1
|
Lechon T, Kent NA, Murray JAH, Scofield S. Regulation of meristem and hormone function revealed through analysis of directly-regulated SHOOT MERISTEMLESS target genes. Sci Rep 2025; 15:240. [PMID: 39747964 PMCID: PMC11696002 DOI: 10.1038/s41598-024-83985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
The Arabidopsis Knotted1-like homeobox (KNOX) gene SHOOT MERISTEMLESS (STM) encodes a homeodomain transcription factor that operates as a central component of the gene regulatory network (GRN) controlling shoot apical meristem formation and maintenance. It regulates the expression of target genes that include transcriptional regulators associated with meristem function, particularly those involved in pluripotency and cellular differentiation, as well as genes involved in hormone metabolism and signaling. Previous studies have identified KNOX-regulated genes and their associated cis-regulatory elements in several plant species. However, little is known about STM-DNA interactions in the regulatory regions of target genes in Arabidopsis. Here, we identify and map STM binding sites in the Arabidopsis genome using global ChIP-seq analysis to reveal potential directly-regulated STM target genes. We show that in the majority of target loci, STM binds within 1 kb upstream of the TSS, with other loci showing STM binding at more distal enhancer sites, and we reveal enrichment of DNA motifs containing a TGAC and/or TGAT core in STM-bound target gene cis-regulatory elements. We further demonstrate that many STM-bound genes are transcriptionally responsive to altered levels of STM activity, and show that among these, transcriptional regulators with key roles in meristem and hormone function are highly represented. Finally, we use a subset of these target genes to perform Bayesian network analysis to infer gene regulatory associations and to construct a refined GRN for STM-mediated control of meristem function.
Collapse
Affiliation(s)
- Tamara Lechon
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Nicholas A Kent
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - James A H Murray
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
2
|
Wang Y, Cao Y, Qin G. Multifaceted roles of TCP transcription factors in fate determination. THE NEW PHYTOLOGIST 2025; 245:95-101. [PMID: 39434425 DOI: 10.1111/nph.20188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Abstract
Fate determination is indispensable for the accurate shaping and specialization of plant organs, a process critical to the structural and functional diversity in plant kingdom. The TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) family of transcription factors has been recognized for its significant contributions to plant organogenesis and morphogenesis. Recent research has shed light on the pivotal roles that TCPs play in fate determination. In this review, we delve into the current understanding of TCP functions, emphasizing their critical influence on fate determination from the organelle to the cell and organ levels. We also consolidate the molecular mechanisms through which TCPs exert their regulatory effects on fate determination. Additionally, we highlight intriguing points of TCPs that warrant further exploration in future research endeavors.
Collapse
Affiliation(s)
- Yutao Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yu Cao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
3
|
Bi M, Wang Z, Cheng K, Meng S, Qi M. SlTCP29 and SlTCP24 participate in the morphological development of tomato compound leaves by integrating multiple pathways. PHYSIOLOGIA PLANTARUM 2024; 176:e14641. [PMID: 39659148 DOI: 10.1111/ppl.14641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Leaves are the primary vegetative organs of plants, and their morphology is an important trait affecting plant architecture, light energy utilization, environmental adaptation, and fruit quality and yield. Leaf development is highly flexible; however, understanding the regulatory mechanisms of factors coordinating leaf morphogenesis and differentiation remains limited. In this study, we obtained a double mutant for SlTCP29 and SlTCP24 genes from the CRISPR/Cas9 mutant population, both belonging to the CINCINNATA-like TCP (TEOSINTE BRANCHED, CYCLOIDEA and PCF1/2) transcription factor subfamily. Simultaneous mutations of SlTCP29 and SlTCP24 genes increase the complexity of tomato leaves, characterized by deeper leaf margin notches and increased number of leaflets. In conjunction with RNA-seq analysis, determination of plant hormone content, and molecular interaction assays, we identified the KNOXII gene SlTKNII5, SlMIR164a, and 1-aminocyclopropane-1-carboxylic acid synthase gene SlACS1A as direct downstream targets of SlTCP29 and SlTCP24, among which SlTKNII5 can physically interact with other KNOXII members to form heterodimers. Our study provides insight into the mechanisms by which SlTCP29 and SlTCP24 are involved in the morphological development of tomato compound leaves by integrating multiple pathways, including transcription factor, microRNA, and phytohormone.
Collapse
Affiliation(s)
- Mengxi Bi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Zhijun Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Keyan Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| |
Collapse
|
4
|
Le Gloanec C, Gómez-Felipe A, Alimchandani V, Branchini E, Bauer A, Routier-Kierzkowska AL, Kierzkowski D. Modulation of cell differentiation and growth underlies the shift from bud protection to light capture in cauline leaves. PLANT PHYSIOLOGY 2024; 196:1214-1230. [PMID: 39106417 PMCID: PMC11444300 DOI: 10.1093/plphys/kiae408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/09/2024]
Abstract
Plant organs have evolved into diverse shapes for specialized functions despite emerging as simple protrusions at the shoot apex. Cauline leaves serve as photosynthetic organs and protective structures for emerging floral buds. However, the growth patterns underlying this dual function remain unknown. Here, we investigate the developmental dynamics shaping Arabidopsis (Arabidopsis thaliana) cauline leaves underlying their functional diversification from other laminar organs. We show that cauline leaves display a significant delay in overall elongation compared with rosette leaves. Using live imaging, we reveal that their functional divergence hinges on early modulation of the timing of cell differentiation and cellular growth rates. In contrast to rosette leaves and sepals, cell differentiation is delayed in cauline leaves, fostering extended proliferation, prolonged morphogenetic activity, and growth redistribution within the organ. Notably, cauline leaf growth is transiently suppressed during the early stages, keeping the leaf small and unfolded during the initiation of the first flowers. Our findings highlight the unique developmental timing of cauline leaves, underlying their shift from an early protective role to a later photosynthetic function.
Collapse
Affiliation(s)
- Constance Le Gloanec
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Andrea Gómez-Felipe
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Viraj Alimchandani
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Elvis Branchini
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Amélie Bauer
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Anne-Lise Routier-Kierzkowska
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Daniel Kierzkowski
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
5
|
Li C, Huang L, Huang Y, Kuang M, Wu Y, Ma Z, Fu X. Fine-mapping of a major QTL controlling plant height by BSA-seq and transcriptome sequencing in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:217. [PMID: 39249496 DOI: 10.1007/s00122-024-04714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024]
Abstract
KEY MESSAGE GhSOT (GH_D05G3950) plays a negative role in regulating plant height development by modulating the GA signaling. Plant height is an important indicator affecting mechanical harvesting for cotton. Therefore, understanding the genes associated with the plant height is crucial for cotton breeding and production. In this study, we used bulk segregant analysis sequencing to identify a new quantitative trait locu (QTL) called qPH5.1, which is linked to plant height. Local QTL mapping using seven kompetitive allele-specific PCR (KASP) markers and linkage analysis successfully narrowed down qPH5.1 to ~ 0.34 Mb region harbored five candidate genes. Subsequently, RNA sequencing (RNA-seq) analysis and examination of expression patterns revealed that GhSOT exhibited the highest likelihood of being the candidate gene responsible for the plant height at this locus. Seven SNP site variations were identified in the GhSOT promoter between the two parents, and Luciferase experiments confirmed that the promoter of GhSOT from cz3 enhances downstream gene expression more effectively. Additionally, suppression of GhSOT in cz3 resulted in the restoration of plant height, further emphasizing the functional significance of this gene. Application of exogenous gibberellin acid (GA) significantly restored plant height in cz3, as demonstrated by RNA-seq analysis and exogenous hormone treatment, which revealed alterations in genes associated with GA signaling pathways. These results reveal GhSOT is a key gene controlling plant height, which may affect plant height by regulating GA signaling.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, 071000, China
| | - Longyu Huang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- Hainan Seed Industry Laboratory, Sanya, 572025, China
| | - Yiwen Huang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Meng Kuang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuzhen Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, 071000, China.
| | - Xiaoqiong Fu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
6
|
LaFountain AM, Lin Q, McMahon HE, Min Y, Ding B, Gurung V, Seemann JR, Yuan YW. A distinct foliar pigmentation pattern formed by activator-repressor gradients upstream of an anthocyanin-activating R2R3-MYB. Cell Rep 2024; 43:114444. [PMID: 38990723 DOI: 10.1016/j.celrep.2024.114444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
The emergence of novel traits is often preceded by a potentiation phase, when all the genetic components necessary for producing the trait are assembled. However, elucidating these potentiating factors is challenging. We have previously shown that an anthocyanin-activating R2R3-MYB, STRIPY, triggers the emergence of a distinct foliar pigmentation pattern in the monkeyflower Mimulus verbenaceus. Here, using forward and reverse genetics approaches, we identify three potentiating factors that pattern STRIPY expression: MvHY5, a master regulator of light signaling that activates STRIPY and is expressed throughout the leaf, and two leaf developmental regulators, MvALOG1 and MvTCP5, that are expressed in opposing gradients along the leaf proximodistal axis and negatively regulate STRIPY. These results provide strong empirical evidence that phenotypic novelties can be potentiated through incorporation into preexisting genetic regulatory networks and highlight the importance of positional information in patterning the novel foliar stripe.
Collapse
Affiliation(s)
- Amy M LaFountain
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA.
| | - Qiaoshan Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Hayley E McMahon
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Ya Min
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Baoqing Ding
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Vandana Gurung
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Jeffrey R Seemann
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA; Institute for Systems Genomics, University of Connecticut, 67 North Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
7
|
Byrne ME, Imlay E, Ridza NNB. Shaping leaves through TALE homeodomain transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3220-3232. [PMID: 38527334 PMCID: PMC11156807 DOI: 10.1093/jxb/erae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/24/2024] [Indexed: 03/27/2024]
Abstract
The first TALE homeodomain transcription factor gene to be described in plants was maize knotted1 (kn1). Dominant mutations in kn1 disrupt leaf development, with abnormal knots of tissue forming in the leaf blade. kn1 was found to be expressed in the shoot meristem but not in a peripheral region that gives rise to leaves. Furthermore, KN1 and closely related proteins were excluded from initiating and developing leaves. These findings were a prelude to a large body of work wherein TALE homeodomain proteins have been identified as vital regulators of meristem homeostasis and organ development in plants. KN1 homologues are widely represented across land plant taxa. Thus, studying the regulation and mechanistic action of this gene class has allowed investigations into the evolution of diverse plant morphologies. This review will focus on the function of TALE homeodomain transcription factors in leaf development in eudicots. Here, we discuss how TALE homeodomain proteins contribute to a spectrum of leaf forms, from the simple leaves of Arabidopsis thaliana to the compound leaves of Cardamine hirsuta and species beyond the Brassicaceae.
Collapse
Affiliation(s)
- Mary E Byrne
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Eleanor Imlay
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
8
|
Ezura K, Lu Y, Suzuki Y, Mitsuda N, Ariizumi T. Class II knotted-like homeodomain protein SlKN5 with BEL1-like homeodomain proteins suppresses fruit greening in tomato fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2037-2054. [PMID: 38577750 DOI: 10.1111/tpj.16727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Knotted1-like homeodomain (KNOX) proteins are essential in regulating plant organ differentiation. Land plants, including tomato (Solanum lycopersicum), have two classes of the KNOX protein family, namely, class I (KNOX I) and class II KNOX (KNOX II). While tomato KNOX I proteins are known to stimulate chloroplast development in fruit, affecting fruit coloration, the role of KNOX II proteins in this context remains unclear. In this study, we employ CRISPR/Cas9 to generate knockout mutants of the KNOX II member, SlKN5. These mutants display increased leaf complexity, a phenotype commonly associated with reduced KNOX II activity, as well as enhanced accumulation of chloroplasts and chlorophylls in smaller cells within young, unripe fruit. RNA-seq data analyses indicate that SlKN5 suppresses the transcriptions of genes involved in chloroplast biogenesis, chlorophyll biosynthesis, and gibberellin catabolism. Furthermore, protein-protein interaction assays reveal that SlKN5 physically interacts with three transcriptional repressors from the BLH1-clade of BEL1-like homeodomain (BLH) protein family, SlBLH4, SlBLH5, and SlBLH7, with SlBLH7 showing the strongest interaction. CRISPR/Cas9-mediated knockout of these SlBLH genes confirmed their overlapping roles in suppressing chloroplast biogenesis, chlorophyll biosynthesis, and lycopene cyclization. Transient assays further demonstrate that the SlKN5-SlBLH7 interaction enhances binding capacity to regulatory regions of key chloroplast- and chlorophyll-related genes, including SlAPRR2-like1, SlCAB-1C, and SlGUN4. Collectively, our findings elucidate that the KNOX II SlKN5-SlBLH regulatory modules serve to inhibit fruit greening and subsequently promote lycopene accumulation, thereby fine-tuning the color transition from immature green fruit to mature red fruit.
Collapse
Affiliation(s)
- Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo, 102-0083, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yu Lu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
9
|
Prasad K, Palakodeti D. Cellular and molecular mechanisms of development and regeneration. Development 2024; 151:dev203023. [PMID: 38819454 DOI: 10.1242/dev.203023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Regeneration involves a highly coordinated interplay of intricate cellular processes, enabling living organisms to renew and repair themselves, from individual cells to entire ecosystems. Further, regeneration offers profound insights into developmental biology, tissue engineering and regenerative medicine. The Cellular and Molecular Mechanisms of Development and Regeneration (CMMDR) 2024 conference, which took place at the Shiv Nadar Institute of Eminence and University (India), gathered together an international array of researchers studying a wide variety of organisms across both plant and animal kingdoms. In this short Meeting Review, we highlight some of the outstanding research presented at this conference and draw together some of the common themes that emerged.
Collapse
Affiliation(s)
- Kalika Prasad
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru 560065, India
| |
Collapse
|
10
|
He L, Liu Y, Mao Y, Wu X, Zheng X, Zhao W, Mo X, Wang R, Wu Q, Wang D, Li Y, Yang Y, Bai Q, Zhang X, Zhou S, Zhao B, Liu C, Liu Y, Tadege M, Chen J. GRAS transcription factor PINNATE-LIKE PENTAFOLIATA2 controls compound leaf morphogenesis in Medicago truncatula. THE PLANT CELL 2024; 36:1755-1776. [PMID: 38318972 PMCID: PMC11062474 DOI: 10.1093/plcell/koae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024]
Abstract
The milestone of compound leaf development is the generation of separate leaflet primordia during the early stages, which involves two linked but distinct morphogenetic events: leaflet initiation and boundary establishment for leaflet separation. Although some progress in understanding the regulatory pathways for each event have been made, it is unclear how they are intrinsically coordinated. Here, we identify the PINNATE-LIKE PENTAFOLIATA2 (PINNA2) gene encoding a newly identified GRAS transcription factor in Medicago truncatula. PINNA2 transcripts are preferentially detected at organ boundaries. Its loss-of-function mutations convert trifoliate leaves into a pinnate pentafoliate pattern. PINNA2 directly binds to the promoter region of the LEAFY orthologue SINGLE LEAFLET1 (SGL1), which encodes a key positive regulator of leaflet initiation, and downregulates its expression. Further analysis revealed that PINNA2 synergizes with two other repressors of SGL1 expression, the BEL1-like homeodomain protein PINNA1 and the C2H2 zinc finger protein PALMATE-LIKE PENTAFOLIATA1 (PALM1), to precisely define the spatiotemporal expression of SGL1 in compound leaf primordia, thereby maintaining a proper pattern of leaflet initiation. Moreover, we showed that the enriched expression of PINNA2 at the leaflet-to-leaflet boundaries is positively regulated by the boundary-specific gene MtNAM, which is essential for leaflet boundary formation. Together, these results unveil a pivotal role of the boundary-expressed transcription factor PINNA2 in regulating leaflet initiation, providing molecular insights into the coordination of intricate developmental processes underlying compound leaf pattern formation.
Collapse
Affiliation(s)
- Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yawen Mao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Wu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Zheng
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Weiyue Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaoyu Mo
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoruo Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinq Wu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfa Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Youhan Li
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yuanfan Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Quanzi Bai
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaojia Zhang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Shaoli Zhou
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Baolin Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changning Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| |
Collapse
|
11
|
Lu Z, Zhang J, Wang H, Zhang K, Gu Z, Xu Y, Zhang J, Wang M, Han L, Xiang F, Zhou C. Rewiring of a KNOXI regulatory network mediated by UFO underlies the compound leaf development in Medicago truncatula. Nat Commun 2024; 15:2988. [PMID: 38582884 PMCID: PMC10998843 DOI: 10.1038/s41467-024-47362-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
Class I KNOTTED-like homeobox (KNOXI) genes are parts of the regulatory network that control the evolutionary diversification of leaf morphology. Their specific spatiotemporal expression patterns in developing leaves correlate with the degrees of leaf complexity between simple-leafed and compound-leafed species. However, KNOXI genes are not involved in compound leaf formation in several legume species. Here, we identify a pathway for dual repression of MtKNOXI function in Medicago truncatula. PINNATE-LIKE PENTAFOLIATA1 (PINNA1) represses the expression of MtKNOXI, while PINNA1 interacts with MtKNOXI and sequesters it to the cytoplasm. Further investigations reveal that UNUSUAL FLORAL ORGANS (MtUFO) is the direct target of MtKNOXI, and mediates the transition from trifoliate to pinnate-like pentafoliate leaves. These data suggest a new layer of regulation for morphological diversity in compound-leafed species, in which the conserved regulators of floral development, MtUFO, and leaf development, MtKNOXI, are involved in variation of pinnate-like compound leaves in M. truncatula.
Collapse
Affiliation(s)
- Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Juanjuan Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Shandong Peanut Research Institute, Qingdao, 266199, China
| | - Ke Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhiqun Gu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Min Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Fengning Xiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
12
|
Luo X, Guo L, Tagliere E, Yang Z, Liu Z. Leaf dissection and margin serration are independently regulated by two regulators converging on the CUC2-auxin module in strawberry. Curr Biol 2024; 34:769-780.e5. [PMID: 38272030 DOI: 10.1016/j.cub.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
The remarkable diversity of leaf forms allows plants to adapt to their living environment. In general, leaf diversity is shaped by leaf complexity (compound or simple) and leaf margin pattern (entire, serrated, or lobed). Prior studies in multiple species have uncovered a conserved module of CUC2-auxin that regulates both leaf complexity and margin serration. How this module is regulated in different species to contribute to the species-specific leaf form is unclear. Furthermore, the mechanistic connection between leaf complexity and leaf serration regulation is not well studied. Strawberry has trifoliate compound leaves with serrations at the margin. In the wild strawberry Fragaria vesca, a mutant named salad was isolated that showed deeper leaf serrations but normal leaf complexity. SALAD encodes a single-Myb domain protein and is expressed at the leaf margin. Genetic analysis showed that cuc2a is epistatic to salad, indicating that SALAD normally limits leaf serration depth by repressing CUC2a expression. When both Arabidopsis homologs of SALAD were knocked out, deeper serrations were observed in Arabidopsis rosette leaves, supporting a conserved function of SALAD in leaf serration regulation. We incorporated the analysis of a third strawberry mutant simple leaf 1 (sl1) with reduced leaf complexity but normal leaf serration. We showed that SL1 and SALAD independently regulate CUC2a at different stages of leaf development to, respectively, regulate leaf complexity and leaf serration. Our results provide a clear and simple mechanism of how leaf complexity and leaf serration are coordinately as well as independently regulated to achieve diverse leaf forms.
Collapse
Affiliation(s)
- Xi Luo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Lei Guo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Ethan Tagliere
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Zhenbiao Yang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
13
|
Yang J, Fan S, Guo M, Xie Z, Cheng Q, Gao P, Cheng C. DNA barcoding and comparative RNA-Seq analysis provide new insights into leaf formation using a novel resource of high-yielding Epimedium koreanum. FRONTIERS IN PLANT SCIENCE 2023; 14:1290836. [PMID: 38170141 PMCID: PMC10760978 DOI: 10.3389/fpls.2023.1290836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Epimedium koreanum Nakai, a well-known traditional Chinese medicinal herb, has been widely used to treat osteoporosis and sexual dysfunction for thousands of years. However, due to the decreasing population of East Asian natural resources, yearly output of Epimedium crude herb has been in low supply year by year. In this study, an unusual variety of E. koreanum was discovered in Dunhua, Jilin Province, the northernmost area where this variety was found containing 6 individuals, with three branches that had 27 leaflets, which is much more than the typical leaflet number of 9. Firstly, the novel E. koreanum varety was identified using DNA barcodes. Then, 1171 differentially expressed genes (DEGs) were discovered through parallel RNA-seq analysis between the newly discovered variety and wild type (WT) E. koreanum plant. Furthermore, the results of bioinformatics investigation revealed that 914 positively and 619 negatively correlated genes associated with the number of leaflets. Additionally, based on RNA-Seq and qRT-PCR analysis, two homologous hub TCP genes, which were commonly implicated in plant leaf development, and shown to be up regulated and down regulated in the discovered newly variety, respectively. Thus, our study discovered a novel wild resource for leaf yield rewarding medicinal Epimedium plant breeding, provided insights into the relationship between plant compound leaf formation and gene expression of TCPs transcription factors and other gene candidates, providing bases for creating high yield cultivated Epimedium variety by using further molecular selection and breeding techniques in the future.
Collapse
Affiliation(s)
- Jiaxin Yang
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Siqing Fan
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Min Guo
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Zhaoqi Xie
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Qiqing Cheng
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Puxin Gao
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Chunsong Cheng
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Liu Y, Yang Y, Wang R, Liu M, Ji X, He Y, Zhao B, Li W, Mo X, Zhang X, Gu Z, Pan B, Liu Y, Tadege M, Chen J, He L. Control of compound leaf patterning by MULTI-PINNATE LEAF1 (MPL1) in chickpea. Nat Commun 2023; 14:8088. [PMID: 38062032 PMCID: PMC10703836 DOI: 10.1038/s41467-023-43975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Plant lateral organs are often elaborated through repetitive formation of developmental units, which progress robustly in predetermined patterns along their axes. Leaflets in compound leaves provide an example of such units that are generated sequentially along the longitudinal axis, in species-specific patterns. In this context, we explored the molecular mechanisms underlying an acropetal mode of leaflet initiation in chickpea pinnate compound leaf patterning. By analyzing naturally occurring mutants multi-pinnate leaf1 (mpl1) that develop higher-ordered pinnate leaves with more than forty leaflets, we show that MPL1 encoding a C2H2-zinc finger protein sculpts a morphogenetic gradient along the proximodistal axis of the early leaf primordium, thereby conferring the acropetal leaflet formation. This is achieved by defining the spatiotemporal expression pattern of CaLEAFY, a key regulator of leaflet initiation, and also perhaps by modulating the auxin signaling pathway. Our work provides novel molecular insights into the sequential progression of leaflet formation.
Collapse
Affiliation(s)
- Ye Liu
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yuanfan Yang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China
| | - Ruoruo Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingli Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Xiaomin Ji
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yexin He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Baolin Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Wenju Li
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Xiaoyu Mo
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojia Zhang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Zhijia Gu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Bo Pan
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yu Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA.
| | - Jianghua Chen
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- University of Chinese Academy of Sciences, Beijing, China.
- College of Life Science, Southwest Forestry University, Kunming, China.
| | - Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Wang X, Zhang J, Chai M, Han L, Cao X, Zhang J, Kong Y, Fu C, Wang ZY, Mysore KS, Wen J, Zhou C. The role of Class Ⅱ KNOX family in controlling compound leaf patterning in Medicago truncatula. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2279-2291. [PMID: 37526388 DOI: 10.1111/jipb.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Compound leaf development requires the coordination of genetic factors, hormones, and other signals. In this study, we explored the functions of Class Ⅱ KNOTTED-like homeobox (KNOXII) genes in the model leguminous plant Medicago truncatula. Phenotypic and genetic analyses suggest that MtKNOX4, 5 are able to repress leaflet formation, while MtKNOX3, 9, 10 are not involved in this developmental process. Further investigations have shown that MtKNOX4 represses the CK signal transduction, which is downstream of MtKNOXⅠ-mediated CK biosynthesis. Additionally, two boundary genes, FUSED COMPOUND LEAF1 (orthologue of Arabidopsis Class M KNOX) and NO APICAL MERISTEM (orthologue of Arabidopsis CUP-SHAPED COTYLEDON), are necessary for MtKNOX4-mediated compound leaf formation. These findings suggest, that among the members of MtKNOXⅡ, MtKNOX4 plays a crucial role in integrating the CK pathway and boundary regulators, providing new insights into the roles of MtKNOXⅡ in regulating the elaboration of compound leaves in M. truncatula.
Collapse
Affiliation(s)
- Xiao Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Juanjuan Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Maofeng Chai
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiaohua Cao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yiming Kong
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Chunxiang Fu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kirankumar S Mysore
- Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, 73401, Oklahoma, USA
| | - Jiangqi Wen
- Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, 73401, Oklahoma, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
16
|
Shankar N, Sunkara P, Nath U. A double-negative feedback loop between miR319c and JAW-TCPs establishes growth pattern in incipient leaf primordia in Arabidopsis thaliana. PLoS Genet 2023; 19:e1010978. [PMID: 37769020 PMCID: PMC10564139 DOI: 10.1371/journal.pgen.1010978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/10/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023] Open
Abstract
The microRNA miR319 and its target JAW-TCP transcription factors regulate the proliferation-to-differentiation transition of leaf pavement cells in diverse plant species. In young Arabidopsis leaf primordia, JAW-TCPs are detected towards the distal region whereas the major mRNA319-encoding gene MIR319C, is expressed at the base. Little is known about how this complementary expression pattern of MIR319C and JAW-TCPs is generated. Here, we show that MIR319C is initially expressed uniformly throughout the incipient primordia and is later abruptly down-regulated at the distal region, with concomitant distal appearance of JAW-TCPs, when leaves grow to ~100 μm long. Loss of JAW-TCPs causes distal extension of the MIR319C expression domain, whereas ectopic TCP activity restricts MIR319C more proximally. JAW-TCPs are recruited to and are capable of depositing histone H3K27me3 repressive marks on the MIR319C chromatin. JAW-TCPs fail to repress MIR319C in transgenic seedlings where the TCP-binding cis-elements on MIR319C are mutated, causing miR319 gain-of-function-like phenotype in the embryonic leaves. Based on these results, we propose a model for growth patterning in leaf primordia wherein MIR319C and JAW-TCPs repress each other and divide the uniformly growing primordia into distal differentiation zone and proximal proliferation domain.
Collapse
Affiliation(s)
- Naveen Shankar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Preethi Sunkara
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
17
|
Oughou M, Biot E, Arnaud N, Maugarny-Calès A, Laufs P, Andrey P, Burguet J. Model-based reconstruction of whole organ growth dynamics reveals invariant patterns in leaf morphogenesis. QUANTITATIVE PLANT BIOLOGY 2023; 4:e1. [PMID: 37077702 PMCID: PMC10095959 DOI: 10.1017/qpb.2022.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 05/03/2023]
Abstract
Plant organ morphogenesis spans several orders of magnitude in time and space. Because of limitations in live-imaging, analysing whole organ growth from initiation to mature stages typically rely on static data sampled from different timepoints and individuals. We introduce a new model-based strategy for dating organs and for reconstructing morphogenetic trajectories over unlimited time windows based on static data. Using this approach, we show that Arabidopsis thaliana leaves are initiated at regular 1-day intervals. Despite contrasted adult morphologies, leaves of different ranks exhibited shared growth dynamics, with linear gradations of growth parameters according to leaf rank. At the sub-organ scale, successive serrations from same or different leaves also followed shared growth dynamics, suggesting that global and local leaf growth patterns are decoupled. Analysing mutants leaves with altered morphology highlighted the decorrelation between adult shapes and morphogenetic trajectories, thus stressing the benefits of our approach in identifying determinants and critical timepoints during organ morphogenesis.
Collapse
Affiliation(s)
- Mohamed Oughou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000Versailles, France
| | - Eric Biot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000Versailles, France
| | - Nicolas Arnaud
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000Versailles, France
| | - Aude Maugarny-Calès
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000Versailles, France
- Université Paris-Saclay, 91405Orsay, France
| | - Patrick Laufs
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000Versailles, France
| | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000Versailles, France
| | - Jasmine Burguet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000Versailles, France
| |
Collapse
|
18
|
Tabeta H, Gunji S, Kawade K, Ferjani A. Leaf-size control beyond transcription factors: Compensatory mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 13:1024945. [PMID: 36756231 PMCID: PMC9901582 DOI: 10.3389/fpls.2022.1024945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Plant leaves display abundant morphological richness yet grow to characteristic sizes and shapes. Beginning with a small number of undifferentiated founder cells, leaves evolve via a complex interplay of regulatory factors that ultimately influence cell proliferation and subsequent post-mitotic cell enlargement. During their development, a sequence of key events that shape leaves is both robustly executed spatiotemporally following a genomic molecular network and flexibly tuned by a variety of environmental stimuli. Decades of work on Arabidopsis thaliana have revisited the compensatory phenomena that might reflect a general and primary size-regulatory mechanism in leaves. This review focuses on key molecular and cellular events behind the organ-wide scale regulation of compensatory mechanisms. Lastly, emerging novel mechanisms of metabolic and hormonal regulation are discussed, based on recent advances in the field that have provided insights into, among other phenomena, leaf-size regulation.
Collapse
Affiliation(s)
- Hiromitsu Tabeta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shizuka Gunji
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Kensuke Kawade
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
19
|
Herrera-Ubaldo H, Campos SE, López-Gómez P, Luna-García V, Zúñiga-Mayo VM, Armas-Caballero GE, González-Aguilera KL, DeLuna A, Marsch-Martínez N, Espinosa-Soto C, de Folter S. The protein-protein interaction landscape of transcription factors during gynoecium development in Arabidopsis. MOLECULAR PLANT 2023; 16:260-278. [PMID: 36088536 DOI: 10.1016/j.molp.2022.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Flowers are composed of organs whose identity is defined by the combinatorial activity of transcription factors (TFs). The interactions between MADS-box TFs and protein complex formation have been schematized in the floral quartet model of flower development. The gynoecium is the flower's female reproductive part, crucial for fruit and seed production and, hence, for reproductive success. After the establishment of carpel identity, many tissues arise to form a mature gynoecium. TFs have been described as regulators of gynoecium development, and some interactions and complexes have been identified. However, broad knowledge about the interactions among these TFs and their participation during development remains scarce. In this study, we used a systems biology approach to understand the formation of a complex reproductive unit-as the gynoecium-by mapping binary interactions between well-characterized TFs. We analyzed almost 4500 combinations and detected more than 250 protein-protein interactions (PPIs), resulting in a process-specific interaction map. Topological analyses suggest hidden functions and novel roles for many TFs. In addition, we observed a close relationship between TFs involved in auxin and cytokinin-signaling pathways and other TFs. Furthermore, we analyzed the network by combining PPI data, expression, and genetic data, which helped us to dissect it into several dynamic spatio-temporal subnetworks related to gynoecium development processes. Finally, we generated an extended PPI network that predicts new players in gynoecium development. Taken together, all these results serve as a valuable resource for the plant community.
Collapse
Affiliation(s)
- Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Sergio E Campos
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Pablo López-Gómez
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Valentín Luna-García
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Víctor M Zúñiga-Mayo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Gerardo E Armas-Caballero
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Karla L González-Aguilera
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, CINVESTAV-IPN, Irapuato, Guanajuato 36824, México
| | - Carlos Espinosa-Soto
- Instituto de Física, Universidad de San Luis Potosí, San Luis Potosí, SLP 78290, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México.
| |
Collapse
|
20
|
LaFountain AM, McMahon HE, Reid NM, Yuan YW. To stripe or not to stripe: the origin of a novel foliar pigmentation pattern in monkeyflowers (Mimulus). THE NEW PHYTOLOGIST 2023; 237:310-322. [PMID: 36101514 PMCID: PMC10601762 DOI: 10.1111/nph.18486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The origin of phenotypic novelty is one of the most challenging problems in evolutionary biology. Although genetic regulatory network rewiring or co-option has been widely recognised as a major contributor, in most cases how such genetic rewiring/co-option happens is completely unknown. We have studied a novel foliar pigmentation pattern that evolved recently in the monkeyflower species Mimulus verbenaceus. Through genome-wide association tests using wild-collected samples, experimental crosses of laboratory inbred lines, gene expression analyses, and functional assays, we identified an anthocyanin-activating R2R3-MYB gene, STRIPY, as the causal gene triggering the emergence of the discrete, mediolateral anthocyanin stripe in the M. verbenaceus leaf. Chemical mutagenesis revealed the existence of upstream activators and repressors that form a 'hidden' prepattern along the leaf proximodistal axis, potentiating the unique expression pattern of STRIPY. Population genomics analyses did not reveal signatures of positive selection, indicating that nonadaptive processes may be responsible for the establishment of this novel trait in the wild. This study demonstrates that the origin of phenotypic novelty requires at least two separate phases, potentiation and actualisation. The foliar stripe pattern of M. verbenaceus provides an excellent platform to probe the molecular details of both processes in future studies.
Collapse
Affiliation(s)
- Amy M. LaFountain
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, USA. 06269-3043
| | - Hayley E. McMahon
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, USA. 06269-3043
| | - Noah M. Reid
- Institute for Systems Genomics, University of Connecticut, 67 North Eagleville Road, Storrs, CT, USA 06269-3197
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, USA. 06269-3043
- Institute for Systems Genomics, University of Connecticut, 67 North Eagleville Road, Storrs, CT, USA 06269-3197
| |
Collapse
|
21
|
Navarro-Cartagena S, Micol JL. Is auxin enough? Cytokinins and margin patterning in simple leaves. TRENDS IN PLANT SCIENCE 2023; 28:54-73. [PMID: 36180378 DOI: 10.1016/j.tplants.2022.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The interplay between auxin and cytokinins affects facets of plant development as different as ovule formation and lateral root initiation. Moreover, cytokinins favor complexity in the development of Solanum lycopersicum and Cardamine hirsuta compound leaves. Nevertheless, no role has been proposed for cytokinins in patterning the margins of the simple leaves of Arabidopsis thaliana, a process that is assumed to be sufficiently explained by auxin localization. Here, we discuss evidence supporting the hypothesis that cytokinins play a role in simple leaf margin morphogenesis via crosstalk with auxin, as occurs in other plant developmental events. Indeed, mutant or transgenic arabidopsis plants defective in cytokinin biosynthesis or signaling, or with increased cytokinin degradation have leaf margins less serrated than the wild type.
Collapse
Affiliation(s)
- Sergio Navarro-Cartagena
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain.
| |
Collapse
|
22
|
Arabidopsis thaliana SHOOT MERISTEMLESS Substitutes for Medicago truncatula SINGLE LEAFLET1 to Form Complex Leaves and Petals. Int J Mol Sci 2022; 23:ijms232214114. [PMID: 36430591 PMCID: PMC9697493 DOI: 10.3390/ijms232214114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
LEAFY plant-specific transcription factors, which are key regulators of flower meristem identity and floral patterning, also contribute to meristem activity. Notably, in some legumes, LFY orthologs such as Medicago truncatula SINGLE LEAFLET (SGL1) are essential in maintaining an undifferentiated and proliferating fate required for leaflet formation. This function contrasts with most other species, in which leaf dissection depends on the reactivation of KNOTTED-like class I homeobox genes (KNOXI). KNOXI and SGL1 genes appear to induce leaf complexity through conserved downstream genes such as the meristematic and boundary CUP-SHAPED COTYLEDON genes. Here, we compare in M. truncatula the function of SGL1 with that of the Arabidopsis thaliana KNOXI gene, SHOOT MERISTEMLESS (AtSTM). Our data show that AtSTM can substitute for SGL1 to form complex leaves when ectopically expressed in M. truncatula. The shared function between AtSTM and SGL1 extended to the major contribution of SGL1 during floral development as ectopic AtSTM expression could promote floral organ identity gene expression in sgl1 flowers and restore sepal shape and petal formation. Together, our work reveals a function for AtSTM in floral organ identity and a higher level of interchangeability between meristematic and floral identity functions for the AtSTM and SGL1 transcription factors than previously thought.
Collapse
|
23
|
The Identification and Characterization of the KNOX Gene Family as an Active Regulator of Leaf Development in Trifolium repens. Genes (Basel) 2022; 13:genes13101778. [PMID: 36292663 PMCID: PMC9601826 DOI: 10.3390/genes13101778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022] Open
Abstract
Leaves are the primary and critical feed for herbivores. They directly determine the yield and quality of legume forage. Trifolium repens (T. repens) is an indispensable legume species, widely cultivated in temperate pastures due to its nutritional value and nitrogen fixation. Although the leaves of T. repens are typical trifoliate, they have unusual patterns to adapt to herbivore feeding. The number of leaflets in T. repens affects its production and utilization. The KNOX gene family encodes transcriptional regulators that are vital in regulating and developing leaves. Identification and characterization of TrKNOX gene family as an active regulator of leaf development in T. repens were studied. A total of 21 TrKNOX genes were identified from the T. repens genome database and classified into three subgroups (Class I, Class II, and Class M) based on phylogenetic analysis. Nineteen of the genes identified had four conserved domains, except for KNOX5 and KNOX9, which belong to Class M. Varying expression levels of TrKNOX genes were observed at different developmental stages and complexities of leaves. KNOX9 was observed to upregulate the leaf complexity of T. repens. Research on TrKNOX genes could be novel and further assist in exploring their functions and cultivating high-quality T. repens varieties.
Collapse
|
24
|
Byrne ME. Plant development: Elementary changes determine leaf shape complexity. Curr Biol 2022; 32:R912-R914. [PMID: 36099893 DOI: 10.1016/j.cub.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Leaves come in a wide variety of shapes, from simple to lobed to dissected. A new study suggests this variation is determined by a preferred evolutionary genetic pathway that modifies shape by regulating regional growth in the developing leaf.
Collapse
Affiliation(s)
- Mary E Byrne
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
25
|
Ezura K, Nakamura A, Mitsuda N. Genome-wide characterization of the TALE homeodomain family and the KNOX-BLH interaction network in tomato. PLANT MOLECULAR BIOLOGY 2022; 109:799-821. [PMID: 35543849 DOI: 10.1007/s11103-022-01277-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/23/2022] [Indexed: 05/05/2023]
Abstract
Comprehensive yeast and protoplast two-hybrid analyses illustrated the protein-protein interaction network of the TALE homeodomain protein family, KNOX and BLH proteins, in tomato leaf and fruit development. KNOTTED-like (KNOX, KN) proteins and BELL1-like (BLH) proteins, which belong to the same TALE homeodomain family, act together by forming KNOX-BLH heterodimer modules. These modules play crucial roles in regulating multiple developmental processes in plants, like organ differentiation. However, despite the increasing knowledge about individual KNOX and BLH functions, a comprehensive view of their functional protein-protein interaction (PPI) network remains elusive in most plants, including tomato (Solanum lycopersicum), an important model plant to study fruit and leaf development. Here, we characterized eight tomato KNOX genes (SlKN1 to SlKN8) and fourteen tomato BLH genes (SlBLH1 to SlBLH14) by expression profiling, co-expression analysis, and PPI network analysis using two-hybrid techniques in yeasts (Y2H) and protoplasts (P2H). We identified 75 pairwise KNOX-BLH interactions, including ten novel interactors of SlKN2/TKN2, a primary class I KNOX protein, and nine novel interactors of SlKN5, a primary class II KNOX protein. Based on these data, we classified KNOX-BLH modules into several categories, which made us infer the order and combination of the KNOX-BLH modules involved in differentiation processes in leaf and fruit. Notably, the co-expression and interaction of SlKN5 and fruit preferentially expressing BLH1-clade paralogs (SlBLH5/SlBEL11 and SlBLH7) suggest their important roles in regulating fruit differentiation. Furthermore, in silico modeling of the KNOX-BLH modules, sequence analysis, and P2H assay identified several residues and a linker region potentially influencing the affinity of BLHs to KNOXs within their conserved dimerization domains. Together, these findings provide insights into the regulatory mechanism of KNOX-BLH modules underlying tomato organ differentiation.
Collapse
Affiliation(s)
- Kentaro Ezura
- Japan Society for the Promotion of Science, Tokyo, Japan.
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan.
| | - Akiyoshi Nakamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| |
Collapse
|
26
|
Nakayama H, Leichty AR, Sinha NR. Molecular mechanisms underlying leaf development, morphological diversification, and beyond. THE PLANT CELL 2022; 34:2534-2548. [PMID: 35441681 PMCID: PMC9252486 DOI: 10.1093/plcell/koac118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/13/2022] [Indexed: 05/13/2023]
Abstract
The basic mechanisms of leaf development have been revealed through a combination of genetics and intense analyses in select model species. The genetic basis for diversity in leaf morphology seen in nature is also being unraveled through recent advances in techniques and technologies related to genomics and transcriptomics, which have had a major impact on these comparative studies. However, this has led to the emergence of new unresolved questions about the mechanisms that generate the diversity of leaf form. Here, we provide a review of the current knowledge of the fundamental molecular genetic mechanisms underlying leaf development with an emphasis on natural variation and conserved gene regulatory networks involved in leaf development. Beyond that, we discuss open questions/enigmas in the area of leaf development, how recent technologies can best be deployed to generate a unified understanding of leaf diversity and its evolution, and what untapped fields lie ahead.
Collapse
Affiliation(s)
- Hokuto Nakayama
- Graduate School of Science, Department of Biological Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Aaron R Leichty
- Department of Plant Biology, University of California Davis, Davis, California 95616, USA
| | | |
Collapse
|
27
|
Zeng RF, Fu LM, Deng L, Liu MF, Gan ZM, Zhou H, Hu SF, Hu CG, Zhang JZ. CiKN1 and CiKN6 are involved in leaf development in citrus by regulating CimiR164. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:828-848. [PMID: 35165956 DOI: 10.1111/tpj.15707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Ming Fu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Luo Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei-Feng Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si-Fan Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
28
|
Mo X, He L, Liu Y, Wang D, Zhao B, Chen J. The Genetic Control of the Compound Leaf Patterning in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2022; 12:749989. [PMID: 35095943 PMCID: PMC8792858 DOI: 10.3389/fpls.2021.749989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Simple and compound which are the two basic types of leaves are distinguished by the pattern of the distribution of blades on the petiole. Compared to simple leaves comprising a single blade, compound leaves have multiple blade units and exhibit more complex and diverse patterns of organ organization, and the molecular mechanisms underlying their pattern formation are receiving more and more attention in recent years. Studies in model legume Medicago truncatula have led to an improved understanding of the genetic control of the compound leaf patterning. This review is an attempt to summarize the current knowledge about the compound leaf morphogenesis of M. truncatula, with a focus on the molecular mechanisms involved in pattern formation. It also includes some comparisons of the molecular mechanisms between leaf morphogenesis of different model species and offers useful information for the molecular design of legume crops.
Collapse
Affiliation(s)
- Xiaoyu Mo
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Ye Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dongfa Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Baolin Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
29
|
Rath M, Challa KR, Sarvepalli K, Nath U. CINCINNATA-Like TCP Transcription Factors in Cell Growth - An Expanding Portfolio. FRONTIERS IN PLANT SCIENCE 2022; 13:825341. [PMID: 35273626 PMCID: PMC8902296 DOI: 10.3389/fpls.2022.825341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 05/09/2023]
Abstract
Post-mitotic cell growth is a key process in plant growth and development. Cell expansion drives major growth during morphogenesis and is influenced by both endogenous factors and environmental stimuli. Though both isotropic and anisotropic cell growth can contribute to organ size and shape at different degrees, anisotropic cell growth is more likely to contribute to shape change. While much is known about the mechanisms that increase cellular turgor and cell-wall biomass during expansion, the genetic factors that regulate these processes are less studied. In the past quarter of a century, the role of the CINCINNATA-like TCP (CIN-TCP) transcription factors has been well documented in regulating diverse aspects of plant growth and development including flower asymmetry, plant architecture, leaf morphogenesis, and plant maturation. The molecular activity of the CIN-TCP proteins common to these biological processes has been identified as their ability to suppress cell proliferation. However, reports on their role regulating post-mitotic cell growth have been scanty, partly because of functional redundancy among them. In addition, it is difficult to tease out the effect of gene activity on cell division and expansion since these two processes are linked by compensation, a phenomenon where perturbation in proliferation is compensated by an opposite effect on cell growth to keep the final organ size relatively unaltered. Despite these technical limitations, recent genetic and growth kinematic studies have shown a distinct role of CIN-TCPs in promoting cellular growth in cotyledons and hypocotyls, the embryonic organs that grow solely by cell expansion. In this review, we highlight these recent advances in our understanding of how CIN-TCPs promote cell growth.
Collapse
Affiliation(s)
- Monalisha Rath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Krishna Reddy Challa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- *Correspondence: Utpal Nath,
| |
Collapse
|
30
|
Jozefkowicz C, Gómez C, Odorizzi A, Iantcheva A, Ratet P, Ayub N, Soto G. Expanding the Benefits of Tnt1 for the Identification of Dominant Mutations in Polyploid Crops: A Single Allelic Mutation in the MsNAC39 Gene Produces Multifoliated Alfalfa. FRONTIERS IN PLANT SCIENCE 2021; 12:805032. [PMID: 35046986 PMCID: PMC8763170 DOI: 10.3389/fpls.2021.805032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Most major crops are polyploid species and the production of genetically engineered cultivars normally requires the introgression of transgenic or gene-edited traits into elite germplasm. Thus, a main goal of plant research is the search of systems to identify dominant mutations. In this article, we show that the Tnt1 element can be used to identify dominant mutations in allogamous tetraploid cultivated alfalfa. Specifically, we show that a single allelic mutation in the MsNAC39 gene produces multifoliate leaves (mfl) alfalfa plants, a pivot trait of breeding programs of this forage species. Finally, we discuss the potential application of a combination of preliminary screening of beneficial dominant mutants using Tnt1 mutant libraries and genome editing via the CRISPR/Cas9 system to identify target genes and to rapidly improve both autogamous and allogamous polyploid crops.
Collapse
Affiliation(s)
- Cintia Jozefkowicz
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Cristina Gómez
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Ariel Odorizzi
- Estación Experimental Agropecuaria Manfredi, Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| | | | - Pascal Ratet
- Université Paris-Saclay, INRAE, CNRS, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
| | - Nicolás Ayub
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Gabriela Soto
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| |
Collapse
|
31
|
Heisler MG. Integration of Core Mechanisms Underlying Plant Aerial Architecture. FRONTIERS IN PLANT SCIENCE 2021; 12:786338. [PMID: 34868186 PMCID: PMC8637408 DOI: 10.3389/fpls.2021.786338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 06/03/2023]
Abstract
Over the last decade or so important progress has been made in identifying and understanding a set of patterning mechanisms that have the potential to explain many aspects of plant morphology. These include the feedback loop between mechanical stresses and interphase microtubules, the regulation of plant cell polarity and the role of adaxial and abaxial cell type boundaries. What is perhaps most intriguing is how these mechanisms integrate in a combinatorial manner that provides a means to generate a large variety of commonly seen plant morphologies. Here, I review our current understanding of these mechanisms and discuss the links between them.
Collapse
Affiliation(s)
- Marcus G. Heisler
- School of Life and Environmental Science, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|