induced secreted peptides (PIPs) from Arabidopsis thaliana. Expression of StPIP1_1 is also induced in response to infection with Phytophthora infestans, the causal agent of late blight disease. Apoplastic localization of StPIP1_1-mCherry fusion proteins is dependent on the presence of the predicted signal peptide. A synthetic peptide corresponding to the last 13 amino acids of StPIP1_1 elicits the expression of the StPIP1_1 gene itself, as well as that of pathogenesis related genes. The oxidative burst induced by exogenously applied StPIP1_1 peptide in potato leaf disks is dependent on functional StSERK3A/B, suggesting that StPIP1_1 perception occurs via a receptor complex involving the co-receptor StSERK3A/B. Moreover, StPIP1_1 induces expression of FRK1 in Arabidopsis in an RLK7-dependent manner. Expression of an RLK from potato with high sequence homology to AtRLK7 is induced by StPIP1_1, by Pep-13 and in response to infection with P. infestans. These observations are consistent with the hypothesis that, upon secretion, StPIP1_1 acts as an endogenous peptide required for amplification of the defense response.
Collapse
Affiliation(s)
- Linda Nietzschmann
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Ulrike Smolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Elvio Henrique Benatto Perino
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Karin Gorzolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Gina Stamm
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Katharina Bürstenbinder
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Sabine Rosahl
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
17
|
Yan ZW, Chen FY, Zhang X, Cai WJ, Chen CY, Liu J, Wu MN, Liu NJ, Ma B, Wang MY, Chao DY, Gao CJ, Mao YB. Endocytosis-mediated entry of a caterpillar effector into plants is countered by Jasmonate. Nat Commun 2023; 14:6551. [PMID: 37848424 PMCID: PMC10582130 DOI: 10.1038/s41467-023-42226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Insects and pathogens release effectors into plant cells to weaken the host defense or immune response. While the imports of some bacterial and fungal effectors into plants have been previously characterized, the mechanisms of how caterpillar effectors enter plant cells remain a mystery. Using live cell imaging and real-time protein tracking, we show that HARP1, an effector from the oral secretions of cotton bollworm (Helicoverpa armigera), enters plant cells via protein-mediated endocytosis. The entry of HARP1 into a plant cell depends on its interaction with vesicle trafficking components including CTL1, PATL2, and TET8. The plant defense hormone jasmonate (JA) restricts HARP1 import by inhibiting endocytosis and HARP1 loading into endosomes. Combined with the previous report that HARP1 inhibits JA signaling output in host plants, it unveils that the effector and JA establish a defense and counter-defense loop reflecting the robust arms race between plants and insects.
Collapse
Affiliation(s)
- Zi-Wei Yan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Fang-Yan Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Xian Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Wen-Juan Cai
- Core Facility Center of CEMPS/SIPPE, CAS, Shanghai, China
| | - Chun-Yu Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Jie Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Man-Ni Wu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Ning-Jing Liu
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Bin Ma
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Cai-Ji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.
| |
Collapse
|
18
|
Feng YZ, Zhu QF, Xue J, Chen P, Yu Y. Shining in the dark: the big world of small peptides in plants. ABIOTECH 2023; 4:238-256. [PMID: 37970469 PMCID: PMC10638237 DOI: 10.1007/s42994-023-00100-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/24/2023] [Indexed: 11/17/2023]
Abstract
Small peptides represent a subset of dark matter in plant proteomes. Through differential expression patterns and modes of action, small peptides act as important regulators of plant growth and development. Over the past 20 years, many small peptides have been identified due to technical advances in genome sequencing, bioinformatics, and chemical biology. In this article, we summarize the classification of plant small peptides and experimental strategies used to identify them as well as their potential use in agronomic breeding. We review the biological functions and molecular mechanisms of small peptides in plants, discuss current problems in small peptide research and highlight future research directions in this field. Our review provides crucial insight into small peptides in plants and will contribute to a better understanding of their potential roles in biotechnology and agriculture.
Collapse
Affiliation(s)
- Yan-Zhao Feng
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Qing-Feng Zhu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Jiao Xue
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Pei Chen
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Yang Yu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| |
Collapse
|
19
|
Zelman AK, Berkowitz GA. Plant Elicitor Peptide (Pep) Signaling and Pathogen Defense in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2856. [PMID: 37571010 PMCID: PMC10421127 DOI: 10.3390/plants12152856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023]
Abstract
Endogenous signaling compounds are intermediaries in signaling pathways that plants use to respond to the perception of harmful and beneficial organisms. The plant elicitor peptides (Peps) of plants are important endogenous signaling molecules that induce elements of defense responses such as hormone production, increased expression of defensive genes, the activation of phosphorelays, and the induction of cell secondary messenger synthesis. The processes by which Peps confer resistance to pathogenic microorganisms have been extensively studied in Arabidopsis but are less known in crop plants. Tomato and many other solanaceous plants have an endogenous signaling polypeptide, systemin, that is involved in the defense against herbivorous insects and necrotrophic pathogens. This paper explores the similarity of the effects and chemical properties of Pep and systemin in tomato. Additionally, the relationship of the Pep receptor and systemin receptors is explored, and the identification of a second tomato Pep receptor in the literature is called into question. We suggest future directions for research on Pep signaling in solanaceous crops during interactions with microbes.
Collapse
Affiliation(s)
| | - Gerald Alan Berkowitz
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA;
| |
Collapse
|
20
|
Ke J, Zhu W, Yuan Y, Du X, Xu A, Zhang D, Cao S, Chen W, Lin Y, Xie J, Cheng J, Fu Y, Jiang D, Yu X, Li B. Duality of immune recognition by tomato and virulence activity of the Ralstonia solanacearum exo-polygalacturonase PehC. THE PLANT CELL 2023; 35:2552-2569. [PMID: 36977631 PMCID: PMC10291029 DOI: 10.1093/plcell/koad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Ralstonia solanacearum is a devastating soil-borne bacterial pathogen capable of infecting many plant species, including tomato (Solanum lycopersicum). However, the perception of Ralstonia by the tomato immune system and the pathogen's counter-defense strategy remain largely unknown. Here, we show that PehC, a specific exo-polygalacturonase secreted by Ralstonia, acts as an elicitor that triggers typical immune responses in tomato and other Solanaceous plants. The elicitor activity of PehC depends on its N-terminal epitope, and not on its polygalacturonase activity. The recognition of PehC specifically occurs in tomato roots and relies on unknown receptor-like kinase(s). Moreover, PehC hydrolyzes plant pectin-derived oligogalacturonic acids (OGs), a type of damage-associated molecular pattern (DAMP), which leads to the release of galacturonic acid (GalA), thereby dampening DAMP-triggered immunity (DTI). Ralstonia depends on PehC for its growth and early infection and can utilize GalA as a carbon source in the xylem. Our findings demonstrate the specialized and dual functions of Ralstonia PehC, which enhance virulence by degrading DAMPs to evade DTI and produce nutrients, a strategy used by pathogens to attenuate plant immunity. Solanaceous plants have evolved to recognize PehC and induce immune responses, which highlights the significance of PehC. Overall, this study provides insight into the arms race between plants and pathogens.
Collapse
Affiliation(s)
- Jingjing Ke
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Wanting Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Ying Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xinya Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Ai Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Dan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Sen Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Wei Chen
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| |
Collapse
|
21
|
Lu HH, Meents AK, Fliegmann J, Hwang MJ, Suen CS, Masch D, Felix G, Mithöfer A, Yeh KW. Identification of a damage-associated molecular pattern (DAMP) receptor and its cognate peptide ligand in sweet potato (Ipomoea batatas). PLANT, CELL & ENVIRONMENT 2023. [PMID: 37267124 DOI: 10.1111/pce.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
Sweet potato (Ipomoea batatas) is an important tuber crop, but also target of numerous insect pests. Intriguingly, the abundant storage protein in tubers, sporamin, has intrinsic trypsin protease inhibitory activity. In leaves, sporamin is induced by wounding or a volatile homoterpene and enhances insect resistance. While the signalling pathway leading to sporamin synthesis is partially established, the initial event, perception of a stress-related signal is still unknown. Here, we identified an IbLRR-RK1 that is induced upon wounding and herbivory, and related to peptide-elicitor receptors (PEPRs) from tomato and Arabidopsis. We also identified a gene encoding a precursor protein comprising a peptide ligand (IbPep1) for IbLRR-RK1. IbPep1 represents a distinct signal in sweet potato, which might work in a complementary and/or parallel pathway to the previously described hydroxyproline-rich systemin (HypSys) peptides to strengthen insect resistance. Notably, an interfamily compatibility in the Pep/PEPR system from Convolvulaceae and Solanaceae was identified.
Collapse
Affiliation(s)
- Hsueh-Han Lu
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Anja K Meents
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Judith Fliegmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Diana Masch
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Georg Felix
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- The Weather Climate and Disaster Research Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Yan J, Su P, Meng X, Liu P. Phylogeny of the plant receptor-like kinase (RLK) gene family and expression analysis of wheat RLK genes in response to biotic and abiotic stresses. BMC Genomics 2023; 24:224. [PMID: 37127571 PMCID: PMC10152718 DOI: 10.1186/s12864-023-09303-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The receptor-like kinase (RLK) gene families in plants contains a large number of members. They are membrane proteins with an extracellular receptor domain and participate in biotic and abiotic stress responses. RESULTS In this study, we identified RLKs in 15 representative plant genomes, including wheat, and classified them into 64 subfamilies by using four types of phylogenetic trees and HMM models. Conserved exon‒intron structures with conserved exon phases in the kinase domain were found in many RLK subfamilies from Physcomitrella patens to Triticum aestivum. Domain distributions of RLKs were also diagrammed. Collinearity events and tandem gene clusters suggested that polyploidization and tandem duplication events contributed to the member expansions of T. aestivum RLKs. Global expression pattern analysis was performed by using public transcriptome data. These analyses were involved in T. aestivum, Aegilops tauschii and Brachypodium distachyon RLKs under biotic and abiotic stresses. We also selected 9 RLKs to validate the transcriptome prediction by using qRT‒PCR under drought treatment and with Fusarium graminearum infection. The expression trends of these 9 wheat RLKs from public transcriptome data were consistent with the results of qRT‒PCR, indicating that they might be stress response genes under drought or F. graminearum treatments. CONCLUSION In this study, we identified, classified, evolved, and expressed RLKs in wheat and related plants. Thus, our results will provide insights into the evolutionary history and molecular mechanisms of wheat RLKs.
Collapse
Affiliation(s)
- Jun Yan
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| | - Peisen Su
- College of Agronomy, Liaocheng University, Liaocheng, 252059, People's Republic of China.
| | - Xianyong Meng
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Pingzeng Liu
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
23
|
Fernández-Fernández ÁD, Stael S, Van Breusegem F. Mechanisms controlling plant proteases and their substrates. Cell Death Differ 2023; 30:1047-1058. [PMID: 36755073 PMCID: PMC10070405 DOI: 10.1038/s41418-023-01120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/03/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
In plants, proteolysis is emerging as an important field of study due to a growing understanding of the critical involvement of proteases in plant cell death, disease and development. Because proteases irreversibly modify the structure and function of their target substrates, proteolytic activities are stringently regulated at multiple levels. Most proteases are produced as dormant isoforms and only activated in specific conditions such as altered ion fluxes or by post-translational modifications. Some of the regulatory mechanisms initiating and modulating proteolytic activities are restricted in time and space, thereby ensuring precision activity, and minimizing unwanted side effects. Currently, the activation mechanisms and the substrates of only a few plant proteases have been studied in detail. Most studies focus on the role of proteases in pathogen perception and subsequent modulation of the plant reactions, including the hypersensitive response (HR). Proteases are also required for the maturation of coexpressed peptide hormones that lead essential processes within the immune response and development. Here, we review the known mechanisms for the activation of plant proteases, including post-translational modifications, together with the effects of proteinaceous inhibitors.
Collapse
Affiliation(s)
- Álvaro Daniel Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zürich, Switzerland
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Uppsala BioCenter, Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| |
Collapse
|
24
|
Cunha AFA, Rodrigues PHD, Anghinoni AC, de Paiva VJ, Pinheiro DGDS, Campos ML. Mechanical wounding impacts the growth versus defense balance in tomato (Solanum lycopersicum). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111601. [PMID: 36690279 DOI: 10.1016/j.plantsci.2023.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Plants have evolved elaborate surveillance systems that allow them to perceive the attack by pests and pathogens and activate the appropriate defenses. Mechanical stimulation, such as mechanical wounding, represents one of the most reliable cues for the perception of potential herbivore aggressors. Here we demonstrate that mechanical wounding disturbs the growth versus defense balance in tomato, a physiological condition where growth reduction arises as a pleiotropic consequence of the activation of defense responses (or vice-versa). We observed that multiple lesions on tomato leaves impairs the formation of several growth-related traits, including shoot elongation, leaf expansion and time for flowering, while concomitantly activating the production of defense responses such as trichome formation and the upregulation of defense-related genes. We also provide genetic evidence that this wound-induced growth repression is possibly a consequence of tomato plants sensing the injuries via jasmonates (JAs), a class of plant hormones known to be master regulators of the plant growth versus defense balance. Besides providing a mechanistic explanation on how the growth and defense balance is shifted when plants are subjected to a specific type of mechanical stimulus, our results may offer a practical explanation for why tomato productivity is so negatively impacted by herbivore attack.
Collapse
Affiliation(s)
- Ana Flavia Aparecida Cunha
- Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil; Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Pedro Henrique Duarte Rodrigues
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Ana Clara Anghinoni
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Vinicius Juliani de Paiva
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Daniel Gonçalves da Silva Pinheiro
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil; Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil.
| | - Marcelo Lattarulo Campos
- Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil; Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil; Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil.
| |
Collapse
|
25
|
Pastor-Fernández J, Sánchez-Bel P, Flors V, Cerezo M, Pastor V. Small Signals Lead to Big Changes: The Potential of Peptide-Induced Resistance in Plants. J Fungi (Basel) 2023; 9:265. [PMID: 36836379 PMCID: PMC9965805 DOI: 10.3390/jof9020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The plant immunity system is being revisited more and more and new elements and roles are attributed to participating in the response to biotic stress. The new terminology is also applied in an attempt to identify different players in the whole scenario of immunity: Phytocytokines are one of those elements that are gaining more attention due to the characteristics of processing and perception, showing they are part of a big family of compounds that can amplify the immune response. This review aims to highlight the latest findings on the role of phytocytokines in the whole immune response to biotic stress, including basal and adaptive immunity, and expose the complexity of their action in plant perception and signaling events.
Collapse
Affiliation(s)
- Julia Pastor-Fernández
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Paloma Sánchez-Bel
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Víctor Flors
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Miguel Cerezo
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Victoria Pastor
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| |
Collapse
|
26
|
Yang MH, Lu YS, Ho TC, Shen DHY, Huang YF, Chuang KP, Yuan CH, Tyan YC. Utilizing Proteomic Approach to Analyze Potential Antioxidant Proteins in Plant against Irradiation. Antioxidants (Basel) 2022; 11:antiox11122498. [PMID: 36552706 PMCID: PMC9774815 DOI: 10.3390/antiox11122498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Gamma-ray irradiation is an effective and clean method of sterilization by inactivating microorganisms. It can also be applied to induce anti-oxidants for future application. In this study, the mung bean (Vigna radiata) was exposed to gamma-ray irradiation under the dose of 0, 5 or 10 kGy. With increasing irradiation doses, the concentrations of malondiadehyde decreased while the levels of total flavonoids and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity increased. It has been shown that consuming flavonoids can provide protective effects. In addition, proteomic analysis identified several proteins having anti-oxidant activities in the 5 kGy irradiated group. These proteins are Apocytochrome f, Systemin receptor SR 160, DELLA protein DWARF8, DEAD-box ATP-dependent RNA helicase 9, ζ-carotene desaturase (ZDS), and Floral homeotic protein AGAMOUS. Our findings indicate that plants contain a variety of phytochemicals and antioxidant proteins which may effectively prevent oxidative stress caused by irradiated peroxidation.
Collapse
Affiliation(s)
- Ming-Hui Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Center of General Education, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
| | - Yi-Shan Lu
- Office of Safety, Health and Environment, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tzu-Chuan Ho
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Daniel Hueng-Yuan Shen
- Department of Nuclear Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Ying-Fong Huang
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kuo-Pin Chuang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Cheng-Hui Yuan
- Mass Spectrometry Laboratory, Department of Chemistry, National University of Singapore, Singapore 119077, Singapore
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence:
| |
Collapse
|
27
|
Natale R, Coppola M, D'Agostino N, Zhang Y, Fernie AR, Castaldi V, Rao R. In silico and in vitro approaches allow the identification of the Prosystemin molecular network. Comput Struct Biotechnol J 2022; 21:212-223. [PMID: 36544481 PMCID: PMC9755248 DOI: 10.1016/j.csbj.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Tomato Prosystemin (ProSys), the precursor of Systemin, a small peptidic hormone, is produced at very low concentration in unchallenged plants, while its expression greatly increases in response to several different stressors triggering an array of defence responses. The molecular mechanisms that underpin such a wide array of defence barriers are not fully understood and are likely correlated with the intrinsically disordered (ID) structure of the protein. ID proteins interact with different protein partners forming complexes involved in the modulation of different biological mechanisms. Here we describe the ProSys-protein network that shed light on the molecular mechanisms underpinning ProSys associated defence responses. Three different approaches were used. In silico prediction resulted in 98 direct interactors, most clustering in phytohormone biosynthesis, transcription factors and signal transduction gene classes. The network shows the central role of ProSys during defence responses, that reflects its role as central hub. In vitro ProSys interactors, identified by Affinity Purification-Mass Spectrometry (AP-MS), revealed over three hundred protein partners, while Bimolecular Fluorescent Complementation (BiFC) experiments validated in vivo some interactors predicted in silico and in vitro. Our results demonstrate that ProSys interacts with several proteins and reveal new key molecular events in the ProSys-dependent defence response of tomato plant.
Collapse
Affiliation(s)
- Roberto Natale
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
| | - Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Alisdair Robert Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Valeria Castaldi
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Portici 80055, Italy
| |
Collapse
|
28
|
Chiu T, Poucet T, Li Y. The potential of plant proteins as antifungal agents for agricultural applications. Synth Syst Biotechnol 2022; 7:1075-1083. [PMID: 35891944 PMCID: PMC9305310 DOI: 10.1016/j.synbio.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022] Open
Abstract
Fungal pathogens induce a variety of diseases in both plants and post-harvest food crops, resulting in significant crop losses for the agricultural industry. Although the usage of chemical-based fungicides is the most common way to control these diseases, they damage the environment, have the potential to harm human and animal life, and may lead to resistant fungal strains. Accordingly, there is an urgent need for diverse and effective agricultural fungicides that are environmentally- and eco-friendly. Plants have evolved various mechanisms in their innate immune system to defend against fungal pathogens, including soluble proteins secreted from plants with antifungal activities. These proteins can inhibit fungal growth and infection through a variety of mechanisms while exhibiting diverse functionality in addition to antifungal activity. In this mini review, we summarize and discuss the potential of using plant antifungal proteins for future agricultural applications from the perspective of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Tiffany Chiu
- Graduate Program in Genetics, Genomics, And Bioinformatics, 1140 Batchelor Hall, University of California Riverside, California, 92521, USA
| | - Theo Poucet
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Yanran Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
29
|
Zhang Z, Zhang Y, Yuan L, Zhou F, Gao Y, Kang Z, Li T, Hu X. Exogenous 5-aminolevulinic acid alleviates low-temperature injury by regulating glutathione metabolism and β-alanine metabolism in tomato seedling roots. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114112. [PMID: 36155340 DOI: 10.1016/j.ecoenv.2022.114112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Food availability represents a major worldwide concern due to climate change and population growth. Low-temperature stress (LTS) severely restricts the growth of tomato seedlings. Exogenous 5-aminolevulinic acid (ALA) can alleviate the harm of abiotic stress including LTS; however, data on its protective mechanism on tomato seedling roots, the effects of organelle structure, and the regulation of metabolic pathways under LTS are lacking. In this study, we hope to fill the above gaps by exploring the effects of exogenous ALA on morphology, mitochondrial ultrastructure, reactive oxygen species (ROS) enrichment, physiological indicators, related gene expression, and metabolic pathway in tomato seedlings root under LTS. Results showed that ALA pretreatment could increase the activity of antioxidant enzymes and the content of antioxidant substances in tomato seedlings roots under LTS to scavenge the massively accumulated ROS, thereby protecting the mitochondrial structure of roots and promoting root development under LTS. Combined transcriptomic and metabolomic analysis showed that exogenous ALA pretreatment activated the glutathione metabolism and β-alanine metabolism of tomato seedling roots under LTS, further enhanced the scavenging ability of tomato seedling roots to ROS, and improved the low-temperature tolerance of tomato seedlings. The findings provide a new insight into the regulation of the low-temperature tolerance of tomato by exogenous ALA.
Collapse
Affiliation(s)
- Zhengda Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Yuhui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Luqiao Yuan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Fan Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Gao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhen Kang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China.
| |
Collapse
|
30
|
Wang J, Xi L, Wu XN, König S, Rohr L, Neumann T, Weber J, Harter K, Schulze WX. PEP7 acts as a peptide ligand for the receptor kinase SIRK1 to regulate aquaporin-mediated water influx and lateral root growth. MOLECULAR PLANT 2022; 15:1615-1631. [PMID: 36131543 DOI: 10.1016/j.molp.2022.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 06/15/2023]
Abstract
Plant receptors constitute a large protein family that regulates various aspects of development and responses to external cues. Functional characterization of this protein family and the identification of their ligands remain major challenges in plant biology. Previously, we identified plasma membrane-intrinsic sucrose-induced receptor kinase 1 (SIRK1) and Qian Shou kinase 1 (QSK1) as receptor/co-receptor pair involved in the regulation of aquaporins in response to osmotic conditions induced by sucrose. In this study, we identified a member of the elicitor peptide (PEP) family, namely PEP7, as the specific ligand of th receptor kinase SIRK1. PEP7 binds to the extracellular domain of SIRK1 with a binding constant of 1.44 ± 0.79 μM and is secreted to the apoplasm specifically in response to sucrose treatment. Stabilization of a signaling complex involving SIRK1, QSK1, and aquaporins as substrates is mediated by alterations in the external sucrose concentration or by PEP7 application. Moreover, the presence of PEP7 induces the phosphorylation of aquaporins in vivo and enhances water influx into protoplasts. Disturbed water influx, in turn, led to delayed lateral root development in the pep7 mutant. The loss-of-function mutant of SIRK1 is not responsive to external PEP7 treatment regarding kinase activity, aquaporin phosphorylation, water influx activity, and lateral root development. Taken together, our data indicate that the PEP7/SIRK1/QSK1 complex represents a crucial perception and response module that mediates sucrose-controlled water flux in plants and lateral root development.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Xu Na Wu
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany; School of Life Science, Center for Life Sciences, Yunnan University, 650091 Kunming, People's Republic of China
| | - Stefanie König
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Leander Rohr
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Theresia Neumann
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jan Weber
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|
31
|
Liao CJ, Hailemariam S, Sharon A, Mengiste T. Pathogenic strategies and immune mechanisms to necrotrophs: Differences and similarities to biotrophs and hemibiotrophs. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102291. [PMID: 36063637 DOI: 10.1016/j.pbi.2022.102291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Pathogenesis in plant diseases is complex comprising diverse pathogen virulence and plant immune mechanisms. These pathogens cause damaging plant diseases by deploying specialized and generic virulence strategies that are countered by intricate resistance mechanisms. The significant challenges that necrotrophs pose to crop production are predicted to increase with climate change. Immunity to biotrophs and hemibiotrophs is dominated by intracellular receptors that recognize specific effectors and activate resistance. These mechanisms play only minor roles in resistance to necrotrophs. Pathogen- or host-derived conserved pattern molecules trigger immune responses that broadly contribute to plant immunity. However, certain pathogen or host-derived immune elicitors are enriched by the virulence activities of necrotrophs. Different plant hormones modulate systemic resistance and cell death that have differential impacts on resistance to pathogens of different lifestyles. Knowledge of mechanisms that contribute to resistance to necrotrophs has expanded. Besides toxins and cell wall degrading enzymes that dominate the pathogenesis of necrotrophs, other effectors with subtle contributions are being identified.
Collapse
Affiliation(s)
- Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Sara Hailemariam
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
32
|
Xiong L, Huang Y, Liu Z, Li C, Yu H, Shahid MQ, Lin Y, Qiao X, Xiao J, Gray JE, Jin J. Small EPIDERMAL PATTERNING FACTOR-LIKE2 peptides regulate awn development in rice. PLANT PHYSIOLOGY 2022; 190:516-531. [PMID: 35689635 PMCID: PMC9434303 DOI: 10.1093/plphys/kiac278] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/16/2022] [Indexed: 05/06/2023]
Abstract
The EPIDERMAL PATTERNING FACTOR (EPF) and EPF-LIKE (EPFL) family of small secreted peptides act to regulate many aspects of plant growth and development; however, their functions are not widely characterized in rice (Oryza sativa). Here, we used clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) technology to individually knockout each of 11 EPF/EPFL genes in the rice cultivar Kasalath. Loss of function of most OsEPF/EPFL genes generated no obvious phenotype alteration, while disruption of OsEPFL2 in Kasalath caused a short or no awn phenotype and reduced grain size. OsEPFL2 is strongly expressed in the young panicle, consistent with a role in regulating awn and grain development. Haplotype analysis indicated that OsEPFL2 can be classified into six major haplotypes. Nucleotide diversity and genetic differentiation analyses suggested that OsEPFL2 was positively selected during the domestication of rice. Our work to systematically investigate the function of EPF/EPFL peptides demonstrates that different members of the same gene family have been independently selected for their ability to regulate a similar biological function and provides perspective on rice domestication.
Collapse
Affiliation(s)
| | | | - Zupei Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hang Yu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Muhammad Qasim Shahid
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yanhui Lin
- Institute of Food Crops, Hainan Academy of Agricultural Sciences, Hainan Key Laboratory of Crop Genetics and Breeding, Hainan Scientific Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture, Haikou 571100, China
| | - Xiaoyi Qiao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Junyi Xiao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | | |
Collapse
|
33
|
Pastor-Fernández J, Sánchez-Bel P, Gamir J, Pastor V, Sanmartín N, Cerezo M, Andrés-Moreno S, Flors V. Tomato Systemin induces resistance against Plectosphaerella cucumerina in Arabidopsis through the induction of phenolic compounds and priming of tryptophan derivatives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111321. [PMID: 35696921 DOI: 10.1016/j.plantsci.2022.111321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Phytocytokines are endogenous danger peptides that are actively released after a pest or pathogen attack, triggering an amplification of plant immune responses. Here, we found that Systemin, a peptide from tomato, has a substantial impact at the molecular level in Arabidopsis plants that leads to induced resistance against Plectosphaerella cucumerina. Using transcriptional and metabolomics approaches, and loss-of-function mutants to analyse the molecular mechanisms underlying induced resistance against the necrotroph, we decipher the enhanced molecular responses in Systemin-treated plants following infection. Some protein complexes involved in the response to other damage signals, including the BAK1-BIK1 protein complex and heterotrimeric G proteins, as well as MPK activation, were among the early signalling events triggered by Systemin in Arabidopsis upon infection. Non-targeted analysis of the late responses underlying Systemin-Induced Resistance1 (Sys-IR) showed that phenolic and indolic compounds were the most representative groups in the Systemin metabolic fingerprint. Lack of flavonoids resulted in the impairment of Sys-IR. On the other hand, some indolic compounds showed a priming profile and were also essential for functional Sys-IR. Evidence presented here shows that plants can sense heterologous peptides from other species as danger signals driving the participation of common protein cascades activated in the PTI and promoting enhanced resistance against necrotrophic fungus.
Collapse
Affiliation(s)
- J Pastor-Fernández
- Metabolic Integration and Cell Signaling Laboratory, Biochemistry and Molecular Biology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n, 12071 Castellón, Spain
| | - P Sánchez-Bel
- Metabolic Integration and Cell Signaling Laboratory, Biochemistry and Molecular Biology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n, 12071 Castellón, Spain
| | - J Gamir
- Metabolic Integration and Cell Signaling Laboratory, Biochemistry and Molecular Biology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n, 12071 Castellón, Spain
| | - V Pastor
- Metabolic Integration and Cell Signaling Laboratory, Biochemistry and Molecular Biology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n, 12071 Castellón, Spain
| | - N Sanmartín
- Metabolic Integration and Cell Signaling Laboratory, Biochemistry and Molecular Biology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n, 12071 Castellón, Spain
| | - M Cerezo
- Metabolic Integration and Cell Signaling Laboratory, Biochemistry and Molecular Biology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n, 12071 Castellón, Spain
| | - S Andrés-Moreno
- Metabolic Integration and Cell Signaling Laboratory, Biochemistry and Molecular Biology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n, 12071 Castellón, Spain
| | - V Flors
- Metabolic Integration and Cell Signaling Laboratory, Biochemistry and Molecular Biology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n, 12071 Castellón, Spain.
| |
Collapse
|
34
|
Snoeck S, Guayazán-Palacios N, Steinbrenner AD. Molecular tug-of-war: Plant immune recognition of herbivory. THE PLANT CELL 2022; 34:1497-1513. [PMID: 35026025 PMCID: PMC9048929 DOI: 10.1093/plcell/koac009] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/07/2022] [Indexed: 05/22/2023]
Abstract
Plant defense responses against insect herbivores are induced through wound-induced signaling and the specific perception of herbivore-associated molecular patterns (HAMPs). In addition, herbivores can deliver effectors that suppress plant immunity. Here we review plant immune recognition of HAMPs and effectors, and argue that these initial molecular interactions upon a plant-herbivore encounter mediate and structure effective resistance. While the number of distinct HAMPs and effectors from both chewing and piercing-sucking herbivores has expanded rapidly with omics-enabled approaches, paired receptors and targets in the host are still not well characterized. Herbivore-derived effectors may also be recognized as HAMPs depending on the host plant species, potentially through the evolution of novel immune receptor functions. We compile examples of HAMPs and effectors where natural variation between species may inform evolutionary patterns and mechanisms of plant-herbivore interactions. Finally, we discuss the combined effects of wounding and HAMP recognition, and review potential signaling hubs, which may integrate both sensing functions. Understanding the precise mechanisms for plant sensing of herbivores will be critical for engineering resistance in agriculture.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Biology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
35
|
Ngou BPM, Ding P, Jones JDG. Thirty years of resistance: Zig-zag through the plant immune system. THE PLANT CELL 2022; 34:1447-1478. [PMID: 35167697 PMCID: PMC9048904 DOI: 10.1093/plcell/koac041] [Citation(s) in RCA: 307] [Impact Index Per Article: 153.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2022] [Indexed: 05/05/2023]
Abstract
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| |
Collapse
|
36
|
Knowing me, knowing you: Self and non-self recognition in plant immunity. Essays Biochem 2022; 66:447-458. [PMID: 35383834 DOI: 10.1042/ebc20210095] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Perception of non-self molecules known as microbe-associated molecular patterns (MAMPs) by host pattern recognition receptors (PRRs) activates plant pattern-triggered immunity (PTI). Pathogen infections often trigger the release of modified-self molecules, termed damage- or danger-associated molecular patterns (DAMPs), which modulate MAMP-triggered signaling to shape the frontline of plant immune responses against infections. In the context of advances in identifying MAMPs and DAMPs, cognate receptors, and their signaling, here, we focus on the most recent breakthroughs in understanding the perception and role of non-self and modified-self patterns. We highlight the commonalities and differences of MAMPs from diverse microbes, insects, and parasitic plants, as well as the production and perception of DAMPs upon infections. We discuss the interplay between MAMPs and DAMPs for emerging themes of the mutual potentiation and attenuation of PTI signaling upon MAMP and DAMP perception during infections.
Collapse
|
37
|
Hundacker J, Bittner N, Weise C, Bröhan G, Varama M, Hilker M. Pine defense against eggs of an herbivorous sawfly is elicited by an annexin-like protein present in egg-associated secretion. PLANT, CELL & ENVIRONMENT 2022; 45:1033-1048. [PMID: 34713898 DOI: 10.1111/pce.14211] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Known elicitors of plant defenses against eggs of herbivorous insects are low-molecular-weight organic compounds associated with the eggs. However, previous studies provided evidence that also proteinaceous compounds present in secretion associated with eggs of the herbivorous sawfly Diprion pini can elicit defensive responses in Pinus sylvestris. Pine responses induced by the proteinaceous secretion are known to result in enhanced emission of (E)-β-farnesene, which attracts egg parasitoids killing the eggs. Here, we aimed to identify the defense-eliciting protein and elucidate its function. After isolating the defense-eliciting protein from D. pini egg-associated secretion by ultrafiltration and gel electrophoresis, we identified it by MALDI-TOF mass spectrometry as an annexin-like protein, which we named 'diprionin'. Further GC-MS analyses showed that pine needles treated with heterologously expressed diprionin released enhanced quantities of (E)-β-farnesene. Our bioassays confirmed attractiveness of diprionin-treated pine to egg parasitoids. Expression of several pine candidate genes involved in terpene biosynthesis and regulation of ROS homeostasis was similarly affected by diprionin and natural sawfly egg deposition. However, the two treatments had different effects on expression of pathogenesis-related genes (PR1, PR5). Diprionin is the first egg-associated proteinaceous elicitor of indirect plant defense against insect eggs described so far.
Collapse
Affiliation(s)
- Janik Hundacker
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| | - Norbert Bittner
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| | - Christoph Weise
- Department of Biochemistry, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Berlin, Germany
| | - Gunnar Bröhan
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| | - Martti Varama
- Natural Resources Institute Finland, Helsinki, Finland
| | - Monika Hilker
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| |
Collapse
|
38
|
Stahl E, Fernandez Martin A, Glauser G, Guillou MC, Aubourg S, Renou JP, Reymond P. The MIK2/SCOOP Signaling System Contributes to Arabidopsis Resistance Against Herbivory by Modulating Jasmonate and Indole Glucosinolate Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:852808. [PMID: 35401621 PMCID: PMC8984487 DOI: 10.3389/fpls.2022.852808] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 05/14/2023]
Abstract
Initiation of plant immune signaling requires recognition of conserved molecular patterns from microbes and herbivores by plasma membrane-localized pattern recognition receptors. Additionally, plants produce and secrete numerous small peptide hormones, termed phytocytokines, which act as secondary danger signals to modulate immunity. In Arabidopsis, the Brassicae-specific SERINE RICH ENDOGENOUS PEPTIDE (SCOOP) family consists of 14 members that are perceived by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR LIKE KINASE 2 (MIK2). Recognition of SCOOP peptides elicits generic early signaling responses but knowledge on how and if SCOOPs modulate specific downstream immune defenses is limited. We report here that depletion of MIK2 or the single PROSCOOP12 precursor results in decreased Arabidopsis resistance against the generalist herbivore Spodoptera littoralis but not the specialist Pieris brassicae. Increased performance of S. littoralis on mik2-1 and proscoop12 is accompanied by a diminished accumulation of jasmonic acid, jasmonate-isoleucine and indolic glucosinolates. Additionally, we show transcriptional activation of the PROSCOOP gene family in response to insect herbivory. Our data therefore indicate that perception of endogenous SCOOP peptides by MIK2 modulates the jasmonate pathway and thereby contributes to enhanced defense against a generalist herbivore.
Collapse
Affiliation(s)
- Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Marie-Charlotte Guillou
- Institut de Recherche en Horticulture et Semences, UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, Beaucouzé, France
| | - Sébastien Aubourg
- Institut de Recherche en Horticulture et Semences, UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, Beaucouzé, France
| | - Jean-Pierre Renou
- Institut de Recherche en Horticulture et Semences, UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, Beaucouzé, France
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Molisso D, Coppola M, Buonanno M, Di Lelio I, Monti SM, Melchiorre C, Amoresano A, Corrado G, Delano-Frier JP, Becchimanzi A, Pennacchio F, Rao R. Tomato Prosystemin Is Much More than a Simple Systemin Precursor. BIOLOGY 2022; 11:biology11010124. [PMID: 35053122 PMCID: PMC8772835 DOI: 10.3390/biology11010124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 02/04/2023]
Abstract
Simple Summary Prosystemin is a 200 amino acid precursor that releases, upon wounding and biotic attacks, an 18 amino acid peptide called Systemin. This peptide was traditionally considered as the principal actor of the resistance of tomato plants induced by triggering multiple defense pathways in response to a wide range of biotic/abiotic stress agents. Recent findings from our group discovered the disordered structure of Prosystemin that promotes the binding of different molecular partners and the possible activation of multiple stress-related pathways. All of our recent findings suggest that Prosystemin could be more than a simple precursor of Systemin peptide. Indeed, we hypothesized that it contains other sequences able to activate multiple stress-related responses. To verify this hypothesis, we produced a truncated Prosystemin protein deprived of the Systemin peptide and the relative deleted gene. Experiments with transgenic tomato plants overexpressing the truncated Prosystemin and with plants exogenously treated with the recombinant truncated protein demonstrated that both transgenic and treated plants modulated the expression of defense-related genes and were protected against a noctuid moth and a fungal pathogen. Taken together, our results demonstrated that Prosystemin is not a mere scaffold of Systemin, but itself contains other biologically active regions. Abstract Systemin (Sys) is an octadecapeptide, which upon wounding, is released from the carboxy terminus of its precursor, Prosystemin (ProSys), to promote plant defenses. Recent findings on the disordered structure of ProSys prompted us to investigate a putative biological role of the whole precursor deprived of the Sys peptide. We produced transgenic tomato plants expressing a truncated ProSys gene in which the exon coding for Sys was removed and compared their defense response with that induced by the exogenous application of the recombinant truncated ProSys (ProSys(1-178), the Prosystemin sequence devoid of Sys region). By combining protein structure analyses, transcriptomic analysis, gene expression profiling and bioassays with different pests, we demonstrate that truncated ProSys promotes defense barriers in tomato plants through a hormone-independent defense pathway, likely associated with the production of oligogalacturonides (OGs). Both transgenic and plants treated with the recombinant protein showed the modulation of the expression of genes linked with defense responses and resulted in protection against the lepidopteran pest Spodoptera littoralis and the fungus Botrytis cinerea. Our results suggest that the overall function of the wild-type ProSys is more complex than previously shown, as it might activate at least two tomato defense pathways: the well-known Sys-dependent pathway connected with the induction of jasmonic acid biosynthesis and the successive activation of a set of defense-related genes, and the ProSys(1-178)-dependent pathway associated with OGs production leading to the OGs mediate plant immunity.
Collapse
Affiliation(s)
- Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
- Materias s.r.l., Corso N. Protopisani 50, 80146 Naples, Italy
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - Martina Buonanno
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134 Naples, Italy;
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - Simona Maria Monti
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134 Naples, Italy;
- Correspondence: (S.M.M.); (R.R.)
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 4, 80126 Naples, Italy; (C.M.); (A.A.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 4, 80126 Naples, Italy; (C.M.); (A.A.)
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - John Paul Delano-Frier
- Center for Research and Advanced Studies (CINVESTAV) Irapuato, Department of Biochemistry and Biotechnology, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato 36500, Mexico;
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Via Università 100, 80055 Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Via Università 100, 80055 Naples, Italy
- Correspondence: (S.M.M.); (R.R.)
| |
Collapse
|
40
|
Kallure GS, Kumari A, Shinde BA, Giri AP. Characterized constituents of insect herbivore oral secretions and their influence on the regulation of plant defenses. PHYTOCHEMISTRY 2022; 193:113008. [PMID: 34768189 DOI: 10.1016/j.phytochem.2021.113008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/09/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
For more than 350 million years, there have been ongoing dynamic interactions between plants and insects. In several cases, insects cause-specific feeding damage with ensuing herbivore-associated molecular patterns that invoke characteristic defense responses. During feeding on plant tissue, insects release oral secretions (OSs) containing a repertoire of molecules affecting plant defense (effectors). Some of these OS components might elicit a defense response to combat insect attacks (elicitors), while some might curb the plant defenses (suppressors). Few reports suggest that the synthesis and function of OS components might depend on the host plant and associated microorganisms. We review these intricate plant-insect interactions, during which there is a continuous exchange of molecules between plants and feeding insects along with the associated microorganisms. We further provide a list of commonly identified inducible plant produced defensive molecules released upon insect attack as well as in response to OS treatments of the plants. Thus, we describe how plants specialized and defense-related metabolism is modulated at innumerable phases by OS during plant-insect interactions. A molecular understanding of these complex interactions will provide a means to design eco-friendly crop protection strategies.
Collapse
Affiliation(s)
- Gopal S Kallure
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Archana Kumari
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Balkrishna A Shinde
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Department of Biotechnology, Shivaji University, Vidya Nagar, Kolhapur, 416004, Maharashtra, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
41
|
Jaiswal N, Liao CJ, Mengesha B, Han H, Lee S, Sharon A, Zhou Y, Mengiste T. Regulation of plant immunity and growth by tomato receptor-like cytoplasmic kinase TRK1. THE NEW PHYTOLOGIST 2022; 233:458-478. [PMID: 34655240 DOI: 10.1111/nph.17801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/11/2021] [Indexed: 05/27/2023]
Abstract
The molecular mechanisms of quantitative resistance (QR) to fungal pathogens and their relationships with growth pathways are poorly understood. We identified tomato TRK1 (TPK1b Related Kinase1) and determined its functions in tomato QR and plant growth. TRK1 is a receptor-like cytoplasmic kinase that complexes with tomato LysM Receptor Kinase (SlLYK1). SlLYK1 and TRK1 are required for chitin-induced fungal resistance, accumulation of reactive oxygen species, and expression of immune response genes. Notably, TRK1 and SlLYK1 regulate SlMYC2, a major transcriptional regulator of jasmonic acid (JA) responses and fungal resistance, at transcriptional and post-transcriptional levels. Further, TRK1 is also required for maintenance of proper meristem growth, as revealed by the ectopic meristematic activity, enhanced branching, and altered floral structures in TRK1 RNAi plants. Consistently, TRK1 interacts with SlCLV1 and SlWUS, and TRK1 RNAi plants show increased expression of SlCLV3 and SlWUS in shoot apices. Interestingly, TRK1 suppresses chitin-induced gene expression in meristems but promotes expression of the same genes in leaves. SlCLV1 and TRK1 perform contrasting functions in defense but similar functions in plant growth. Overall, through molecular and biochemical interactions with critical regulators, TRK1 links upstream defense and growth signals to downstream factor in fungal resistance and growth homeostasis response regulators.
Collapse
Affiliation(s)
- Namrata Jaiswal
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Bemnet Mengesha
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Han Han
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
42
|
Poretsky E, Ruiz M, Ahmadian N, Steinbrenner AD, Dressano K, Schmelz EA, Huffaker A. Comparative analyses of responses to exogenous and endogenous antiherbivore elicitors enable a forward genetics approach to identify maize gene candidates mediating sensitivity to herbivore-associated molecular patterns. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1295-1316. [PMID: 34564909 DOI: 10.1111/tpj.15510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Crop damage by herbivorous insects remains a significant contributor to annual yield reductions. Following attack, maize (Zea mays) responds to herbivore-associated molecular patterns (HAMPs) and damage-associated molecular patterns (DAMPs), activating dynamic direct and indirect antiherbivore defense responses. To define underlying signaling processes, comparative analyses between plant elicitor peptide (Pep) DAMPs and fatty acid-amino acid conjugate (FAC) HAMPs were conducted. RNA sequencing analysis of early transcriptional changes following Pep and FAC treatments revealed quantitative differences in the strength of response yet a high degree of qualitative similarity, providing evidence for shared signaling pathways. In further comparisons of FAC and Pep responses across diverse maize inbred lines, we identified Mo17 as part of a small subset of lines displaying selective FAC insensitivity. Genetic mapping for FAC sensitivity using the intermated B73 × Mo17 population identified a single locus on chromosome 4 associated with FAC sensitivity. Pursuit of multiple fine-mapping approaches further narrowed the locus to 19 candidate genes. The top candidate gene identified, termed FAC SENSITIVITY ASSOCIATED (ZmFACS), encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) that belongs to the same family as a rice (Oryza sativa) receptor gene previously associated with the activation of induced responses to diverse Lepidoptera. Consistent with reduced sensitivity, ZmFACS expression was significantly lower in Mo17 as compared to B73. Transient heterologous expression of ZmFACS in Nicotiana benthamiana resulted in a significantly increased FAC-elicited response. Together, our results provide useful resources for studying early elicitor-induced antiherbivore responses in maize and approaches to discover gene candidates underlying HAMP sensitivity in grain crops.
Collapse
Affiliation(s)
- Elly Poretsky
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Miguel Ruiz
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nazanin Ahmadian
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Keini Dressano
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eric A Schmelz
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alisa Huffaker
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
43
|
Wang T, Zhang X. Genome-wide dynamic network analysis reveals the potential genes for MeJA-induced growth-to-defense transition. BMC PLANT BIOLOGY 2021; 21:450. [PMID: 34615468 PMCID: PMC8493714 DOI: 10.1186/s12870-021-03185-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/23/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Methyl jasmonate (MeJA), which has been identified as a lipid-derived stress hormone, mediates plant resistance to biotic/abiotic stress. Understanding MeJA-induced plant defense provides insight into how they responding to environmental stimuli. RESULT In this work, the dynamic network analysis method was used to quantitatively identify the tipping point of growth-to-defense transition and detect the associated genes. As a result, 146 genes were detected as dynamic network biomarker (DNB) members and the critical defense transition was identified based on dense time-series RNA-seq data of MeJA-treated Arabidopsis thaliana. The GO functional analysis showed that these DNB genes were significantly enriched in defense terms. The network analysis between DNB genes and differentially expressed genes showed that the hub genes including SYP121, SYP122, WRKY33 and MPK11 play a vital role in plant growth-to-defense transition. CONCLUSIONS Based on the dynamic network analysis of MeJA-induced plant resistance, we provide an important guideline for understanding the growth-to-defense transition of plants' response to environment stimuli. This study also provides a database with the key genes of plant defense induced by MeJA.
Collapse
Affiliation(s)
- Tengfei Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, 430074, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiujun Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, 430074, Wuhan, China.
| |
Collapse
|
44
|
Yamaguchi K, Kawasaki T. Pathogen- and plant-derived peptides trigger plant immunity. Peptides 2021; 144:170611. [PMID: 34303752 DOI: 10.1016/j.peptides.2021.170611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/29/2022]
Abstract
Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including peptide fragments derived from pathogens, known as pathogen-associated molecular patterns (PAMPs). Plants also produce immunogenic peptides called phytocytokines that regulate immune responses. These molecules are recognized by pattern recognition receptors (PRRs) at plasma membrane. Activated PRRs induce a variety of immune responses including production of reactive oxygen species (ROS), induction of Ca2+ influx and activation of mitogen activated protein kinases (MAPKs). Pattern-triggered immunity (PTI) wards off microbes and pests. In this review, we summarize recent our advances in understanding how the peptide fragments are generated and perceived by plant PRRs at cell surface, and the activated PRRs transduce the downstream immune signaling.
Collapse
Affiliation(s)
- Koji Yamaguchi
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Tsutomu Kawasaki
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
45
|
Hou S, Liu D, He P. Phytocytokines function as immunological modulators of plant immunity. STRESS BIOLOGY 2021; 1:8. [PMID: 34806087 PMCID: PMC8591736 DOI: 10.1007/s44154-021-00009-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022]
Abstract
Plant plasma membrane-resident immune receptors regulate plant immunity by recognizing microbe-associated molecular patterns (MAMPs), damage-associated molecular patterns (DAMPs), and phytocytokines. Phytocytokines are plant endogenous peptides, which are usually produced in the cytosol and released into the apoplast when plant encounters pathogen infections. Phytocytokines regulate plant immunity through activating an overlapping signaling pathway with MAMPs/DAMPs with some unique features. Here, we highlight the current understanding of phytocytokine production, perception and functions in plant immunity, and discuss how plants and pathogens manipulate phytocytokine signaling for their own benefits during the plant-pathogen warfare.
Collapse
Affiliation(s)
- Shuguo Hou
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, 250100 China
| | - Derui Liu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843 USA
| | - Ping He
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
46
|
Tanaka K, Heil M. Damage-Associated Molecular Patterns (DAMPs) in Plant Innate Immunity: Applying the Danger Model and Evolutionary Perspectives. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:53-75. [PMID: 33900789 DOI: 10.1146/annurev-phyto-082718-100146] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Danger signals trigger immune responses upon perception by a complex surveillance system. Such signals can originate from the infectious nonself or the damaged self, the latter termed damage-associated molecular patterns (DAMPs). Here, we apply Matzinger's danger model to plant innate immunity to discuss the adaptive advantages of DAMPs and their integration into preexisting signaling pathways. Constitutive DAMPs (cDAMPs), e.g., extracellular ATP, histones, and self-DNA, fulfill primary, conserved functions and adopt a signaling role only when cellular damage causes their fragmentation or localization to aberrant compartments. By contrast, immunomodulatory peptides (also known as phytocytokines) exclusively function as signals and, upon damage, are activated as inducible DAMPs (iDAMPs). Dynamic coevolutionary processes between the signals and their emerging receptors and shared co-receptors have likely linked danger recognition to preexisting, conserved downstream pathways.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99163, USA;
| | - Martin Heil
- Departamento de Ingeniería Genética, CINVESTAV, 36821 Irapuato, Guanajuato, México
| |
Collapse
|
47
|
Schultink A, Steinbrenner AD. A playbook for developing disease-resistant crops through immune receptor identification and transfer. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102089. [PMID: 34333377 DOI: 10.1016/j.pbi.2021.102089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/08/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Plants are resistant to most pathogens because of an immune system that perceives invading microbes and activates defense. A large repertoire of innate immune receptors mediates specific direct or indirect recognition of pathogen-derived molecules. Disease is often a consequence of insufficient immune surveillance, and the transfer of immune receptor genes from resistant plants to susceptible crop varieties is an effective strategy for combating disease outbreaks. We discuss approaches for identifying intracellular and cell surface immune receptors, with particular focus on recently developed and emerging methodologies. We also review considerations for the transfer of immune receptor genes into crop species, including additional host factors that may be required for immune receptor function. Together, these concepts lay out a broadly applicable playbook for developing crop varieties with durable disease resistance.
Collapse
|
48
|
Lee DH, Lee HS, Belkhadir Y. Coding of plant immune signals by surface receptors. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102044. [PMID: 33979769 DOI: 10.1016/j.pbi.2021.102044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The detection of molecular signals derived from other organisms is central to the evolutionary success of plants in the colonization of Earth. The sensory coding of these signals is critical for marshaling local and systemic immune responses that keep most invading organisms at bay. Plants detect immune signals inside and outside their cells using receptors. Here, we focus on receptors that function at the cell surface. We present recent work that expands our understanding of the repertoire of immune signals sensed by this family of receptors.
Collapse
Affiliation(s)
- Du-Hwa Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Ho-Seok Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria.
| |
Collapse
|
49
|
Hu XL, Lu H, Hassan MM, Zhang J, Yuan G, Abraham PE, Shrestha HK, Villalobos Solis MI, Chen JG, Tschaplinski TJ, Doktycz MJ, Tuskan GA, Cheng ZMM, Yang X. Advances and perspectives in discovery and functional analysis of small secreted proteins in plants. HORTICULTURE RESEARCH 2021; 8:130. [PMID: 34059650 PMCID: PMC8167165 DOI: 10.1038/s41438-021-00570-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 05/02/2023]
Abstract
Small secreted proteins (SSPs) are less than 250 amino acids in length and are actively transported out of cells through conventional protein secretion pathways or unconventional protein secretion pathways. In plants, SSPs have been found to play important roles in various processes, including plant growth and development, plant response to abiotic and biotic stresses, and beneficial plant-microbe interactions. Over the past 10 years, substantial progress has been made in the identification and functional characterization of SSPs in several plant species relevant to agriculture, bioenergy, and horticulture. Yet, there are potentially a lot of SSPs that have not been discovered in plant genomes, which is largely due to limitations of existing computational algorithms. Recent advances in genomics, transcriptomics, and proteomics research, as well as the development of new computational algorithms based on machine learning, provide unprecedented capabilities for genome-wide discovery of novel SSPs in plants. In this review, we summarize known SSPs and their functions in various plant species. Then we provide an update on the computational and experimental approaches that can be used to discover new SSPs. Finally, we discuss strategies for elucidating the biological functions of SSPs in plants.
Collapse
Affiliation(s)
- Xiao-Li Hu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Paul E Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Him K Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | | | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gerald A Tuskan
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Zong-Ming Max Cheng
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Xiaohan Yang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
50
|
Hou S, Zhang J, He P. Stress-induced activation of receptor signaling by protease-mediated cleavage. Biochem J 2021; 478:1847-1852. [PMID: 34003253 PMCID: PMC9059214 DOI: 10.1042/bcj20200941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
Plants encode a large number of proteases in activating intracellular signaling through proteolytic cleavages of various protein substrates. One type of the substrates is proligands, including peptide hormones, which are perceived by cell surface-resident receptors. The peptide hormones are usually first synthesized as propeptides, and then cleaved by specific proteases for activation. Accumulating evidence indicates that the protease-mediated cleavage of proligands can be triggered by environmental stresses and subsequently activates plant stress signaling. In this perspective, we highlight several recent publications and provide an update about stress-induced cleavage of propeptides and receptor-associated components by proteases in the activation of cell surface-resident receptor signaling in plants. We also discuss some questions and future challenges in the research of protease functions in plant stress response.
Collapse
Affiliation(s)
- Shuguo Hou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250100, China
| | - Jie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250100, China
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, U.S.A
| |
Collapse
|