1
|
Kim N, Yang C. Butyrate as a Potential Modulator in Gynecological Disease Progression. Nutrients 2024; 16:4196. [PMID: 39683590 DOI: 10.3390/nu16234196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
This review investigates the therapeutic potential of butyrate, a short-chain fatty acid (SCFA) produced by gut microbiota, in the prevention and treatment of various gynecological diseases, including polycystic ovary syndrome (PCOS), endometriosis, and gynecologic cancers like cervical and ovarian cancer. These conditions often pose treatment challenges, with conventional therapies offering limited and temporary relief, significant side effects, and a risk of recurrence. Emerging evidence highlights butyrate's unique biological activities, particularly its role as a histone deacetylase (HDAC) inhibitor, which allows it to modulate gene expression, immune responses, and inflammation. In PCOS, butyrate aids in restoring hormonal balance, enhancing insulin sensitivity, and reducing chronic inflammation. For endometriosis, butyrate appears to suppress immune dysregulation and minimize lesion proliferation. Additionally, in cervical and ovarian cancers, butyrate demonstrates anticancer effects through mechanisms such as cell cycle arrest, apoptosis induction, and suppression of tumor progression. Dietary interventions, particularly high-fiber and Mediterranean diets, that increase butyrate production are proposed as complementary approaches, supporting natural microbiota modulation to enhance therapeutic outcomes. However, butyrate's short half-life limits its clinical application, spurring interest in butyrate analogs and probiotics to maintain stable levels and extend its benefits. This review consolidates current findings on butyrate's multifaceted impact across gynecological health, highlighting the potential for microbiota-centered therapies in advancing treatment strategies and improving women's reproductive health.
Collapse
Affiliation(s)
- Nayeon Kim
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Changwon Yang
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
DePoy AN, Wall H, Tinker KA, Ottesen EA. Microbial transcriptional responses to host diet maintain gut microbiome homeostasis in the American cockroach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621369. [PMID: 39554183 PMCID: PMC11565919 DOI: 10.1101/2024.10.31.621369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Diet is considered a key determinant of gut microbiome composition and function. However, studies in the American cockroach have revealed surprising stability in hindgut microbiome taxonomic composition following shifts in host diet. To discover microbial activities underlying this stability, we analyzed microbial community transcriptomes from hindguts of cockroaches fed diverse diets. We used a taxon-centric approach in which we clustered genomes based on taxonomic relatedness and functional similarity and examined the transcriptional profiles of each cluster independently. In total, we analyzed a set of 18 such "genome clusters", including key taxa within Bacteroidota, Bacillota, Desulfobacterota, and Euryarcheaeota phyla. We found that microbial transcriptional responses to diet varied across diets and microbial functional profiles, with the strongest transcriptional shifts seen in taxa predicted to be primarily focused on degradation of complex dietary polysaccharides. These groups upregulated genes associated with utilization of diet-sourced polysaccharides in response to bran and dog food diets, while they upregulated genes for degradation of potentially host-derived polysaccharides in response to tuna, butter, and starvation diets. In contrast, chemolithotrophic taxa, such as Desulfobacterota and Methanimicrococcus, exhibited stable transcriptional profiles, suggesting that compensatory changes in the metabolism of other microbial community members are sufficient to support their activities across major dietary shifts. These results provide new insight into microbial activities supporting gut microbiome stability in the face of variable diets in omnivores.
Collapse
|
3
|
Faitova T, Coelho M, Da Cunha-Bang C, Ozturk S, Kartal E, Bork P, Seiffert M, Niemann CU. The diversity of the microbiome impacts chronic lymphocytic leukemia development in mice and humans. Haematologica 2024; 109:3237-3250. [PMID: 38721725 PMCID: PMC11443378 DOI: 10.3324/haematol.2023.284693] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/30/2024] [Indexed: 10/02/2024] Open
Abstract
The gut microbiota plays a critical role in maintaining a healthy human body and its dysregulation is associated with various diseases. In this study, we investigated the influence of gut microbiome diversity on the development of chronic lymphocytic leukemia (CLL). Analysis of stool samples from 59 CLL patients revealed individual and heterogeneous microbiome compositions, but allowed for grouping of patients according to their microbiome diversity. Interestingly, CLL patients with lower microbiome diversity and an enrichment of bacteria linked to poor health suffered from a more advanced or aggressive form of CLL. In the Eµ-TCL1 mouse model of CLL, we observed a faster course of disease when mice were housed in high hygiene conditions. Shotgun DNA sequencing of fecal samples showed that this was associated with a lower microbiome diversity which was dominated by Mucispirillum and Parabacteroides genera in comparison to mice kept under lower hygiene conditions. In conclusion, we applied taxonomic microbiome analyses to demonstrate a link between gut microbiome diversity and the clinical course of CLL in humans, as well as the development of CLL in mice. Our novel data serve as a basis for further investigations to decipher the pathological and mechanistic role of intestinal microbiota in CLL development.
Collapse
Affiliation(s)
| | - Mariana Coelho
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences of the University of Heidelberg, Heidelberg
| | | | - Selcen Ozturk
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg
| | - Ece Kartal
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; Department of Bioinformatics, Biocenter, University of Wurzburg, Wurzburg, Germany; Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea; Max Delbruck Center for Molecular Medicine, Berlin
| | - Martina Seiffert
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg. m.seiffert@dkfzheidelberg
| | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen.
| |
Collapse
|
4
|
Kang J, Huang X, Li R, Zhang Y, Chen XX, Han BZ. Deciphering the core microbes and their interactions in spontaneous Baijiu fermentation: A comprehensive review. Food Res Int 2024; 188:114497. [PMID: 38823877 DOI: 10.1016/j.foodres.2024.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The spontaneous Baijiu fermentation system harbors a complex microbiome that is highly dynamic in time and space and varies depending on the Jiuqu starters and environmental factors. The intricate microbiota presents in the fermentation environment is responsible for carrying out various reactions. These reactions necessitate the interaction among the core microbes to influence the community function, ultimately shaping the distinct Baijiu styles through the process of spontaneous fermentation. Numerous studies have been conducted to enhance our understanding of the diversity, succession, and function of microbial communities with the aim of improving fermentation manipulation. However, a comprehensive and critical assessment of the core microbes and their interaction remains one of the significant challenges in the Baijiu fermentation industry. This paper focuses on the fermentation properties of core microbes. We discuss the state of the art of microbial traceability, highlighting the crucial role of environmental and starter microbiota in the Baijiu brewing microbiome. Also, we discuss the various interactions between microbes in the Baijiu production system and propose a potential conceptual framework that involves constructing predictive network models to simplify and quantify microbial interactions using co-culture models. This approach offers effective strategies for understanding the core microbes and their interactions, thus beneficial for the management of microbiota and the regulation of interactions in Baijiu fermentation processes.
Collapse
Affiliation(s)
- Jiamu Kang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China; School of Food Science and Engineering, Hainan University, Haikou, China
| | - Xiaoning Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rengshu Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yuandi Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xiao-Xue Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - Bei-Zhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Dubois L, Valles-Colomer M, Ponsero A, Helve O, Andersson S, Kolho KL, Asnicar F, Korpela K, Salonen A, Segata N, de Vos WM. Paternal and induced gut microbiota seeding complement mother-to-infant transmission. Cell Host Microbe 2024; 32:1011-1024.e4. [PMID: 38870892 DOI: 10.1016/j.chom.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/03/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Microbial colonization of the neonatal gut involves maternal seeding, which is partially disrupted in cesarean-born infants and after intrapartum antibiotic prophylaxis. However, other physically close individuals could complement such seeding. To assess the role of both parents and of induced seeding, we analyzed two longitudinal metagenomic datasets (health and early life microbiota [HELMi]: N = 74 infants, 398 samples, and SECFLOR: N = 7 infants, 35 samples) with cesarean-born infants who received maternal fecal microbiota transplantation (FMT). We found that the father constitutes a stable source of strains for the infant independently of the delivery mode, with the cumulative contribution becoming comparable to that of the mother after 1 year. Maternal FMT increased mother-infant strain sharing in cesarean-born infants, raising the average bacterial empirical growth rate while reducing pathogen colonization. Overall, our results indicate that maternal seeding is partly complemented by that of the father and support the potential of induced seeding to restore potential deviations in this process.
Collapse
Affiliation(s)
- Léonard Dubois
- Department CIBIO, University of Trento, 38123 Trento, Italy
| | - Mireia Valles-Colomer
- Department CIBIO, University of Trento, 38123 Trento, Italy; MELIS Department, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Alise Ponsero
- Human Microbiota Research Program, Faculty of Medicine, University of Helsinki, 0014 Helsinki, Finland
| | - Otto Helve
- Children's Hospital, Pediatric Research Center, University of Helsinki, and Helsinki University Hospital, 00014 Helsinki, Finland; Department of Health Security, Finnish Institute for Health and Welfare, 0014 Helsinki, Finland
| | - Sture Andersson
- Children's Hospital, Pediatric Research Center, University of Helsinki, and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Kaija-Leena Kolho
- Human Microbiota Research Program, Faculty of Medicine, University of Helsinki, 0014 Helsinki, Finland
| | | | - Katri Korpela
- Human Microbiota Research Program, Faculty of Medicine, University of Helsinki, 0014 Helsinki, Finland
| | - Anne Salonen
- Human Microbiota Research Program, Faculty of Medicine, University of Helsinki, 0014 Helsinki, Finland
| | - Nicola Segata
- Department CIBIO, University of Trento, 38123 Trento, Italy; Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy.
| | - Willem M de Vos
- Human Microbiota Research Program, Faculty of Medicine, University of Helsinki, 0014 Helsinki, Finland; Laboratory of Microbiology, University of Wageningen, 6703 WE Wageningen, the Netherlands.
| |
Collapse
|
6
|
Puhlmann ML, van de Rakt E, Kerezoudi EN, Rangel I, Brummer RJ, Smidt H, Kaper FS, de Vos WM. Analysis of the fermentation kinetics and gut microbiota modulatory effect of dried chicory root reveals the impact of the plant-cell matrix rationalizing its conversion in the distal colon. MICROBIOME RESEARCH REPORTS 2024; 3:28. [PMID: 39421250 PMCID: PMC11485554 DOI: 10.20517/mrr.2024.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 10/19/2024]
Abstract
Aim: The cell matrix of plant foods has received little attention in prebiotic fiber research. We aimed to understand the impact of the plant cell matrix in dried chicory root on its breakdown in the human gut to explain its reported beneficial effects on gut and metabolic health. Methods: We applied in vitro digestion and fermentation models together with an ex vivo gut barrier integrity model. Plant cell matrix intactness in the upper gastrointestinal tract was investigated by scanning electron microscopy. Colonic breakdown of inulin, and chicory root cubes and powder was assessed by gut microbiota analysis using 16S rRNA gene amplicon sequencing and determining the kinetics of changes in pH, gas, and short-chain fatty acid (SCFA) production. Finally, effects on gut barrier integrity were explored by exposing colonic biopsies to fermentation supernatants in an Ussing chamber model. Results: The plant cell matrix of dried chicory root cubes remained intact throughout upper gastrointestinal transit. Dried chicory root fermentation resulted in higher final relative abundances of pectin-degrading Monoglobus and butyrate-producing Roseburia spp. compared to inulin and a seven-fold increase in Bifidobacterium spp. in donors where these species were present. Dried chicory root cubes yielded similar total SCFAs but higher final butyrate levels than chicory root powder or isolated inulin with less gas produced. No uniform but donor-specific effects of fermentation supernatants on the maintenance of gut barrier integrity were detected. Conclusion: The intact plant cell matrix of dried chicory root affected its colonic breakdown kinetics and microbiota, underpinning its beneficial effect in vivo.
Collapse
Affiliation(s)
- Marie-Luise Puhlmann
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
| | - Ember van de Rakt
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
| | - Evangelia N. Kerezoudi
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 70182, Sweden
- Department of Nutrition and Dietetics, Harokopio University, Athens 17671, Greece
| | - Ignacio Rangel
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 70182, Sweden
| | - Robert J. Brummer
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 70182, Sweden
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
| | | | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
7
|
Bedu-Ferrari C, Biscarrat P, Pepke F, Vati S, Chaudemanche C, Castelli F, Chollet C, Rué O, Hennequet-Antier C, Langella P, Cherbuy C. In-depth characterization of a selection of gut commensal bacteria reveals their functional capacities to metabolize dietary carbohydrates with prebiotic potential. mSystems 2024; 9:e0140123. [PMID: 38441031 PMCID: PMC11019791 DOI: 10.1128/msystems.01401-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/11/2024] [Indexed: 03/06/2024] Open
Abstract
The microbial utilization of dietary carbohydrates is closely linked to the pivotal role of the gut microbiome in human health. Inherent to the modulation of complex microbial communities, a prebiotic implies the selective utilization of a specific substrate, relying on the metabolic capacities of targeted microbes. In this study, we investigated the metabolic capacities of 17 commensal bacteria of the human gut microbiome toward dietary carbohydrates with prebiotic potential. First, in vitro experiments allowed the classification of bacterial growth and fermentation profiles in response to various carbon sources, including agave inulin, corn fiber, polydextrose, and citrus pectin. The influence of phylogenetic affiliation appeared to statistically outweigh carbon sources in determining the degree of carbohydrate utilization. Second, we narrowed our focus on six commensal bacteria representative of the Bacteroidetes and Firmicutes phyla to perform an untargeted high-resolution liquid chromatography-mass spectrometry metabolomic analysis: Bacteroides xylanisolvens, Bacteroides thetaiotaomicron, Bacteroides intestinalis, Subdoligranulum variabile, Roseburia intestinalis, and Eubacterium rectale exhibited distinct metabolomic profiles in response to different carbon sources. The relative abundance of bacterial metabolites was significantly influenced by dietary carbohydrates, with these effects being strain-specific and/or carbohydrate-specific. Particularly, the findings indicated an elevation in short-chain fatty acids and other metabolites, including succinate, gamma-aminobutyric acid, and nicotinic acid. These metabolites were associated with putative health benefits. Finally, an RNA-Seq transcriptomic approach provided deeper insights into the underlying mechanisms of carbohydrate metabolization. Restricting our focus on four commensal bacteria, including B. xylanisolvens, B. thetaiotaomicron, S. variabile, and R. intestinalis, carbon sources did significantly modulate the level of bacterial genes related to the enzymatic machinery involved in the metabolization of dietary carbohydrates. This study provides a holistic view of the molecular strategies induced during the dynamic interplay between dietary carbohydrates with prebiotic potential and gut commensal bacteria. IMPORTANCE This study explores at a molecular level the interactions between commensal health-relevant bacteria and dietary carbohydrates holding prebiotic potential. We showed that prebiotic breakdown involves the specific activation of gene expression related to carbohydrate metabolism. We also identified metabolites produced by each bacteria that are potentially related to our digestive health. The characterization of the functional activities of health-relevant bacteria toward prebiotic substances can yield a better application of prebiotics in clinical interventions and personalized nutrition. Overall, this study highlights the importance of identifying the impact of prebiotics at a low resolution of the gut microbiota to characterize the activities of targeted bacteria that can play a crucial role in our health.
Collapse
Affiliation(s)
- Cassandre Bedu-Ferrari
- Micalis Institute, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- General Mills France, Boulogne Billancourt, France
| | - Paul Biscarrat
- Micalis Institute, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Frederic Pepke
- Micalis Institute, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sarah Vati
- Micalis Institute, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Florence Castelli
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments,, CEA, INRAE, Université Paris Saclay, MetaboHUB, Gif-sur-Yvette, France
| | - Céline Chollet
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments,, CEA, INRAE, Université Paris Saclay, MetaboHUB, Gif-sur-Yvette, France
| | - Olivier Rué
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, Jouy-en-Josas, France
| | - Christelle Hennequet-Antier
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Claire Cherbuy
- Micalis Institute, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
8
|
De Giani A, Perillo F, Baeri A, Finazzi M, Facciotti F, Di Gennaro P. Positive modulation of a new reconstructed human gut microbiota by Maitake extract helpfully boosts the intestinal environment in vitro. PLoS One 2024; 19:e0301822. [PMID: 38603764 PMCID: PMC11008829 DOI: 10.1371/journal.pone.0301822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The human gut is a complex environment where the microbiota and its metabolites play a crucial role in the maintenance of a healthy state. The aim of the present work is the reconstruction of a new in vitro minimal human gut microbiota resembling the microbe-microbe networking comprising the principal phyla (Bacillota, Bacteroidota, Pseudomonadota, and Actinomycetota), to comprehend the intestinal ecosystem complexity. In the reductionist model, we mimicked the administration of Maitake extract as prebiotic and a probiotic formulation (three strains belonging to Lactobacillus and Bifidobacterium genera), evaluating the modulation of strain levels, the release of beneficial metabolites, and their health-promoting effects on human cell lines of the intestinal environment. The administration of Maitake and the selected probiotic strains generated a positive modulation of the in vitro bacterial community by qPCR analyses, evidencing the prominence of beneficial strains (Lactiplantibacillus plantarum and Bifidobacterium animalis subsp. lactis) after 48 hours. The bacterial community growths were associated with the production of metabolites over time through GC-MSD analyses such as lactate, butyrate, and propionate. Their effects on the host were evaluated on cell lines of the intestinal epithelium and the immune system, evidencing positive antioxidant (upregulation of SOD1 and NQO1 genes in HT-29 cell line) and anti-inflammatory effects (production of IL-10 from all the PBMCs). Therefore, the results highlighted a positive modulation induced by the synergic activities of probiotics and Maitake, inducing a tolerogenic microenvironment.
Collapse
Affiliation(s)
- Alessandra De Giani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Alberto Baeri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Margherita Finazzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Federica Facciotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
9
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2024. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
10
|
Dai W, Du H, Zhou Q, Li S, Wang Y, Hou J, Guo C, Yang Q, Li C, Xie S, Li SC, Wu R. Metabolic profiles outperform the microbiota in assessing the response of vaginal microenvironments to the changed state of HPV infection. NPJ Biofilms Microbiomes 2024; 10:26. [PMID: 38509123 PMCID: PMC10954630 DOI: 10.1038/s41522-024-00500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
There is a deficiency in population-based studies investigating the impact of HPV infection on vaginal microenvironment, which influences the risk of persistent HPV infection. This prospective study aimed to unravel the dynamics of vaginal microbiota (VM) and vaginal metabolome in reaction to the changed state of HPV infection. Our results propose that the vaginal metabolome may be a superior indicator to VM when assessing the impact of altered HPV state on the vaginal microenvironment.
Collapse
Affiliation(s)
- Wenkui Dai
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Hui Du
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Qian Zhou
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Sumei Li
- Department of Pharmacology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yinan Wang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Jun Hou
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Chunlei Guo
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Shouxia Xie
- Department of Pharmacology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, China.
| | - Ruifang Wu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China.
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China.
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China.
| |
Collapse
|
11
|
Fogarty EC, Schechter MS, Lolans K, Sheahan ML, Veseli I, Moore RM, Kiefl E, Moody T, Rice PA, Yu MK, Mimee M, Chang EB, Ruscheweyh HJ, Sunagawa S, Mclellan SL, Willis AD, Comstock LE, Eren AM. A cryptic plasmid is among the most numerous genetic elements in the human gut. Cell 2024; 187:1206-1222.e16. [PMID: 38428395 PMCID: PMC10973873 DOI: 10.1016/j.cell.2024.01.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/03/2023] [Accepted: 01/25/2024] [Indexed: 03/03/2024]
Abstract
Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.
Collapse
Affiliation(s)
- Emily C Fogarty
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Matthew S Schechter
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Karen Lolans
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Madeline L Sheahan
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Iva Veseli
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Ryan M Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Evan Kiefl
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Thomas Moody
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Phoebe A Rice
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry, University of Chicago, Chicago, IL 60637, USA
| | - Michael K Yu
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Mark Mimee
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich 8093, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich 8093, Switzerland
| | - Sandra L Mclellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Laurie E Comstock
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Microbiology, University of Chicago, Chicago, IL 60637, USA.
| | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany; Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany; Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany.
| |
Collapse
|
12
|
Camacho-Mateu J, Lampo A, Sireci M, Muñoz MA, Cuesta JA. Sparse species interactions reproduce abundance correlation patterns in microbial communities. Proc Natl Acad Sci U S A 2024; 121:e2309575121. [PMID: 38266051 PMCID: PMC10853627 DOI: 10.1073/pnas.2309575121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
During the last decades, macroecology has identified broad-scale patterns of abundances and diversity of microbial communities and put forward some potential explanations for them. However, these advances are not paralleled by a full understanding of the dynamical processes behind them. In particular, abundance fluctuations of different species are found to be correlated, both across time and across communities in metagenomic samples. Reproducing such correlations through appropriate population models remains an open challenge. The present paper tackles this problem and points to sparse species interactions as a necessary mechanism to account for them. Specifically, we discuss several possibilities to include interactions in population models and recognize Lotka-Volterra constants as a successful ansatz. For this, we design a Bayesian inference algorithm to extract sets of interaction constants able to reproduce empirical probability distributions of pairwise correlations for diverse biomes. Importantly, the inferred models still reproduce well-known single-species macroecological patterns concerning abundance fluctuations across both species and communities. Endorsed by the agreement with the empirically observed phenomenology, our analyses provide insights into the properties of the networks of microbial interactions, revealing that sparsity is a crucial feature.
Collapse
Affiliation(s)
- José Camacho-Mateu
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés28911, Spain
| | - Aniello Lampo
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés28911, Spain
| | - Matteo Sireci
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada18071, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| | - Miguel A. Muñoz
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada18071, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| | - José A. Cuesta
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés28911, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Zaragoza50001, Spain
| |
Collapse
|
13
|
Ioannou A, Berkhout MD, Scott WT, Blijenberg B, Boeren S, Mank M, Knol J, Belzer C. Resource sharing of an infant gut microbiota synthetic community in combinations of human milk oligosaccharides. THE ISME JOURNAL 2024; 18:wrae209. [PMID: 39423288 PMCID: PMC11542058 DOI: 10.1093/ismejo/wrae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Quickly after birth, the gut microbiota is shaped via species acquisition and resource pressure. Breastmilk, and more specifically, human milk oligosaccharides are a determining factor in the formation of microbial communities and the interactions between bacteria. Prominent human milk oligosaccharide degraders have been rigorously characterized, but it is not known how the gut microbiota is shaped as a complex community. Here, we designed BIG-Syc, a synthetic community of 13 strains from the gut of vaginally born, breastfed infants. BIG-Syc replicated key compositional, metabolic, and proteomic characteristics of the gut microbiota of infants. Upon fermentation of a four and five human milk oligosaccharide mix, BIG-Syc demonstrated different compositional and proteomic profiles, with Bifidobacterium infantis and Bifidobacterium bifidum suppressing one another. The mix of five human milk oligosaccharides resulted in a more diverse composition with dominance of B. bifidum, whereas that with four human milk oligosaccharides supported the dominance of B. infantis, in four of six replicates. Reintroduction of bifidobacteria to BIG-Syc led to their engraftment and establishment of their niche. Based on proteomics and genome-scale metabolic models, we reconstructed the carbon source utilization and metabolite and gas production per strain. BIG-Syc demonstrated teamwork as cross-feeders utilized simpler carbohydrates, organic acids, and gases released from human milk oligosaccharide degraders. Collectively, our results showed that human milk oligosaccharides prompt resource-sharing for their complete degradation while leading to a different compositional and functional profile in the community. At the same time, BIG-Syc proved to be an accurate model for the representation of intra-microbe interactions.
Collapse
Affiliation(s)
- Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen 6708WE, the Netherlands
| | - Maryse D Berkhout
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen 6708WE, the Netherlands
| | - William T Scott
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen 6708WE, the Netherlands
- UNLOCK, Wageningen University & Research and Delft University of Technology, Stippeneng 2, Wageningen 6708WE, the Netherlands
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, Wageningen 6708WE, the Netherlands
| | - Marko Mank
- Danone Nutricia Research, Uppsalalaan 12, Utrecht 3584CT, the Netherlands
| | - Jan Knol
- Danone Nutricia Research, Uppsalalaan 12, Utrecht 3584CT, the Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen 6708WE, the Netherlands
| |
Collapse
|
14
|
Díaz R, Garrido D. Screening competition and cross-feeding interactions during utilization of human milk oligosaccharides by gut microbes. MICROBIOME RESEARCH REPORTS 2024; 3:12. [PMID: 38455082 PMCID: PMC10917614 DOI: 10.20517/mrr.2023.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 03/09/2024]
Abstract
Background: The infant gut microbiome is a complex community that influences short- and long-term health. Its assembly and composition are governed by variables such as the feeding type. Breast milk provides infants an important supply of human milk oligosaccharides (HMO), a broad family of carbohydrates comprising neutral, fucosylated, and sialylated molecules. There is a positive association between HMOs and the overrepresentation of Bifidobacterium species in the infant gut, which is sustained by multiple molecular determinants present in the genomes of these species. Infant-gut-associated Bifidobacterium species usually share a similar niche and display similar HMO inclinations, suggesting they compete for these resources. There is also strong evidence of cross-feeding interactions between HMO-derived molecules and bifidobacteria. Methods: In this study, we screened for unidirectional and bidirectional interactions between Bifidobacterium and other species using individual HMO. Bifidobacterium bifidum and Bacteroides thetaiotaomicron increased the growth of several other species when their supernatants were used, probably mediated by the partial degradation of HMO. In contrast, Bifidobacterium longum subsp. infantis. supernatants did not exhibit positive growth. Results: Bifidobacterium species compete for lacto-N-tetraose, which is associated with reduced bidirectional growth. The outcome of these interactions was HMO-dependent, in which the two species could compete for one substrate but cross-feed on another. 2'-fucosyllactose and lacto-N-neotetraose are associated with several positive interactions that generally originate from the partial degradation of these HMOs. Conclusion: This study presents evidence for complex interactions during HMO utilization, which can be cooperative or competitive, depending on the nature of the HMO. This information could be useful for understanding how breast milk supports the growth of some Bifidobacterium species, shaping the ecology of this important microbial community.
Collapse
Affiliation(s)
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile
| |
Collapse
|
15
|
Xu Y, Xiong J, Shan S, Wang X, He F, Cheng G. Age-Dependent and Body Composition-Dependent Association of Child Gut Microbial Enterotype With Puberty Timing: A Chinese Cohort. J Clin Endocrinol Metab 2023; 108:2363-2370. [PMID: 36840481 PMCID: PMC10438909 DOI: 10.1210/clinem/dgad090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023]
Abstract
CONTEXT Puberty timing, which is vital for adult well-being, has recently been suggested to be linked to specific gut taxa. However, the impact of comprehensive gut microbiome structure assessed by enterotype on puberty timing remains unknown. OBJECTIVE Investigate the prospective association of gut microbial enterotype with puberty timing and the potential interaction of age and body composition. METHODS This study included 1826 children from the Chinese Adolescent Cohort Study, a cohort that has collected information on sociodemographics, dietary intake, physical activity, anthropometry, and pubertal development of children aged 6-8 years since 2013 and follows them up annually until the age of 15 years. Fecal samples have been collected annually since 2019 and analyzed for 16S rRNA sequencing and targeted fecal metabolomics. Cox proportional hazard regression models were used to investigate the prospective association of enterotype with puberty timing and the impact of age and body mass index (BMI) sex- and age-independent standard deviation score (SDS). RESULTS 592 (32.4%) and 1234 (67.6%) children belonged to the Prevotella-rich enterotype and the Bacteroides-rich enterotype, respectively. Children with the Bacteroides-rich enterotype experienced their menarche/voice break later than those with the Prevotella enterotype (hazard ratio 0.53, 95% CI 0.28-0.98), P = .02). Moreover, this association was more pronounced among younger children with higher BMI SDS (P for interaction = .006). CONCLUSION Our findings supported a role for gut microbial communities in pubertal development, in which younger children with higher body mass seems more sensitive.
Collapse
Affiliation(s)
- Yujie Xu
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Jingyuan Xiong
- West China School of Public Health and West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, P.R. China
| | - Shufang Shan
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Xiaoyu Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Fang He
- West China School of Public Health and West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, P.R. China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| |
Collapse
|
16
|
Vega-Sagardía M, Delgado J, Ruiz-Moyano S, Garrido D. Proteomic analyses of Bacteroides ovatus and Bifidobacterium longum in xylan bidirectional culture shows sugar cross-feeding interactions. Food Res Int 2023; 170:113025. [PMID: 37316088 DOI: 10.1016/j.foodres.2023.113025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
The intestinal microbiome is a community of anaerobic microorganisms whose activities significantly impact human health. Its composition can be modulated by consuming foods rich in dietary fiber, such as xylan, a complex polysaccharide that can be considered an emerging prebiotic. In this work, we evaluated how certain gut bacteria acted as primary degraders, fermenting dietary fibers, and releasing metabolites that other bacteria can further use. Different bacterial strains of Lactobacillus, Bifidobacterium, and Bacteroides were evaluated for their ability to consume xylan and interact with one another. Results from unidirectional assays gave indications of possible cross-feeding between bacteria using xylan as a carbon source. Bidirectional assays showed that Bifidobacterium longum PT4 increased its growth in the presence of Bacteroides ovatus HM222. Proteomic analyses indicated that B. ovatus HM222 synthesizes enzymes facilitating xylan degradation, such as β-xylanase, arabinosidase, L-arabinose isomerase, and xylosidase. Interestingly, the relative abundance of these proteins remains largely unaffected in the presence of Bifidobacterium longum PT4. In the presence of B. ovatus, B. longum PT4 increased the production of enzymes such as α-L-arabinosidase, L-arabinose isomerase, xylulose kinase, xylose isomerase, and sugar transporters. These results show an example of positive interaction between bacteria mediated by xylan consumption. Bacteroides degraded this substrate to release xylooligosaccharides, or monosaccharides (xylose, arabinose), which might support the growth of secondary degraders such as B. longum.
Collapse
Affiliation(s)
- Marco Vega-Sagardía
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Josué Delgado
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, Universidad de Extremadura, Avenida de las Ciencias s/n, 10003 Caceres, Spain.
| | - Santiago Ruiz-Moyano
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile.
| |
Collapse
|
17
|
Bester A, O'Brien M, Cotter PD, Dam S, Civai C. Shotgun Metagenomic Sequencing Revealed the Prebiotic Potential of a Fruit Juice Drink with Fermentable Fibres in Healthy Humans. Foods 2023; 12:2480. [PMID: 37444219 DOI: 10.3390/foods12132480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Fibre-based dietary interventions are at the forefront of gut microbiome modulation research, with a wealth of 16S rRNA information to demonstrate the prebiotic effects of isolated fibres. However, there is a distinct lack of data relating to the effect of a combination of soluble and insoluble fibres in a convenient-to-consume fruit juice food matrix on gut microbiota structure, diversity, and function. Here, we aimed to determine the impact of the MOJU Prebiotic Shot, an apple, lemon, ginger, and raspberry fruit juice drink blend containing chicory inulin, baobab, golden kiwi, and green banana powders, on gut microbiota structure and function. Healthy adults (n = 20) were included in a randomised, double-blind, placebo-controlled, cross-over study, receiving 60 mL MOJU Prebiotic Shot or placebo (without the fibre mix) for 3 weeks with a 3-week washout period between interventions. Shotgun metagenomics revealed significant between-group differences in alpha and beta diversity. In addition, the relative abundance of the phyla Actinobacteria and Desulfobacteria was significantly increased as a result of the prebiotic intervention. Nine species were observed to be differentially abundant (uncorrected p-value of <0.05) as a result of the prebiotic treatment. Of these, Bifidobacterium adolescentis and CAG-81 sp900066785 (Lachnospiraceae) were present at increased abundance relative to baseline. Additionally, KEGG analysis showed an increased abundance in pathways associated with arginine biosynthesis and phenylacetate degradation during the prebiotic treatment. Our results show the effects of the daily consumption of 60 mL MOJU Prebiotic Shot for 3 weeks and provide insight into the functional potential of B. adolescentis.
Collapse
Affiliation(s)
- Adri Bester
- London Agri Food Innovation Clinic (LAFIC), School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| | | | | | | | - Claudia Civai
- London Agri Food Innovation Clinic (LAFIC), School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| |
Collapse
|
18
|
Sun X, Sharon O, Sharon A. Distinct Features Based on Partitioning of the Endophytic Fungi of Cereals and Other Grasses. Microbiol Spectr 2023; 11:e0061123. [PMID: 37166321 PMCID: PMC10269846 DOI: 10.1128/spectrum.00611-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
Endophytic fungi form a significant part of the plant mycobiome. Defining core members is crucial to understanding the assembly mechanism of fungal endophytic communities (FECs) and identifying functionally important community members. We conducted a meta-analysis of FECs in stems of wheat and five wild cereal species and generated a landscape of the fungal endophytic assemblages in this group of plants. The analysis revealed that several Ascomycota members and basidiomycetous yeasts formed an important compartment of the FECs in these plants. We observed a weak spatial autocorrelation at the regional scale and high intrahost variations in the FECs, suggesting a space-related heterogeneity. Accordingly, we propose that the heterogeneity among subcommunities should be a criterion to define the core endophytic members. Analysis of the subcommunities and meta-communities showed that the core and noncore members had distinct roles in various assembly processes, such as stochasticity, universal dynamics, and network characteristics, within each host. The distinct features identified between the community partitions of endophytes aid in understanding the principles that govern the assembly and function of natural communities. These findings can assist in designing synthetic microbiomes. IMPORTANCE This study proposes a novel method for diagnosing core microbiotas based on prevalence of community members in a meta-community, which could be determined and supported statistically. Using this approach, the study found stratification in community assembly processes within fungal endophyte communities (FECs) in the stems of wheat and cereal-related wild species. The core and noncore partitions of the FECs exhibited certain degrees of determinism from different aspects. Further analysis revealed abundant and consistent interactions between rare taxa, which might contribute to the determinism process in noncore partitions. Despite minor differences in FEC compositions, wheat FECs showed distinct patterns in community assembly processes compared to wild species, suggesting the effects of domestication on FECs. Overall, our study provided a new approach for identifying core microbiota and provides insights into the community assembly processes within FECs in wheat and related wild species.
Collapse
Affiliation(s)
- Xiang Sun
- School of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Or Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Amir Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
Gowen R, Gamal A, Di Martino L, McCormick TS, Ghannoum MA. Modulating the Microbiome for Crohn's Disease Treatment. Gastroenterology 2023; 164:828-840. [PMID: 36702360 PMCID: PMC10152883 DOI: 10.1053/j.gastro.2023.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023]
Abstract
The central role of the gut microbiota in the regulation of health and disease has been convincingly demonstrated. Polymicrobial interkingdom interactions between bacterial (the bacteriome) and fungal (the mycobiome) communities of the gut have become a prominent focus for development of potential therapeutic approaches. In addition to polymicrobial interactions, the complex gut ecosystem also mediates interactions between the host and the microbiota. These interactions are complex and bidirectional; microbiota composition can be influenced by host immune response, disease-specific therapeutics, antimicrobial drugs, and overall ecosystems. However, the gut microbiota also influences host immune response to a drug or therapy by potentially transforming the drug's structure and altering bioavailability, activity, or toxicity. This is especially true in cases where the gut microbiota has produced a biofilm. The negative ramifications of biofilm formation include alteration of gut permeability, enhanced antimicrobial resistance, and alteration of host immune response effectiveness. Natural modulation of the gut microbiota, using probiotic and prebiotic approaches, may also be used to affect the host microbiome, a type of "natural" modulation of the host microbiota composition. In this review, we discuss potential bidirectional interactions between microbes and host, and we describe the changes in gut microbiota induced by probiotic and prebiotic approaches as well as their potential clinical consequences, including biofilm formation. We outline a systematic approach to designing probiotics capable of altering the host microbiota in disease states, using Crohn's disease as a model chronic disease. Understanding how the effective changes in the microbiome may enhance treatment efficacy may unlock the possibility of modulating the gut microbiome to improve treatment using a natural approach.
Collapse
Affiliation(s)
- Rachael Gowen
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Ahmed Gamal
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Luca Di Martino
- University Hospitals Cleveland Medical Center, Cleveland, Ohio; Department of Medicine, Case Western Reserve University, Cleveland, Ohio; Case Digestive Health Research Institute, Case Western Reserve University, Cleveland Ohio
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Mahmoud A Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| |
Collapse
|
20
|
Fogarty EC, Schechter MS, Lolans K, Sheahan ML, Veseli I, Moore R, Kiefl E, Moody T, Rice PA, Yu MK, Mimee M, Chang EB, Mclellan SL, Willis AD, Comstock LE, Eren AM. A highly conserved and globally prevalent cryptic plasmid is among the most numerous mobile genetic elements in the human gut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534219. [PMID: 36993556 PMCID: PMC10055365 DOI: 10.1101/2023.03.25.534219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Plasmids are extrachromosomal genetic elements that often encode fitness enhancing features. However, many bacteria carry 'cryptic' plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes, and is 14 times as numerous as crAssphage, currently established as the most abundant genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales and although it does not appear to impact bacterial host fitness in vivo, can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an inexpensive alternative for detecting human colonic inflammatory states.
Collapse
Affiliation(s)
- Emily C Fogarty
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Matthew S Schechter
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Karen Lolans
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Madeline L. Sheahan
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA
| | - Iva Veseli
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Ryan Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Evan Kiefl
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Thomas Moody
- Department of Systems Biology, Columbia University, New York, NY, 10032 USA
| | - Phoebe A Rice
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry, University of Chicago, Chicago, IL, 60637, USA
| | | | - Mark Mimee
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Sandra L Mclellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Laurie E Comstock
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA
| | - A Murat Eren
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany
| |
Collapse
|
21
|
Microbiome engineering for bioremediation of emerging pollutants. Bioprocess Biosyst Eng 2023; 46:323-339. [PMID: 36029349 DOI: 10.1007/s00449-022-02777-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/12/2022] [Indexed: 11/02/2022]
Abstract
Axenic microbial applications in the open environment are unrealistic and may not be always practically viable. Therefore, it is important to use mixed microbial cultures and their interactions with the microbiome in the targeted ecosystem to perform robust functions towards their sustainability in harsh environmental conditions. Emerging pollutants like phthalates and hydrocarbons that are toxic to several aquatic and terrestrial life forms in the water bodies and lands are an alarming situation. The present review explores the possibility of devising an inclusive eco-friendly strategy like microbiome engineering which proves to be a unique and crucial technology involving the power of microbial communication through quorum sensing. This review discusses the interspecies and intra-species communications between different microbial groups with their respective environments. Moreover, this review also envisages the efforts for designing the next level of microbiome-host engineering concept (MHEC). The focus of the review also extended toward using omics and metabolic network analysis-based tools for effective microbiome engineering. These approaches might be quite helpful in the future to understand such microbial interactions but it will be challenging to implement in the real environment to get the desired functions. Finally, the review also discusses multiple approaches for the bioremediation of toxic chemicals from the soil environment.
Collapse
|
22
|
Lee KW, Shin JS, Lee CM, Han HY, O Y, Kim HW, Cho TJ. Gut-on-a-Chip for the Analysis of Bacteria-Bacteria Interactions in Gut Microbial Community: What Would Be Needed for Bacterial Co-Culture Study to Explore the Diet-Microbiota Relationship? Nutrients 2023; 15:nu15051131. [PMID: 36904133 PMCID: PMC10005057 DOI: 10.3390/nu15051131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Bacterial co-culture studies using synthetic gut microbiomes have reported novel research designs to understand the underlying role of bacterial interaction in the metabolism of dietary resources and community assembly of complex microflora. Since lab-on-a-chip mimicking the gut (hereafter "gut-on-a-chip") is one of the most advanced platforms for the simulative research regarding the correlation between host health and microbiota, the co-culture of the synthetic bacterial community in gut-on-a-chip is expected to reveal the diet-microbiota relationship. This critical review analyzed recent research on bacterial co-culture with perspectives on the ecological niche of commensals, probiotics, and pathogens to categorize the experimental approaches for diet-mediated management of gut health as the compositional and/or metabolic modulation of the microbiota and the control of pathogens. Meanwhile, the aim of previous research on bacterial culture in gut-on-a-chip has been mainly limited to the maintenance of the viability of host cells. Thus, the integration of study designs established for the co-culture of synthetic gut consortia with various nutritional resources into gut-on-a-chip is expected to reveal bacterial interspecies interactions related to specific dietary patterns. This critical review suggests novel research topics for co-culturing bacterial communities in gut-on-a-chip to realize an ideal experimental platform mimicking a complex intestinal environment.
Collapse
Affiliation(s)
- Ki Won Lee
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Jin Song Shin
- Department of Food Regulatory Science, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Chan Min Lee
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Hea Yeon Han
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Yun O
- Department of Food Regulatory Science, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Hye Won Kim
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tae Jin Cho
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
- Department of Food Regulatory Science, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
- Correspondence: ; Tel.: +82-44-860-1433
| |
Collapse
|
23
|
Hodgkinson K, El Abbar F, Dobranowski P, Manoogian J, Butcher J, Figeys D, Mack D, Stintzi A. Butyrate's role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin Nutr 2023; 42:61-75. [PMID: 36502573 DOI: 10.1016/j.clnu.2022.10.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Butyrate is a key energy source for colonocytes and is produced by the gut microbiota through fermentation of dietary fiber. Butyrate is a histone deacetylase inhibitor and also signals through three G-protein coupled receptors. It is clear that butyrate has an important role in gastrointestinal health and that butyrate levels can impact both host and microbial functions that are intimately coupled with each other. Maintaining optimal butyrate levels improves gastrointestinal health in animal models by supporting colonocyte function, decreasing inflammation, maintaining the gut barrier, and promoting a healthy microbiome. Butyrate has also shown protective actions in the context of intestinal diseases such as inflammatory bowel disease, graft-versus-host disease of the gastrointestinal tract, and colon cancer, whereas lower levels of butyrate and/or the microbes which are responsible for producing this metabolite are associated with disease and poorer health outcomes. However, clinical efforts to increase butyrate levels in humans and reverse these negative outcomes have generated mixed results. This article discusses our current understanding of the molecular mechanisms of butyrate action with a focus on the gastrointestinal system, the links between host and microbial factors, and the efforts that are currently underway to apply the knowledge gained from the bench to bedside.
Collapse
Affiliation(s)
- Kendra Hodgkinson
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Faiha El Abbar
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Peter Dobranowski
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Juliana Manoogian
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David Mack
- Department of Paediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Children's Hospital of Eastern Ontario Inflammatory Bowel Disease Centre and Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
24
|
Characterization and Spatial Mapping of the Human Gut Metasecretome. mSystems 2022; 7:e0071722. [PMID: 36468852 PMCID: PMC9765747 DOI: 10.1128/msystems.00717-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Bacterially secreted proteins play an important role in microbial physiology and ecology in many environments, including the mammalian gut. While gut microbes have been extensively studied over the past decades, little is known about the proteins that they secrete into the gastrointestinal tract. In this study, we developed and applied a computational pipeline to a comprehensive catalog of human-associated metagenome-assembled genomes in order to predict and analyze the bacterial metasecretome of the human gut, i.e., the collection of proteins secreted out of the cytoplasm by human gut bacteria. We identified the presence of large and diverse families of secreted carbohydrate-active enzymes and assessed their phylogenetic distributions across different taxonomic groups, which revealed an enrichment in Bacteroidetes and Verrucomicrobia. By mapping secreted proteins to available metagenomic data from endoscopic sampling of the human gastrointestinal tract, we specifically pinpointed regions in the upper and lower intestinal tract along the lumen and mucosa where specific glycosidases are secreted by resident microbes. The metasecretome analyzed in this study constitutes the most comprehensive list of secreted proteins produced by human gut bacteria reported to date and serves as a useful resource for the microbiome research community. IMPORTANCE Bacterially secreted proteins are necessary for the proper functioning of bacterial cells and communities. Secreted proteins provide bacterial cells with the ability to harvest resources from the exterior, import these resources into the cell, and signal to other bacteria. In the human gut microbiome, these actions impact host health and allow the maintenance of a healthy gut bacterial community. We utilized computational tools to identify the major components of human gut bacterially secreted proteins and determined their spatial distribution in the gastrointestinal tract. Our analysis of human gut bacterial secreted proteins will allow a better understanding of the impact of gut bacteria on human health and represents a step toward identifying new protein functions with interesting applications in biomedicine and industry.
Collapse
|
25
|
Functional Fermented Milk with Fruit Pulp Modulates the In Vitro Intestinal Microbiota. Foods 2022; 11:foods11244113. [PMID: 36553855 PMCID: PMC9778618 DOI: 10.3390/foods11244113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The effect of putative probiotic fermented milk (FM) with buriti pulp (FMB) or passion fruit pulp (FMPF) or without fruit pulp (FMC) on the microbiota of healthy humans was evaluated. FM formulations were administered into a simulator of the human intestinal microbial ecosystem (SHIME®) to evaluate the viability of lactic acid bacteria (LAB), microbiota composition, presence of short-chain fatty acids (SCFA), and ammonium ions. The probiotic LAB viability in FM was affected by the addition of the fruit pulp. Phocaeicola was dominant in the FMPF and FMB samples; Bifidobacterium was related to FM formulations, while Alistipes was associated with FMPF and FMB, and Lactobacillus and Lacticaseibacillus were predominant in FMC. Trabulsiella was the central element in the FMC, while Mediterraneibacter was the central one in the FMPF and FMB networks. The FM formulations increased the acetic acid, and a remarkably high amount of propionic and butyric acids were detected in the FMB treatment. All FM formulations decreased the ammonium ions compared to the control; FMPF samples stood out for having lower amounts of ammonia. The probiotic FM with fruit pulp boosted the beneficial effects on the intestinal microbiota of healthy humans in addition to increasing SCFA in SHIME® and decreasing ammonium ions, which could be related to the presence of bioactive compounds.
Collapse
|
26
|
Dynamic metabolic interactions and trophic roles of human gut microbes identified using a minimal microbiome exhibiting ecological properties. THE ISME JOURNAL 2022; 16:2144-2159. [PMID: 35717467 PMCID: PMC9381525 DOI: 10.1038/s41396-022-01255-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 11/08/2022]
Abstract
AbstractMicrobe–microbe interactions in the human gut are influenced by host-derived glycans and diet. The high complexity of the gut microbiome poses a major challenge for unraveling the metabolic interactions and trophic roles of key microbes. Synthetic minimal microbiomes provide a pragmatic approach to investigate their ecology including metabolic interactions. Here, we rationally designed a synthetic microbiome termed Mucin and Diet based Minimal Microbiome (MDb-MM) by taking into account known physiological features of 16 key bacteria. We combined 16S rRNA gene-based composition analysis, metabolite measurements and metatranscriptomics to investigate community dynamics, stability, inter-species metabolic interactions and their trophic roles. The 16 species co-existed in the in vitro gut ecosystems containing a mixture of complex substrates representing dietary fibers and mucin. The triplicate MDb-MM’s followed the Taylor’s power law and exhibited strikingly similar ecological and metabolic patterns. The MDb-MM exhibited resistance and resilience to temporal perturbations as evidenced by the abundance and metabolic end products. Microbe-specific temporal dynamics in transcriptional niche overlap and trophic interaction network explained the observed co-existence in a competitive minimal microbiome. Overall, the present study provides crucial insights into the co-existence, metabolic niches and trophic roles of key intestinal microbes in a highly dynamic and competitive in vitro ecosystem.
Collapse
|
27
|
From germ-free to wild: modulating microbiome complexity to understand mucosal immunology. Mucosal Immunol 2022; 15:1085-1094. [PMID: 36065057 DOI: 10.1038/s41385-022-00562-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 02/04/2023]
Abstract
The gut microbiota influences host responses at practically every level, and as research into host-microbe interactions expands, it is not surprising that we are uncovering similar roles for the microbiota at other barrier sites, such as the lung and skin. Using standard laboratory mice to assess host-microbe interactions, or even host intrinsic responses, can be challenging, as slight variations in the microbiota can affect experimental outcomes. When it comes to designing and selecting an appropriate level of microbial diversity and community structure for colonization of our laboratory rodents, we have more choices available to us than ever before. Here we will discuss the different approaches used to modulate microbial complexity that are available to study host-microbe interactions. We will describe how different models have been used to answer distinct biological questions, covering the entire microbial spectrum, from germ-free to wild.
Collapse
|