1
|
Allen Z, Kernodle SP, Shi R, Liu H, Timko MP, Steede T, Dewey RE, Lewis RS. BBL enzymes exhibit enantiospecific preferences in the biosynthesis of pyridine alkaloids in Nicotiana tabacum L. PHYTOCHEMISTRY 2025; 232:114363. [PMID: 39694397 DOI: 10.1016/j.phytochem.2024.114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Plant species can accumulate secondary metabolites in optically pure form or, occasionally, as enantiomeric mixtures. Interestingly, enantiomers of the same molecule can confer different biological activities. In tobacco (Nicotiana tabacum L.), the pyridine alkaloids nicotine, nornicotine, anatabine, and anabasine naturally exist as scalemic mixtures of (R)- or (S)-enantiomers, with the (S)-isoforms predominating. The mechanisms by which tobacco alkaloid enantiomers accumulate remain largely unknown. Experiments were carried out involving tobacco genotypes possessing induced deleterious mutations in three genes coding for nicotine demethylase (NND) enzymes and three genes coding for Berberine Bridge Like (BBL) enzymes that act near the end of the nicotine, anatabine, and anabasine biosynthetic pathways. Data indicate that (R)-nicotine is naturally produced at appreciable levels but is observed in only small amounts due to preferential demethylation by NND enzymes. Data further suggest that BBL-a and BBL-b are preferentially involved in the biosynthesis of (S)-alkaloid enantiomers, while BBL-c is preferentially involved in the biosynthesis of (R)-enantiomers. Gene duplication followed by genetic divergence thus played a role in the evolution of scalemic alkaloid accumulation in tobacco. Through a combination of mutation breeding and transgene overexpression, tobacco genotypes were generated in which the predominant alkaloid enantiomers were reversed from the (S)- to the (R)-isoforms. These results shed light on the genetic control of alkaloid accumulation in N. tabacum and on mechanisms of scalemic mixture formation of secondary metabolites in plants.
Collapse
Affiliation(s)
- Zachary Allen
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA
| | - Sheri P Kernodle
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA
| | - Rui Shi
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA
| | - Hai Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Tyler Steede
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA
| | - Ralph E Dewey
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA
| | - Ramsey S Lewis
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
2
|
Kun W, Shoupu H, Yuxian Z. Cotton2035: From genomics research to optimized breeding. MOLECULAR PLANT 2025; 18:298-312. [PMID: 39844464 DOI: 10.1016/j.molp.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Cotton is the world's most important natural fiber crop and serves as an ideal model for studying plant genome evolution, cell differentiation, elongation, and cell wall biosynthesis. The first draft genome assembly for Gossypium raimondii, completed in 2012, marked the beginning of global efforts in studying cotton genomics. Over the past decade, the cotton research community has continued to assemble and refine the genomes for both wild and cultivated Gossypium species. With the accumulation of de novo genome assemblies and resequencing data across virous cotton populations, significant progress has been made in uncovering the genetic basis of key agronomic traits. Achieving the goal of cotton genomics-to-breeding (G2B) will require a deeper understanding of the spatiotemporal regulatory mechanisms involved in genome information storage and expression. We advocate for a cotton ENCODE project to systematically decode the functional elements and regulatory networks within the cotton genome. Technological advances, particularly on single-cell sequencing and high-resolution spatiotemporal omics, will be essential for elucidating these regulatory mechanisms. By integrating multi-omics data, genome editing tools, and artificial intelligence, these efforts will empower the genomics-driven strategies needed for future cotton G2B breeding.
Collapse
Affiliation(s)
- Wang Kun
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China.
| | - He Shoupu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572000, China.
| | - Zhu Yuxian
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
3
|
Yuan M, Sheng Y, Bao J, Wu W, Nie G, Wang L, Cao J. AaMYC3 bridges the regulation of glandular trichome density and artemisinin biosynthesis in Artemisia annua. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:315-332. [PMID: 39189077 PMCID: PMC11772365 DOI: 10.1111/pbi.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024]
Abstract
Artemisinin, the well-known natural product for treating malaria, is biosynthesised and stored in the glandular-secreting trichomes (GSTs) of Artemisia annua. While numerous efforts have clarified artemisinin metabolism and regulation, the molecular association between artemisinin biosynthesis and GST development remains elusive. Here, we identified AaMYC3, a bHLH transcription factor of A. annua, induced by jasmonic acid (JA), which simultaneously regulates GST density and artemisinin biosynthesis. Overexpressing AaMYC3 led to a substantial increase in GST density and artemisinin accumulation. Conversely, in the RNAi-AaMYC3 lines, both GST density and artemisinin content were markedly reduced. Through RNA-seq and analyses conducted both in vivo and in vitro, AaMYC3 not only directly activates AaHD1 transcription, initiating GST development, but also up-regulates the expression of artemisinin biosynthetic genes, including CYP71AV1 and ALDH1, thereby promoting artemisinin production. Furthermore, AaMYC3 acts as a co-activator, interacting with AabHLH1 and AabHLH113, to trigger the transcription of two crucial enzymes in the artemisinin biosynthesis pathway, ADS and DBR2, ultimately boosting yield. Our findings highlight a critical connection between GST initiation and artemisinin biosynthesis in A. annua, providing a new target for molecular design breeding of traditional Chinese medicine.
Collapse
Affiliation(s)
- Mingyuan Yuan
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life Sciences, Nanjing UniversityNanjing210023China
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Yinguo Sheng
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Jingjing Bao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Wenkai Wu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Guibin Nie
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Junfeng Cao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong
| |
Collapse
|
4
|
Fan Q, He Y, Liu J, Liu Q, Wu Y, Chen Y, Dou Q, Shi J, Kong Q, Ou Y, Guo J. Large Language Model-Assisted Genotoxic Metal-Phenolic Nanoplatform for Osteosarcoma Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2403044. [PMID: 39670697 DOI: 10.1002/smll.202403044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Osteosarcoma, a leading primary bone malignancy in children and adolescents, is associated with a poor prognosis and a low global fertility rate. A large language model-assisted phenolic network (LLMPN) platform is demonstrated that integrates the large language model (LLM) GPT-4 into the design of multifunctional metal-phenolic network materials. Fine-tuned GPT-4 identified gossypol as a phenolic compound with superior efficacy against osteosarcoma after evaluating across a library of 60 polyphenols based on the correlation between experimental anti-osteosarcoma activity and multiplexed chemical properties of polyphenols. Subsequently, gossypol is then self-assembled into Cu2+-gossypol nanocomplexes with a hyaluronic acid surface modification (CuGOS NPs). CuGOS NPs has demonstrated the ability to induce genetic alterations and cell death in osteosarcoma cells, offering significant therapeutic benefits for primary osteosarcoma tumors and reducing metastasis without adverse effects on major organs or the genital system. This work presents an LLM-driven approach for engineering metal-organic nanoplatform and broadening applications by harnessing the capabilities of LLMs, thereby improving the feasibility and efficiency of research activities.
Collapse
Affiliation(s)
- Qingxin Fan
- Department of Orthopedics Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jialing Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qinling Liu
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yue Wu
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yuxing Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Qingyu Dou
- National Clinical Research Center for Geriatrics, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Shi
- Section of Science and Education, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan, 610041, China
| | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Section of Science and Education, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan, 610041, China
| | - Yunsheng Ou
- Department of Orthopedics Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Departments of Chemical, Biological Engineering, The University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| |
Collapse
|
5
|
Long L, Zhang ZN, Xu FC, Ma JY, Shang SZ, Song HG, Wu JF, Zhao XT, Botella JR, Jin SX, Gao W. The GhANT-GoPGF module regulates pigment gland development in cotton leaves. Cell Rep 2025; 44:115112. [PMID: 39721026 DOI: 10.1016/j.celrep.2024.115112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Gossypium spp. pigment glands are a good model for studying plant secretory cavity structures. GoPGF (GOSSYPIUM PIGMENT GLAND FORMATION) is a well-characterized master transcription factor that controls gland formation in cotton; however, little is known about its transcriptional regulation. This study integrates yeast one-hybrid sequencing data and the previously reported single-cell RNA sequencing data to identify upstream GoPGF binding proteins. Several transcription factors preferentially expressed in pigment gland cells (PGCs) are identified, including the cotton AINTEGUMENTA ortholog GhANT. Silencing of GhANT produces a defective leaf-specific PGC phenotype. Knockdown of GhANT reduces mesophyll gland number and gossypol production, while CRISPR-mediated GhANT knockout suppresses mesophyll development. Overexpression of GhANT increases organ size but not cell size. GhANT binds to two CCG boxes in the GoPGF promoter to trigger GoPGF-GhJUB1-regulated gland formation. Our study dissects the subtle regulation of tissue-specific gland morphogenesis in cotton and provides molecular mechanisms to study secretory cavity structures widespread among vascular plants.
Collapse
Affiliation(s)
- Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Zhen-Nan Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Fu-Chun Xu
- Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Jia-Yi Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Shen-Zhai Shang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Hao-Ge Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jian-Feng Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xiao-Tong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jose Ramon Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Shuang-Xia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China.
| | - Wei Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan 475004, P.R. China.
| |
Collapse
|
6
|
Thangaraj A, Kaul R, Sharda S, Kaul T. Revolutionizing cotton cultivation: A comprehensive review of genome editing technologies and their impact on breeding and production. Biochem Biophys Res Commun 2025; 742:151084. [PMID: 39637703 DOI: 10.1016/j.bbrc.2024.151084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Cotton (Gossypium hirsutum L.), a vital global cash crop, significantly impacts both the agricultural and industrial sectors, providing essential fiber for textiles and valuable byproducts such as cottonseed oil and animal feed. The cultivation of cotton supports millions of livelihoods worldwide, particularly in developing regions, making it a cornerstone of rural economies. Despite its importance, cotton production faces numerous challenges, including biotic stresses from pests and diseases, and abiotic stresses like drought, salinity, and extreme temperatures. These challenges necessitate innovative solutions to ensure sustainable production. Genome editing technologies, particularly CRISPR/Cas9, have revolutionized cotton breeding by enabling precise genetic modifications. These advancements hold promise for developing cotton varieties with enhanced resistance to pests, diseases, and environmental stresses. Early genome editing tools like ZFNs and TALENs paved the way for more precise modifications but were limited by complexity and cost. The introduction of CRISPR/Cas-based technology with its simplicity and efficiency, has dramatically transformed the field, making it the preferred tool for genome editing in crops. Improved version of the technology like CRISPR/Cas12a, CRISPR/Cas13, base and prime editing, developed from CRISPR/Cas systems, provide additional tools with distinct mechanisms, further expanding their potential applications in crop improvement. This comprehensive review explores the impact of genome editing on cotton breeding and production. It discusses the technical challenges, including off-target effects and delivery methods for genome editing components, and highlights ongoing research efforts to overcome these hurdles. The review underscores the potential of genome editing technologies to revolutionize cotton cultivation, enhancing yield, quality, and resilience, ultimately contributing to a sustainable future for the cotton industry.
Collapse
Affiliation(s)
- Arulprakash Thangaraj
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India; Centre for Cellular & Molecular Biology, Amity Institute of Biotechnology, Amity University, Noida, UP, India
| | - Rashmi Kaul
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India; Centre for Cellular & Molecular Biology, Amity Institute of Biotechnology, Amity University, Noida, UP, India
| | - Shivani Sharda
- Centre for Cellular & Molecular Biology, Amity Institute of Biotechnology, Amity University, Noida, UP, India
| | - Tanushri Kaul
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| |
Collapse
|
7
|
Li H, Hu F, Zhou J, Yang L, Li D, Zhou R, Zhou T, Zhang Y, Wang L, You J. Genome-wide characterization of the DIR gene family in sesame reveals the function of SiDIR21 in lignan biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109282. [PMID: 39527898 DOI: 10.1016/j.plaphy.2024.109282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Furofuran-type lignans, mainly sesamin and sesamolin, are the most representative functional active ingredients in sesame (Sesamum indicum L.). Their exceptional antioxidant properties, medicinal benefits, and health-promoting functions have garnered significant attention. Dirigent (DIR) proteins, found in vascular plants, are crucial for the biosynthesis of secondary metabolites, like lignans, and essential for responding to abiotic and biotic stresses. Despite their importance, they have yet to be systematically analyzed, especially those involved in lignan synthesis in sesame. This study unveiled 44 DIR genes in sesame. Phylogenetic analysis categorized these SiDIRs into five subgroups (DIR-a, DIR-b/d, DIR-e, DIR-f, and DIR-g), aligning with conserved motifs and gene structures analyses. Expression analysis unveiled distinct tissue-specific and hormone-responsive expression patterns among the SiDIR gene family members. Particularly, SiDIR21, a member of the DIR-a subgroup, exhibited robust expression in lignan-accumulating tissues and consistently high expression levels in germplasm during seed development with high sesamin content. Furthermore, SiDIR21 overexpression in hairy roots significantly increased sesamin and sesamolin contents, confirming its role in lignan synthesis. Overall, our study offers a valuable resource for exploring SiDIRs' functions and the lignan biosynthesis pathway in sesame.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fengduo Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jianglong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Ting Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
8
|
Kumar R, Das SP, Choudhury BU, Kumar A, Prakash NR, Verma R, Chakraborti M, Devi AG, Bhattacharjee B, Das R, Das B, Devi HL, Das B, Rawat S, Mishra VK. Advances in genomic tools for plant breeding: harnessing DNA molecular markers, genomic selection, and genome editing. Biol Res 2024; 57:80. [PMID: 39506826 PMCID: PMC11542492 DOI: 10.1186/s40659-024-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Conventional pre-genomics breeding methodologies have significantly improved crop yields since the mid-twentieth century. Genomics provides breeders with advanced tools for whole-genome study, enabling a direct genotype-phenotype analysis. This shift has led to precise and efficient crop development through genomics-based approaches, including molecular markers, genomic selection, and genome editing. Molecular markers, such as SNPs, are crucial for identifying genomic regions linked to important traits, enhancing breeding accuracy and efficiency. Genomic resources viz. genetic markers, reference genomes, sequence and protein databases, transcriptomes, and gene expression profiles, are vital in plant breeding and aid in the identification of key traits, understanding genetic diversity, assist in genomic mapping, support marker-assisted selection and speeding up breeding programs. Advanced techniques like CRISPR/Cas9 allow precise gene modification, accelerating breeding processes. Key techniques like Genome-Wide Association study (GWAS), Marker-Assisted Selection (MAS), and Genomic Selection (GS) enable precise trait selection and prediction of breeding outcomes, improving crop yield, disease resistance, and stress tolerance. These tools are handy for complex traits influenced by multiple genes and environmental factors. This paper explores new genomic technologies like molecular markers, genomic selection, and genome editing for plant breeding showcasing their impact on developing new plant varieties.
Collapse
Affiliation(s)
- Rahul Kumar
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India.
| | | | - Burhan Uddin Choudhury
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Amit Kumar
- ICAR Research Complex for NEH Region, Umiam, 793103, Meghalaya, India
| | | | - Ramlakhan Verma
- ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Ayam Gangarani Devi
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Bijoya Bhattacharjee
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Rekha Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Bapi Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | | | - Biswajit Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Santoshi Rawat
- Department of Food Science and Technology, College of Agriculture, G.B.P.U.A.&T., Pantnagar, India
| | | |
Collapse
|
9
|
Bekele-Alemu A, Girma-Tola D, Ligaba-Osena A. The Potential of CRISPR/Cas9 to Circumvent the Risk Factor Neurotoxin β-N-oxalyl-L-α, β-diaminopropionic acid Limiting Wide Acceptance of the Underutilized Grass Pea ( Lathyrus sativus L.). Curr Issues Mol Biol 2024; 46:10570-10589. [PMID: 39329978 PMCID: PMC11430654 DOI: 10.3390/cimb46090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Grass pea (Lathyrus sativus L.) is a protein-rich crop that is resilient to various abiotic stresses, including drought. However, it is not cultivated widely for human consumption due to the neurotoxin β-N-oxalyl-L-α, β-diaminopropionic acid (β-ODAP) and its association with neurolathyrism. Though some varieties with low β-ODAP have been developed through classical breeding, the β-ODAP content is increasing due to genotype x environment interactions. This review covers grass pea nutritional quality, β-ODAP biosynthesis, mechanism of paralysis, traditional ways to reduce β-ODAP, candidate genes for boosting sulfur-containing amino acids, and the potential and targets of gene editing to reduce β-ODAP content. Recently, two key enzymes (β-ODAP synthase and β-cyanoalanine synthase) have been identified in the biosynthetic pathway of β-ODAP. We proposed four strategies through which the genes encoding these enzymes can be targeted and suppressed using CRISPR/Cas9 gene editing. Compared to its homology in Medicago truncatula, the grass pea β-ODAP synthase gene sequence and β-cyanoalanine synthase showed 62.9% and 95% similarity, respectively. The β-ODAP synthase converts the final intermediate L-DAPA into toxic β-ODAP, whist β-cyanoalanine synthase converts O-Acetylserine into β-isoxazolin-5-on-2-yl-alanine. Since grass pea is low in methionine and cysteine amino acids, improvement of these amino acids is also needed to boost its protein content. This review contains useful resources for grass pea improvement while also offering potential gene editing strategies to lower β-ODAP levels.
Collapse
Affiliation(s)
- Abreham Bekele-Alemu
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Deribew Girma-Tola
- Department of Biology, College of Natural Sciences, Salale University, Fitche P.O. Box 245, Ethiopia
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
10
|
Wu W, Nie G, Lin J, Huang J, Guo X, Chen M, Fang X, Mao Y, Li Y, Wang L, Tao X, Gao Y, Yang Z, Huang J. Regulation of Glandular Size and Phytoalexin Biosynthesis by a Negative Feedback Loop in Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403059. [PMID: 38840438 PMCID: PMC11321651 DOI: 10.1002/advs.202403059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/09/2024] [Indexed: 06/07/2024]
Abstract
Plants have evolved diverse defense mechanisms encompassing physical and chemical barriers. Cotton pigment glands are known for containing various defense metabolites, but the precise regulation of gland size to modulate defense compound levels remains enigmatic. Here, it is discovered that the VQ domain-containing protein JAVL negatively regulates pigment gland size and the biosynthesis of defense compounds, while the MYC2-like transcription factor GoPGF has the opposite effect. Notably, GoPGF directly activates the expression of JAVL, whereas JAVL suppresses GoPGF transcription, establishing a negative feedback loop that maintains the expression homeostasis between GoPGF and JAVL. Furthermore, it is observed that JAVL negatively regulates jasmonate levels by inhibiting the expression of jasmonate biosynthetic genes and interacting with GoPGF to attenuate its activation effects, thereby maintaining homeostatic regulation of jasmonate levels. The increased expression ratio of GoPGF to JAVL leads to enlarged pigment glands and elevated jasmonates and defense compounds, enhancing insect and pathogen resistance in cotton. These findings unveil a new mechanism for regulating gland size and secondary metabolites biosynthesis, providing innovative strategies for strengthening plant defense.
Collapse
Affiliation(s)
- Wen‐Kai Wu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
| | - Gui‐Bin Nie
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jia‐Ling Lin
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai200031China
| | - Jia‐Fa Huang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xiao‐Xiang Guo
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Mei Chen
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyChinese Academy of SciencesKunming650204P. R. China
| | - Ying‐Bo Mao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Yan Li
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandong264117China
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Ling‐Jian Wang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | | | - Yiqun Gao
- Department of Plant and Crop Science, School of Biosciences, Sutton Bonington campusUniversity of NottinghamNottinghamLE12 5RDUnited Kingdom
| | - Zuo‐Ren Yang
- National Key Laboratory of Cotton Bio‐breeding and Integrated Utilization, Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan455000China
- Western Agricultural Research CenterChinese Academy of Agricultural SciencesChangjiXinjiang831100China
| | - Jin‐Quan Huang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| |
Collapse
|
11
|
Sun Y, Han Y, Liu B, Jiang M, Sheng K, Li H, Yang P, Zhu QH, Sun J, Chen J, Zhu S, Zhao T. GoPGS regulates cotton pigment gland size and contributes to biotic stress tolerance through jasmonic acid pathways. THE NEW PHYTOLOGIST 2024; 243:839-845. [PMID: 38845449 DOI: 10.1111/nph.19884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/19/2024] [Indexed: 07/05/2024]
Affiliation(s)
- Yue Sun
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yifei Han
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bin Liu
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100094, China
| | - Meng Jiang
- Institute of Hainan, Zhejiang University, Hangzhou, 310058, China
| | - Kuang Sheng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Huazu Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, ACT, Australia
| | - Jie Sun
- Agricultural College, Shihezi University, Shihezi, 832003, China
| | - Jinhong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Institute of Hainan, Zhejiang University, Hangzhou, 310058, China
| | - Shuijin Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Institute of Hainan, Zhejiang University, Hangzhou, 310058, China
| | - Tianlun Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Institute of Hainan, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
12
|
Wang M, Ling L, Qin Y, Ding CF. A Simple and Rapid Quantitative Assay for Gossypol via Reactive Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1532-1538. [PMID: 38856661 DOI: 10.1021/jasms.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The development of simple and rapid analytical tools for gossypol (GSP) is important to the food industry and medical field. Here, we report a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method for the detection of GSP by using a reactive matrix 4-hydrazinoquinazoline (4-HQ). The two aldehyde groups of GSP react with the 4-HQ and therefore improve the detection sensitivity and selectivity of GSP. Moreover, GSP forms homogeneous crystals with the 4-HQ matrix, allowing the quantification of the GSP by the proposed method. With the optimized experimental conditions, GSP could be detected at concentrations as low as 0.1 μM and quantified in a wide linear range (1-500 μM). After a brief extraction with an organic solvent, the GSP contents in cottonseeds and cottonseed kernels from different provinces of China were determined successfully. The spiked recovery of GSP in cottonseed/cottonseed kernel samples was obtained as 97.88-105.80%, showing the reliability of the assay for GSP determination in real samples.
Collapse
Affiliation(s)
- Mengzhen Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ling Ling
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yujiao Qin
- Shanghai Institute of Immunity and Infection Chinese Academy of Sciences, Shanghai 200031, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
13
|
Pavlov DI, Yu X, Ryadun AA, Samsonenko DG, Dorovatovskii PV, Lazarenko VA, Sun N, Sun Y, Fedin VP, Potapov AS. Multiresponsive luminescent metal-organic framework for cooking oil adulteration detection and gallium(III) sensing. Food Chem 2024; 445:138747. [PMID: 38387317 DOI: 10.1016/j.foodchem.2024.138747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
A new 3D metal-organic framework {[Cd16(tr2btd)10(dcdps)16(H2O)3(EtOH)]∙15DMF}n (MOF 1, tr2btd = 4,7-di(1,2,4-triazol-1-yl)benzo-2,1,3-thiadiazole, H2dcdps = 4,4'-sulfonyldibenzoic acid) was obtained and its luminescent properties were studied. MOF 1 exhibited bright blue-green luminescence with a high quantum yield of 74 % and luminescence quenching response to a toxic natural polyphenol gossypol and luminescence enhancement response to some trivalent metal cations (Fe3+, Cr3+, Al3+ and Ga3+). The limit of gossypol detection was 0.20 µM and the determination was not interfered by the components of the cottonseed oil. The limit of detection of gallium(III) was 1.1 µM. It was demonstrated that MOF 1 may be used for distinguishing between the genuine sunflower oil and oil adulterated by crude cottonseed oil through qualitative luminescent and quantitative visual gossypol determination.
Collapse
Affiliation(s)
- Dmitry I Pavlov
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Xiaolin Yu
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Alexey A Ryadun
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia
| | - Denis G Samsonenko
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia
| | - Pavel V Dorovatovskii
- National Research Centre "Kurchatov Institute", Kurchatov Square 1, Moscow 123182, Russia
| | - Vladimir A Lazarenko
- National Research Centre "Kurchatov Institute", Kurchatov Square 1, Moscow 123182, Russia
| | - Na Sun
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yaguang Sun
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Vladimir P Fedin
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Andrei S Potapov
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
14
|
Long L, Xu FC, Yuan M, Shang SZ, Song HG, Zhao JR, Hu GY, Zhang ZN, Zhao XT, Ma JY, Hussain A, Wang P, Cai YF, Jin SX, Gao W. GhHAM regulates GoPGF-dependent gland development and contributes to broad-spectrum pest resistance in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:879-894. [PMID: 38923085 DOI: 10.1111/tpj.16803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 06/28/2024]
Abstract
Cotton is a globally cultivated crop, producing 87% of the natural fiber used in the global textile industry. The pigment glands, unique to cotton and its relatives, serve as a defense structure against pests and pathogens. However, the molecular mechanism underlying gland formation and the specific role of pigment glands in cotton's pest defense are still not well understood. In this study, we cloned a gland-related transcription factor GhHAM and generated the GhHAM knockout mutant using CRISPR/Cas9. Phenotypic observations, transcriptome analysis, and promoter-binding experiments revealed that GhHAM binds to the promoter of GoPGF, regulating pigment gland formation in cotton's multiple organs via the GoPGF-GhJUB1 module. The knockout of GhHAM significantly reduced gossypol production and increased cotton's susceptibility to pests in the field. Feeding assays demonstrated that more than 80% of the cotton bollworm larvae preferred ghham over the wild type. Furthermore, the ghham mutants displayed shorter cell length and decreased gibberellins (GA) production in the stem. Exogenous application of GA3 restored stem cell elongation but not gland formation, thereby indicating that GhHAM controls gland morphogenesis independently of GA. Our study sheds light on the functional differentiation of HAM proteins among plant species, highlights the significant role of pigment glands in influencing pest feeding preference, and provides a theoretical basis for breeding pest-resistant cotton varieties to address the challenges posed by frequent outbreaks of pests.
Collapse
Affiliation(s)
- Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Fu-Chun Xu
- Changzhi Medical College, Changzhi, Shanxi, 046000, P.R. China
| | - Man Yuan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Shen-Zhai Shang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Hao-Ge Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Jing-Ruo Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Gai-Yuan Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
- Sanya Institute of Henan University, Sanya, Hainan, 572024, P.R. China
| | - Zhen-Nan Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Xiao-Tong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Jia-Yi Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Amjad Hussain
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Ping Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Ying-Fan Cai
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Shuang-Xia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Wei Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| |
Collapse
|
15
|
Ushimaru R. Functions and mechanisms of enzymes assembling lignans and norlignans. Curr Opin Chem Biol 2024; 80:102462. [PMID: 38692182 DOI: 10.1016/j.cbpa.2024.102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Lignans and norlignans are distributed throughout the plant kingdom and exhibit diverse chemical structures and biological properties that offer potential for therapeutic use. Originating from the phenylpropanoid biosynthesis pathway, their characteristic carbon architectures are formed through unique enzyme catalysis, featuring regio- and stereoselective C-C bond forming processes. Despite extensive research on these plant natural products, their biosynthetic pathways, and enzyme mechanisms remain enigmatic. This review highlights recent advancements in elucidating the functions and mechanisms of the biosynthetic enzymes responsible for constructing the distinct carbon frameworks of lignans and norlignans.
Collapse
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
16
|
Meng Q, Moinuddin SGA, Celoy RM, Smith CA, Young RP, Costa MA, Freeman RA, Fukaya M, Kim DN, Cort JR, Hawes MC, van Etten HD, Pandey P, Chittiboyina AG, Ferreira D, Davin LB, Lewis NG. Dirigent isoflavene-forming PsPTS2: 3D structure, stereochemical, and kinetic characterization comparison with pterocarpan-forming PsPTS1 homolog in pea. J Biol Chem 2024; 300:105647. [PMID: 38219818 PMCID: PMC10882141 DOI: 10.1016/j.jbc.2024.105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024] Open
Abstract
Pea phytoalexins (-)-maackiain and (+)-pisatin have opposite C6a/C11a configurations, but biosynthetically how this occurs is unknown. Pea dirigent-protein (DP) PsPTS2 generates 7,2'-dihydroxy-4',5'-methylenedioxyisoflav-3-ene (DMDIF), and stereoselectivity toward four possible 7,2'-dihydroxy-4',5'-methylenedioxyisoflavan-4-ol (DMDI) stereoisomers was investigated. Stereoisomer configurations were determined using NMR spectroscopy, electronic circular dichroism, and molecular orbital analyses. PsPTS2 efficiently converted cis-(3R,4R)-DMDI into DMDIF 20-fold faster than the trans-(3R,4S)-isomer. The 4R-configured substrate's near β-axial OH orientation significantly enhanced its leaving group abilities in generating A-ring mono-quinone methide (QM), whereas 4S-isomer's α-equatorial-OH was a poorer leaving group. Docking simulations indicated that the 4R-configured β-axial OH was closest to Asp51, whereas 4S-isomer's α-equatorial OH was further away. Neither cis-(3S,4S)- nor trans-(3S,4R)-DMDIs were substrates, even with the former having C3/C4 stereochemistry as in (+)-pisatin. PsPTS2 used cis-(3R,4R)-7,2'-dihydroxy-4'-methoxyisoflavan-4-ol [cis-(3R,4R)-DMI] and C3/C4 stereoisomers to give 2',7-dihydroxy-4'-methoxyisoflav-3-ene (DMIF). DP homologs may exist in licorice (Glycyrrhiza pallidiflora) and tree legume Bolusanthus speciosus, as DMIF occurs in both species. PsPTS1 utilized cis-(3R,4R)-DMDI to give (-)-maackiain 2200-fold more efficiently than with cis-(3R,4R)-DMI to give (-)-medicarpin. PsPTS1 also slowly converted trans-(3S,4R)-DMDI into (+)-maackiain, reflecting the better 4R configured OH leaving group. PsPTS2 and PsPTS1 provisionally provide the means to enable differing C6a and C11a configurations in (+)-pisatin and (-)-maackiain, via identical DP-engendered mono-QM bound intermediate generation, which PsPTS2 either re-aromatizes to give DMDIF or PsPTS1 intramolecularly cyclizes to afford (-)-maackiain. Substrate docking simulations using PsPTS2 and PsPTS1 indicate cis-(3R,4R)-DMDI binds in the anti-configuration in PsPTS2 to afford DMDIF, and the syn-configuration in PsPTS1 to give maackiain.
Collapse
Affiliation(s)
- Qingyan Meng
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Syed G A Moinuddin
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Rhodesia M Celoy
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Clyde A Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California, USA
| | - Robert P Young
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Michael A Costa
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Rachel A Freeman
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Masashi Fukaya
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Doo Nam Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - John R Cort
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Martha C Hawes
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Hans D van Etten
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Pankaj Pandey
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Daneel Ferreira
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Laurence B Davin
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Norman G Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
17
|
Gupta A, Kumar M, Zhang B, Tomar M, Walia AK, Choyal P, Saini RP, Potkule J, Burritt DJ, Sheri V, Verma P, Chandran D, Tran LSP. Improvement of qualitative and quantitative traits in cotton under normal and stressed environments using genomics and biotechnological tools: A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111937. [PMID: 38043729 DOI: 10.1016/j.plantsci.2023.111937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 10/29/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Due to the increasing demand for high-quality and high fiber-yielding cotton (Gossypium spp.), research into the development of stress-resilient cotton cultivars has acquired greater significance. Various biotic and abiotic stressors greatly affect cotton production and productivity, posing challenges to the future of the textile industry. Moreover, the content and quality of cottonseed oil can also potentially be influenced by future environmental conditions. Apart from conventional methods, genetic engineering has emerged as a potential tool to improve cotton fiber quality and productivity. Identification and modification of genome sequences and the expression levels of yield-related genes using genetic engineering approaches have enabled to increase both the quality and yields of cotton fiber and cottonseed oil. Herein, we evaluate the significance and molecular mechanisms associated with the regulation of cotton agronomic traits under both normal and stressful environmental conditions. In addition, the importance of gossypol, a toxic phenolic compound in cottonseed that can limit consumption by animals and humans, is reviewed and discussed.
Collapse
Affiliation(s)
- Aarti Gupta
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Republic of Korea; Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Maharishi Tomar
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India
| | | | - Prince Choyal
- ICAR - Indian Institute of Soybean Research, Indore 452001, India
| | | | - Jayashree Potkule
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - David J Burritt
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Vijay Sheri
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Pooja Verma
- ICAR - Central Institute for Cotton Research, Nagpur, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad 679335, Kerala, India
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
18
|
Li W, Ding T, Chang H, Peng Y, Li J, Liang X, Ma H, Li F, Ren M, Wang W. Plant-derived strategies to fight against severe acute respiratory syndrome coronavirus 2. Eur J Med Chem 2024; 264:116000. [PMID: 38056300 DOI: 10.1016/j.ejmech.2023.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused an unprecedented crisis, which has been exacerbated because specific drugs and treatments have not yet been developed. In the post-pandemic era, humans and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will remain in equilibrium for a long time. Therefore, we still need to be vigilant against mutated SARS-CoV-2 variants and other emerging human viruses. Plant-derived products are increasingly important in the fight against the pandemic, but a comprehensive review is lacking. This review describes plant-based strategies centered on key biological processes, such as SARS-CoV-2 transmission, entry, replication, and immune interference. We highlight the mechanisms and effects of these plant-derived products and their feasibility and limitations for the treatment and prevention of COVID-19. The development of emerging technologies is driving plants to become production platforms for various antiviral products, improving their medicinal potential. We believe that plant-based strategies will be an important part of the solutions for future pandemics.
Collapse
Affiliation(s)
- Wenkang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Tianze Ding
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Huimin Chang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yuanchang Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jun Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xin Liang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Huixin Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610000, China
| | - Wenjing Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572000, China.
| |
Collapse
|
19
|
Zhang ZN, Long L, Zhao XT, Shang SZ, Xu FC, Zhao JR, Hu GY, Mi LY, Song CP, Gao W. The dual role of GoPGF reveals that the pigment glands are synthetic sites of gossypol in aerial parts of cotton. THE NEW PHYTOLOGIST 2024; 241:314-328. [PMID: 37865884 DOI: 10.1111/nph.19331] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Gossypol and the related terpenoids are stored in the pigment gland to protect cotton plants from biotic stresses, but little is known about the synthetic sites of these metabolites. Here, we showed that GoPGF, a key gene regulating gland formation, was expressed in gland cells and roots. The chromatin immunoprecipitation sequencing (ChIP-seq) analysis demonstrated that GoPGF targets GhJUB1 to regulate gland morphogenesis. RNA-sequencing (RNA-seq) showed high accumulation of gossypol biosynthetic genes in gland cells. Moreover, integrated analysis of the ChIP-seq and RNA-seq data revealed that GoPGF binds to the promoter of several gossypol biosynthetic genes. The cotton callus overexpressing GoPGF had dramatically increased the gossypol levels, indicating that GoPGF can directly activate the biosynthesis of gossypol. In addition, the gopgf mutant analysis revealed the existence of both GoPGF-dependent and -independent regulation of gossypol production in cotton roots. Our study revealed that the pigment glands are synthetic sites of gossypol in aerial parts of cotton and that GoPGF plays a dual role in regulating gland morphogenesis and gossypol biosynthesis. The study provides new insights for exploring the complex relationship between glands and the metabolites they store in cotton and other plant species.
Collapse
Affiliation(s)
- Zhen-Nan Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
| | - Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Tong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
| | - Shen-Zhai Shang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
| | - Fu-Chun Xu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Jing-Ruo Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
| | - Gai-Yuan Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- Sanya Institute of Henan University, Sanya, Hainan, 572024, China
| | - Ling-Yu Mi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng, Henan, 475004, China
| | - Chun-Peng Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng, Henan, 475004, China
| | - Wei Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng, Henan, 475004, China
| |
Collapse
|
20
|
Chen R, Yu J, Yu L, Xiao L, Xiao Y, Chen J, Gao S, Chen X, Li Q, Zhang H, Chen W, Zhang L. The ERF transcription factor LTF1 activates DIR1 to control stereoselective synthesis of antiviral lignans and stress defense in Isatis indigotica roots. Acta Pharm Sin B 2024; 14:405-420. [PMID: 38261810 PMCID: PMC10792966 DOI: 10.1016/j.apsb.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 01/25/2024] Open
Abstract
Lignans are a powerful weapon for plants to resist stresses and have diverse bioactive functions to protect human health. Elucidating the mechanisms of stereoselective biosynthesis and response to stresses of lignans is important for the guidance of plant improvement. Here, we identified the complete pathway to stereoselectively synthesize antiviral (-)-lariciresinol glucosides in Isatis indigotica roots, which consists of three-step sequential stereoselective enzymes DIR1/2, PLR, and UGT71B2. DIR1 was further identified as the key gene in respoJanuary 2024nse to stresses and was able to trigger stress defenses by mediating the elevation in lignan content. Mechanistically, the phytohormone-responsive ERF transcription factor LTF1 colocalized with DIR1 in the cell periphery of the vascular regions in mature roots and helped resist biotic and abiotic stresses by directly regulating the expression of DIR1. These systematic results suggest that DIR1 as the first common step of the lignan pathway cooperates with PLR and UGT71B2 to stereoselectively synthesize (-)-lariciresinol derived antiviral lignans in I. indigotica roots and is also a part of the LTF1-mediated regulatory network to resist stresses. In conclusion, the LTF1-DIR1 module is an ideal engineering target to improve plant Defenses while increasing the content of valuable lignans in plants.
Collapse
Affiliation(s)
- Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
- State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Jian Yu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Luyao Yu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Liang Xiao
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Ying Xiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junfeng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shouhong Gao
- Department of Pharmacy, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xianghui Chen
- School of Medicine, Shanghai University, Shanghai 200433, China
| | - Qing Li
- Department of Pharmacy, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacy, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
21
|
Lin JL, Chen L, Wu WK, Guo XX, Yu CH, Xu M, Nie GB, Dun JL, Li Y, Xu B, Wang LJ, Chen XY, Gao W, Huang JQ. Single-cell RNA sequencing reveals a hierarchical transcriptional regulatory network of terpenoid biosynthesis in cotton secretory glandular cells. MOLECULAR PLANT 2023; 16:1990-2003. [PMID: 37849250 DOI: 10.1016/j.molp.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Plants can synthesize a wide range of terpenoids in response to various environmental cues. However, the specific regulatory mechanisms governing terpenoid biosynthesis at the cellular level remain largely elusive. In this study, we employed single-cell RNA sequencing to comprehensively characterize the transcriptome profile of cotton leaves and established a hierarchical transcriptional network regulating cell-specific terpenoid production. We observed substantial expression levels of genes associated with the biosynthesis of both volatile terpenes (such as β-caryophyllene and β-myrcene) and non-volatile gossypol-type terpenoids in secretory glandular cells. Moreover, two novel transcription factors, namely GoHSFA4a and GoNAC42, are identified to function downstream of the Gossypium PIGMENT GLAND FORMATION genes. Both transcription factors could directly regulate the expression of terpenoid biosynthetic genes in secretory glandular cells in response to developmental and environmental stimuli. For convenient retrieval of the single-cell RNA sequencing data generated in this study, we developed a user-friendly web server . Our findings not only offer valuable insights into the precise regulation of terpenoid biosynthesis genes in cotton leaves but also provide potential targets for cotton breeding endeavors.
Collapse
Affiliation(s)
- Jia-Ling Lin
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Longxian Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wen-Kai Wu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Xiang Guo
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cheng-Hui Yu
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Min Xu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Gui-Bin Nie
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun-Ling Dun
- Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai 200233, China
| | - Yan Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Baofu Xu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ling-Jian Wang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Ya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Wei Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan 475004, China.
| | - Jin-Quan Huang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
22
|
Guo Z, Xu W, Wei D, Zheng S, Liu L, Cai Y. Functional analysis of a dirigent protein AtsDIR23 in Acorustatarinowii. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154098. [PMID: 37774564 DOI: 10.1016/j.jplph.2023.154098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Acorus tatarinowii (A. tatarinowii) is a medicinal plant of the Araceae family. Currently, pharmacology focuses on the study of volatile oils, but there are few reports of another important secondary metabolite, lignan. Dirigent protein is thought to play an important role in plant secondary metabolism and responds to a variety of biotic and abiotic stresses. However, the DIR gene family of A. tatarinowii has not been systematically analyzed, and it is unknown whether it affects lignan synthesis. In this study, a total of 27 AtsDIRs were identified by comprehensive analysis of the genome of the medicinal plant A. tatarinowii, and the candidate gene AtsDIR23 that may be involved in lignan synthesis was screened through bioinformatics and transcriptome analysis. It is worth noting that AtsDIR23 is significantly expressed in rhizomes and is a member of the DIR-a subfamily. Subsequently, subcellular localization revealed that AtsDIR23 was localized in chloroplasts. The functional verification of AtsDIR23 b y the transient transformation of A. tatarinowii and the stable transformation of Arabidopsis thaliana showed that the content of lignans in overexpressed plants increased. Co-expression analysis screening revealed the MYB transcription factor (AtsMYB91) that is highly correlated with AtsDIR23 expression, while yeast one-hybrid assays and double luciferase experiments showed that AtsMYB91 negatively regulated the expression of AtsDIR23 b y binding to the AtsDIR23 promoter. In conclusion, AtsDIR23 can promote the accumulation of lignans, which provides a reference for further research on the regulation of lignans by DIR genes.
Collapse
Affiliation(s)
- Zihui Guo
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Dongyi Wei
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Siyan Zheng
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Lin Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
23
|
Gong L, Li B, Zhu T, Xue B. Genome-wide identification and expression profiling analysis of DIR gene family in Setaria italica. FRONTIERS IN PLANT SCIENCE 2023; 14:1243806. [PMID: 37799547 PMCID: PMC10548141 DOI: 10.3389/fpls.2023.1243806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023]
Abstract
Dirigent (DIR) proteins play essential roles in regulating plant growth and development, as well as enhancing resistance to abiotic and biotic stresses. However, the whole-genome identification and expression profiling analysis of DIR gene family in millet (Setaria italica (Si)) have not been systematically understood. In this study, we conducted genome-wide identification and expression analysis of the S. italica DIR gene family, including gene structures, conserved domains, evolutionary relationship, chromosomal locations, cis-elements, duplication events, gene collinearity and expression patterns. A total of 38 SiDIR members distributed on nine chromosomes were screened and identified. SiDIR family members in the same group showed higher sequence similarity. The phylogenetic tree divided the SiDIR proteins into six subfamilies: DIR-a, DIR-b/d, DIR-c, DIR-e, DIR-f, and DIR-g. According to the tertiary structure prediction, DIR proteins (like SiDIR7/8/9) themselves may form a trimer to exert function. The result of the syntenic analysis showed that tandem duplication may play the major driving force during the evolution of SiDIRs. RNA-seq data displayed higher expression of 16 SiDIR genes in root tissues, and this implied their potential functions during root development. The results of quantitative real-time PCR (RT-qPCR) assays revealed that SiDIR genes could respond to the stress of CaCl2, CdCl, NaCl, and PEG6000. This research shed light on the functions of SiDIRs in responding to abiotic stress and demonstrated their modulational potential during root development. In addition, the membrane localization of SiDIR7/19/22 was confirmed to be consistent with the forecast. The results above will provide a foundation for further and deeper investigation of DIRs.
Collapse
Affiliation(s)
- Luping Gong
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Bingbing Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Tao Zhu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Baoping Xue
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Prakash S, Kumar M, Kumar S, Jaconis S, Parameswari E, Sharma K, Dhumal S, Senapathy M, Deshmukh VP, Dey A, Lorenzo JM, Sheri V, Zhang B. The resilient cotton plant: uncovering the effects of stresses on secondary metabolomics and its underlying molecular mechanisms. Funct Integr Genomics 2023; 23:183. [PMID: 37233833 DOI: 10.1007/s10142-023-01118-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Cotton is an important fiber crop cultivated around the world under diverse climate conditions and generates billions of dollars in annual revenue globally. Biotic and abiotic stresses have caused reduction in yield and productivity of cotton crops. In this review, we comprehensively analyzed and summarized the effect of biotic and abiotic stress on secondary metabolite production in cotton. The development of cotton varieties with improved tolerance against abiotic and biotic stress can play an important role in sustainable cotton production. Under stress conditions, plants develop a variety of defense mechanisms such as initiating signaling functions to upregulate defense responsive genes and accumulation of secondary metabolites. Understanding the impact of stress on secondary metabolite production in cotton is crucial for developing strategies to alleviate the negative effects of stress on crop yield and quality. Further, the potential industrial applications of these secondary metabolites in cotton, such as gossypol, could provide new opportunities for sustainable cotton production and the development of value-added products. Additionally, transgenic and genome-edited cotton cultivars can be developed to provide tolerance to both abiotic and biotic stress in cotton production.
Collapse
Affiliation(s)
- Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
- Department of Biology, East Carolina University, Greenville, 27858, USA
| | - Sunil Kumar
- Indian Institute of Farming Systems Research, Modipuram, 250110, India
| | - Susan Jaconis
- Agricultural & Environmental Research Department, Cotton Incorporated, Cary, NC, 27513, USA
| | - E Parameswari
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, 641 003, Coimbatore, India
| | - Kanika Sharma
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, 416004, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Vishal P Deshmukh
- Bharati Vidyapeeth (Deemed to Be University), Yashwantrao Mohite Institute of Management, Karad, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - José M Lorenzo
- Centro Tecnológico de La Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia N° 4, San Cibrao das Viñas, 32900, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004, Ouren-se, Spain
| | - Vijay Sheri
- Department of Biology, East Carolina University, Greenville, 27858, USA
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, 27858, USA.
| |
Collapse
|