1
|
Wang J, Zhang Z, Wang J, Shi L, Wang S, Niu B, Tian X, Lv Q, Wei L, Li M, Liu Y. Bacillus coagulans alleviates intestinal barrier injury induced by Klebsiella pneumoniae in rabbits by regulating the TLR4/MyD88/NF-κB signalling pathway. Vet Microbiol 2025; 301:110364. [PMID: 39755051 DOI: 10.1016/j.vetmic.2024.110364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Probiotics effectively alleviate host diarrhoea, but the specific mechanism is not clear. Therefore, we explored the protective mechanism of Bacillus coagulans (BC) on intestinal barrier injury induced by Klebsiella pneumoniae (K. pneumoniae) in rabbits by HE, immunofluorescence and 16S rRNA. The results showed that BC pretreatment alleviated the changes in average daily gain, average daily feed intake and FCR caused by K. pneumoniae in rabbits. Moreover, BC alleviated the inflammatory cell infiltration, intestinal villus reduction, crypt deepening and goblet cell reduction caused by K. pneumoniae in rabbits. Further research revealed that BC improved the intestinal barrier by improving the mechanical barrier, chemical barrier, immune barrier and microbial barrier. Specifically, BC improved the intestinal mechanical barrier by improving the intestinal structure, increasing the protein expression of PCNA, increasing the number of goblet cells, and altering the expression of occludin, claudin-1 and ZO-1. BC improved the intestinal chemical barrier by regulating the expression of MUC1 and MUC2 and inhibited the TLR4/MyD88/NF-κB signalling pathway by altering the expression levels of the inflammatory factors IL-1β, IL-6 and TNF-α, thus optimizing the intestinal immune barrier. In addition, adding BC to the diet improved the intestinal microbial barrier of rabbits by reducing the abundance of harmful bacteria and increasing the abundance of beneficial bacteria. In summary, BC protects against K. pneumoniae-induced intestinal barrier damage by improving intestinal morphology, mitigating the inflammatory response and regulating the microbial composition. Among the pretreatments, the pretreatment effect of 1 × 106 CFU/g was the best. This study provides a theoretical basis for the use of BC to prevent and treat diarrhoea caused by K. pneumoniae in rabbits.
Collapse
Affiliation(s)
- Jianing Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Jiajia Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Lihui Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Shuaishuai Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Bingyu Niu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Xiaonuo Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Qiongxia Lv
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Lan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Mengyun Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| |
Collapse
|
2
|
Zhou Z, Yang M, Fang H, Niu Y, Lu J, Ma Y, Zhang B, Zhu H, Chen P. Interspecies interactions mediated by arginine metabolism enhance the stress tolerance of Fusobacterium nucleatum against Bifidobacterium animalis. Microbiol Spectr 2025:e0223524. [PMID: 39868792 DOI: 10.1128/spectrum.02235-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Colorectal cancer (CRC) is a common cancer accompanied by microbiome dysbiosis. Exploration of probiotics against oncogenic microorganisms is promising for CRC treatment. Here, differential microorganisms between CRC and healthy control were analyzed. Antibacterial experiments, whole-genome sequencing, and metabolic network reconstruction were combined to reveal the anti-Fusobacterium nucleatum mechanism, which was verified by co-culture assay and mendelian randomization analysis. Sequencing results showed that F. nucleatum was enriched in CRC, yet Bifidobacterium animalis decreased gradually from healthy to CRC. Additionally, F. nucleatum could be inhibited by B. animalis. Whole-genome sequencing of B. animalis showed high phylogenetic similarity with known probiotic strains and highlighted its functions for amino acid and carbohydrate metabolism. Metabolic network reconstruction demonstrated that cross-feeding and specific metabolites (acidic molecules, arginine) had a great influence on the coexistence relationship. Finally, the arginine supplement enhanced the competitive ability of F. nucleatum against B. animalis, and the mendelian randomization and metagenomic sequencing analysis confirmed the positive relationship among F. nucleatum, arginine metabolism, and CRC. Thus, whole-genome sequencing and metabolic network reconstruction are valuable for probiotic mining and patient dietary guidance.IMPORTANCEUsing probiotics to inhibit oncogenic microorganisms (Fusobacterium nucleatum) is promising for colorectal cancer (CRC) treatment. In this study, whole-genome sequencing and metabolic network reconstruction were combined to reveal the anti-F. nucleatum mechanism of Bifidobacterium animalis, which was verified by co-culture assay and mendelian randomization analysis. The result indicated that the arginine supplement enhanced the competitive ability of F. nucleatum, which may be harmful to F. nucleatum-infected CRC patients. B. animalis is a potential probiotic to relieve this dilemma. Thus, using in silico simulation methods based on flux balance analysis, such as genome-scale metabolic reconstruction, provides valuable insights for probiotic mining and dietary guidance for cancer patients.
Collapse
Affiliation(s)
- Zhongkun Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Mengyue Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hong Fang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yuqing Niu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Juan Lu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yunhao Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Baizhuo Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hongmei Zhu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Xu Q, Wang W, Li Y, Cui J, Zhu M, Liu Y, Liu Y. The oral-gut microbiota axis: a link in cardiometabolic diseases. NPJ Biofilms Microbiomes 2025; 11:11. [PMID: 39794340 PMCID: PMC11723975 DOI: 10.1038/s41522-025-00646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
The oral-gut microbiota axis plays a crucial role in cardiometabolic health. This review explores the interactions between these microbiomes through enteric, hematogenous, and immune pathways, resulting in disruptions in microbial balance and metabolic processes. These disruptions contribute to systemic inflammation, metabolic disorders, and endothelial dysfunction, which are closely associated with cardiometabolic diseases. Understanding these interactions provides insights for innovative therapeutic strategies to prevent and manage cardiometabolic diseases.
Collapse
Affiliation(s)
- Qian Xu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Wenting Wang
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Yiwen Li
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Jing Cui
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Yanfei Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
- The Second Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
- Key Laboratory of Disease and Syndrome Integration Prevention and Treatment of Vascular Aging, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China.
- Key Laboratory of Disease and Syndrome Integration Prevention and Treatment of Vascular Aging, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China.
| |
Collapse
|
4
|
Oh S, Kim J, Shin CM, Lee HJ, Lee HS, Park KU. Metagenomic characterization of oral microbiome signatures to predict upper gastrointestinal and pancreaticobiliary cancers: a case-control study. J Transl Med 2025; 23:20. [PMID: 39762979 PMCID: PMC11702046 DOI: 10.1186/s12967-024-05989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND This study investigated the oral microbiome signatures associated with upper gastrointestinal (GI) and pancreaticobiliary cancers. METHODS Saliva samples from cancer patients and age- and sex-matched healthy controls were analyzed using 16S rRNA-targeted sequencing, followed by comprehensive bioinformatics analysis. RESULTS Significant dissimilarities in microbial composition were observed between cancer patients and controls across esophageal cancer (EC), gastric cancer (GC), biliary tract cancer (BC), and pancreatic cancer (PC) groups (R2 = 0.067, = 0.075, = 0.068, and = 0.044; p = 0.001, = 0.001, = 0.002, and = 0.004, respectively). Additionally, the oral microbiome composition significantly differed by the four cancer sites (p = 0.001 for EC vs. GC, EC vs. BC, EC vs. PC, GC vs. BC, and GC vs. PC; p = 0.013 for BC vs. PC). We built oral metagenomic classifiers to predict cancer and selected specific microbial taxa with diagnostic properties. For EC, the classifier differentiated cancer patients and controls with good accuracy (area under the curve [AUC] = 0.791) and included three genera: Akkermansia, Escherichia-Shigella, and Subdoligranulum. For GC, the classifier exhibited high discriminative power (AUC = 0.961); it included five genera (Escherichia-Shigella, Gemella, Holdemanella, Actinomyces, and Stomatobaculum) and three species (Eubacterium sp. oral clone EI074, Ruminococcus sp. Marseille-P328, and Leptotrichia wadei F0279). However, microbial taxa with diagnostic features for BC and PC were not identified. CONCLUSIONS These findings suggested that the oral microbiome composition may serve as an indicator of tumorigenesis in upper GI and pancreaticobiliary cancers. The development of oral metagenomic classifiers for EC and GC demonstrates the potential value of microbial biomarkers in cancer screening.
Collapse
Affiliation(s)
- Sujin Oh
- Department of Laboratory Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jaihwan Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103, Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| |
Collapse
|
5
|
Xiao Y, Zhao Q, Ni D, Zhang X, Hao W, Yuan Q, Xu W, Mu W, Wu D, Wu X, Wang S. Polymerization of dietary fructans differentially affects interactions among intestinal microbiota of colitis mice. THE ISME JOURNAL 2025; 19:wrae262. [PMID: 39745882 PMCID: PMC11742283 DOI: 10.1093/ismejo/wrae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/27/2024] [Accepted: 12/31/2024] [Indexed: 01/04/2025]
Abstract
The intestinal microbiota plays a critical role in maintaining human health and can be modulated by dietary interventions and lifestyle choices. Fructans, a dietary carbohydrate, are selectively utilized by the intestinal microbiota to confer health benefits. However, the specific effects of different fructan types on microbial changes and functions remain incompletely understood. Here, we investigated how the intestinal microbiota responds to fructans with varying degrees of polymerization in the context of gut dysbiosis. Both low molecular weight fructo-oligosaccharides and high molecular weight levan suppressed intestinal inflammation in a colitis mouse model, mitigating intestinal fibrosis and dysbiosis. Although both the effects of fructo-oligosaccharides and levan are microbiota-dependent, distinct modulation patterns of the intestinal microbiota were observed based on the molecular weight of the fructans. Levan had a more pronounced and persistent impact on gut microbiota compared to fructo-oligosaccharides. Levan particularly promoted the abundance of Dubosiella newyorkensis, which exhibited preventive effects against colitis. Our findings highlight the importance of polymerization levels of dietary fructans in microbiota alterations and identify Dubosiella newyorkensis as a potential probiotic for treating inflammatory diseases.
Collapse
Affiliation(s)
- Yaqin Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Qianyun Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Southwest Medical University, Xianglin Road, Longmatan District, Luzhou, Sichuan 646000, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Xiaoqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Wei Hao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Qin Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengluo Avenue, Chengdu, Sichuan 616106, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Southwest Medical University, Xianglin Road, Longmatan District, Luzhou, Sichuan 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| |
Collapse
|
6
|
Li Z, Fan X, Liu Y, Yue M, Wu T, Wang X, Jiang W, Fan K. Engineering Mild-Photothermal Responsive and NO Donor Prussian Blue Nanozymes Using Mild Synthesis for Inflammation Regulation and Bacterial Eradication in Periodontal Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409840. [PMID: 39690880 DOI: 10.1002/adma.202409840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Periodontitis, an infectious disease of periodontal tissues caused by oral bacterial biofilms, is characterized by reactive oxygen species (ROS) accumulation and immune microenvironment imbalance. Multifunctional nanozymes, leveraging their physiochemical properties and enzymatic activities, offer promising antibacterial and anti-inflammatory strategies for managing periodontitis. In particular, Prussian blue nanozymes (PBzymes) exhibit exceptional ROS control due to their robust catalytic activity, diverse antioxidant functions, and high biocompatibility. However, the practical application of traditional high-temperature synthesis methods is limited. This study introduces a class of metal-engineered PBzymes synthesized at room temperature, identified for their potent antioxidative activity and excellent photothermal performance at mild temperatures. Nitric oxide (NO) gas therapy offers promising strategies for targeting deep infections in periodontal tissues. Thus, sodium nitroprusside is introduced into PBzyme to create SPBzyme via an in situ loading method. NO release by SPBzyme enhances antibacterial effects and overcomes resistance linked to bacterial biofilms, resulting in mild-photothermal antibacterial properties and synergistic antioxidant effects. In vitro antibacterial assays demonstrate the superior efficacy of SPBzyme under mild temperature conditions and near-infrared light exposure. Furthermore, SPBzyme effectively reduces inflammation and has positive therapeutic effects in periodontal animal models. Overall, mild-temperature photothermal NO release nanozyme therapy represents a novel approach for treating periodontitis.
Collapse
Affiliation(s)
- Zheng Li
- Department of Prosthodontics, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, Haidian District, 100081, P. R. China
| | - Xiaowan Fan
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, P. R. China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, P. R. China
| | - Ying Liu
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Muxin Yue
- Institute of Medical Technology, Peking University Health Science Center, 38 Xueyuan Road, Beijing, Haidian District, 100191, P. R. China
| | - Tingting Wu
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, P. R. China
| | - Wei Jiang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, P. R. China
| |
Collapse
|
7
|
Liu Y, Fang B, Wuri G, Lan H, Wang R, Sun Y, Zhao W, Hung WL, Zhang M. From Biofilm to Breath: The Role of Lacticaseibacillus paracasei ET-22 Postbiotics in Combating Oral Malodor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27203-27214. [PMID: 39589428 DOI: 10.1021/acs.jafc.4c07381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Previous studies demonstrated that sufferers with halitosis can be significantly improved with Lacticaseibacillus paracasei ET-22 (ET-22) postbiotics intervention. The objectives of this investigation were to identify the primary components responsible for inhibiting oral malodor. This study demonstrated that cell-free supernatants (CFSs) were more effective in inhibiting production of volatile sulfur compounds (VSCs). Untargeted metabolomics identified CFSs as primarily consisting of organic acids, lipids, peptides, and nucleotides. Among the potential active components, phenyllactic acid (PLA) and peptide GP(Hyp)GAG significantly inhibited microbial-induced VSCs production, with VSC concentrations reduced by 42.7% and 44.6%, respectively. Given the correlation between biofilms and halitosis, microstructural changes in biofilms were examined. PLA suppressed the biomass of the biofilm by 41.7%, while the biofilm thickness was reduced from 202.3 to 70.0 μm. GP(Hyp)GAG intervention reduced the abundance of Fusobacterium nucleatum and Streptococcus mutans within the biofilm, and the expression of biofilm-forming genes FadA and Gtfb were also suppressed by 41.8% and 59.4%. Additionally, the VSC production capacities were reduced due to the decrease in VSC producing bacteria (F. nucleatum, Prevotella intermedia, and Solobacterium moorei) and down-regulation of Cdl and Mgl genes. Collectively, the current study proved that PLA and GP(Hyp)GAG may be the main contributors to halitosis inhibition by ET-22 postbiotics.
Collapse
Affiliation(s)
- Yue Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Guna Wuri
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China
| | - Hanglian Lan
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010100, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yuhang Sun
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China
| | - Wen Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Wei-Lian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010100, China
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010100, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China
| |
Collapse
|
8
|
Murray PE, Coffman JA, Garcia-Godoy F. Oral Pathogens' Substantial Burden on Cancer, Cardiovascular Diseases, Alzheimer's, Diabetes, and Other Systemic Diseases: A Public Health Crisis-A Comprehensive Review. Pathogens 2024; 13:1084. [PMID: 39770344 PMCID: PMC11677847 DOI: 10.3390/pathogens13121084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
This review synthesizes the findings from 252 studies to explore the relationship between the oral pathogens associated with periodontitis, dental caries, and systemic diseases. Individuals with oral diseases, such as periodontitis, are between 1.7 and 7.5 times (average 3.3 times) more likely to develop systemic diseases or suffer adverse pregnancy outcomes, underscoring the critical connection between dental and overall health. Oral conditions such as periodontitis and dental caries represent a significant health burden, affecting 26-47% of Americans. The most important oral pathogens, ranked by publication frequency, include the herpes virus, C. albicans, S. mutans, P. gingivalis, F. nucleatum, A. actinomycetemcomitans, P. intermedia, T. denticola, and T. forsythia. The systemic diseases and disorders linked to oral infections, ranked similarly, include cancer, respiratory, liver, bowel, fever, kidney, complications in pregnancy, cardiovascular bacteremia, diabetes, arthritis, autoimmune, bladder, dementia, lupus, and Alzheimer's diseases. Evidence supports the efficacy of dental and periodontal treatments in eliminating oral infections and reducing the severity of systemic diseases. The substantial burden that oral pathogens have on cancer, cardiovascular diseases, Alzheimer's, diabetes, and other systemic diseases poses a significant public health crisis.
Collapse
Affiliation(s)
| | - Jonathan A Coffman
- College of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, USA
| | - Franklin Garcia-Godoy
- College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
9
|
Zhang L, Zhang D, Liu C, Tang B, Cui Y, Guo D, Duan M, Tu Y, Zheng H, Ning X, Liu Y, Chen H, Huang M, Niu Z, Zhao Y, Liu X, Xie J. Outer Membrane Vesicles Derived From Fusobacterium nucleatum Trigger Periodontitis Through Host Overimmunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400882. [PMID: 39475060 DOI: 10.1002/advs.202400882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/11/2024] [Indexed: 12/19/2024]
Abstract
The virulent bacteria-induced host immune response dominates the occurrence and progression of periodontal diseases because of the roles of individual virulence factors from these pathogens in the initiation and spread of inflammation. Outer membrane vesicles (OMVs) as a pathogenic entity have recently attracted great attention as messenger bridges between bacteria and host tissues. Herein, the novel role of OMVs derived from Fusobacterium nucleatum in the occurrence of periodontitis is dissected. In a rat periodontitis model, it is found that OMVs derived from F. nucleatum caused deterioration of periodontitis by enhancing inflammation of the periodontium and absorption of alveolar bone, which is almost equivalent to the effect of F. nucleatum itself. Furthermore, that OMVs can independently induce periodontitis is shown. The pathogenicity of OMVs is attributed to multiple pathogenic components identified by omics. After entering human periodontal ligament stem cells (hPDLSCs) by endocytosis, OMVs activated NLRP3 inflammasomes and impaired the mineralization of hPDLSCs through NF-κB (p65) signaling, leading to the final injury of the periodontium and damage of alveolar bone in periodontitis. These results provide a new understanding of OMVs derived from pathogens and cues for the prevention of periodontitis.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Daimo Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ying Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huiling Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xinjie Ning
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haoran Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Minglei Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhixing Niu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanfang Zhao
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama Birmingham, Birmingham, 35233, USA
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
10
|
Li D, Li Z, Wang L, Zhang Y, Ning S. Oral inoculation of Fusobacterium nucleatum exacerbates ulcerative colitis via the secretion of virulence adhesin FadA. Virulence 2024; 15:2399217. [PMID: 39221673 PMCID: PMC11385161 DOI: 10.1080/21505594.2024.2399217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Fusobacterium nucleatum (F. nucleatum), an anaerobic resident of the oral cavity, is increasingly recognized as a contributing factor to ulcerative colitis (UC). The adhesive properties of F. nucleatum are mediated by its key virulence protein, FadA adhesin. However, further investigations are needed to understand the pathogenic mechanisms of this oral pathogen in UC. The present study aimed to explore the role of the FadA adhesin in the colonization and invasion of oral F. nucleatum in dextran sulphate sodium (DSS)-induced colitis mice via molecular techniques. In this study, we found that oral inoculation of F. nucleatum strain carrying the FadA adhesin further exacerbated DSS-induced colitis, leading to elevated alveolar bone loss, disease severity, and mortality. Additionally, CDH1 gene knockout mice treated with DSS presented increases in body weight and alveolar bone density, as well as a reduction in disease severity. Furthermore, FadA adhesin adhered to its mucosal receptor E-cadherin, leading to the phosphorylation of β-catenin and the degradation of IκBα, the activation of the NF-κB signalling pathway and the upregulation of downstream cytokines. In conclusion, this research revealed that oral inoculation with F. nucleatum facilitates experimental colitis via the secretion of the virulence adhesin FadA. Targeting the oral pathogen F. nucleatum and its virulence factor FadA may represent a promising therapeutic approach for a portion of UC patients.
Collapse
Affiliation(s)
- Donghao Li
- Department of Gastroenterology, Air Force Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Zongwei Li
- Department of Gastroenterology, Air Force Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Lei Wang
- Department of Gastroenterology, Air Force Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Yan Zhang
- Department of Gastroenterology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shoubin Ning
- Department of Gastroenterology, Air Force Medical Center of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
11
|
Zhao W, Ji L, Li J, Liu D, Yan C, Zhang C, Wang X, Liu Y, Zheng S. Mesaconate from Bacillus subtilis R0179 Supernatant Attenuates Periodontitis by Inhibiting Porphyromonas gingivalis in Mice. J Periodontal Res 2024. [PMID: 39560450 DOI: 10.1111/jre.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
AIMS This research sought to assess the efficacy of Bacillus subtilis (B. subtilis) R0179 and explore potential metabolites in mitigating experimental periodontitis in mice induced by Porphyromonas gingivalis (P. gingivalis) ATCC 33277. METHODS B. subtilis R0179 was administered to 8-week-old male C57BL/6J mice with periodontitis. Oral load of P. gingivalis ATCC 33277 and periodontal tissue loss were quantified. The cell-free supernatant (CFS) was separated to assess its anti-P. gingivalis effect. Proteomic and metabolomic analyses identified potential antibacterial components in the CFS, further evaluated for anti-P. gingivalis effects. RESULTS B. subtilis R0179 significantly reduced P. gingivalis ATCC 33277 levels and mitigated periodontal tissue loss in mice. The CFS, rather than inactivated B. subtilis R0179 cells, exhibited antibacterial activity. Proteomic and metabolomic analyses identified mesaconate and citraconate as key antibacterial agents. Disk diffusion assays confirmed the efficacy of mesaconate against P. gingivalis, while citraconate had no effect. Mesaconate showed a dose-dependent reduction in P. gingivalis ATCC 33277 population and periodontal tissue loss in mice. CONCLUSION These findings highlight B. subtilis R0179 and its metabolite mesaconate as promising candidates for therapeutic development against periodontitis by inhibiting P. gingivalis ATCC 33277 effectively.
Collapse
Affiliation(s)
- Weiwei Zhao
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Lingli Ji
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Jie Li
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Dandan Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Changqing Yan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Chenying Zhang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Xiaozhe Wang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Yang Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| |
Collapse
|
12
|
Wang Z, Li B, Bao L, Chen Y, Yang J, Xu F, Shi S, Chen W, Wang B, Liu Y. Fusobacterium Nucleatum Aggravates Intestinal Barrier Impairment and Colitis Through IL-8 Induced Neutrophil Chemotaxis by Activating Epithelial Cells. J Inflamm Res 2024; 17:8407-8420. [PMID: 39534061 PMCID: PMC11556331 DOI: 10.2147/jir.s470376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) is affected by interactions between intestinal microbial factors, abnormal inflammation, and an impaired intestinal mucosal barrier. Neutrophils (NE) are key players in IBD. Fusobacterium nucleatum (F. nucleatum) is reported to contribute to IBD progression. However, the relationship between F. nucleatum, abnormal inflammation, and intestinal barrier impairment should be interpreted to understand the role of F. nucleatum in IBD. Methods Dextran sulfate sodium (DSS)-induced colitis model was established and mice were orally administered with F. nucleatum. F. nucleatum colonization was confirmed by fluorescence in situ hybridization (FISH) and PCR. Intestinal barrier impairment was investigated by tight junction protein expression. Immuno-histochemistry (IHC) for Ly6G and flow cytometry detection to measure NE chemotaxis in mouse colon tissues. Caco-2 monolayers were used to evaluate epithelial integrity and permeability in vitro. A transwell model involving caco-2 cells and NE co-culture was used to assess NE chemotaxis. NE chemokines were measured by ELISA. A mouse model of NE exhaustion using an anti-Ly6G antibody was used to identify the role of NEs in F. nucleatum-induced colitis. Transcriptome sequencing and bioinformatics analysis were applied to screen cytokines and signaling pathways. Results Administration of F. nucleatum aggravated colitis in the DSS model. F. nucleatum infection downregulates ZO-1 and Occludin expression and increases intestinal permeability. Additionally, F. nucleatum-induced NE chemotaxis decreases the integrity and permeability of the caco-2 monolayer. F. nucleatum-induced NE chemotaxis is dependent on IEC-derived interleukin 8 (IL-8) secretion, mediated by the TLR2/ERK signaling pathway. In addition, NE exhaustion in mice inhibited F. nucleatum-induced intestinal barrier impairment and colitis. Conclusion F. nucleatum improves NE chemotaxis by infecting intestinal epithelial cells (IECs) to secrete IL-8 and aggravate intestinal barrier impairment, contributing to the progression of intestinal inflammation. Examining and eliminating F. nucleatum could be a valuable microbiome-based method for IBD surveillance and prevention.
Collapse
Affiliation(s)
- Zhiyue Wang
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo No.2 hospital, Ningbo, People’s Republic of China
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo No.2 hospital, Ningbo, People’s Republic of China
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
| | - Liqing Bao
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo No.2 hospital, Ningbo, People’s Republic of China
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
- Department of Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, People’s Republic of China
| | - Yu Chen
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo No.2 hospital, Ningbo, People’s Republic of China
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
| | - Jinhua Yang
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo No.2 hospital, Ningbo, People’s Republic of China
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
| | - Fangqi Xu
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo No.2 hospital, Ningbo, People’s Republic of China
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
- Department of Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, People’s Republic of China
| | - Shang Shi
- Department of Breast Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, People’s Republic of China
| | - Wanlu Chen
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
- Department of Neurosurgery, Ningbo No.2 hospital, Ningbo, People’s Republic of China
| | - Boding Wang
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
- Department of Neurosurgery, Ningbo No.2 hospital, Ningbo, People’s Republic of China
| | - Yang Liu
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo No.2 hospital, Ningbo, People’s Republic of China
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
| |
Collapse
|
13
|
Raudenská M, Bugajová M, Kalfeřt D, Plzák J, Šubrt A, Tesařová P, Masařík M. The interplay between microbiome and host factors in pathogenesis and therapy of head and neck cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189216. [PMID: 39542383 DOI: 10.1016/j.bbcan.2024.189216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Heterogeneous cancers that lack strong driver mutations with high penetrance, such as head and neck squamous cell carcinoma (HNSCC), present unique challenges to understanding their aetiology due to the complex interactions between genetics and environmental factors. The interplay between lifestyle factors (such as poor oral hygiene, smoking, or alcohol consumption), the oral and gut microbiome, and host genetics appears particularly important in the context of HNSCC. The complex interplay between the gut microbiota and cancer treatment outcomes has also received increasing attention in recent years. This review article describes the bidirectional communication between the host and the oral/gut microbiome, focusing on microbiome-derived metabolites and their impact on systemic immune responses and the modulation of the tumour microenvironment. In addition, we review the role of host lifestyle factors in shaping the composition of the oral/gut microbiota and its impact on cancer progression and therapy. Overall, this review highlights the rationality of considering the oral/gut microbiota as a critical determinant of cancer therapy outcomes and points to therapeutic opportunities offered by targeting the oral/gut microbiota in the management of HNSCC.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, 62500 Brno, Czech Republic
| | - Maria Bugajová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - David Kalfeřt
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Motol, First Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Jan Plzák
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Motol, First Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Adam Šubrt
- Department of Oncology, Institute of Radiation Oncology, First Faculty of Medicine, Charles University and Bulovka University Hospital, Prague, Czech Republic
| | - Petra Tesařová
- Department of Oncology, Institute of Radiation Oncology, First Faculty of Medicine, Charles University and Bulovka University Hospital, Prague, Czech Republic
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Institute of Pathophysiology, First Faculty of Medicine, Charles University, U Nemocnice 5, CZ-128 53 Prague, Czech Republic.
| |
Collapse
|
14
|
Catalan EA, Seguel-Fuentes E, Fuentes B, Aranguiz-Varela F, Castillo-Godoy DP, Rivera-Asin E, Bocaz E, Fuentes JA, Bravo D, Schinnerling K, Melo-Gonzalez F. Oral Pathobiont-Derived Outer Membrane Vesicles in the Oral-Gut Axis. Int J Mol Sci 2024; 25:11141. [PMID: 39456922 PMCID: PMC11508520 DOI: 10.3390/ijms252011141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Oral pathobionts are essential in instigating local inflammation within the oral cavity and contribute to the pathogenesis of diseases in the gastrointestinal tract and other distant organs. Among the Gram-negative pathobionts, Porphyromonas gingivalis and Fusobacterium nucleatum emerge as critical drivers of periodontitis, exerting their influence not only locally but also as inducers of gut dysbiosis, intestinal disturbances, and systemic ailments. This dual impact is facilitated by their ectopic colonization of the intestinal mucosa and the subsequent mediation of distal systemic effects by releasing outer membrane vesicles (OMVs) into circulation. This review elucidates the principal components of oral pathobiont-derived OMVs implicated in disease pathogenesis within the oral-gut axis, detailing virulence factors that OMVs carry and their interactions with host epithelial and immune cells, both in vitro and in vivo. Additionally, we shed light on the less acknowledged interplay between oral pathobionts and the gut commensal Akkermansia muciniphila, which can directly impede oral pathobionts' growth and modulate bacterial gene expression. Notably, OMVs derived from A. muciniphila emerge as promoters of anti-inflammatory effects within the gastrointestinal and distant tissues. Consequently, we explore the potential of A. muciniphila-derived OMVs to interact with oral pathobionts and prevent disease in the oral-gut axis.
Collapse
Affiliation(s)
- Eduardo A. Catalan
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Emilio Seguel-Fuentes
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Brandon Fuentes
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Felipe Aranguiz-Varela
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Daniela P. Castillo-Godoy
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Elizabeth Rivera-Asin
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Elisa Bocaz
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile;
| | - Denisse Bravo
- Cellular Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile;
| | - Katina Schinnerling
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Felipe Melo-Gonzalez
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| |
Collapse
|
15
|
Chen J, Hu C, Lu X, Yang X, Zhu M, Ma X, Yang Y. ALDH2 alleviates inflammation and facilitates osteogenic differentiation of periodontal ligament stem cells in periodontitis by blocking ferroptosis via activating Nrf2. Funct Integr Genomics 2024; 24:184. [PMID: 39370484 DOI: 10.1007/s10142-024-01465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
This paper elucidated the effects and mechanisms of aldehyde dehydrogenase 2 (ALDH2) on periodontitis. Rat model of periodontitis and periodontal ligament stem cell (PDLSC) model of periodontitis were constructed. PDLSC were transfected by ALDH2 overexpression vectors, and then treated by ML385 (Nrf2 inhibitor), ferrostatin-1 (ferroptosis inhibitor) and FIN56 (ferroptosis inducer), respectively. ALDH2, nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase 4 (GPX4) proteins was evaluated by immunohistochemistry and Western blot. Ferroptosis-related factors, including Fe2+ and glutathione (GSH), were assessed by commercial kits. Pro-inflammatory factors (interleukin-6 [IL-6] and tumor necrosis factor-α [TNF-α]) and osteogenic differentiation-related proteins (osteocalcin [OCN] and runt-related transcription factor 2 [RUNX2]) were scrutinized by commercial kits and Western blot. In both periodontal tissues of periodontitis rats and PDLSC model of periodontitis, down-regulated ALDH2, Nrf2, GPX4 and GSH, but elevated Fe2+ level was discovered. ALDH2 overexpression in PDLSC resulted in an increase in Nrf2 expression. In PDLSC model of periodontitis, ALDH2 increased GPX4 and GSH levels, decreased Fe2+, IL-6 and TNF-α levels, and elevated OCN and RUNX2 expression. However, these effects of ALDH2 were counteracted by ML385. Additionally, the suppression of ALDH2 on IL-6 and TNF-α levels and promotion of it on OCN and RUNX2 expression in PDLSC model of periodontitis was further intensified by ferrostatin-1, but reversed by FIN56. ALDH2 may alleviate inflammation and facilitate osteogenic differentiation of PDLSC in periodontitis by hindering ferroptosis via activating Nrf2, suggesting it to be a promising candidate for treating periodontitis.
Collapse
Affiliation(s)
- Jia Chen
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Chen Hu
- Department of Oral and Maxillofacial Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xun Lu
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Xiaoqin Yang
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Meng Zhu
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Xiaozhou Ma
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Yiqiang Yang
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
16
|
Chen Y, Hao Y, Chen J, Han Q, Wang Z, Peng X, Cheng L. Lacticaseibacillus rhamnosus inhibits the development of dental caries in rat caries model and in vitro. J Dent 2024; 149:105278. [PMID: 39111536 DOI: 10.1016/j.jdent.2024.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
OBJECTIVES Dental caries result from a microbial imbalance in the oral cavity. Probiotics ecologically modulate the oral microflora to prevent caries. This study evaluated the anti-cariogenic effects of two Lacticaseibacillus rhamnosus strains in vitro and in vivo to provide a more theoretical basis for its clinical applications in caries prevention. METHODS In the study, cariogenic biofilms were grown with L. rhamnosus (LGG) or L. rhamnosus ATCC 7469 and analyzed. Quantitative real-time PCR (qPCR), Scanning Electron Microscope (SEM), and Confocal laser scanning microscope (CLSM) were used to detect the changes in the composition and architectures; cariogenic activity was measured by the lactic acid production and Transverse Microradiography (TMR). The effects of LGG on the 12 Sprague-Dawley rat caries model were assessed using Keyes scores and micro-CT analysis. Oral microbiome changes were evaluated through 16S rRNA gene high-throughput sequencing. RESULTS L. rhamnosus can reduce cariogenic bacteria in biofilm by 14.7 % to 48.9 %, with LGG exhibiting more potent inhibitory effects. Both strains of L. rhamnosus can adhere to the surface of biofilms, reduce the extracellular polysaccharides (EPS) matrix, and loosen the biofilm structure. L. rhamnosus inhibited cariogenic activity by reducing the lactic acid production in biofilms. The bovine enamel blocks presented lower mineral loss values and lesion depth values in the group Core+L.rh and Core+LGG. LGG-ingested rats had significantly lower levels of moderate dentin lesions and higher mineral density than the control group. The 16 s rRNA gene sequencing revealed that LGG regulated the beta diversity of the oral microbial community in the rat dental caries model. CONCLUSIONS This study revealed the promising potential of L. rhamnosus, especially the LGG strain, in the ecological prevention of dental caries. CLINICAL SIGNIFICANCE Probiotics may provide a strategy for preventing caries by regulating the oral microecological balance. The study revealed the promising anti-caries potential of the LGG probiotic strain in vivo and in vitro. It is expected that LGG could be used as an oral probiotic for the clinical prevention and treatment of caries.
Collapse
Affiliation(s)
- Yanyan Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Stomatology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yu Hao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qi Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zheng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
17
|
Sahin S, Gundogdu A, Nalbantoglu U, Karaca Z, Hacioglu A, Urhan ME, Unluhizarci K, Hora M, Tanrıverdi ES, Durcan E, Elbüken G, Dokmetas HS, Zuhur SS, Tanriover N, Türe U, Kelestimur F, Kadioglu P. The comprehensive evaluation of oral and fecal microbiota in patients with acromegaly. Pituitary 2024; 27:555-566. [PMID: 39158810 DOI: 10.1007/s11102-024-01444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE The alteration of the microbiota in the mouth and gut could potentially play a role in the pathogenesis of various diseases, and conversely, these diseases may have an influence on the composition of the gut microbiota. Acromegaly disease can potentially affect physiological processes in the mouth and gut. The present study was designed to investigate the relationship between acromegaly and the oral and gut microbiota, as data on this topic are scarce. METHODS This was a multicenter, cross-sectional study. Our study included individuals diagnosed with acromegaly (who were treated and followed up, and also as an another group of patients with newly diagnosed acromegaly) and healthy participants. All three groups were assessed and compared based on age, sex, serum IGF-1, body mass index BMI as well as their stool and oral microbiota We collected demographic information from the patients, collected fecal and oral samples, performed DNA isolation followed by 16 S rRNA sequencing, and then performed bioinformatic analysis. We also analyzed the oral and fecal samples with respect to medical and surgical treatment and disease control status, specific treatments received for acromegaly, presence of comorbidities, hypopituitarism status, presence of intestinal polyps. RESULTS One hundred and three patients with acromegaly, 15 newly diagnosed patients with acromegaly without comorbidities and 34 healthy controls were included in the study. The Firmicutes/Bacteroidetes ratio was significantly lower in patients with acromegaly who received treatment (medical and/or surgical) than in healthy controls. In addition, a significant difference was found in the fecal and oral microbiota of patients with acromegaly with disease control compared to healthy controls. Furthermore, a significant difference was found in the fecal and oral microbiota of patients with acromegaly without disease control. Nevertheless, it was not possible to establish a clear relationship between disease control status, the presence of intestinal polyps, the presence of type 2 diabetes and the composition of the oral and gut microbiota in acromegalic patients who had received different forms of treatment. CONCLUSION Patients with acromegaly show distinct gut microbiota profiles, and it is evident that factors beyond the GH/IGF-1 axis play a role in shaping the gut microbiota of individuals with acromegaly.
Collapse
Affiliation(s)
- Serdar Sahin
- Department of Endocrinology and Metabolic Diseases, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Aycan Gundogdu
- Department of Microbiology and Clinical Microbiology, School of Medicine, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GenKok), Erciyes University, Kayseri, Turkey
| | - Ufuk Nalbantoglu
- Genome and Stem Cell Center (GenKok), Erciyes University, Kayseri, Turkey
- Department of Computer Engineering, Erciyes University, Kayseri, Turkey
| | - Zuleyha Karaca
- Department of Endocrinology and Metabolic Diseases, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Aysa Hacioglu
- Department of Endocrinology and Metabolic Diseases, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Muhammed Emre Urhan
- Department of Endocrinology and Metabolic Diseases, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Kursad Unluhizarci
- Department of Endocrinology and Metabolic Diseases, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Hora
- Genome and Stem Cell Center (GenKok), Erciyes University, Kayseri, Turkey
| | - Elif Seren Tanrıverdi
- Medical Microbiology Laboratory, Malatya Training and Research Hospital, Malatya, Turkey
| | - Emre Durcan
- Department of Endocrinology and Metabolic Diseases, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gülsah Elbüken
- Department of Endocrinology and Metabolic Diseases, School of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Hatice Sebile Dokmetas
- Department of Endocrinology and Metabolic Diseases, University of Health Sciences, Cemil Tascıoğlu City Hospital, Istanbul, Turkey
| | - Sayid Shafi Zuhur
- Department of Endocrinology and Metabolic Diseases, School of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Necmettin Tanriover
- Department of Neurosurgery, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ugur Türe
- Department of Neurosurgery, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology and Metabolic Diseases, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Pinar Kadioglu
- Department of Endocrinology and Metabolic Diseases, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
- Cerrahpasa Medical Faculty, Department of Internal Medicine, Division of Endocrinology-Metabolism and Diabetes, Istanbul University - Cerrahpasa, Kocamustafapasa Street No:53, Fatih, Istanbul, 34098, Turkey.
| |
Collapse
|
18
|
Anderson MH, Ait-Aissa K, Sahyoun AM, Abidi AH, Kassan M. Akkermansia muciniphila as a Potential Guardian against Oral Health Diseases: A Narrative Review. Nutrients 2024; 16:3075. [PMID: 39339675 PMCID: PMC11434887 DOI: 10.3390/nu16183075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The oral microbiome is a diverse ecosystem containing a community of symbiotic, commensal, and pathogenic microorganisms. One key microorganism linked to periodontal disease (PD) is Porphyromonas gingivalis (P. gingivalis), a Gram-negative anaerobic bacterium known to have several virulence factors that trigger inflammation and immune evasion. On the other hand, Akkermansia muciniphila (A. muciniphila), a symbiotic bacterium, has been recently shown to play an important role in mitigating inflammation and reducing periodontal damage. In vivo and in vitro studies have shown that A. muciniphila decreases inflammatory mediators and improves immune responses, suggesting its role in mitigating PD and related inflammatory systemic conditions such as diabetes, hypertension, and obesity. This review discusses the anti-inflammatory effects of A. muciniphila, its impact on periodontal health, and its potential role in managing systemic diseases. The overall aim is to elucidate how this bacterium might help reduce inflammation, improve oral health, and influence broader health outcomes.
Collapse
Affiliation(s)
- Molly H Anderson
- College of Dental Medicine, Lincoln Memorial University, LMU Tower, 1705 St. Mary Street, Knoxville, TN 37917, USA
| | - Karima Ait-Aissa
- College of Dental Medicine, Lincoln Memorial University, LMU Tower, 1705 St. Mary Street, Knoxville, TN 37917, USA
| | - Amal M Sahyoun
- College of Dental Medicine, Lincoln Memorial University, LMU Tower, 1705 St. Mary Street, Knoxville, TN 37917, USA
| | - Ammaar H Abidi
- College of Dental Medicine, Lincoln Memorial University, LMU Tower, 1705 St. Mary Street, Knoxville, TN 37917, USA
| | - Modar Kassan
- College of Dental Medicine, Lincoln Memorial University, LMU Tower, 1705 St. Mary Street, Knoxville, TN 37917, USA
| |
Collapse
|
19
|
Yakar N, Unlu O, Cen L, Hasturk H, Chen T, Shi W, He X, Kantarci A. Targeted elimination of Fusobacterium nucleatum alleviates periodontitis. J Oral Microbiol 2024; 16:2388900. [PMID: 39139835 PMCID: PMC11321114 DOI: 10.1080/20002297.2024.2388900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Background Fusobacterium nucleatum, a pathobiont in periodontal disease, contributes to alveolar bone destruction. We assessed the efficacy of a new targeted antimicrobial, FP-100, in eradicating F. nucleatum from the oral microbial community in vitro and in vivo and evaluated its effectiveness in reducing bone loss in a mouse periodontitis model. Methods A multispecies bacterial community was cultured and treated with two concentrations of FP-100 over two days. Microbial profiles were examined at 24-h intervals using 16S rRNA sequencing. A ligature-induced periodontitis mouse model was employed to test FP-100 in vivo. Results FP-100 significantly reduced Fusobacterium spp. within the in vitro community (p < 0.05) without altering microbial diversity at a 2 μM concentration. In mice, cultivable F. nucleatum was undetectable in FP-100-treated ligatures but persistent in controls. Beta diversity plots showed distinct microbial structures between treated and control mice. Alveolar bone loss was significantly reduced in the FP-100 group (p = 0.018), with concurrent decreases in gingival IL-1β and TNF-α expression (p = 0.052 and 0.018, respectively). Conclusion FP-100 effectively eliminates F. nucleatum from oral microbiota and significantly reduces bone loss in a mouse periodontitis model, demonstrating its potential as a targeted therapeutic agent for periodontal disease.
Collapse
Affiliation(s)
- Nil Yakar
- Immunology and Infectious Diseases, The ADA Forsyth Institute, Cambridge, MA, USA
- Faculty of Science, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey
| | - Ozge Unlu
- Immunology and Infectious Diseases, The ADA Forsyth Institute, Cambridge, MA, USA
- Faculty of Medicine, Department of Medical Microbiology, Istanbul Atlas University, Istanbul, Turkey
| | - Lujia Cen
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Hatice Hasturk
- Immunology and Infectious Diseases, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Tsute Chen
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Wenyuan Shi
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Xuesong He
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Alpdogan Kantarci
- Immunology and Infectious Diseases, The ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
20
|
Tsai YH, Milbrandt NB, Prado RC, Ponce NB, Alam MM, Qiu SR, Yu X, Burda C, Kim TKJ, Samia ACS. Effect of Nitrogen Doping on the Photocatalytic Properties and Antibiofilm Efficacy of Reduced TiO 2 Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:4580-4592. [PMID: 38958462 DOI: 10.1021/acsabm.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Nanomaterial-mediated antibacterial photodynamic therapy (aPDT) emerges as a promising treatment against antibiotic-resistant bacterial biofilms. Specifically, titanium dioxide nanoparticles (TiO2 NPs) are being investigated as photosensitizers in aPDT to address biofilm related diseases. To enhance their photocatalytic performance in the visible spectral range for biomedical applications, various strategies have been adopted, including reduction of TiO2 NPs. However, despite improvements in visible-light photoactivity, reduced TiO2 NPs have yet to reach their expected performance primarily due to the instability of oxygen vacancies and their tendency to reoxidize easily. To address this, we present a two-step approach to fabricate highly visible-light active and stable TiO2 NP photocatalysts, involving nitrogen doping followed by a magnesium-assisted reductive annealing process. X-ray photoelectron spectroscopy analysis of the synthesized reduced nitrogen-doped TiO2 NPs (H:Mg-N-TiO2 NPs) reveals that the presence of nitrogen stabilizes oxygen vacancies and reduced Ti species, leading to increased production of reactive oxygen species under visible-light excitation. The improved aPDT efficiency translates to a 3-fold enhancement in the antibiofilm activity of nitrogen-doped compared to undoped reduced TiO2 NPs against both Gram-positive (Streptococcus mutans) and Gram-negative (Porphyromonas gingivalis, Fusobacterium nucleatum) oral pathogens. These results underscore the potential of H:Mg-N-TiO2 NPs in aPDT for combating bacterial biofilms effectively.
Collapse
Affiliation(s)
- Yu Hsin Tsai
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nathalie B Milbrandt
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Ross Clark Prado
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nicole Beatrice Ponce
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Md Masud Alam
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - S Roger Qiu
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratyory, Livermore, California 94551, United States
| | - Xiong Yu
- Department of Civil and Environmental Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Tae Kyong John Kim
- Swagelok Center for Surface Analysis of Materials, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Anna Cristina S Samia
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
21
|
Li N, Wang J, Feng G, Liu Y, Shi Y, Wang Y, Chen L. Advances in biomaterials for oral-maxillofacial bone regeneration: spotlight on periodontal and alveolar bone strategies. Regen Biomater 2024; 11:rbae078. [PMID: 39055303 PMCID: PMC11272181 DOI: 10.1093/rb/rbae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
The intricate nature of oral-maxillofacial structure and function, coupled with the dynamic oral bacterial environment, presents formidable obstacles in addressing the repair and regeneration of oral-maxillofacial bone defects. Numerous characteristics should be noticed in oral-maxillofacial bone repair, such as irregular morphology of bone defects, homeostasis between hosts and microorganisms in the oral cavity and complex periodontal structures that facilitate epithelial ingrowth. Therefore, oral-maxillofacial bone repair necessitates restoration materials that adhere to stringent and specific demands. This review starts with exploring these particular requirements by introducing the particular characteristics of oral-maxillofacial bones and then summarizes the classifications of current bone repair materials in respect of composition and structure. Additionally, we discuss the modifications in current bone repair materials including improving mechanical properties, optimizing surface topography and pore structure and adding bioactive components such as elements, compounds, cells and their derivatives. Ultimately, we organize a range of potential optimization strategies and future perspectives for enhancing oral-maxillofacial bone repair materials, including physical environment manipulation, oral microbial homeostasis modulation, osteo-immune regulation, smart stimuli-responsive strategies and multifaceted approach for poly-pathic treatment, in the hope of providing some insights for researchers in this field. In summary, this review analyzes the complex demands of oral-maxillofacial bone repair, especially for periodontal and alveolar bone, concludes multifaceted strategies for corresponding biomaterials and aims to inspire future research in the pursuit of more effective treatment outcomes.
Collapse
Affiliation(s)
- Nayun Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuqing Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunsong Shi
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yifan Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
22
|
Yu LC, Li YP, Xin YM, Mao M, Pan YX, Qu YX, Luo ZD, Zhang Y, Zhang X. Application of Fusobacterium nucleatum as a biomarker in gastrointestinal malignancies. World J Gastrointest Oncol 2024; 16:2271-2283. [PMID: 38994170 PMCID: PMC11236247 DOI: 10.4251/wjgo.v16.i6.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
The morbidity and mortality of gastrointestinal (GI) malignancies are among the highest in the world, posing a serious threat to human health. Because of the insidious onset of the cancer, it is difficult for patients to be diagnosed at an early stage, and it rapidly progresses to an advanced stage, resulting in poor treatment and prognosis. Fusobacterium nucleatum (F. nucleatum) is a gram-negative, spore-free anaerobic bacterium that primarily colonizes the oral cavity and is implicated in the development of colorectal, esophageal, gastric, and pancreatic cancers via various intricate mechanisms. Recent development in novel research suggests that F. nucleatum may function as a biomarker in GI malignancies. Detecting the abundance of F. nucleatum in stool, saliva, and serum samples of patients may aid in the diagnosis, risk assessment, and prognosis monitoring of GI malignancies. This editorial systematically describes the biological roles and mechanisms of F. nucleatum in GI malignancies focusing on the application of F. nucleatum as a biomarker in the diagnosis and prognosis of GI malignancies to promote the clinical translation of F. nucleatum and GI tumors-related research.
Collapse
Affiliation(s)
- Long-Chen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Ya-Ping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Yue-Ming Xin
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Mai Mao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Ya-Xin Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Yi-Xuan Qu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Zheng-Dong Luo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| |
Collapse
|
23
|
Zhao D, Li MH, Pan T, Guo J, Li J, Shi C, Wang N, Huang H, Wang C, Yang G. Preventive and Therapeutic Potential of Streptococcus cristatus CA119 in Experimental Periodontitis in Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10254-y. [PMID: 38607584 DOI: 10.1007/s12602-024-10254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Periodontitis is an inflammatory condition of the oral cavity caused by a mixed infection of various bacteria, which not only severely affects the alveolar bone and connective tissues but also displays potential correlations with distal intestinal inflammation. In this study, we aimed to elucidate the therapeutic effects of Streptococcus cristatus CA119 on experimental periodontitis in rats and its impact on intestinal morphology. The results demonstrate that CA119 is capable of colonizing the oral cavity and exerting antagonistic effects on Porphyromonas gingivalis and Fusobacterium nucleatum, thus leading to a significant reduction in the oral pathogen load. Following CA119 intervention, there was a significant alleviation of weight loss in rats induced by periodontitis (P < 0.001). CA119 also regulated the expression of IL-6 (P < 0.05), IL-1β (P < 0.001), IL-18 (P < 0.001), COX-2 (P < 0.001), iNOS (P < 0.001), and MCP-1 (P < 0.01) in the gingival tissue. Additionally, CA119 reduced oxidative stress levels in rats and enhanced their antioxidant capacity. Microcomputed tomography (micro-CT) and histological analysis revealed that CA119 significantly reduced alveolar bone loss and reversed the downregulation of OPG/RANKL (P < 0.001). Furthermore, CA119 exhibited a significant protective effect against intestinal inflammation induced by periodontal disease and improved the colonic morphology in rats. In conclusion, this study demonstrates the role of CA119 as a potential oral probiotic in the prevention and treatment of experimental periodontitis, underscoring the potential of probiotics as a complementary approach to traditional periodontal care.
Collapse
Affiliation(s)
- Dongyu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming-Han Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tianxu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jialin Guo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Junyi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
24
|
Li L, Li M, Chen Y, Yu Z, Cheng P, Yu Z, Cheng W, Zhang W, Wang Z, Gao X, Sun H, Wang X. Function and therapeutic prospects of next-generation probiotic Akkermansia muciniphila in infectious diseases. Front Microbiol 2024; 15:1354447. [PMID: 38384263 PMCID: PMC10880487 DOI: 10.3389/fmicb.2024.1354447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Akkermansia muciniphila is a gram-negative bacterium that colonizes the human gut, making up 3-5% of the human microbiome. A. muciniphila is a promising next-generation probiotic with clinical application prospects. Emerging studies have reported various beneficial effects of A. muciniphila including anti-cancer, delaying aging, reducing inflammation, improving immune function, regulating nervous system function, whereas knowledge on its roles and mechanism in infectious disease is currently unclear. In this review, we summarized the basic characteristics, genome and phenotype diversity, the influence of A. muciniphila and its derived components on infectious diseases, such as sepsis, virus infection, enteric infection, periodontitis and foodborne pathogen induced infections. We also provided updates on mechanisms how A. muciniphila protects intestinal barrier integrity and modulate host immune response. In summary, we believe that A. muciniphila is a promising therapeutic probiotic that may be applied for the treatment of a variety of infectious diseases.
Collapse
Affiliation(s)
- Lifeng Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Mingchao Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yihua Chen
- Electrical Biology Room, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Zengyuan Yu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Ping Cheng
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Zhidan Yu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Weyland Cheng
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Wancun Zhang
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huiqing Sun
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| |
Collapse
|
25
|
Panzetta ME, Valdivia RH. Akkermansia in the gastrointestinal tract as a modifier of human health. Gut Microbes 2024; 16:2406379. [PMID: 39305271 PMCID: PMC11418289 DOI: 10.1080/19490976.2024.2406379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Akkermansia sp are common members of the human gut microbiota. Multiple reports have emerged linking the abundance of A. muciniphila to health benefits and disease risk in humans and animals. This review highlights findings linking Akkermansia species in the gastrointestinal (GI) tract to health outcomes across a spectrum of disorders, encompassing those that affect the digestive, respiratory, urinary, and central nervous systems. The mechanism through which Akkermansia exerts a beneficial versus a detrimental effect on health is likely dependent on the genetic makeup of the host metabolic capacity and immunomodulatory properties of the strain, the competition or cooperation with other members of the host microbiota, as well as synergy with co-administered therapies.
Collapse
Affiliation(s)
- Maria E. Panzetta
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| | | |
Collapse
|
26
|
Krieger M, Guo M, Merritt J. Reexamining the role of Fusobacterium nucleatum subspecies in clinical and experimental studies. Gut Microbes 2024; 16:2415490. [PMID: 39394990 PMCID: PMC11486156 DOI: 10.1080/19490976.2024.2415490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
The Gram-negative anaerobic species Fusobacterium nucleatum was originally described as a commensal organism from the human oral microbiome. However, it is now widely recognized as a key inflammophilic pathobiont associated with a wide variety of oral and extraoral diseases. Historically, F. nucleatum has been classified into four subspecies that have been generally considered as functionally interchangeable in their pathogenic potential. Recent studies have challenged this notion, as clinical data reveal a highly biased distribution of F. nucleatum subspecies within disease sites of both inflammatory oral diseases and various malignancies. This review details the historical basis for the F. nucleatum subspecies designations and summarizes our current understanding of the similarities and distinctions between these organisms to provide important context for future clinical and laboratory studies of F. nucleatum.
Collapse
Affiliation(s)
- Madeline Krieger
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Mingzhe Guo
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Justin Merritt
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| |
Collapse
|