1
|
Cometta S, Donose BC, Juárez-Saldivar A, Ravichandran A, Xu Y, Bock N, Dargaville TR, Rakić AD, Hutmacher DW. Unravelling the physicochemical and antimicrobial mechanisms of human serum albumin/tannic acid coatings for medical-grade polycaprolactone scaffolds. Bioact Mater 2024; 42:68-84. [PMID: 39280579 PMCID: PMC11399811 DOI: 10.1016/j.bioactmat.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Biofilm-related biomaterial infections are notoriously challenging to treat and can lead to chronic infection and persisting inflammation. To date, a large body of research can be reviewed for coatings which potentially prevent bacterial infection while promoting implant integration. Yet only a very small number has been translated from bench to bedside. This study provides an in-depth analysis of the stability, antibacterial mechanism, and biocompatibility of medical grade polycaprolactone (mPCL), coated with human serum albumin (HSA), the most abundant protein in blood plasma, and tannic acid (TA), a natural polyphenol with antibacterial properties. Molecular docking studies demonstrated that HSA and TA interact mainly through hydrogen-bonding, ionic and hydrophobic interactions, leading to smooth and regular assemblies. In vitro bacteria adhesion testing showed that coated scaffolds maintained their antimicrobial properties over 3 days by significantly reducing S. aureus colonization and biofilm formation. Notably, amplitude modulation-frequency modulation (AMFM) based viscoelasticity mapping and transmission electron microscopy (TEM) data suggested that HSA/TA-coatings cause morphological and mechanical changes on the outer cell membrane of S. aureus leading to membrane disruption and cell death while proving non-toxic to human primary cells. These results support this antibiotic-free approach as an effective and biocompatible strategy to prevent biofilm-related biomaterial infections.
Collapse
Affiliation(s)
- Silvia Cometta
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Bogdan C Donose
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alfredo Juárez-Saldivar
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, 88740, Mexico
| | - Akhilandeshwari Ravichandran
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Yanan Xu
- Central Analytical Research Facility (CARF), Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Nathalie Bock
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Tim R Dargaville
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Aleksandar D Rakić
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dietmar W Hutmacher
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Translational Research Institute, Woolloongabba, QLD, 4102, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| |
Collapse
|
2
|
Soueidan A, Idiri K, Becchina C, Esparbès P, Legrand A, Le Bastard Q, Montassier E. Pooled analysis of oral microbiome profiles defines robust signatures associated with periodontitis. mSystems 2024:e0093024. [PMID: 39445812 DOI: 10.1128/msystems.00930-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 10/25/2024] Open
Abstract
Oral microbial dysbiosis has been associated with periodontitis in studies using 16S rRNA gene sequencing analysis. However, this technology is not sufficient to consistently separate the bacterial species to species level, and reproducible oral microbiome signatures are scarce. Obtaining these signatures would significantly enhance our understanding of the underlying pathophysiological processes of this condition and foster the development of improved therapeutic strategies, potentially personalized to individual patients. Here, we sequenced newly collected samples from 24 patients with periodontitis, and we collected available oral microbiome data from 24 samples in patients with periodontitis and from 214 samples in healthy individuals (n = 262). Data were harmonized, and we performed a pooled analysis of individual patient data. By metagenomic sequencing of the plaque microbiome, we found microbial signatures for periodontitis and defined a periodontitis-related complex, composed by the most discriminative bacteria. A simple two-factor decision tree, based on Tannerella forsythia and Fretibacterium fastidiosum, was associated with periodontitis with high accuracy (area under the curve: 0.94). Altogether, we defined robust oral microbiome signatures relevant to the pathophysiology of periodontitis that can help define promising targets for microbiome therapeutic modulation when caring for patients with periodontitis. IMPORTANCE Oral microbial dysbiosis has been associated with periodontitis in studies using 16S rRNA gene sequencing analysis. However, this technology is not sufficient to consistently separate the bacterial species to species level, and reproducible oral microbiome signatures are scarce. Here, using ultra-deep metagenomic sequencing and machine learning tools, we defined a simple two-factor decision tree, based on Tannerella forsythia and Fretibacterium fastidiosum, that was highly associated with periodontitis. Altogether, we defined robust oral microbiome signatures relevant to the pathophysiology of periodontitis that can help define promising targets for microbiome therapeutic modulation when caring for patients with periodontitis.
Collapse
Affiliation(s)
- Assem Soueidan
- Nantes Université, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, Nantes, France
- Department of Periodontology, Faculty of Dental Surgery, Nantes, France
| | - Katia Idiri
- Department of Periodontology, Faculty of Dental Surgery, Nantes, France
| | - Camille Becchina
- Department of Periodontology, Faculty of Dental Surgery, Nantes, France
| | - Pauline Esparbès
- Department of Periodontology, Faculty of Dental Surgery, Nantes, France
| | - Arnaud Legrand
- CHU Nantes, Direction de la Recherche Clinique, Nantes, France
| | - Quentin Le Bastard
- Cibles et médicaments des infections et de l'immunité, IICiMed, Nantes Université, Nantes, France
- CHU Nantes, Service des urgences, Nantes, France
| | - Emmanuel Montassier
- CHU Nantes, Service des urgences, Nantes, France
- Nantes Université, Inserm, CHU Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
| |
Collapse
|
3
|
Hosseini Hooshiar M, Salari S, Nasiri K, Salim US, Saeed LM, Yasamineh S, Safaralizadeh R. The potential use of bacteriophages as antibacterial agents in dental infection. Virol J 2024; 21:258. [PMID: 39425223 PMCID: PMC11490148 DOI: 10.1186/s12985-024-02510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024] Open
Abstract
Dental infections, such as apical Periodontitis, periodontitis, and peri-implantitis (PI), are closely associated with specific bacterial species, including Streptococcus mutans (S. mutans), Porphyromonas gingivalis (P. gingivalis), and Fusobacterium nucleatum (F. nucleatum), among others. Antibiotics are extensively utilized for prophylactic and therapeutic purposes in the treatment of dental infections and other dental-related issues. Unfortunately, the rapid emergence of antimicrobial resistance has accompanied the increased use of antibiotics in recent years. Specific bacterial pathogens have reached a critical stage of antibiotic resistance, characterized by the proliferation of pan-resistant strains and the scarcity of viable therapeutic alternatives. Therapeutic use of particular bacteriophage (phage) particles that target bacterial pathogens is one potential alternative to antibiotics that are now being seriously considered for treating bacterial illnesses. A kind of virus known as a phage is capable of infecting and eliminating bacteria. Because they can't infect cells in plants and animals, phages might be a harmless substitute for antibiotics. To control oral disorders including periodontitis and dental caries, several research have been conducted in this area to study and identify phages from human saliva and dental plaque. The capacity of these agents to disturb biofilms expands their effectiveness against dental plaque biofilms and oral pathogens in cases of periodontitis, PI, and apical periodontitis. This review summarizes the current antibacterial properties of phages used to treat a variety of dental infections, such as periodontitis, peri-implantitis, infected dentin, and apical periodontitis.
Collapse
Affiliation(s)
| | - Sara Salari
- Doctor of Dental Surgery, Islamic Azad University of Medical Sciences, Esfahan, Iran
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Ula Samir Salim
- Department of Dentistry, Al-Noor University College, Nineveh, Iraq
| | - Lamya M Saeed
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Reza Safaralizadeh
- Restorative Dentistry Department of Dental Faculty, TABRIZ Medical University, Tabriz, Iran.
| |
Collapse
|
4
|
Andrade CS, Borges MHR, Silva JP, Malheiros S, Sacramento C, Ruiz KGS, da Cruz NC, Rangel EC, Fortulan C, Figueiredo L, Nagay BE, Souza JGS, Barão VAR. Micro-arc driven porous ZrO 2 coating for tailoring surface properties of titanium for dental implants application. Colloids Surf B Biointerfaces 2024; 245:114237. [PMID: 39293292 DOI: 10.1016/j.colsurfb.2024.114237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Titanium (Ti) is an ideal material for dental implants due to its excellent properties. However, corrosion and mechanical wear lead to Ti ions and particles release, triggering inflammatory responses and bone resorption. To overcome these challenges, surface modification techniques are used, including micro-arc oxidation (MAO). MAO creates adherent, porous coatings on Ti implants with diverse chemical compositions. In this context, zirconia element stands out in its wear and corrosion properties associated with low friction and chemical stability. Therefore, we investigated the impact of adding zirconium oxide (ZrO2) to Ti surfaces through MAO, aiming for improved electrochemical and mechanical properties. Additionally, the antimicrobial and modulatory potentials, cytocompatibility, and proteomic profile of surfaces were investigated. Ti discs were divided into four groups: machined - control (cpTi), treated by MAO with 0.04 M KOH - control (KOH), and two experimental groups incorporating ZrO2 at concentrations of 0.04 M and 0.08 M, composing the KOH@Zr4 and KOH@Zr8 groups. KOH@Zr8 showed higher surface porosity and roughness, even distribution of zirconia, formation of crystalline phases like ZrTiO4, and hydrophilicity. ZrO2 groups showed better mechanical performance including higher hardness values, lower wear area and mass loss, and higher friction coefficient under tribological conditions. The formation of a more compact oxide layer was observed, which favors the electrochemical stability of ZrO2 surfaces. Besides not inducing greater biofilm formation, ZrO2 surfaces reduced the load of pathogenic bacteria evidenced by the DNA-DNA checkerboard analysis. ZrO2 surfaces were cytocompatible with pre-osteoblastic cells. The saliva proteomic profile, evaluated by liquid chromatography coupled with tandem mass spectrometry, was slightly changed by zirconia, with more proteins adsorbed. KOH@Zr8 group notably absorbed proteins crucial for implant biological responses, like albumin and fibronectin. Incorporating ZrO2 improved the mechanical and electrochemical behavior of Ti surfaces, as well as modulated biofilm composition and provided suitable biological responses.
Collapse
Affiliation(s)
- Cátia Sufia Andrade
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Maria Helena R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - João Pedro Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Samuel Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Catharina Sacramento
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Karina G S Ruiz
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Nilson C da Cruz
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Av Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Elidiane C Rangel
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Av Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Carlos Fortulan
- Department of Mechanical Engineering, University of São Paulo (USP), Trabalhador São Carlense, 400, São Carlos, São Paulo 13566-590, Brazil
| | - Luciene Figueiredo
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Joāo Gabriel S Souza
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil.
| |
Collapse
|
5
|
Cometta S, Hutmacher DW, Chai L. In vitro models for studying implant-associated biofilms - A review from the perspective of bioengineering 3D microenvironments. Biomaterials 2024; 309:122578. [PMID: 38692146 DOI: 10.1016/j.biomaterials.2024.122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
Biofilm research has grown exponentially over the last decades, arguably due to their contribution to hospital acquired infections when they form on foreign body surfaces such as catheters and implants. Yet, translation of the knowledge acquired in the laboratory to the clinic has been slow and/or often it is not attempted by research teams to walk the talk of what is defined as 'bench to bedside'. We therefore reviewed the biofilm literature to better understand this gap. Our search revealed substantial development with respect to adapting surfaces and media used in models to mimic the clinical settings, however many of the in vitro models were too simplistic, often discounting the composition and properties of the host microenvironment and overlooking the biofilm-implant-host interactions. Failure to capture the physiological growth conditions of biofilms in vivo results in major differences between lab-grown- and clinically-relevant biofilms, particularly with respect to phenotypic profiles, virulence, and antimicrobial resistance, and they essentially impede bench-to-bedside translatability. In this review, we describe the complexity of the biological processes at the biofilm-implant-host interfaces, discuss the prerequisite for the development and characterization of biofilm models that better mimic the clinical scenario, and propose an interdisciplinary outlook of how to bioengineer biofilms in vitro by converging tissue engineering concepts and tools.
Collapse
Affiliation(s)
- Silvia Cometta
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - Liraz Chai
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem, 91904, Israel; The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
6
|
Mariam S, Kshirsagar R, Hasan S, Khadtare Y, Rajpurohit KS, Rai H, Newaskar D, Deo P. Implant Mechanics, Biological Milieu, and Peri-Implantitis: A Narrative Review. Cureus 2024; 16:e67173. [PMID: 39295709 PMCID: PMC11409158 DOI: 10.7759/cureus.67173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Dental implants constitute an important treatment modality for rehabilitating edentulous and partially edentulous arches. With more implant systems in the market, understanding the mechanical aspects of implants is crucial in understanding this indispensable therapy. However, microflora-related factors i.e. biological factors are also crucial. Despite the tremendous success rate of dental implants, it is not averse to failure. Both mechanical and microbial aspects in seclusion or together predispose to implant failure. Newer technological advances have paved the way for advanced techniques to identify the not-so-common flora causing implant failure. This review focuses on detailed mechanical and biological aspects and the sealing agent used to seal the implant-abutment interface. It also focuses on advanced molecular techniques like metagenomics and transcriptomics. A thorough literature search was performed with selected articles from electronic databases. A combination of in-vivo and in-vitro studies were considered to provide comprehensive information on the subject. Both the biomechanical aspects like micro gap, and microleakage, as well as microbial movements play confluent roles in implant failure. The focus should be on the different aspects through which microflora can penetrate the inner parts of the implant. Also, newer culture-independent techniques of detecting previously undetected oral flora should be included in future studies.
Collapse
Affiliation(s)
- Sarah Mariam
- Periodontology, Bharati Vidyapeeth (Deemed to be University), Pune, IND
| | - Rajesh Kshirsagar
- Oral and Maxillofacial Surgery, Bharati Vidyapeeth (Deemed to be University), Pune, IND
| | - Shamimul Hasan
- Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, IND
| | - Yogesh Khadtare
- Periodontology, Bharati Vidyapeeth (Deemed to be University), Pune, IND
| | | | - Himanshi Rai
- Periodontology, Bharati Vidyapeeth (Deemed to be University), Pune, IND
| | - Devashri Newaskar
- Periodontology, Bharati Vidyapeeth Deemed to be University Dental College and Hospital, Pune, IND
| | - Priya Deo
- Oral Pathology and Microbiology, Bharati Vidyapeeth Deemed to be University Dental College and Hospital, Pune, IND
| |
Collapse
|
7
|
Yu PS, Tu CC, Wara-Aswapati N, Wang CY, Tu YK, Hou HH, Ueno T, Chen IH, Fu KL, Li HY, Chen YW. Microbiome of periodontitis and peri-implantitis before and after therapy: Long-read 16S rRNA gene amplicon sequencing. J Periodontal Res 2024; 59:657-668. [PMID: 38718089 DOI: 10.1111/jre.13269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 07/16/2024]
Abstract
AIMS The microbial profiles of peri-implantitis and periodontitis (PT) are inconclusive. The controversies mainly arise from the differences in sampling sites, targeted gene fragment, and microbiome analysis techniques. The objective of this study was to explore the microbiomes of peri-implantitis (PI), control implants (CI), PT and control teeth (CT), and the microbial change of PI after nonsurgical treatment (PIAT). METHODS Twenty-two patients diagnosed with both PT and peri-implantitis were recruited. Clinical periodontal parameters and radiographic bone levels were recorded. In each patient, the subgingival and submucosal plaque samples were collected from sites with PI, CI, PT, CT, and PIAT. Microbiome diversity was analyzed by high-throughput amplicon sequencing using full-length of 16S rRNA gene by next generation sequencing. RESULTS The 16S rRNA gene sequencing analysis revealed 512 OTUs in oral microbiome and 377 OTUs reached strain levels. The PI and PT groups possessed their own unique core microbiome. Treponema denticola was predominant in PI with probing depth of 8-10 mm. Interestingly, Thermovirga lienii DSM 17291 and Dialister invisus DSM 15470 were found to associate with PI. Nonsurgical treatment for peri-implantitis did not significantly alter the microbiome, except Rothia aeria. CONCLUSION Our study suggests Treponemas species may play a pivotal role in peri-implantitis. Nonsurgical treatment did not exert a major influence on the peri-implantitis microbiome in short-term follow-up. PT and peri-implantitis possess the unique microbiome profiles, and different therapeutic strategies may be suggested in the future.
Collapse
Affiliation(s)
- Pei-Shiuan Yu
- Department of Dentistry, National Taiwan University Hospital and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| | - Che-Chang Tu
- Department of Dentistry, National Taiwan University Hospital and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| | - Nawarat Wara-Aswapati
- Department of Periodontology, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Chen-Ying Wang
- Department of Dentistry, National Taiwan University Hospital and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Kang Tu
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsin-Han Hou
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Takaaki Ueno
- Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - I-Hui Chen
- Department of Dentistry, National Taiwan University Hospital and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
- Division of Periodontology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuan-Lun Fu
- Department of Dentistry, National Taiwan University Hospital and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| | - Huei-Ying Li
- Medical Microbiota Center of the First Core Laboratory, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Wen Chen
- Department of Dentistry, National Taiwan University Hospital and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Feng Z, Zhu J, Zhang L, Li C, Su D, Wang H, Yu Y, Song L. Microbiological and functional traits of peri-implant mucositis and correlation with disease severity. mSphere 2024; 9:e0005924. [PMID: 38980075 PMCID: PMC11287996 DOI: 10.1128/msphere.00059-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
Osseointegrated dental implants replace missing teeth and create an artificial surface for biofilms of complex microbial communities to grow. These biofilms on implants and dental surfaces can trigger infection and inflammation in the surrounding tissue. This study investigated the microbial characteristics of peri-implant mucositis (PM) and explored the correlation between microbial ecological imbalance, community function, and disease severity by comparing the submucosal microflora from PM with those of healthy inter-subject implants and intra-subject gingivitis (G) within a group of 32 individuals. We analyzed submucosal plaques from PM, healthy implant (HI), and G sites using metagenome shotgun sequencing. The bacterial diversity of HIs was higher than that of PM, according to the Simpson index. Beta diversity revealed differences in taxonomic and functional compositions across the groups. Linear discriminant analysis of the effect size identified 15 genera and 37 species as biomarkers that distinguished PM from HIs. Pathways involving cell motility and protein processing in the endoplasmic reticulum were upregulated in PM, while pathways related to the metabolism of cofactors and vitamins were downregulated. Microbial dysbiosis correlated positively with the severity of clinical inflammation measured by the sulcus bleeding index (SBI) in PM. Prevotella and protein processing in the endoplasmic reticulum also correlated positively with the SBI. Our study revealed PM's microbiological and functional traits and suggested the importance of certain functions in disease severity.IMPORTANCEPeri-implant mucositis is an early stage in the progression of peri-implantitis. The high prevalence of it has been a threat to the widespread use of implant prosthodontics. The link between the submucosal microbiome and peri-implant mucositis was demonstrated previously. Nevertheless, the taxonomic and functional composition of the peri-implant mucositis microbiome remains controversial. In this study, we comprehensively characterize the microbial signature of peri-implant mucositis and for the first time, we investigate the correlations between microbial dysbiosis, functional potential, and disease severity. With the help of metagenomic sequencing, we find the positive correlations between microbial dysbiosis, genus Prevotella, pathway of protein processing in the endoplasmic reticulum, and more severe mucosal bleeding in the peri-implant mucositis. Our studies offer insight into the pathogenesis of peri-implant mucositis by providing information on the relationships between community function and disease severity.
Collapse
Affiliation(s)
- Ziying Feng
- Department of Stomatology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Jinzan Zhu
- Department of Stomatology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Limin Zhang
- Department of Stomatology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Chunchun Li
- Department of Stomatology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Duyao Su
- Department of Stomatology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Huihui Wang
- Department of Stomatology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Liang Song
- Department of Stomatology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Ancuţa DL, Alexandru DM, Ţucureanu C, Coman C. A Comparative Analysis of the Efficacy of Bacterial Lysate versus Antibiotic Therapy in the Treatment of Experimental Peri-Implantitis in Rats. Microorganisms 2024; 12:1537. [PMID: 39203379 PMCID: PMC11356466 DOI: 10.3390/microorganisms12081537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Peri-implantitis (PI) is a current concern whose understanding and resolution are ongoing. We aimed to evaluate in vivo a new treatment with antibacterial properties, based on bacterial lysates obtained from the strains of Aggregatibacter actinomycetemcomitans, Streptococcus oralis, and Fusobacterium nucleatum. This research was conducted on 30 rats with PI which were divided into three groups and treated with antibiotic and anti-inflammatory (AAi) drugs, bacterial lysates (BLs), and saline (C), respectively. The monitoring period included the clinical and paraclinical examination where hematological, immunological, imaging, and histopathological analysis were performed. No particular clinical signs were observed, but the radiological examination showed the loss of all implants in group C, in contrast to group BL which had the highest survival rate of devices. White cells showed a decrease from the PI period, as did the immunological analysis. Only IL-6 showed an increase in the AAi and BL groups. Histopathologically, the C group presented a high degree of bone destruction, and in the BL group, many attenuated inflammatory phenomena appeared compared to the AAi animals. Bacterial lysates have similar effects to antibiotic-based therapeutic regimens for PI, and their future use may help to improve the current therapeutic management of the disease.
Collapse
Affiliation(s)
- Diana Larisa Ancuţa
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania; (D.L.A.); (C.Ţ.)
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
| | - Diana Mihaela Alexandru
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
| | - Cătălin Ţucureanu
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania; (D.L.A.); (C.Ţ.)
| | - Cristin Coman
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania; (D.L.A.); (C.Ţ.)
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
10
|
Yin D, Zhan S, Liu Y, Yan L, Shi B, Wang X, Zhang S. Experimental models for peri-implant diseases: a narrative review. Clin Oral Investig 2024; 28:378. [PMID: 38884808 DOI: 10.1007/s00784-024-05755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVES Peri-implant diseases, being the most common implant-related complications, significantly impact the normal functioning and longevity of implants. Experimental models play a crucial role in discovering potential therapeutic approaches and elucidating the mechanisms of disease progression in peri-implant diseases. This narrative review comprehensively examines animal models and common modeling methods employed in peri-implant disease research and innovatively summarizes the in vitro models of peri-implant diseases. MATERIALS AND METHODS Articles published between 2015 and 2023 were retrieved from PubMed/Medline, Web of Science, and Embase. All studies focusing on experimental models of peri-implant diseases were included and carefully evaluated. RESULTS Various experimental models of peri-implantitis have different applications and advantages. The dog model is currently the most widely utilized animal model in peri-implant disease research, while rodent models have unique advantages in gene knockout and systemic disease induction. In vitro models of peri-implant diseases are also continuously evolving to meet different experimental purposes. CONCLUSIONS The utilization of experimental models helps simplify experiments, save time and resources, and promote advances in peri-implant disease research. Animal models have been proven valuable in the early stages of drug development, while technological advancements have brought about more predictive and relevant in vitro models. CLINICAL RELEVANCE This review provides clear and comprehensive model selection strategies for researchers in the field of peri-implant diseases, thereby enhancing understanding of disease pathogenesis and providing possibilities for developing new treatment strategies.
Collapse
Affiliation(s)
- Derong Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030032, Shanxi, China
| | - Suying Zhan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanbo Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030032, Shanxi, China
| | - Lichao Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Binmian Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiayi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Asnicar F, Thomas AM, Passerini A, Waldron L, Segata N. Machine learning for microbiologists. Nat Rev Microbiol 2024; 22:191-205. [PMID: 37968359 DOI: 10.1038/s41579-023-00984-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities.
Collapse
Affiliation(s)
- Francesco Asnicar
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Andrew Maltez Thomas
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Andrea Passerini
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
| | - Levi Waldron
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- Department of Epidemiology and Biostatistics, City University of New York, New York, NY, USA.
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
12
|
Bazzani D, Heidrich V, Manghi P, Blanco-Miguez A, Asnicar F, Armanini F, Cavaliere S, Bertelle A, Dell'Acqua F, Dellasega E, Waldner R, Vicentini D, Bolzan M, Tomasi C, Segata N, Pasolli E, Ghensi P. Favorable subgingival plaque microbiome shifts are associated with clinical treatment for peri-implant diseases. NPJ Biofilms Microbiomes 2024; 10:12. [PMID: 38374114 PMCID: PMC10876967 DOI: 10.1038/s41522-024-00482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
We performed a longitudinal shotgun metagenomic investigation of the plaque microbiome associated with peri-implant diseases in a cohort of 91 subjects with 320 quality-controlled metagenomes. Through recently improved taxonomic profiling methods, we identified the most discriminative species between healthy and diseased subjects at baseline, evaluated their change over time, and provided evidence that clinical treatment had a positive effect on plaque microbiome composition in patients affected by mucositis and peri-implantitis.
Collapse
Affiliation(s)
| | | | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | | | | | | | - Sara Cavaliere
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | | | | | | | | | | | - Cristiano Tomasi
- PreBiomics S.r.l., Trento, Italy
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
| | - Paolo Ghensi
- PreBiomics S.r.l., Trento, Italy.
- Department CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
13
|
Kırdök E, Kashuba N, Damlien H, Manninen MA, Nordqvist B, Kjellström A, Jakobsson M, Lindberg AM, Storå J, Persson P, Andersson B, Aravena A, Götherström A. Metagenomic analysis of Mesolithic chewed pitch reveals poor oral health among stone age individuals. Sci Rep 2024; 13:22125. [PMID: 38238372 PMCID: PMC10796427 DOI: 10.1038/s41598-023-48762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
Prehistoric chewed pitch has proven to be a useful source of ancient DNA, both from humans and their microbiomes. Here we present the metagenomic analysis of three pieces of chewed pitch from Huseby Klev, Sweden, that were dated to 9,890-9,540 before present. The metagenomic profile exposes a Mesolithic oral microbiome that includes opportunistic oral pathogens. We compared the data with healthy and dysbiotic microbiome datasets and we identified increased abundance of periodontitis-associated microbes. In addition, trained machine learning models predicted dysbiosis with 70-80% probability. Moreover, we identified DNA sequences from eukaryotic species such as red fox, hazelnut, red deer and apple. Our results indicate a case of poor oral health during the Scandinavian Mesolithic, and show that pitch pieces have the potential to provide information on material use, diet and oral health.
Collapse
Affiliation(s)
- Emrah Kırdök
- Department of Biotechnology, Faculty of Science, Mersin University, 33100 Yenişehir, Mersin, Turkey.
| | - Natalija Kashuba
- Department of Archaeology and Ancient History, Uppsala University, Engelska Parken, Thunbergsvägen 3H Box 626, 751 26, Uppsala, Sweden
| | - Hege Damlien
- Museum of Cultural History, University of Oslo, St. Olavs Plass, P.O. Box 6762, NO-0130, Oslo, Norway
| | - Mikael A Manninen
- PAES, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science, University of Helsinki, Viikinkaari 1, P.O. Box 65, Helsinki, Finland
| | - Bengt Nordqvist
- Foundation War-Booty Site Finnestorp, Klarinettvägen 75, 434 75, Kungsbacka, Sweden
| | - Anna Kjellström
- Department of Archaeology and Classical Studies, Osteoarchaeological Research Laboratory, Stockholm University, Stockholm, Sweden
| | - Mattias Jakobsson
- Department of Organismal Biology, Human Evolution, Uppsala University, Evolutionsbiologiskt Centrum EBC Norbyvägen 18 A, Uppsala, Sweden
| | - A Michael Lindberg
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Hus Vita, 44018, Kalmar, Sweden
| | - Jan Storå
- Department of Archaeology and Classical Studies, Osteoarchaeological Research Laboratory, Stockholm University, Stockholm, Sweden
| | - Per Persson
- Museum of Cultural History, University of Oslo, St. Olavs Plass, P.O. Box 6762, NO-0130, Oslo, Norway
| | - Björn Andersson
- Department of Cell and Molecular Biology (CMB), Karolinska Insitutet, P.O. Box 285, 171 77, Stockholm, Sweden
| | - Andrés Aravena
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| | - Anders Götherström
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Archaeological Research Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
14
|
Song L, Feng Z, Zhou Q, Wu X, Zhang L, Sun Y, Li R, Chen H, Yang F, Yu Y. Metagenomic analysis of healthy and diseased peri-implant microbiome under different periodontal conditions: a cross-sectional study. BMC Oral Health 2024; 24:105. [PMID: 38233815 PMCID: PMC10795403 DOI: 10.1186/s12903-023-03442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/21/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Peri-implantitis is a polybacterial infection that can lead to the failure of dental implant rehabilitation. This study aimed to profile the microbiome of the peri-implant plaque and estimate the effect of periodontitis on it among 40 Chinese participants with dental implant prostheses and presenting with varying peri-implant and periodontal health states. METHODS Submucosal plaque samples were collected from four distinct clinical categories based on both their implant and periodontal health status at sampling point. Clinical examinations of dental implant and remaining teeth were carried out. Metagenomic analysis was then performed. RESULTS The microbiome of the peri-implantitis sites differed from that of healthy implant sites, both taxonomically and functionally. Moreover, the predominant species in peri-implantitis sites were slightly affected by the presence of periodontitis. T. forsythia, P. gingivalis, T. denticola, and P. endodontalis were consistently associated with peri-implantitis and inflammatory clinical parameters regardless of the presence of periodontitis. Prevotella spp. and P. endodontalis showed significant differences in the peri-implantitis cohorts under different periodontal conditions. The most distinguishing function between diseased and healthy implants is related to flagellar assembly, which plays an important role in epithelial cell invasion. CONCLUSIONS The composition of the peri-implant microbiome varied in the diseased and healthy states of implants and is affected by individual periodontal conditions. Based on their correlations with clinical parameters, certain species are associated with disease and healthy implants. Flagellar assembly may play a vital role in the process of peri-implantitis.
Collapse
Affiliation(s)
- Liang Song
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China
| | - Ziying Feng
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China
| | - Qianrong Zhou
- Department of Stomatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xingwen Wu
- Department of Stomatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Limin Zhang
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China
| | - Yang Sun
- Department of Stomatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ruixue Li
- Department of Stomatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Huijuan Chen
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China
| | - Fei Yang
- Department of Stomatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
15
|
Shen L, Hu J, Yuan Y, Wang X, Jiang Q. Photothermal-promoted multi-functional gallic acid grafted chitosan hydrogel containing tannic acid miniaturized particles for peri-implantitis. Int J Biol Macromol 2023; 253:127366. [PMID: 37827419 DOI: 10.1016/j.ijbiomac.2023.127366] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Peri-implantitis, a leading cause of implant failure, currently lacks effective therapeutic strategies. Given that bacterial infection and reactive oxygen species overabundance serve as primary pathogenic and triggering factors, respectively, an adhesive hydrogel has been created for in-situ injection. The hydrogel is a gallic acid-grafted chitosan (CS-GA) hydrogel containing tannic acid miniaturized particles (TAMP). This provides antibacterial and antioxidant properties. Therefore, this study aims to evaluate the potential role of this hydrogel in preventing and treating peri-implantitis via several experiments. It undergoes rapid formation within a span of over 20 s via an oxidative crosslinking reaction catalyzed by horseradish peroxidase and hydrogen peroxide, demonstrating robust adhesion, superior cell compatibility, and a sealing effect. Furthermore, the incorporation of TAMP offer photothermal properties to the hydrogel, enabling it to enhance the viability, migration, and antioxidant activity of co-cultured human gingival fibroblasts when subjected 0.5 W/cm2 808 nm near-infrared (NIR) irradiation. At higher irradiation power, the hydrogel exhibits progressive improvements in its antibacterial efficacy against Porphyromonas gingivalis and Fusobacterium nucleatum. It attains rates of 83.11 ± 5.42 % and 83.48 ± 6.855 %, respectively, under 1 W/cm2 NIR irradiation. In summary, the NIR-controlled CS-GA/TAMP hydrogel, exhibiting antibacterial and antioxidant properties, represents a promising approach for the prophylaxis and management of peri-implantitis.
Collapse
Affiliation(s)
- Lipei Shen
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jiangqi Hu
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yafei Yuan
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Xiaoyu Wang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
16
|
Rahnama-Hezavah M, Mertowska P, Mertowski S, Skiba J, Krawiec K, Łobacz M, Grywalska E. How Can Imbalance in Oral Microbiota and Immune Response Lead to Dental Implant Problems? Int J Mol Sci 2023; 24:17620. [PMID: 38139449 PMCID: PMC10743591 DOI: 10.3390/ijms242417620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Dental implantology is one of the most dynamically developing fields of dentistry, which, despite developing clinical knowledge and new technologies, is still associated with many complications that may lead to the loss of the implant or the development of the disease, including peri-implantitis. One of the reasons for this condition may be the fact that dental implants cannot yield a proper osseointegration process due to the development of oral microbiota dysbiosis and the accompanying inflammation caused by immunological imbalance. This study aims to present current knowledge as to the impact of oral microflora dysbiosis and deregulation of the immune system on the course of failures observed in dental implantology. Evidence points to a strong correlation between these biological disturbances and implant complications, often stemming from improper osseointegration, pathogenic biofilms on implants, as well as an exacerbated inflammatory response. Technological enhancements in implant design may mitigate pathogen colonization and inflammation, underscoring implant success rates.
Collapse
Affiliation(s)
- Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (M.Ł.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Julia Skiba
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Karol Krawiec
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Michał Łobacz
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (M.Ł.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| |
Collapse
|
17
|
Chun Giok K, Menon RK. The Microbiome of Peri-Implantitis: A Systematic Review of Next-Generation Sequencing Studies. Antibiotics (Basel) 2023; 12:1610. [PMID: 37998812 PMCID: PMC10668804 DOI: 10.3390/antibiotics12111610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
(1) Introduction: Current evidence shows that mechanical debridement augmented with systemic and topical antibiotics may be beneficial for the treatment of peri-implantitis. The microbial profile of peri-implantitis plays a key role in identifying the most suitable antibiotics to be used for the treatment and prevention of peri-implantitis. This systematic review aimed to summarize and critically analyze the methodology and findings of studies which have utilized sequencing techniques to elucidate the microbial profiles of peri-implantitis. (2) Results: Fusobacterium, Treponema, and Porphyromonas sp. are associated with peri-implantitis. Veillonella sp. are associated with healthy implant sites and exhibit a reduced prevalence in deeper pockets and with greater severity of disease progression. Streptococcus sp. have been identified both in diseased and healthy sites. Neisseria sp. have been associated with healthy implants and negatively correlate with the probing depth. Methanogens and AAGPRs were also detected in peri-implantitis sites. (3) Methods: The study was registered with the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42023459266). The PRISMA criteria were used to select articles retrieved from a systematic search of the Scopus, Cochrane, and Medline databases until 1 August 2023. Title and abstract screening was followed by a full-text review of the included articles. Thirty-two articles were included in the final qualitative analysis. (4) Conclusions: A distinct microbial profile could not be identified from studies employing sequencing techniques to identify the microbiome. Further studies are needed with more standardization to allow a comparison of findings. A universal clinical parameter for the diagnosis of peri-implantitis should be implemented in all future studies to minimize confounding factors. The subject pool should also be more diverse and larger to compensate for individual differences, and perhaps a distinct microbial profile can be seen with a larger sample size.
Collapse
Affiliation(s)
- Koay Chun Giok
- School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia;
| | | |
Collapse
|
18
|
Blanco-Míguez A, Beghini F, Cumbo F, McIver LJ, Thompson KN, Zolfo M, Manghi P, Dubois L, Huang KD, Thomas AM, Nickols WA, Piccinno G, Piperni E, Punčochář M, Valles-Colomer M, Tett A, Giordano F, Davies R, Wolf J, Berry SE, Spector TD, Franzosa EA, Pasolli E, Asnicar F, Huttenhower C, Segata N. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat Biotechnol 2023; 41:1633-1644. [PMID: 36823356 PMCID: PMC10635831 DOI: 10.1038/s41587-023-01688-w] [Citation(s) in RCA: 232] [Impact Index Per Article: 232.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/20/2023] [Indexed: 02/25/2023]
Abstract
Metagenomic assembly enables new organism discovery from microbial communities, but it can only capture few abundant organisms from most metagenomes. Here we present MetaPhlAn 4, which integrates information from metagenome assemblies and microbial isolate genomes for more comprehensive metagenomic taxonomic profiling. From a curated collection of 1.01 M prokaryotic reference and metagenome-assembled genomes, we define unique marker genes for 26,970 species-level genome bins, 4,992 of them taxonomically unidentified at the species level. MetaPhlAn 4 explains ~20% more reads in most international human gut microbiomes and >40% in less-characterized environments such as the rumen microbiome and proves more accurate than available alternatives on synthetic evaluations while also reliably quantifying organisms with no cultured isolates. Application of the method to >24,500 metagenomes highlights previously undetected species to be strong biomarkers for host conditions and lifestyles in human and mouse microbiomes and shows that even previously uncharacterized species can be genetically profiled at the resolution of single microbial strains.
Collapse
Affiliation(s)
| | | | - Fabio Cumbo
- Department CIBIO, University of Trento, Trento, Italy
| | - Lauren J McIver
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kelsey N Thompson
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Moreno Zolfo
- Department CIBIO, University of Trento, Trento, Italy
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Kun D Huang
- Department CIBIO, University of Trento, Trento, Italy
| | | | - William A Nickols
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Elisa Piperni
- Department CIBIO, University of Trento, Trento, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | | | - Adrian Tett
- Department CIBIO, University of Trento, Trento, Italy
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | | | | | | | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Tim D Spector
- Department of Twin Research, King's College London, London, UK
| | - Eric A Franzosa
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples, Naples, Italy
| | | | - Curtis Huttenhower
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
19
|
Serbanescu MA, Apple CG, Fernandez-Moure JS. Role of Resident Microbial Communities in Biofilm-Related Implant Infections: Recent Insights and Implications. Surg Infect (Larchmt) 2023; 24:258-264. [PMID: 37010966 PMCID: PMC11074437 DOI: 10.1089/sur.2023.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
The use of medical implants continues to grow as the population ages. Biofilm-related implant infection is the leading cause of medical implant failure and remains difficult to diagnose and treat. Recent technologies have enhanced our understanding of the composition and complex functions of microbiota occupying various body site niches. In this review, we leverage data from molecular sequencing technologies to explore how silent changes in microbial communities from various sites can influence the development of biofilm-related infections. Specifically, we address biofilm formation and recent insights of the organisms involved in biofilm-related implant infections; how composition of microbiomes from skin, nasopharyngeal, and nearby tissue can impact biofilm-formation, and infection; the role of the gut microbiome in implant-related biofilm formation; and therapeutic strategies to mitigate implant colonization.
Collapse
Affiliation(s)
- Mara A. Serbanescu
- Department of Anesthesia, Acute Care Surgery, and Surgical Critical Care, Department of Surgery, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Camille G. Apple
- Division of Trauma, Acute Care Surgery, and Surgical Critical Care, Department of Surgery, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joseph S. Fernandez-Moure
- Division of Trauma, Acute Care Surgery, and Surgical Critical Care, Department of Surgery, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
20
|
Zhao N, Zhang Q, Guo Y, Cui S, Tian Y, Zhang Y, Zhou Y, Wang X. Oral microbiome contributes to the failure of orthodontic temporary anchorage devices (TADs). BMC Oral Health 2023; 23:22. [PMID: 36650527 PMCID: PMC9844000 DOI: 10.1186/s12903-023-02715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The stability of temporary anchorage devices (TADs) is critical in orthodontic clinics. The failure of TADs is multifactorial, and the role of the oral microbiome has not been clearly defined. Herein, we attempted to analyze the contribution of the oral microbiome to the failure of TADs. METHODS Next-generation sequencing was adopted for analyzing the microbiome on the TADs from orthodontic patients. 29 TADs (15 failed TADs and 14 successful TADs) were used for 16S rRNA gene sequencing. A total of 135 TADs (62 failed TADs and 73 successful TADs) were collected to conduct metagenomic sequencing. Additionally, 34 verified samples (18 failed TADs and 16 successful TADs) were collected for quantitative real-time polymerase chain reaction analysis (qRT-PCR). RESULTS Successful and failed TADs demonstrated discrepancies in microbiome structure, composition, and function. Clear separations were found in β-diversity in 16S rRNA gene sequencing as well as metagenomic sequencing (p < 0.05). Metagenomic sequencing showed that Prevotella intermedia, Eikenella corrodens, Parvimonas spp., Neisseria elongata, and Catonella morbi were enriched in the failed groups. qRT-PCR also demonstrated that the absolute bacteria load of Prevotella intermedia was higher in failed TADs (p < 0.05). Considering functional aspects, the failed group showed enriched genes involved in flagellar assembly, bacterial chemotaxis, and oxidative phosphorylation. CONCLUSIONS This study illustrated the compositional and functional differences of microorganisms found on successful and failed TADs, indicating that controlling bacterial adhesion on the surface of TADs is essential for their success rate.
Collapse
Affiliation(s)
- Ningrui Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Beijing, 100081 China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081 China
| | - Yanning Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Beijing, 100081 China
| | - Shengjie Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Beijing, 100081 China
| | - Yajing Tian
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Beijing, 100081 China
| | - Yidan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Beijing, 100081 China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Beijing, 100081 China
| | - Xuedong Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Beijing, 100081 China
| |
Collapse
|
21
|
Keeler EL, Merenstein C, Reddy S, Taylor LJ, Cobián-Güemes AG, Zankharia U, Collman RG, Bushman FD. Widespread, human-associated redondoviruses infect the commensal protozoan Entamoeba gingivalis. Cell Host Microbe 2023; 31:58-68.e5. [PMID: 36459997 PMCID: PMC9969835 DOI: 10.1016/j.chom.2022.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/05/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022]
Abstract
Redondoviruses are circular Rep-encoding single-stranded DNA (CRESS) viruses of high prevalence in healthy humans. Redondovirus abundance is increased in oro-respiratory samples from individuals with periodontitis, acute illness, and severe COVID-19. We investigated potential host cells supporting redondovirus replication in oro-respiratory samples and uncovered the oral amoeba Entamoeba gingivalis as a likely host. Redondoviruses are closely related to viruses of Entamoeba and contain reduced GC nucleotide content, consistent with Entamoeba hosts. Redondovirus and E. gingivalis co-occur in metagenomic data from oral disease and healthy human cohorts. When grown in xenic cultures with feeder bacteria, E. gingivalis was robustly positive for redondovirus RNA and DNA. A DNA proximity-ligation assay (Hi-C) on xenic culture cells showed enriched cross-linking of redondovirus and Entamoeba DNA, supporting E. gingivalis as the redondovirus host. While bacteria are established hosts for bacteriophages within the human virome, this work shows that eukaryotic commensals also contribute an abundant human-associated virus.
Collapse
Affiliation(s)
- Emma L Keeler
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carter Merenstein
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Louis J Taylor
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ana G Cobián-Güemes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Urvi Zankharia
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald G Collman
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Banu Raza F, Vijayaragavalu S, Kandasamy R, Krishnaswami V, Kumar V A. Microbiome and the inflammatory pathway in peri-implant health and disease with an updated review on treatment strategies. J Oral Biol Craniofac Res 2023; 13:84-91. [PMID: 36504486 PMCID: PMC9730223 DOI: 10.1016/j.jobcr.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/30/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Crestal bone preservation around the dental implant for aesthetic and functional success is widely researched and documented over a decade. Several etiological factors were put forth for crestal bone loss; of which biofilm plays a major role. Biofilm is formed by the colonization of wide spectra of bacteria inhabited around dental implants. Bacterial adherence affects the regulators of bone growth and an early intervention preserves the peri-implant bone. Primary modes of therapy stated in early literature were either prevention or treatment of infection caused by biofilm. This narrative review overviews the microbiome during different stages of peri-implant health, the mechanism of bone destruction, and the expression of the biomarkers at each stage. Microbial contamination and the associated biomarkers varied depending on the stage of peri-implant infection. The comprehensive review helps in formulating a research plan, both in diagnostics and treatment aspects in improving peri-implant health.
Collapse
Key Words
- Antibiotics
- Biomarkers
- CD14, Cluster of Differentiation 14
- CSF, Colony-Stimulating Factor
- Gene expression
- IL, Interleukins
- MMP 8, Matrix MetalloProteinase 8
- Microbiota
- OPG, Osteoprotegerin
- PSMB 2, Proteasome subunit beta type-2
- Peri-implant
- RANK, Receptor Activator of Nuclear factor Kappa-Β
- RANKL, Receptor Activator of Nuclear factor Kappa-ΒLigand
- TIMP, Tissue inhibitor of Metalloproteinase
- TNF, Tumor Necrosis Factor
- TWEAK, TNF-related weak inducer of apoptosis
- VEGF, Vascular Endothelial Growth Factor
- sRANKL, soluble Receptor Activator of Nuclear Factor-κB Ligand
Collapse
Affiliation(s)
- Fathima Banu Raza
- Department of Prosthodontics, Faculty of Dental Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | | | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Venkateshwaran Krishnaswami
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Anand Kumar V
- Department of Prosthodontics, Faculty of Dental Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
- Corresponding author. Department of Prosthodontics, Faculty of Dental Sciences, SRIHER (DU), Porur, Chennai, Tamil Nadu, India.
| |
Collapse
|
23
|
Liao M, Shi Y, Chen E, Shou Y, Dai D, Xian W, Ren B, Xiao S, Cheng L. The Bio-Aging of Biofilms on Behalf of Various Oral Status on Different Titanium Implant Materials. Int J Mol Sci 2022; 24:332. [PMID: 36613775 PMCID: PMC9820730 DOI: 10.3390/ijms24010332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The properties of titanium implants are affected by bio-aging due to long-term exposure to the oral microenvironment. This study aimed to investigate probable changes in titanium plates after different biofilm bio-aging processes, representing various oral status. Titanium plates with different surface treatments were used, including polish, sandblasted with large grit and acid etched (SLA), microarc oxidation (MAO), and hydroxyapatite coating (HA). We established dual-species biofilms of Staphylococcus aureus (S. aureus)-Candida albicans (C. albicans) and saliva biofilms from the healthy and patients with stage III-IV periodontitis, respectively. After bio-aging with these biofilms for 30 days, the surface morphology, chemical composition, and water contact angles were measured. The adhesion of human gingival epithelial cells, human gingival fibroblasts, and three-species biofilms (Streptococcus sanguis, Porphyromonas gingivalis, and Fusobacterium nucleatum) were evaluated. The polished specimens showed no significant changes after bio-aging with these biofilms. The MAO- and SLA-treated samples showed mild corrosion after bio-aging with the salivary biofilms. The HA-coated specimens were the most vulnerable. Salivary biofilms, especially saliva from patients with periodontitis, exhibited a more distinct erosion on the HA-coating than the S. aureus-C. albicans dual-biofilms. The coating became thinner and even fell from the substrate. The surface became more hydrophilic and more prone to the adhesion of bacteria. The S. aureus-C. albicans dual-biofilms had a comparatively mild corrosion effect on these samples. The HA-coated samples showed more severe erosion after bio-aging with the salivary biofilms from patients with periodontitis compared to those of the healthy, which emphasized the importance of oral hygiene and periodontal health to implants in the long run.
Collapse
Affiliation(s)
- Min Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Enni Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuke Shou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dongyue Dai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenpan Xian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
| | - Shimeng Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Hasan J, Bright R, Hayles A, Palms D, Zilm P, Barker D, Vasilev K. Preventing Peri-implantitis: The Quest for a Next Generation of Titanium Dental Implants. ACS Biomater Sci Eng 2022; 8:4697-4737. [PMID: 36240391 DOI: 10.1021/acsbiomaterials.2c00540] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Titanium and its alloys are frequently the biomaterial of choice for dental implant applications. Although titanium dental implants have been utilized for decades, there are yet unresolved issues pertaining to implant failure. Dental implant failure can arise either through wear and fatigue of the implant itself or peri-implant disease and subsequent host inflammation. In the present report, we provide a comprehensive review of titanium and its alloys in the context of dental implant material, and how surface properties influence the rate of bacterial colonization and peri-implant disease. Details are provided on the various periodontal pathogens implicated in peri-implantitis, their adhesive behavior, and how this relationship is governed by the implant surface properties. Issues of osteointegration and immunomodulation are also discussed in relation to titanium dental implants. Some impediments in the commercial translation for a novel titanium-based dental implant from "bench to bedside" are discussed. Numerous in vitro studies on novel materials, processing techniques, and methodologies performed on dental implants have been highlighted. The present report review that comprehensively compares the in vitro, in vivo, and clinical studies of titanium and its alloys for dental implants.
Collapse
Affiliation(s)
- Jafar Hasan
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Andrew Hayles
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Dennis Palms
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, 5005, South Australia, Australia
| | - Dan Barker
- ANISOP Holdings, Pty. Ltd., 101 Collins St, Melbourne VIC, 3000 Australia
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| |
Collapse
|
25
|
Alves CH, Russi KL, Rocha NC, Bastos F, Darrieux M, Parisotto TM, Girardello R. Host-microbiome interactions regarding peri-implantitis and dental implant loss. Lab Invest 2022; 20:425. [PMID: 36138430 PMCID: PMC9502891 DOI: 10.1186/s12967-022-03636-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022]
Abstract
In the last decades, the ortho-aesthetic-functional rehabilitation had significant advances with the advent of implantology. Despite the success in implantology surgeries, there is a percentage of failures mainly due to in loco infections, through bacterial proliferation, presence of fungi and biofilm formation, originating peri-implantitis. In this sense, several studies have been conducted since then, seeking answers to numerous questions that remain unknown. Thus, the present work aims to discuss the interaction between host-oral microbiome and the development of peri-implantitis. Peri-implantitis was associated with a diversity of bacterial species, being Porphiromonas gingivalis, Treponema denticola and Tannerella forsythia described in higher proportion of peri-implantitis samples. In a parallel role, the injury of peri-implant tissue causes an inflammatory response mediated by activation of innate immune cells such as macrophages, dendritic cells, mast cells, and neutrophils. In summary, the host immune system activation may lead to imbalance of oral microbiota, and, in turn, the oral microbiota dysbiosis is reported leading to cytokines, chemokines, prostaglandins, and proteolytic enzymes production. These biological processes may be responsible for implant loss.
Collapse
Affiliation(s)
- Carlos Henrique Alves
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil
| | - Karolayne Larissa Russi
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil
| | - Natália Conceição Rocha
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil
| | | | - Michelle Darrieux
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil
| | - Thais Manzano Parisotto
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil
| | - Raquel Girardello
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil.
| |
Collapse
|
26
|
Bansal K, Bathla RK, Kumar Y. Deep transfer learning techniques with hybrid optimization in early prediction and diagnosis of different types of oral cancer. Soft comput 2022. [DOI: 10.1007/s00500-022-07246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Zelikman H, Slutzkey G, Rosner O, Levartovsky S, Matalon S, Beitlitum I. Bacterial Growth on Three Non-Resorbable Polytetrafluoroethylene (PTFE) Membranes-An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5705. [PMID: 36013840 PMCID: PMC9414989 DOI: 10.3390/ma15165705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
GBR (Guided Bone Regeneration) procedure is challenged by the risk of membrane exposure to the oral cavity and contamination. The barrier quality of these membranes serve as a mechanical block from bacterial penetration into the GBR site. The purpose of this in vitro study was to evaluate the antibacterial effect of three commercial non-resorbable polytetrafluoroethylene membranes. (Two d-PTFE membranes and one double layer e-PTFE +d-PTFE membrane). A validated in vitro model with two bacterial species (Streptococcus sanguinis and Fusobacterium nucleatum) was used. Eight samples from membrane each were placed in a 96-well microtiter plate. The experimental and positive control groups were exposed to a bacterial suspension which involved one bacterial species in each plate. Bacterial growth was monitored spectrophotometrically at 650 nm for 24 h in temperature controlled microplate spectrophotometer under anaerobic conditions. One- Sample Kolmogorov−Smirnov Normal test and the Kruskal−Wallis test was used for the statistical analysis. As shown by the bacterial growth curves obtained from the spectrophotometer readings, all three membranes resulted in bacterial growth. We have not found a statistical difference in F. nucleatum growth between different membrane samples and the positive control group. However, S. sanguinis growth was reduced significantly in the presence of two membranes (CYTOPLAST TXT-200 and NeoGenTM) when compared to the control (p < 0.01). The presence of Permamem® had no significant influence on S. sanguinis growth. Some types of commercial non-resorbable PTFE membranes may have an impact on the growth dynamics of specific bacterial species.
Collapse
Affiliation(s)
- Helena Zelikman
- Department of Oral Rehabilitation, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gil Slutzkey
- Department of Periodontology and Dental Implantology, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ofir Rosner
- Department of Oral Rehabilitation, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shifra Levartovsky
- Department of Oral Rehabilitation, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shlomo Matalon
- Department of Oral Rehabilitation, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ilan Beitlitum
- Department of Periodontology and Dental Implantology, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
28
|
Zhu J, Chu W, Luo J, Yang J, He L, Li J. Dental Materials for Oral Microbiota Dysbiosis: An Update. Front Cell Infect Microbiol 2022; 12:900918. [PMID: 35846759 PMCID: PMC9280126 DOI: 10.3389/fcimb.2022.900918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
The balance or dysbiosis of the microbial community is a major factor in maintaining human health or causing disease. The unique microenvironment of the oral cavity provides optimal conditions for colonization and proliferation of microbiota, regulated through complex biological signaling systems and interactions with the host. Once the oral microbiota is out of balance, microorganisms produce virulence factors and metabolites, which will cause dental caries, periodontal disease, etc. Microbial metabolism and host immune response change the local microenvironment in turn and further promote the excessive proliferation of dominant microbes in dysbiosis. As the product of interdisciplinary development of materials science, stomatology, and biomedical engineering, oral biomaterials are playing an increasingly important role in regulating the balance of the oral microbiome and treating oral diseases. In this perspective, we discuss the mechanisms underlying the pathogenesis of oral microbiota dysbiosis and introduce emerging materials focusing on oral microbiota dysbiosis in recent years, including inorganic materials, organic materials, and some biomolecules. In addition, the limitations of the current study and possible research trends are also summarized. It is hoped that this review can provide reference and enlightenment for subsequent research on effective treatment strategies for diseases related to oral microbiota dysbiosis.
Collapse
Affiliation(s)
- Jieyu Zhu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenlin Chu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jiaojiao Yang, ; Libang He,
| | - Libang He
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jiaojiao Yang, ; Libang He,
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Li S, Guo R, Zhang Y, Li P, Chen F, Wang X, Li J, Jie Z, Lv Q, Jin H, Wang G, Yan Q. A catalog of 48,425 nonredundant viruses from oral metagenomes expands the horizon of the human oral virome. iScience 2022; 25:104418. [PMID: 35663034 PMCID: PMC9160773 DOI: 10.1016/j.isci.2022.104418] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/26/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
The human oral cavity is a hotspot of numerous, mostly unexplored, viruses that are important for maintaining oral health and microbiome homeostasis. Here, we analyzed 2,792 publicly available oral metagenomes and proposed the Oral Virus Database (OVD) comprising 48,425 nonredundant viral genomes (≥5 kbp). The OVD catalog substantially expanded the known phylogenetic diversity and host specificity of oral viruses, allowing for enhanced delineation of some underrepresented groups such as the predicted Saccharibacteria phages and jumbo viruses. Comparisons of the viral diversity and abundance of different oral cavity habitats suggested strong niche specialization of viromes within individuals. The virome variations in relation to host geography and properties were further uncovered, especially the age-dependent viral compositional signatures in saliva. Overall, the viral genome catalog describes the architecture and variability of the human oral virome, while offering new resources and insights for current and future studies.
Collapse
Affiliation(s)
- Shenghui Li
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
- Puensum Genetech Institute, Wuhan 430076, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Ruochun Guo
- Puensum Genetech Institute, Wuhan 430076, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan 430076, China
| | - Peng Li
- Puensum Genetech Institute, Wuhan 430076, China
| | - Fang Chen
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xifan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Jing Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing 100044, China
| | - Zhuye Jie
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Qingbo Lv
- Puensum Genetech Institute, Wuhan 430076, China
| | - Hao Jin
- Puensum Genetech Institute, Wuhan 430076, China
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Guangyang Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
30
|
The Main Bacterial Communities Identified in the Sites Affected by Periimplantitis: A Systematic Review. Microorganisms 2022; 10:microorganisms10061232. [PMID: 35744750 PMCID: PMC9228476 DOI: 10.3390/microorganisms10061232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Periimplantitis is an infectious condition that affects the periimplant tissue and is of bacterial etiology. However, to date, the exact bacterial flora involved in its occurrence is not known. The aim of this literature review was to summarize the articles published on this topic and to identify the main bacterial species isolated in periimplantitis. (2) Methods: The articles published in three databases were researched: Pubmed, Embase and Web of Science using Prisma guides and combinations of MeSH terms. We selected 25 items from the 980 found by applying the inclusion and exclusion criteria. (3) Results: We quantified the results of the 25 studies included in this review. In general, the most commonly identified bacterial species were Gram-negative anaerobic species, as Prevotella, Streptococcus, Fusobacterium and Treponema. (4) Conclusion: The most frequent bacteria in the periimplantitis sites identified in this review are Gram-negative anaerobic species, also involved in the pathogenesis of the periodontal disease.
Collapse
|
31
|
Gao C, Li X, Zhao X, Yang P, Wang X, Chen X, Chen N, Chen F. Standardized studies of the oral microbiome: From technology-driven to hypothesis-driven. IMETA 2022; 1:e19. [PMID: 38868569 PMCID: PMC10989927 DOI: 10.1002/imt2.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2024]
Abstract
The microbiome is in a symbiotic relationship with the host. Among the microbial consortia in the human body, that in the oral cavity is complex. Instead of repeatedly confirming biomarkers of oral and systemic diseases, recent studies have focused on a unified clinical diagnostic standard in microbiology that reduces the heterogeneity caused by individual discrepancies. Research has also been conducted on other topics of greater clinical importance, including bacterial pathogenesis, and the effects of drugs and treatments. In this review, we divide existing research into technology-driven and hypothesis-driven, according to whether there is a clear research hypothesis. This classification allows the demonstration of shifts in the direction of oral microbiology research. Based on the shifts, we suggested that establishing clear hypotheses may be the solution to major research challenges.
Collapse
Affiliation(s)
- Chuqi Gao
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Xuantao Li
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Xiaole Zhao
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Peiyue Yang
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Xiao Wang
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Xiaoli Chen
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Ning Chen
- Department of GastroenterologyPeking University People's HospitalBeijingChina
| | - Feng Chen
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| |
Collapse
|
32
|
Li X, Liu Y, Yang X, Li C, Song Z. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front Microbiol 2022; 13:895537. [PMID: 35572634 PMCID: PMC9100676 DOI: 10.3389/fmicb.2022.895537] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The human oral cavity provides a habitat for oral microbial communities. The complexity of its anatomical structure, its connectivity to the outside, and its moist environment contribute to the complexity and ecological site specificity of the microbiome colonized therein. Complex endogenous and exogenous factors affect the occurrence and development of the oral microbiota, and maintain it in a dynamic balance. The dysbiotic state, in which the microbial composition is altered and the microecological balance between host and microorganisms is disturbed, can lead to oral and even systemic diseases. In this review, we discuss the current research on the composition of the oral microbiota, the factors influencing it, and its relationships with common oral diseases. We focus on the specificity of the microbiota at different niches in the oral cavity, the communities of the oral microbiome, the mycobiome, and the virome within oral biofilms, and interventions targeting oral pathogens associated with disease. With these data, we aim to extend our understanding of oral microorganisms and provide new ideas for the clinical management of infectious oral diseases.
Collapse
Affiliation(s)
- Xinyi Li
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yanmei Liu
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xingyou Yang
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chengwen Li
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- *Correspondence: Chengwen Li,
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Zhangyong Song,
| |
Collapse
|
33
|
Caldara M, Belgiovine C, Secchi E, Rusconi R. Environmental, Microbiological, and Immunological Features of Bacterial Biofilms Associated with Implanted Medical Devices. Clin Microbiol Rev 2022; 35:e0022120. [PMID: 35044203 PMCID: PMC8768833 DOI: 10.1128/cmr.00221-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The spread of biofilms on medical implants represents one of the principal triggers of persistent and chronic infections in clinical settings, and it has been the subject of many studies in the past few years, with most of them focused on prosthetic joint infections. We review here recent works on biofilm formation and microbial colonization on a large variety of indwelling devices, ranging from heart valves and pacemakers to urological and breast implants and from biliary stents and endoscopic tubes to contact lenses and neurosurgical implants. We focus on bacterial abundance and distribution across different devices and body sites and on the role of environmental features, such as the presence of fluid flow and properties of the implant surface, as well as on the interplay between bacterial colonization and the response of the human immune system.
Collapse
Affiliation(s)
- Marina Caldara
- Interdepartmental Center on Safety, Technologies, and Agri-food Innovation (SITEIA.PARMA), University of Parma, Parma, Italy
| | - Cristina Belgiovine
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Scuola di Specializzazione in Microbiologia e Virologia, Università degli Studi di Pavia, Pavia, Italy
| | - Eleonora Secchi
- Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Roberto Rusconi
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele–Milan, Italy
| |
Collapse
|
34
|
Host phenotype classification from human microbiome data is mainly driven by the presence of microbial taxa. PLoS Comput Biol 2022; 18:e1010066. [PMID: 35446845 PMCID: PMC9064115 DOI: 10.1371/journal.pcbi.1010066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/03/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Machine learning-based classification approaches are widely used to predict host phenotypes from microbiome data. Classifiers are typically employed by considering operational taxonomic units or relative abundance profiles as input features. Such types of data are intrinsically sparse, which opens the opportunity to make predictions from the presence/absence rather than the relative abundance of microbial taxa. This also poses the question whether it is the presence rather than the abundance of particular taxa to be relevant for discrimination purposes, an aspect that has been so far overlooked in the literature. In this paper, we aim at filling this gap by performing a meta-analysis on 4,128 publicly available metagenomes associated with multiple case-control studies. At species-level taxonomic resolution, we show that it is the presence rather than the relative abundance of specific microbial taxa to be important when building classification models. Such findings are robust to the choice of the classifier and confirmed by statistical tests applied to identifying differentially abundant/present taxa. Results are further confirmed at coarser taxonomic resolutions and validated on 4,026 additional 16S rRNA samples coming from 30 public case-control studies. The composition of the human microbiome has been linked to a large number of different diseases. In this context, classification methodologies based on machine learning approaches have represented a promising tool for diagnostic purposes from metagenomics data. The link between microbial population composition and host phenotypes has been usually performed by considering taxonomic profiles represented by relative abundances of microbial species. In this study, we show that it is more the presence rather than the relative abundance of microbial taxa to be relevant to maximize classification accuracy. This is accomplished by conducting a meta-analysis on more than 4,000 shotgun metagenomes coming from 25 case-control studies and in which original relative abundance data are degraded to presence/absence profiles. Findings are also extended to 16S rRNA data and advance the research field in building prediction models directly from human microbiome data.
Collapse
|
35
|
Microbial differences between active and remission peri-implantitis. Sci Rep 2022; 12:5284. [PMID: 35347182 PMCID: PMC8960758 DOI: 10.1038/s41598-022-09192-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/18/2022] [Indexed: 11/22/2022] Open
Abstract
Peri-implantitis has a polymicrobial etiology and is a major cause of dental implant loss. Various clinical protocols for its prevention and treatment have been proposed; however, some cases show a rapid progression with non-resolving clinical symptoms. To clear a means of differentiating between such cases, the implants with peri-implantitis in this study were categorized as the active group and the remission group and that two kinds of samples were obtained from the same subjects (n = 20). The microbiome was analyzed through pyrosequencing of the 16S rRNA gene. From LEfSe results, Porphyomonas, Fusobacterium, Treponema, Tannerella, and other periodontal pathogens were abundant in the active group, while lactic acid bacteria (Lactobacillales and Bifidobacterium) were abundant in the remission group.
Collapse
|
36
|
Kowalski J, Górska R, Cieślik M, Górski A, Jończyk-Matysiak E. What Are the Potential Benefits of Using Bacteriophages in Periodontal Therapy? Antibiotics (Basel) 2022; 11:antibiotics11040446. [PMID: 35453197 PMCID: PMC9027636 DOI: 10.3390/antibiotics11040446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/16/2023] Open
Abstract
Periodontitis, which may result in tooth loss, constitutes both a serious medical and social problem. This pathology, if not treated, can contribute to the development of, among others, pancreatic cancer, cardiovascular diseases or Alzheimer’s disease. The available treatment methods are expensive but not always fully effective. For this reason, the search for and isolation of bacteriophages specific to bacterial strains causing periodontitis seems to be a great opportunity to target persistent colonization by bacterial pathogens and lower the use of antibiotics consequently limiting further development of antibiotic resistance. Furthermore, antimicrobial resistance (AMR) constitutes a growing challenge in periodontal therapy as resistant pathogens may be isolated from more than 70% of patients with periodontitis. The aim of this review is to present the perspective of phage application in the prevention and/or treatment of periodontitis alongside its complicated multifactorial aetiology and emphasize the challenges connecting composition and application of effective phage preparation.
Collapse
Affiliation(s)
- Jan Kowalski
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.K.); (R.G.)
| | - Renata Górska
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.K.); (R.G.)
| | - Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
- Correspondence:
| |
Collapse
|
37
|
Chen Y, Shi T, Li Y, Huang L, Yin D. Fusobacterium nucleatum: The Opportunistic Pathogen of Periodontal and Peri-Implant Diseases. Front Microbiol 2022; 13:860149. [PMID: 35369522 PMCID: PMC8966671 DOI: 10.3389/fmicb.2022.860149] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Peri-implant diseases are considered to be a chronic destructive inflammatory destruction/damage occurring in soft and hard peri-implant tissues during the patient’s perennial use after implant restoration and have attracted much attention because of their high incidence. Although most studies seem to suggest that the pathogenesis of peri-implant diseases is similar to that of periodontal diseases and that both begin with microbial infection, the specific mechanism of peri-implant diseases remains unclear. As an oral opportunistic pathogen, Fusobacterium nucleatum (F. nucleatum) has been demonstrated to be vital for the occurrence and development of many oral infectious diseases, especially periodontal diseases. More notably, the latest relevant studies suggest that F. nucleatum may contribute to the occurrence and development of peri-implant diseases. Considering the close connection between peri-implant diseases and periodontal diseases, a summary of the role of Fusobacterium nucleatum in periodontal diseases may provide more research directions and ideas for the peri-implantation mechanism. In this review, we summarize the effects of F. nucleatum on periodontal diseases by biofilm formation, host infection, and host response, and then we establish the relationship between periodontal and peri-implant diseases. Based on the above aspects, we discuss the importance and potential value of F. nucleatum in peri-implant diseases.
Collapse
|
38
|
Zhang Y, Li Y, Yang Y, Wang Y, Cao X, Jin Y, Xu Y, Li SC, Zhou Q. Periodontal and Peri-Implant Microbiome Dysbiosis Is Associated With Alterations in the Microbial Community Structure and Local Stability. Front Microbiol 2022; 12:785191. [PMID: 35145492 PMCID: PMC8821947 DOI: 10.3389/fmicb.2021.785191] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Periodontitis and peri-implantitis are common biofilm-mediated infectious diseases affecting teeth and dental implants and have been considered to be initiated with microbial dysbiosis. To further understand the essence of oral microbiome dysbiosis in terms of bacterial interactions, community structure, and microbial stability, we analyzed 64 plaque samples from 34 participants with teeth or implants under different health conditions using metagenomic sequencing. After taxonomical annotation, we computed the inter-species correlations, analyzed the bacterial community structure, and calculated the microbial stability in supra- and subgingival plaques from hosts with different health conditions. The results showed that when inflammation arose, the subgingival communities became less connective and competitive with fewer hub species. In contrast, the supragingival communities tended to be more connective and competitive with an increased number of hub species. Besides, periodontitis and peri-implantitis were associated with significantly increased microbial stability in subgingival microbiome. These findings indicated that the periodontal and peri-implant dysbiosis is associated with aberrant alterations in the bacterial correlations, community structures, and local stability. The highly connected hub species, as well as the major contributing species of negative correlations, should also be given more concern in future studies.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yinhu Li
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuguang Yang
- Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, China
| | - Yiqing Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Xiao Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yu Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yue Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of General Dentistry and Emergency Room, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Qin Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
39
|
Ventolero MF, Wang S, Hu H, Li X. Computational analyses of bacterial strains from shotgun reads. Brief Bioinform 2022; 23:6524011. [PMID: 35136954 DOI: 10.1093/bib/bbac013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Shotgun sequencing is routinely employed to study bacteria in microbial communities. With the vast amount of shotgun sequencing reads generated in a metagenomic project, it is crucial to determine the microbial composition at the strain level. This study investigated 20 computational tools that attempt to infer bacterial strain genomes from shotgun reads. For the first time, we discussed the methodology behind these tools. We also systematically evaluated six novel-strain-targeting tools on the same datasets and found that BHap, mixtureS and StrainFinder performed better than other tools. Because the performance of the best tools is still suboptimal, we discussed future directions that may address the limitations.
Collapse
Affiliation(s)
| | - Saidi Wang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Haiyan Hu
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA.,Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA
| | - Xiaoman Li
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
40
|
Siddiqui DA, Fidai AB, Natarajan SG, Rodrigues DC. Succession of oral bacterial colonizers on dental implant materials: An in vitro biofilm model. Dent Mater 2022; 38:384-396. [PMID: 34953626 PMCID: PMC8828709 DOI: 10.1016/j.dental.2021.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/13/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Oral bacterial adhesion on dental implant materials has been extensively studied using in vitro systems but has yielded results restricted to in vitro growth patterns due to limitations in species selection, sustained fastidious anaerobe growth, and mixed culture longevity. The aim of this study was to develop an oral bacterial biofilm model consisting of colonizers representative of the oral microbiome exhibiting temporal shifts characteristic of plaque development and maturation in vivo. METHODS Streptococcus oralis, Actinomyces naeslundii, Aggregatibacter actinomycetemcomitans, Veillonella parvula, Fusobacterium nucleatum, and Porphyromonas gingivalis were grown in monoculture prior to combination in mixed culture. Commercially pure titanium (cpTi) and yttria-stabilized zirconia (ZrO2) disks with polished, acid-etched, or sandblasted surfaces were prepared to evaluate oral bacterial adhesion. After 6 h, 1, 3, 7, 14 and 21 days, genomic DNA from planktonic and adherent bacteria was isolated. Quantitative polymerase chain reaction (qPCR) was used to enumerate the amount and proportion of each species. RESULTS Early-colonizing S. oralis and A. actinomycetemcomitans, dominated after 6 h prior to secondary colonization by F. nucleatum and V. parvula in planktonic (1 day) and sessile (3 days) form. A. naeslundii maintained relatively low but stable bacterial counts throughout testing. After 14 days, late-colonizing P. gingivalis became established in mixed culture and persisted, becoming the dominant species after 21 days. The composition of adherent bacteria across all substrates was statistically similar at all timepoints with notable exceptions including lower S. oralis bacterial counts on polished cpTi (3 days). SIGNIFICANCE Within the present model's limitations, multispecies oral bacterial attachment is similar on surface-treated cpTi and ZrO2.
Collapse
Affiliation(s)
- Danyal A Siddiqui
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Alikhan B Fidai
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Smriti G Natarajan
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Danieli C Rodrigues
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
41
|
Rahim MI, Winkel A, Ingendoh-Tsakmakidis A, Lienenklaus S, Falk CS, Eisenburger M, Stiesch M. Bacterial-Specific Induction of Inflammatory Cytokines Significantly Decreases upon Dual Species Infections of Implant Materials with Periodontal Pathogens in a Mouse Model. Biomedicines 2022; 10:biomedicines10020286. [PMID: 35203495 PMCID: PMC8869624 DOI: 10.3390/biomedicines10020286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Cytokine profiles are often perturbed after infections of medical implants. With a non-invasive in vivo imaging system, we report in a mouse model that interferon expression after infection of subcutaneous implants with Streptococcus oralis, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola (alone or as a combination) was species-specific, persisted longer in the presence of implants, and notably decreased upon dual species infections. This type I interferon expression disappeared within two weeks; however, histology of implant–tissue interface indicated high recruitment of immune cells even after three weeks. This was suggestive that biomaterial-associated infections could have prolonged effects, including the systemic stimulation of inflammatory cytokines. The present study investigated the systemic impact of this chronic peri-implant inflammation on the systemic expression of inflammatory cytokines (23) using a multiplex assay. Initially, the cytokine measurement in murine fibroblasts exposed to periodontal pathogens remained limited to the expression of five cytokines, namely, IL-6, G-CSF, CXCL-1/KC, MCP-1 (MCAF), and IL-12 (p40). The systemic determination of cytokines in mice increased to 19 cytokines (IL-1α, IL-2, IL-3, IL-5, IL-6, IL-9, IL-12 (p40), IL-12 (p70), IL-13, IL-17A, CCL-11/Eotaxin, G-CSF, IFN-γ, CXCL1/KC, MCP-1 (MCAF), MIP-1α/CCL3, MIP-1β/CCL4, CCL5/RANTES, and TNF-α). Systemic induction of cytokines was species-specific in the mouse model. The cytokine induction from infected implants differed significantly from sole tissue infections and sterile implants. Notably, systemic cytokine induction decreased after infections with dual species compared to single species infections. These findings describe the systemic effect of chronic peri-implant inflammation on the systemic induction of inflammatory cytokines, and this effect was strongly correlated to the type and composition of initial infection. Systemic modulations in cytokine expression upon dual species infections exhibit an exciting pattern that might explain the complications associated with biomaterial-related infection in patients. Moreover, these findings validate the requirement of multispecies infections for pre-clinical studies involving animal models.
Collapse
Affiliation(s)
- Muhammad Imran Rahim
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, 30625 Hannover, Germany; (A.W.); (A.I.-T.); (M.E.); (M.S.)
- Correspondence: ; Tel.: +49-(0)511-532-7288
| | - Andreas Winkel
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, 30625 Hannover, Germany; (A.W.); (A.I.-T.); (M.E.); (M.S.)
| | - Alexandra Ingendoh-Tsakmakidis
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, 30625 Hannover, Germany; (A.W.); (A.I.-T.); (M.E.); (M.S.)
| | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany;
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, 30625 Hannover, Germany;
| | - Michael Eisenburger
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, 30625 Hannover, Germany; (A.W.); (A.I.-T.); (M.E.); (M.S.)
| | - Meike Stiesch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, 30625 Hannover, Germany; (A.W.); (A.I.-T.); (M.E.); (M.S.)
| |
Collapse
|
42
|
Shi Y, Tong Z, Zhang Y, Si M, He F. Microbial profiles of peri-implant mucositis and peri-implantitis: Submucosal microbial dysbiosis correlates with disease severity. Clin Oral Implants Res 2021; 33:172-183. [PMID: 34808004 DOI: 10.1111/clr.13880] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/21/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To investigate the microbiome characteristics of peri-implant mucositis (PM) and peri-implantitis (PI), and to analyse the correlation between disease severity and submucosal microbial dysbiosis. MATERIALS AND METHODS A cross-sectional study design was conducted. Submucosal biofilm samples from 27 PM sites and 37 PI sites from 64 patients were collected and analysed using 16S rRNA gene sequencing (Illumina). Differences in microbiological profiles between PM and PI were evaluated using the α-diversity, β-diversity and linear discriminant analysis effect size (LEfSe) analysis. The relative abundances of the taxa at the phylum and genus levels were compared using the Wilcoxon rank test and logistic regression. The microbial dysbiosis index (MDI) was calculated, and its relationship with clinical measurements (probing depth, bleeding on probing and marginal bone loss, among others) was analysed using Pearson's correlation coefficient. RESULTS The overall microbiome distribution in the PM and PI sites was similar according to α- and β-diversity. Twenty-three taxa at the genus level and two taxa at the phylum level showed significant differences in relative abundance between the two clinical classifications. Five taxa at the genus level were screened out for the MDI calculation after logistic regression. No clinical measurements but marginal bone loss showed a significant positive correlation with microbial dysbiosis. CONCLUSION The microbiome richness, diversity and distribution were similar in PM and PI sites, including both common periodontal bacteria and novel species. In addition, an increase in marginal bone loss was significantly associated with submucosal microbial dysbiosis.
Collapse
Affiliation(s)
- Yitian Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.,Dental Clinic, The Sir Runrun Shaw's Hospital, Affiliated to Zhejiang University School of Medicine, Zhejiang, China
| | - Zian Tong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yu Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.,Hangzhou Stomatology Hospital, Hangzhou, China
| | - Misi Si
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Fuming He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Huang Y, Zhao X, Cui L, Huang S. Metagenomic and Metatranscriptomic Insight Into Oral Biofilms in Periodontitis and Related Systemic Diseases. Front Microbiol 2021; 12:728585. [PMID: 34721325 PMCID: PMC8548771 DOI: 10.3389/fmicb.2021.728585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023] Open
Abstract
The oral microbiome is one of the most complex microbial communities in the human body and is closely related to oral and systemic health. Dental plaque biofilms are the primary etiologic factor of periodontitis, which is a common chronic oral infectious disease. The interdependencies that exist among the resident microbiota constituents in dental biofilms and the interaction between pathogenic microorganisms and the host lead to the occurrence and progression of periodontitis. Therefore, accurately and comprehensively detecting periodontal organisms and dissecting their corresponding functional activity characteristics are crucial for revealing periodontitis pathogenesis. With the development of metagenomics and metatranscriptomics, the composition and structure of microbial communities as well as the overall functional characteristics of the flora can be fully profiled and revealed. In this review, we will critically examine the currently available metagenomic and metatranscriptomic evidence to bridge the gap between microbial dysbiosis and periodontitis and related systemic diseases.
Collapse
Affiliation(s)
- Yi Huang
- Stomatological Hospital, Southern Medical University and Guangdong Provincial Stomatological Hospital, Guangzhou, China
| | - Xinyuan Zhao
- Stomatological Hospital, Southern Medical University and Guangdong Provincial Stomatological Hospital, Guangzhou, China
| | - Li Cui
- Stomatological Hospital, Southern Medical University and Guangdong Provincial Stomatological Hospital, Guangzhou, China
- School of Dentistry and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shaohong Huang
- Stomatological Hospital, Southern Medical University and Guangdong Provincial Stomatological Hospital, Guangzhou, China
| |
Collapse
|
44
|
Tett A, Pasolli E, Masetti G, Ercolini D, Segata N. Prevotella diversity, niches and interactions with the human host. Nat Rev Microbiol 2021; 19:585-599. [PMID: 34050328 PMCID: PMC11290707 DOI: 10.1038/s41579-021-00559-y] [Citation(s) in RCA: 278] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
The genus Prevotella includes more than 50 characterized species that occur in varied natural habitats, although most Prevotella spp. are associated with humans. In the human microbiome, Prevotella spp. are highly abundant in various body sites, where they are key players in the balance between health and disease. Host factors related to diet, lifestyle and geography are fundamental in affecting the diversity and prevalence of Prevotella species and strains in the human microbiome. These factors, along with the ecological relationship of Prevotella with other members of the microbiome, likely determine the extent of the contribution of Prevotella to human metabolism and health. Here we review the diversity, prevalence and potential connection of Prevotella spp. in the human host, highlighting how genomic methods and analysis have improved and should further help in framing their ecological role. We also provide suggestions for future research to improve understanding of the possible functions of Prevotella spp. and the effects of the Western lifestyle and diet on the host-Prevotella symbiotic relationship in the context of maintaining human health.
Collapse
Affiliation(s)
- Adrian Tett
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
45
|
Mandelli F, Traini T, Ghensi P. Customized-3D zirconia barriers for guided bone regeneration (GBR): clinical and histological findings from a proof-of-concept case series. J Dent 2021; 114:103780. [PMID: 34400253 DOI: 10.1016/j.jdent.2021.103780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The aim of this case series was to evaluate, clinically and histologically, customized-3D zirconia barriers manufactured for guided bone regeneration (GBR) procedures. METHODS Seven healthy consecutive patients with severe bone atrophy (two of them with a bilateral atrophy) were selected for a GBR procedure with a zirconia barrier. In a 3D software (DentalCad, Exocad GmbH, Germany), a virtual bone graft was designed and a shell was designed covering the graft; a standard tessellation language (.STL) file was obtained and milled (M1, Zirkonzahn, Italy) using a 1200 MPa zirconia (Prettau, Zirkonzahn, Italy). Nine GBR surgeries (8 upper-posterior jaw, 1 lower-posterior jaw) were performed using autogenous bone chips mixed with xenograft (SmartBone, IBI-SA, Switzerland / BioOss, Geistlich, Switzerland) covered with a zirconia barrier, fixed by means of screws. After healing, implant sites were prepared with a trephine bur, collecting a bone biopsy, and dental implants were inserted (Neodent, Straumann Group, Switzerland). Specimens were histologically analyzed. RESULTS Eight successful surgeries were recorded; one zirconia barrier got exposed after one month of healing but no signs of infection were present till the barrier was removed. In all cases it was possible to insert implants with no additional bone augmentation procedures. Histological evaluations showed the presence of intense deposition of new bone. CONCLUSIONS Within the limitations of the present case series, the tested customized-3D zirconia barriers confirmed good clinical and histological performances, and, even in case of premature exposure, did not show signs of infection. Preliminary results suggest they are effective for GBR procedures. Further research is necessary with a larger sample size. CLINICAL SIGNIFICANCE The presented barriers could be a viable alternative to titanium-reinforced polytetrafluoroethylene membranes and customized meshes.
Collapse
Affiliation(s)
- Federico Mandelli
- DDS, Oral Surgery Spec. - Private practice, Via Padana Superiore 15, Milan, Italy.
| | - Tonino Traini
- CDT-MDT, DDS, Oral Surgery Spec., PhD - Department Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Paolo Ghensi
- DDS, Oral Surgery Spec., Clin MSc, PhD - Department CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
46
|
Tambone E, Marchetti A, Ceresa C, Piccoli F, Anesi A, Nollo G, Caola I, Bosetti M, Fracchia L, Ghensi P, Tessarolo F. Counter-Acting Candida albicans- Staphylococcus aureus Mixed Biofilm on Titanium Implants Using Microbial Biosurfactants. Polymers (Basel) 2021; 13:polym13152420. [PMID: 34372023 PMCID: PMC8348062 DOI: 10.3390/polym13152420] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to grow a fungal-bacterial mixed biofilm on medical-grade titanium and assess the ability of the biosurfactant R89 (R89BS) coating to inhibit biofilm formation. Coated titanium discs (TDs) were obtained by physical absorption of R89BS. Candida albicans-Staphylococcus aureus biofilm on TDs was grown in Yeast Nitrogen Base, supplemented with dextrose and fetal bovine serum, renewing growth medium every 24 h and incubating at 37 °C under agitation. The anti-biofilm activity was evaluated by quantifying total biomass, microbial metabolic activity and microbial viability at 24, 48, and 72 h on coated and uncoated TDs. Scanning electron microscopy was used to evaluate biofilm architecture. R89BS cytotoxicity on human primary osteoblasts was assayed on solutions at concentrations from 0 to 200 μg/mL and using eluates from coated TDs. Mixed biofilm was significantly inhibited by R89BS coating, with similar effects on biofilm biomass, cell metabolic activity and cell viability. A biofilm inhibition >90% was observed at 24 h. A lower but significant inhibition was still present at 48 h of incubation. Viability tests on primary osteoblasts showed no cytotoxicity of coated TDs. R89BS coating was effective in reducing C. albicans-S. aureus mixed biofilm on titanium surfaces and is a promising strategy to prevent dental implants microbial colonization.
Collapse
Affiliation(s)
- Erica Tambone
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (G.N.)
| | - Alice Marchetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (C.C.); (M.B.); (L.F.)
| | - Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (C.C.); (M.B.); (L.F.)
| | - Federico Piccoli
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (F.P.); (A.A.); (I.C.)
| | - Adriano Anesi
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (F.P.); (A.A.); (I.C.)
| | - Giandomenico Nollo
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (G.N.)
| | - Iole Caola
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (F.P.); (A.A.); (I.C.)
| | - Michela Bosetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (C.C.); (M.B.); (L.F.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (C.C.); (M.B.); (L.F.)
| | - Paolo Ghensi
- Department CIBIO, University of Trento, 38123 Trento, Italy;
| | - Francesco Tessarolo
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (G.N.)
- Correspondence: ; Tel.: +39-0461-282775
| |
Collapse
|
47
|
Jiang Q, Yu Y, Xu R, Zhang Z, Liang C, Sun H, Deng F, Yu X. The temporal shift of peri-implant microbiota during the biofilm formation and maturation in a canine model. Microb Pathog 2021; 158:105100. [PMID: 34302932 DOI: 10.1016/j.micpath.2021.105100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Although the mature peri-implant biofilm composition is well studied, there is very little information on the succession of in vivo dental implant colonization. The aim of this study was to characterize the temporal changes and diversity of peri-implant supra-mucosal and sub-mucosal microbiota during the process of the plaque maturation. MATERIALS AND METHODS Dental implants (n = 25) were placed in the mandible of 3 beagle dogs. Illumina MiSeq sequencing of the hypervariable V3-V4 region of the 16S rRNA gene amplicons was used to characterize the supra/sub-mucosal microbiota in the peri-implant niches at 1day (T1), 7days (T2), 14days (T3), 21days (T4) and 28days (T5) after Phase Ⅱ surgery of the healing abutment placement. QIIME, Mothur, LEfSe and R-package were used for downstream analysis. RESULTS A total of 1184 operational taxonomic units (OTUs), assigned into 22 phyla, 264 genera and 339 species were identified. In supra-mucosal niches, the alpha parameters of shannon, sobs and chao1 displayed significant differences between T1 and other time-points. However, in sub-mucosal niches, only sobs, chao1, and ace indexes displayed significant differences between T1 and T3, and T1 and T5. Beta-diversity showed statistically significant difference between T1 and T2, T3, T4, T5 within both sub-mucosal and supra-mucosal plaque. The phyla Bacteroidetes, Proteobacteria and Firmicutes were the most dominant phyla of both sub-mucosal and supra-mucosal niches at all time-points and Firmicutes increased during the maturation of peri-implant plaque. At the genus level, Neisseria decreased significantly after T1 suggesting the establishment of an anaerobic microenvironment. A decrease of Porphyromonas during the formation of sub-mucosal microbial community was also detected. Co-occurrence network analysis exhibited a more complicated co-occurrence relationship of bacterial species in the sub-mucosal niches. Fusobacterium nucleatum, Filifactor villosus, and some other species may play a crucial role in biofilm maturation. CONCLUSIONS The present results suggested that the development of peri-implant biofilm followed a similar pattern to dental plaque formation. Sub-mucosal biofilm may go through a more complicated procedure of maturation than supra-mucosal biofilm.
Collapse
Affiliation(s)
- Qiming Jiang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yi Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Ruogu Xu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zhengchuan Zhang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Chaoan Liang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Hanyu Sun
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Feilong Deng
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | - Xiaolin Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| |
Collapse
|
48
|
AbdulAzeez AR, Alkinani AA. The Crucial Role of Plaque Control in Peri-Implant Mucositis Initiation as Opposed to the Role of Systemic Health Condition: A Cross-Sectional Study. Clin Cosmet Investig Dent 2021; 13:257-268. [PMID: 34211297 PMCID: PMC8241007 DOI: 10.2147/ccide.s316838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose The aim of this study was to investigate the priority of periodontal plaque as a risk factor compared to other risk factors, namely hypertension and diabetes mellitus type II, regarding the initiation and severity of peri-implant mucositis, eventually reinforcing the importance of plaque control, periodic maintenance and supportive periodontic treatment after implant placement in order to prevent peri-implant diseases. Patients and Methods A total of 58 patients (84 implants) were enrolled; each individual implant was considered as a separate sample first, then sampling by patient was also applied, implants were divided into group A: systemically healthy patients and B: patients with hypertension and diabetes mellitus type II, the status of peri-implant tissue was followed after the healing abutment placement, with regard to implant mucosal index (IMI), probing pocket depth (PPD) and bleeding on probing (BOP); when sampling was done by patient, the mean of scores of all examined implants in each patient was taken to represent one sample. Results Group A implants showed higher mean scores of PPD (5.2 mm) than group B (4.2 mm) with significance (P = 0.014), and higher mean scores of BOP, group A = 0.71, group B = 0.45 with (P = 0.015); there was no statistical difference with regard to IMI, group A = 1.35, group B = 1.16 with (P = 0.172). Similar results were obtained when the sampling was calculated by patient; PPD: group A (5.31 mm), group B (4.75 mm) and P = 0.008, IMI: group A (1.34), group B (1.16) and P = 0.131, BOP: group A (0.75), group B (0.48) and P = 0.03. Conclusion In the absence of proper plaque control, systemic diseases showed no impact on the initiation and severity of peri-implant mucositis when compared to systemically healthy patients. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/2nt5X7wVAp0
Collapse
Affiliation(s)
- Ali Raad AbdulAzeez
- Department of Periodontology, College of Dentistry, University of Uruk, Baghdad, Iraq
| | - Athil Adnan Alkinani
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Uruk, Bagdad, Iraq
| |
Collapse
|
49
|
Blank E, Grischke J, Winkel A, Eberhard J, Kommerein N, Doll K, Yang I, Stiesch M. Evaluation of biofilm colonization on multi-part dental implants in a rat model. BMC Oral Health 2021; 21:313. [PMID: 34144677 PMCID: PMC8212458 DOI: 10.1186/s12903-021-01665-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/02/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Peri-implant mucositis and peri-implantitis are highly prevalent biofilm-associated diseases affecting the tissues surrounding dental implants. As antibiotic treatment is ineffective to fully cure biofilm mediated infections, antimicrobial modifications of implants to reduce or prevent bacterial colonization are called for. Preclinical in vivo evaluation of the functionality of new or modified implant materials concerning bacterial colonization and peri-implant health is needed to allow progress in this research field. For this purpose reliable animal models are needed. METHODS Custom made endosseous dental implants were installed in female Sprague Dawley rats following a newly established three-step implantation procedure. After healing of the bone and soft tissue, the animals were assigned to two groups. Group A received a continuous antibiotic treatment for 7 weeks, while group B was repeatedly orally inoculated with human-derived strains of Streptococcus oralis, Fusobacterium nucleatum and Porphyromonas gingivalis for six weeks, followed by 1 week without inoculation. At the end of the experiment, implantation sites were clinically assessed and biofilm colonization was quantified via confocal laser scanning microscopy. Biofilm samples were tested for presence of the administered bacteria via PCR analysis. RESULTS The inner part of the custom made implant screw could be identified as a site of reliable biofilm formation in vivo. S. oralis and F. nucleatum were detectable only in the biofilm samples from group B animals. P. gingivalis was not detectable in samples from either group. Quantification of the biofilm volume on the implant material revealed no statistically significant differences between the treatment groups. Clinical inspection of implants in group B animals showed signs of mild to moderate peri-implant mucositis (4 out of 6) whereas the mucosa of group A animals appeared healthy (8/8). The difference in the mucosa health status between the treatment groups was statistically significant (p = 0.015). CONCLUSIONS We developed a new rodent model for the preclinical evaluation of dental implant materials with a special focus on the early biofilm colonization including human-derived oral bacteria. Reliable biofilm quantification on the implant surface and the symptoms of peri-implant mucositis of the bacterially inoculated animals will serve as a readout for experimental evaluation of biofilm-reducing modifications of implant materials.
Collapse
Affiliation(s)
- Eva Blank
- Department of Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany.
| | - Jasmin Grischke
- Department of Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| | - Andreas Winkel
- Department of Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| | - Joerg Eberhard
- The University of Sydney Dental School & The Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nadine Kommerein
- Department of Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| | - Katharina Doll
- Department of Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| | - Ines Yang
- Department of Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| | - Meike Stiesch
- Department of Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| |
Collapse
|
50
|
Körtvélyessy G, Tarjányi T, Baráth ZL, Minarovits J, Tóth Z. Bioactive coatings for dental implants: A review of alternative strategies to prevent peri-implantitis induced by anaerobic bacteria. Anaerobe 2021; 70:102404. [PMID: 34146701 DOI: 10.1016/j.anaerobe.2021.102404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Members of oral bacterial communities form biofilms not only on tooth surfaces but also on the surface of dental implants that replace natural teeth. Prolonged interaction of host cells with biofilm-forming anaerobes frequently elicits peri-implantitis, a destructive inflammatory disease accompanied by alveolar bone loss leading to implant failure. Here we wish to overview how the deposition of bioactive peptides to dental implant surfaces could potentially inhibit bacterial colonization and the development of peri-implantisis. One preventive strategy is based on natural antimicrobial peptides (AMPs) immobilized on titanium surfaces. AMPs are capable to destroy both Gram positive and Gram negative bacteria directly. An alternative strategy aims at coating implant surfaces - especially the transmucosal part - with peptides facilitating the attachment of gingival epithelial cells and connective tissue cells. These cells produce AMPs and may form a soft tissue seal that prevents oral bacteria from accessing the apical part of the osseointegrated implant. Because a wide variety of titanium-bound peptides were studied in vitro, we wish to concentrate on bioactive peptides of human origin and some of their derivatives. Furthermore, special attention will be given to peptides effective under in vivo test conditions.
Collapse
Affiliation(s)
- Győző Körtvélyessy
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Tamás Tarjányi
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Zoltán L Baráth
- Department of Prosthodontics, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Janos Minarovits
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Zsolt Tóth
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary; Department of Experimental Physics, University of Szeged, Faculty of Science and Informatics, 6720, Szeged, Dóm Tér 9, Hungary.
| |
Collapse
|