1
|
Szymkowiak J, Hacket-Pain A, Kelly D, Foest JJ, Kondrat K, Thomas PA, Lageard JGA, Gratzer G, Pesendorfer MB, Bogdziewicz M. Masting ontogeny: the largest masting benefits accrue to the largest trees. ANNALS OF BOTANY 2025; 135:697-706. [PMID: 39520697 PMCID: PMC11904894 DOI: 10.1093/aob/mcae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS Both plants and animals display considerable variation in their phenotypic traits as they grow. This variation helps organisms to adapt to specific challenges at different stages of development. Masting, the variable and synchronized seed production across years by a population of plants, is a common reproductive strategy in perennial plants that can enhance reproductive efficiency through increasing pollination efficiency and decreasing seed predation. Masting represents a population-level phenomenon generated from individual plant behaviours. While the developmental trajectory of individual plants influences their masting behaviour, the translation of such changes into benefits derived from masting remains unexplored. METHODS AND KEY RESULTS We used 43 years of seed production monitoring in European beech (Fagus sylvatica) to address that gap. The largest improvements in reproductive efficiency from masting happen in the largest trees. Masting leads to a 48-fold reduction in seed predation in large trees compared with 28-fold in small trees. Masting yields a 6-fold increase in pollination efficiency in large trees compared with 2.5-fold in small trees. Paradoxically, although the largest trees show the biggest reproductive efficiency benefits from masting, large trees mast less strongly than small trees. CONCLUSIONS Apparently suboptimal allocation of effort across years by large plants may be a consequence of anatomical constraints or bet-hedging. Ontogenetic shifts in individual masting behaviour and associated variable benefits have implications for the reproductive potential of plant populations as their age distribution changes, with applications in plant conservation and management.
Collapse
Affiliation(s)
- Jakub Szymkowiak
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
- Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 7ZT, UK
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Jessie J Foest
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Katarzyna Kondrat
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Peter A Thomas
- School of Life Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Jonathan G A Lageard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Georg Gratzer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, A-1190 Austria
| | - Mario B Pesendorfer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, A-1190 Austria
| | - Michał Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| |
Collapse
|
2
|
Yu F, Zhang M, Yang Y, Wang Y, Yi X. Seed size and dispersal mode select mast seeding in perennial plants. Integr Zool 2025; 20:171-185. [PMID: 39048928 DOI: 10.1111/1749-4877.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Reproduction by perennial plants varies from being relatively constant over years to the production of massive and synchronous seed crops at irregular intervals, a reproductive strategy called mast seeding. The sources of interspecific differences in the extent of interannual variation in seed production are largely unknown. We conducted a global meta-analysis of animal-dispersed species to quantify how the interannual variability in seed crops produced by plants can be explained by the seed mass, dispersal mode, phylogeny, and climate. Phylogenetic analysis indicated that the interannual variations in seed production and seed mass tended to be similar in related species due to their shared evolution. The interannual variation in seed production was 1.22 times higher in synzoochorous species dispersed by scatter-hoarders compared with endozoochorous species dispersed by frugivores. Furthermore, the production of small seeds was associated with higher interannual variation in seed production, although synzoochorous species produced larger seeds than endozoochorous species. Precipitation rather than temperature had a significant positive effect on the interannual variation in seed production. The seed mass and dispersal mode contributed more to the interannual variation in seed production than phylogeny, climate, and fruit type. Our findings support a long-standing hypothesis that interspecific variation in the masting intensity is largely shaped by interactions between plants and animals.
Collapse
Affiliation(s)
- Fei Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Mingming Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Zhengzhou, China
| | - Yueqin Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Yang Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
3
|
LaMontagne JM, Greene DF, Holland EP, Johnstone JF, Schulze M, Zimmerman JK, Lyon NJ, Chen A, Miller TEX, Nigro KM, Snell RS, Barton JH, Chaudhary VB, Cleavitt NL, Crone EE, Koenig WD, Macias D, Pearse IS, Redmond MD. Community Synchrony in Seed Production is Associated With Trait Similarity and Climate Across North America. Ecol Lett 2024; 27:e14498. [PMID: 39739306 DOI: 10.1111/ele.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 01/02/2025]
Abstract
Mast seeding, the synchronous and highly variable production of seed crops by perennial plants, is a population-level phenomenon and has cascading effects in ecosystems. Mast seeding studies are typically conducted at the population/species level. Much less is known about synchrony in mast seeding between species because the necessary long-term data are rarely available. To investigate synchrony between species within communities, we used long-term data from seven forest communities in the U.S. Long-Term Ecological Research (LTER) network, ranging from tropical rainforest to boreal forest. We focus on cross-species synchrony and (i) quantify synchrony in reproduction overall and within LTER sites, (ii) test for relationships between synchrony with trait and phylogenetic similarity and (iii) investigate how climate conditions at sites are related to levels of synchrony. Overall, reproductive synchrony between woody plant species was greater than expected by chance, but spanned a wide range of values between species. Based on 11 functional and reproductive traits for 103 species (plus phylogenetic relatedness), cross-species synchrony in reproduction was driven primarily by trait similarity with phylogeny being largely unimportant, and synchrony was higher in sites with greater climatic water deficit. Community-level synchrony in masting has consequences for understanding forest regeneration dynamics and consumer-resource interactions.
Collapse
Affiliation(s)
- Jalene M LaMontagne
- Department of Biology, University of Missouri - St. Louis, St. Louis, Missouri, United States
- Whitney R. Harris World Ecology Center, University of Missouri - St. Louis, St. Louis, Missouri, United States
- Science and Conservation Division, Missouri Botanical Garden, St. Louis, Missouri, United States
| | - David F Greene
- Department of Forestry, Fire, and Range Management, Cal Poly Humboldt, Arcata, California, USA
| | | | - Jill F Johnstone
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Mark Schulze
- H.J. Andrews Experimental Forest, Oregon State University, Blue River, Oregon, USA
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Nicholas J Lyon
- Long-Term Ecological Research Network Office, National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, California, USA
| | - Angel Chen
- Long-Term Ecological Research Network Office, National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, California, USA
| | - Tom E X Miller
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Katherine M Nigro
- Rocky Mountain Research Station, USDA Forest Service, Fort Collins, Colorado, USA
| | - Rebecca S Snell
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, USA
| | - Jessica H Barton
- Department of Biology, University of Missouri - St. Louis, St. Louis, Missouri, United States
| | - V Bala Chaudhary
- Environmental Studies Department, Dartmouth College, Hanover, New Hampshire, USA
| | - Natalie L Cleavitt
- Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA
| | - Elizabeth E Crone
- Department of Evolution & Ecology, University of California Davis, Davis, California, USA
| | - Walter D Koenig
- Hastings Reservation, University of California Berkeley, Carmel Valley, California, USA
| | - Diana Macias
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
| | - Ian S Pearse
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | - Miranda D Redmond
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
4
|
Journé V, Bogdziewicz M, Courbaud B, Kunstler G, Qiu T, Acuña MCA, Ascoli D, Bergeron Y, Berveiller D, Boivin T, Bonal R, Caignard T, Cailleret M, Calama R, Camarero JJ, Chang-Yang CH, Chave J, Chianucci F, Curt T, Cutini A, Das A, Daskalakou E, Davi H, Delpierre N, Delzon S, Dietze M, Calderon SD, Dormont L, Espelta JM, Farfan-Rios W, Fenner M, Franklin J, Gehring C, Gilbert G, Gratzer G, Greenberg CH, Guignabert A, Guo Q, Hacket-Pain A, Hampe A, Han Q, Hanley ME, Lambers JHR, Holík J, Hoshizaki K, Ibanez I, Johnstone JF, Knops JMH, Kobe RK, Kurokawa H, Lageard J, LaMontagne J, Ledwon M, Lefèvre F, Leininger T, Limousin JM, Lutz J, Macias D, Mårell A, McIntire E, Moran EV, Motta R, Myers J, Nagel TA, Naoe S, Noguchi M, Norghauer J, Oguro M, Ourcival JM, Parmenter R, Pearse I, Pérez-Ramos IM, Piechnik Ł, Podgórski T, Poulsen J, Redmond MD, Reid CD, Samonil P, Scher CL, Schlesinger WH, Seget B, Sharma S, Shibata M, Silman M, Steele M, Stephenson N, Straub J, Sutton S, Swenson JJ, Swift M, Thomas PA, Uriarte M, Vacchiano G, Whipple A, Whitham T, Wright SJ, Zhu K, Zimmerman J, Żywiec M, Clark JS. The Relationship Between Maturation Size and Maximum Tree Size From Tropical to Boreal Climates. Ecol Lett 2024; 27:e14500. [PMID: 39354911 DOI: 10.1111/ele.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/03/2024]
Abstract
The fundamental trade-off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade-off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non-proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change.
Collapse
Affiliation(s)
- Valentin Journé
- Universite Grenoble Alpes, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Grenoble, France
| | - Michał Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Benoit Courbaud
- Universite Grenoble Alpes, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Grenoble, France
| | - Georges Kunstler
- Universite Grenoble Alpes, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Grenoble, France
| | - Tong Qiu
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Marie-Claire Aravena Acuña
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B. Houssay 200 (9410), Ushuaia, Tierra del Fuego, Argentina
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Torino, Turin, Italy
| | - Yves Bergeron
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, Quebec, Canada
| | - Daniel Berveiller
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Gif-sur-Yvette, France
| | - Thomas Boivin
- Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | - Raul Bonal
- Universite Bordeaux, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), biodiversity, Genes, and Communities (BIOGECO), Pessac, France
| | - Thomas Caignard
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Maxime Cailleret
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-En-Provence, France
| | - Rafael Calama
- ICIFOR (Forest Research Institute), INIA-CSIC, Madrid, Spain
| | - J Julio Camarero
- Instituto Pirenaico de Ecologla, Consejo Superior de Investigaciones Cientificas (IPE-CSIC), Zaragoza, Spain
| | - Chia-Hao Chang-Yang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jerome Chave
- Unité Evolution et Diversité Biologique (EDB), CNRS, IRD, UPS, Toulouse, France
| | | | - Thomas Curt
- Aix Marseille Universite, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Aix-en-Provence, France
| | - Andrea Cutini
- Research Centre for Forestry and Wood, Arezzo, Italy
| | - Adrian Das
- USGS Western Ecological Research Center, Three Rivers, California, USA
| | - Evangelia Daskalakou
- Institute of Mediterranean and Forest Ecosystems, Hellenic Agricultural Organization, Athens, Greece
| | - Hendrik Davi
- Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | - Nicolas Delpierre
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Gif-sur-Yvette, France
| | - Sylvain Delzon
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Michael Dietze
- Earth and Environment, Boston University, Boston, Massachusetts, USA
| | - Sergio Donoso Calderon
- Facultad de Ciencias Forestales y de la Conservacion de la Naturaleza (FCFCN), Universidad de Chile, Santiago, Chile
| | - Laurent Dormont
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Josep Maria Espelta
- Centre de Recerca Ecologica i Aplicacions Forestals (CREAF), Bellaterra, Catalunya, Spain
| | - William Farfan-Rios
- Biology Department, Center for Energy, Environment, and Sustainability, Wake Forest University, Winston Salem, North Carolina, USA
| | - Michael Fenner
- Biology Department, University of Southampton, Southampton, UK
| | - Jerry Franklin
- Forest Resources, University of Washington, Seattle, Washington, USA
| | - Catherine Gehring
- Department of Biological Sciences, Center for Adaptive Western Landscapes, Flagstaff, Arizona, USA
| | - Gregory Gilbert
- Department of Environmental Studies, University of California, Santa Cruz, California, USA
| | - Georg Gratzer
- Department of Forest- and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cathryn H Greenberg
- Bent Creek Experimental Forest, USDA Forest Service, Asheville, North Carolina, USA
| | - Arthur Guignabert
- INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, Villenave d'Ornon, France
| | - Qinfeng Guo
- Eastern Forest Environmental Threat Assessment Center, USDA Forest Service, Southern Research Station, Research Triangle Park, Durham, North Carolina, USA
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Arndt Hampe
- BIOGECO, INRAE, University of Bordeaux, Cestas, France
| | - Qingmin Han
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Japan
| | - Mick E Hanley
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | | | - Jan Holík
- Department of Forest Ecology, Silva Tarouca Research Institute, Brno, Czech Republic
| | - Kazuhiko Hoshizaki
- Department of Biological Environment, Akita Prefectural University, Akita, Japan
| | - Ines Ibanez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Jill F Johnstone
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, USA
| | - Johannes M H Knops
- Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
| | - Richard K Kobe
- Department of Plant Biology, Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Hiroko Kurokawa
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Jonathan Lageard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Jalene LaMontagne
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| | - Mateusz Ledwon
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - François Lefèvre
- Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | | | | | - James Lutz
- Department of Wildland Resources, and The Ecology Center, Utah State University, Logan, Utah, USA
| | - Diana Macias
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Eliot McIntire
- Pacific Forestry Centre, Victoria, British Columbia, Canada
| | - Emily V Moran
- School of Natural Sciences, UC Merced, Merced, California, USA
| | - Renzo Motta
- Department of Agriculture, Forest and Food Sciences, University of Torino, Turin, Italy
| | - Jonathan Myers
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Thomas A Nagel
- Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Shoji Naoe
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan
| | - Mahoko Noguchi
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan
| | - Julian Norghauer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Michio Oguro
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | | | - Robert Parmenter
- Valles Caldera National Preserve, National Park Service, Jemez Springs, Jemez Springs, New Mexico, USA
| | - Ian Pearse
- Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Ignacio M Pérez-Ramos
- Inst. de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas (IRNAS-CSIC), Andalucia, Spain
| | - Łukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz Podgórski
- Department of GameManagement and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | | | - Miranda D Redmond
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, California, USA
| | - Chantal D Reid
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Pavel Samonil
- Department of Forest Ecology, Silva Tarouca Research Institute, Brno, Czech Republic
| | - C Lane Scher
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | | | - Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - Shubhi Sharma
- Ecology and Evolutionary Biology Department, Yale University, New Haven, Connecticut, USA
| | - Mitsue Shibata
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Miles Silman
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Michael Steele
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, USA
| | - Nathan Stephenson
- USGS Western Ecological Research Center, Three Rivers, California, USA
| | - Jacob Straub
- Department of Environmental Science and Ecology, State University of New York-Brockport, Brockport, New York, USA
| | - Samantha Sutton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | | | - Margaret Swift
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Peter A Thomas
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Maria Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Giorgio Vacchiano
- Department of Agricultural and Environmental Sciences-Production, Territory, Agroenergy (DISAA), University of Milan, Milano, Italy
| | - Amy Whipple
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Thomas Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Kai Zhu
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Jess Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, Puerto Rico, USA
| | - Magdalena Żywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - James S Clark
- Universite Grenoble Alpes, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Grenoble, France
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
Bogdziewicz M, Chybicki I, Szymkowiak J, Ulaszewski B, Burczyk J, Szarek-Łukaszewska G, Meyza K, Sztupecka E, Ledwoń M, Piechnik Ł, Seget B, Kondrat K, Holeksa J, Żywiec M. Masting and Efficient Production of Seedlings: Balancing Costs of Variation Through Synchronised Fruiting. Ecol Lett 2024; 27:e14514. [PMID: 39354913 DOI: 10.1111/ele.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 10/03/2024]
Abstract
The efficient conversion of tissues into reproductive success is a crucial aspect affecting the evolution of life histories. Masting, the interannually variable and synchronous seed production in perennial plants, is a strategy that can enhance reproductive efficiency by mitigating seed predation and pollen limitation. However, evaluating benefits is insufficient to establish whether efficiency has improved, as such assessments neglect the associated costs of masting, particularly during the critical seed-to-seedling stage. We conducted a parentage analysis of seedlings and adults in a population of 209 Sorbus aucuparia trees, monitored over 23 years, providing pioneering documentation of the effects of masting on the fitness of individual trees beyond the seed stage. Our results show high costs of interannual variation that can be mitigated by high synchrony and reveal the existence of phenotypes that appear to reap the benefits of masting while avoiding its costs through regular reproduction.
Collapse
Affiliation(s)
- Michal Bogdziewicz
- Faculty of Biology. Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Igor Chybicki
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Jakub Szymkowiak
- Faculty of Biology. Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
- Population Ecology Research Unit, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Jaroslaw Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | | | - Katarzyna Meyza
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Ewa Sztupecka
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Mateusz Ledwoń
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Łukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Kondrat
- Faculty of Biology. Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jan Holeksa
- Department of Plant Ecology and Environmental Protection, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Magdalena Żywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
6
|
Bogdziewicz M, Kelly D, Ascoli D, Caignard T, Chianucci F, Crone EE, Fleurot E, Foest JJ, Gratzer G, Hagiwara T, Han Q, Journé V, Keurinck L, Kondrat K, McClory R, LaMontagne JM, Mundo IA, Nussbaumer A, Oberklammer I, Ohno M, Pearse IS, Pesendorfer MB, Resente G, Satake A, Shibata M, Snell RS, Szymkowiak J, Touzot L, Zwolak R, Zywiec M, Hacket-Pain AJ. Evolutionary ecology of masting: mechanisms, models, and climate change. Trends Ecol Evol 2024; 39:851-862. [PMID: 38862358 DOI: 10.1016/j.tree.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
Many perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure. The role of environmental prediction as a masting driver is being reassessed; future studies need to estimate prediction accuracy and the benefits acquired. Since reproduction is central to plant adaptation to climate change, understanding how masting adapts to shifting environmental conditions is now a central question.
Collapse
Affiliation(s)
- Michal Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland.
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Davide Ascoli
- Department of Agriculture, Forest, and Food Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, (TO), Italy
| | - Thomas Caignard
- University of Bordeaux, INRAE, BIOGECO, F-33610 Cestas, France
| | - Francesco Chianucci
- CREA - Research Centre for Forestry and Wood, viale S. Margherita 80, Arezzo, Italy
| | - Elizabeth E Crone
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Emilie Fleurot
- Department of Agriculture, Forest, and Food Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, (TO), Italy; Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Jessie J Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Georg Gratzer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, BOKU University, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Tomika Hagiwara
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Qingmin Han
- Department of Plant Ecology, Forestry, and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Valentin Journé
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Léa Keurinck
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Katarzyna Kondrat
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Ryan McClory
- School of Agriculture, Policy, and Development, University of Reading, Reading, UK
| | - Jalene M LaMontagne
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Ignacio A Mundo
- Laboratorio de Dendrocronología e Historia Ambiental, IANIGLA-CONICET, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Anita Nussbaumer
- Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Birmensdorf, Switzerland
| | - Iris Oberklammer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, BOKU University, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Misuzu Ohno
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ian S Pearse
- US Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA
| | - Mario B Pesendorfer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, BOKU University, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Giulia Resente
- Department of Agriculture, Forest, and Food Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, (TO), Italy
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Mitsue Shibata
- Department of Forest Vegetation, Forestry, and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Rebecca S Snell
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | - Jakub Szymkowiak
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Laura Touzot
- Institut National de Recherche Pour Agriculture (INRAE), Alimentation et Environnement (IN23-RAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Université Grenoble Alpes, St Martin-d'Hères, 38402, France
| | - Rafal Zwolak
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Magdalena Zywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
| | - Andrew J Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
7
|
Qiu T, Clark JS, Kovach KR, Townsend PA, Swenson JJ. Remotely sensed crown nutrient concentrations modulate forest reproduction across the contiguous United States. Ecology 2024; 105:e4366. [PMID: 38961606 DOI: 10.1002/ecy.4366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/25/2024] [Accepted: 04/23/2024] [Indexed: 07/05/2024]
Abstract
Global forests are increasingly lost to climate change, disturbance, and human management. Evaluating forests' capacities to regenerate and colonize new habitats has to start with the seed production of individual trees and how it depends on nutrient access. Studies on the linkage between reproduction and foliar nutrients are limited to a few locations and few species, due to the large investment needed for field measurements on both variables. We synthesized tree fecundity estimates from the Masting Inference and Forecasting (MASTIF) network with foliar nutrient concentrations from hyperspectral remote sensing at the National Ecological Observatory Network (NEON) across the contiguous United States. We evaluated the relationships between seed production and foliar nutrients for 56,544 tree-years from 26 species at individual and community scales. We found a prevalent association between high foliar phosphorous (P) concentration and low individual seed production (ISP) across the continent. Within-species coefficients to nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) are related to species differences in nutrient demand, with distinct biogeographic patterns. Community seed production (CSP) decreased four orders of magnitude from the lowest to the highest foliar P. This first continental-scale study sheds light on the relationship between seed production and foliar nutrients, highlighting the potential of using combined Light Detection And Ranging (LiDAR) and hyperspectral remote sensing to evaluate forest regeneration. The fact that both ISP and CSP decline in the presence of high foliar P levels has immediate application in improving forest demographic and regeneration models by providing more realistic nutrient effects at multiple scales.
Collapse
Affiliation(s)
- Tong Qiu
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, Pennsylvania, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - James S Clark
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France
| | - Kyle R Kovach
- Department of Forest and Wildlife Ecology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Philip A Townsend
- Department of Forest and Wildlife Ecology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Jennifer J Swenson
- Center for Geospatial Analysis, The College of William and Mary, Williamsburg, Virginia, USA
| |
Collapse
|
8
|
Journé V, Szymkowiak J, Foest J, Hacket-Pain A, Kelly D, Bogdziewicz M. Summer solstice orchestrates the subcontinental-scale synchrony of mast seeding. NATURE PLANTS 2024; 10:367-373. [PMID: 38459130 DOI: 10.1038/s41477-024-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024]
Abstract
High interannual variation in seed production in perennial plants can be synchronized at subcontinental scales with wide consequences for ecosystem functioning, but how such synchrony is generated is unclear1-3. We investigated the factors contributing to masting synchrony in European beech (Fagus sylvatica), which extends to a geographic range of 2,000 km. Maximizing masting synchrony via spatial weather coordination, known as the Moran effect, requires a simultaneous response to weather conditions across distant populations. A celestial cue that occurs simultaneously across the entire hemisphere is the longest day (the summer solstice). We show that European beech abruptly opens its temperature-sensing window on the solstice, and hence widely separated populations all start responding to weather signals in the same week. This celestial 'starting gun' generates ecological events with high spatial synchrony across the continent.
Collapse
Affiliation(s)
- Valentin Journé
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jakub Szymkowiak
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jessie Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michał Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
9
|
Journé V, Hacket-Pain A, Bogdziewicz M. Evolution of masting in plants is linked to investment in low tissue mortality. Nat Commun 2023; 14:7998. [PMID: 38042862 PMCID: PMC10693562 DOI: 10.1038/s41467-023-43616-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023] Open
Abstract
Masting, a variable and synchronized variation in reproductive effort is a prevalent strategy among perennial plants, but the factors leading to interspecific differences in masting remain unclear. Here, we investigate interannual patterns of reproductive investment in 517 species of terrestrial perennial plants, including herbs, graminoids, shrubs, and trees. We place these patterns in the context of the plants' phylogeny, habitat, form and function. Our findings reveal that masting is widespread across the plant phylogeny. Nonetheless, reversion from masting to regular seed production is also common. While interannual variation in seed production is highest in temperate and boreal zones, our analysis controlling for environment and phylogeny indicates that masting is more frequent in species that invest in tissue longevity. Our modeling exposes masting-trait relationships that would otherwise remain hidden and provides large-scale evidence that the costs of delayed reproduction play a significant role in the evolution of variable reproduction in plants.
Collapse
Affiliation(s)
- Valentin Journé
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michał Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|