1
|
Lee SH, Lee H, Kwon YJ, Kim SK, Seo EB, Sohn JO, Kim BH, Park JY, Ye SK. Chalcone-9: a novel inhibitor of the JAK-STAT pathway with potent anti-cancer effects in triple-negative breast cancer cells. Pharmacol Rep 2025:10.1007/s43440-025-00721-w. [PMID: 40199813 DOI: 10.1007/s43440-025-00721-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Breast cancer remains the leading cause of cancer incidence and mortality among women worldwide, with triple-negative breast cancer (TNBC) posing significant treatment challenges. The dysregulation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway contributes to tumor progression, making it a potential therapeutic target. Chalcones, known for their diverse biological activities, including anti-cancer effects, hold promise for drug development. This study explores the anti-cancer activity of (E)-4-(3-(2-(benzyloxy)-6-hydroxyphenyl)-3-oxoprop-1-en-1-yl)benzoic acid (chalcone-9), a novel chalcone derivative. METHODS The cytotoxic effects of chalcone-9 were evaluated in breast cancer cell lines, including TNBC lines MDA-MB-231 and MDA-MB-468. Western blotting and qRT-PCR were used to analyze the impact on JAK1, JAK2, STAT1, and STAT3 activation and their downstream gene expression. In silico molecular docking analysis was conducted to determine whether chalcone-9 can interact with JAK1 and JAK2. A wound healing assay was used to observe the effect of chalcone-9 on tumor cell migration, and flow cytometry was employed to analyze whether chalcone-9 inhibits tumor cell cycle progression and induces apoptosis. The expression of apoptosis markers was also assessed. RESULTS Chalcone-9 exhibited dose-dependent cytotoxicity in breast cancer cell lines, with TNBC cells showing higher sensitivity. Chalcone-9 effectively inhibited the activation of JAK1, JAK2, STAT1, and STAT3, outperforming conventional JAK/STAT inhibitors. The structure of chalcone-9 was confirmed to stably interact with JAK1 and JAK2 proteins. It also suppressed STAT1 and STAT3 target gene expression, reduced tumor cell migration, and induced apoptosis, as evidenced by PARP and caspase cleavage and decreased survivin levels. CONCLUSIONS Chalcone-9 demonstrates significant anti-cancer activity, particularly against TNBC. By targeting the JAK/STAT pathway and promoting apoptosis, chalcone-9 emerges as a promising therapeutic candidate for aggressive breast cancers.
Collapse
Affiliation(s)
- Song-Hee Lee
- Department of Biomedical Sciences and Pharmacology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Haeri Lee
- Department of Biomedical Sciences and Pharmacology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yong-Jin Kwon
- Department of Cosmetic Science, Kyungsung University, Busan, 48434, Republic of Korea
| | - Seul-Ki Kim
- Department of Biomedical Sciences and Pharmacology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Eun-Bi Seo
- Department of Biomedical Sciences and Pharmacology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jie Ohn Sohn
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon-Do, 25159, Republic of Korea
| | - Byung-Hak Kim
- Medience Co. Ltd., Chuncheon, Gangwon-Do, 24232, Republic of Korea
| | - Jung-Youl Park
- Glocal University Project Group, Andong National University, Andong, Gyeongsangbuk-Do, 36729, Republic of Korea
| | - Sang-Kyu Ye
- Department of Biomedical Sciences and Pharmacology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon-Do, 25159, Republic of Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
2
|
Xiang H, Tu B, Feng X, Chen L, Huang Y. Dual inhibition of TYK2 and PD-L1 boosts immune response in triple negative breast cancer. Anticancer Drugs 2025; 36:280-289. [PMID: 39774369 PMCID: PMC11884794 DOI: 10.1097/cad.0000000000001685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 01/11/2025]
Abstract
Recent studies have shown that Janus Kinase inhibitors can enhance the tumor therapeutic effect of immune checkpoint inhibitors. However, it remains to be studied whether TYK2 selective inhibitors can enhance the therapeutic effect of small molecule PD-L1 inhibitors in triple-negative breast cancer (TNBC). We verified the efficacy of the combination of the selective TYK2 inhibitor Deucravacitinib and the small molecule inhibitor of PD-L1, INCB086550, in two TNBC animal models: a syngeneic mouse model (4T1 with humanized PD-L1) and a peripheral blood mononuclear cell (PBMC)-humanized model (MDA-MB-231). Following that, we explored the regulation of immune cell activity in tumors by the combined treatment using flow cytometry. Finally, we validated the expression of genes related to the regulated immune cells through reverse transcription-PCR. Both animal models demonstrated that the addition of a TYK2 inhibitor to a PD-L1 inhibitor significantly enhanced the antitumor capabilities of mice with good safety profiles. The combined therapy significantly elevated the counts of T, B, and natural killer cells while concurrently diminishing myeloid-derived suppressor cells in the syngeneic model. Similarly, in the PBMC-humanized model, this therapy markedly augmented progenitor-like and proliferative precursor-like CD8 T cells, while effectively diminishing exhausted and terminally differentiated CD8 T cell populations. This enhanced antitumor effect is associated with the modulation of antitumor immune-related gene expression by the combined therapy. The combination of TYK2 inhibitors and immune checkpoint inhibitors is a potentially effective strategy for treating TNBC.
Collapse
Affiliation(s)
- Huali Xiang
- Physical Examination Department, Jiangxi Maternal and Child Health Hospital
| | - Binfeng Tu
- Neurosurgery Department, Jiangxi Cancer Hospital
| | - Xin Feng
- Hospital Health Education Department
| | | | - Yajuan Huang
- Galactophore Department, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Dhawan B, Alam MS, Hamid H, Yadav A, Akhter G, Dar MJ, Alam O, S Y. Synthesis and biological evaluation of thiourea-tethered benzodiazepinones as anti-proliferative agents targeting JAK-3 kinase. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03853-1. [PMID: 40029384 DOI: 10.1007/s00210-025-03853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
Owing to anti-cancer potency of the benzodiazepinone derivatives, the study aims to synthesize a library of thiourea-tethered benzodiazepinone derivatives targeting JAK-3 kinase for anti-breast cancer potency. Test compounds showed favourable in silico interactions with the active site of JAK-3 kinase. Compound 5i demonstrated a significant JAK-3 kinase inhibitory potential of 68.28% and appreciable growth inhibition (72.9%) of MDA-MB-468 (breast cancer cells) as per the anti-proliferative screening done by NCI-USA. In addition, 5i was also found to induce apoptosis moderately by 12.4% in the late apoptosis quadrant and arrested cell cycle at the G2/M phase. The wound healing assay demonstrated the anti-metastatic impact of drug 5i by reducing the migratory potential of MDA-MB-468 cells and was found to be stable within the target protein in the molecular dynamic simulation. All the synthesized compounds exhibited drug-appropriate pharmacokinetic profiles as corroborated by computational ADMET analysis. The study indicates that the synthesized library of benzodiazepinone derivatives is efficacious and compound 5i has emerged as a promising hit candidate, and can be explored further for development of potent JAK-3 kinase inhibitors targeting breast cancer.
Collapse
Affiliation(s)
- Bharti Dhawan
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, 110062, New Delhi, India
| | - Mohammad Sarwar Alam
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, 110062, New Delhi, India.
| | - Hinna Hamid
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, 110062, New Delhi, India.
| | - Anubha Yadav
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Uttar Pradesh, Sector-125, Noida, India
| | - Gowsia Akhter
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, 110062, New Delhi, India
| | - Mohd Jamal Dar
- Cancer Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, 180001, Jammu and Kashmir, India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences and Research, Jamia Hamdard, Hamdard Nagar, 110062, New Delhi, India
| | - Yogisha S
- Skanda Life Sciences, Shree Shaila Bramara, Srigandad Kaval, Bangalore, 560091, India
| |
Collapse
|
4
|
Zhu J, Cheng J, Ma Y, Wang Y, Zou Z, Wang W, Shi H, Meng Y. The value of inflammation-related indicators in chemotherapy efficacy and disease-free survival of triple-negative breast cancer. Eur J Med Res 2025; 30:77. [PMID: 39905567 DOI: 10.1186/s40001-025-02328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Systemic inflammation is closely correlated with the progression of cancer. Inflammation-related indicators has been recognized as outcome predictors in triple-negative breast cancer (TNBC). Our study aimed to investigate the predictive value of several inflammation-related indicators in TNBC patients underwent chemotherapy (NAC). METHODS 100 TNBC patients were enrolled in the study. Levels of interleukin-6 (IL-6) were detected by enzyme-linked immunosorbent assays (ELISAs). Platelet-to-lymphocyte ratio (PLR) and immune inflammatory index (SII) were obtained from blood routine. Levels of Ki-67 expression were detected by immunohistochemistry (IHC). Mentioned indicators were divided into two groups based on their median values. The correlation between these indicators and NAC efficacy was analyzed using t tests. Prognostic risk scores were calculated by univariate Cox regression analysis and Lasso-penalized Cox regression. The patients were divided into low- and high-risk groups based on the median risk score. Survival curves were obtained by Kaplan-Meier method. Models for univariate and multivariate Cox regression analyses were performed to determine the independent risk factors. A nomogram was used for the prediction of 1-, 2-, and 3-year disease-free survival (DFS). Accuracy of the prognostic model was validated by receiver operating characteristic curve (ROC). RESULTS IL-6, PLR, SII, and Ki-67 levels were associated with neoadjuvant efficacy. IL-6, PLR, SII, Ki-67, and lymphocyte count were associated with DFS. The risk score for each TNBC patient was obtained using LASSO regression analysis to construct a prognostic model. In the prognostic model, patients in the high-risk score group showed worse DFS than those in the low-risk group. Risk score and tumor size were independently correlated with outcomes in multivariate Cox regression analysis. A nomogram was constructed using IL-6, PLR, SII, Ki-67, and Miller-Payne (MP) scores. Calibration curves demonstrated good consistency between the actual and predictive values of the nomogram. CONCLUSION A prognostic model was established by combining four prognosis-related indicators in TNBC patients who underwent NAC.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Oncology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, 213004, China
| | - Jiale Cheng
- Department of Thyroid and Breast Surgery, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China
| | - Yuyuan Ma
- Department of Thyroid and Breast Surgery, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China
| | - Ying Wang
- Department of Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China
| | - Zhonghua Zou
- Department of Radio-Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China
| | - Wenjie Wang
- Department of General Surgery, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China.
| | - Haihua Shi
- Department of Thyroid and Breast Surgery, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China.
| | - You Meng
- Department of Radio-Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China.
| |
Collapse
|
5
|
Sheng Y, Mills G, Zhao X. Identifying therapeutic strategies for triple-negative breast cancer via phosphoproteomics. Expert Rev Proteomics 2024:1-17. [PMID: 39588933 DOI: 10.1080/14789450.2024.2432477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION Given the poor prognosis of patients with TNBC, it is urgent to identify new biomarkers and therapeutic targets to enable personalized treatment strategies and improve patient survival. Comprehensive insights beyond genomic and transcriptomic analysis are crucial to improved outcomes for patients. As proteins are the workhorses of cellular function with their activity primarily regulated by phosphorylation, advanced phosphoproteomics techniques, such as mass spectrometry and antibody arrays, are essential for elucidating kinase signaling pathways that drive TNBC progression and contribute to therapy resistance. AREA COVERED This review discusses the critical need to integrate phosphoproteomics into TNBC research, evaluates commonly used technologies and their applications, and explores their advantages and limitations. We highlight significant findings from phosphoproteomic analyses in TNBC and address the challenges of implementing these technologies into clinical practice. EXPERT OPINION Rapid advances in phosphoproteomics analysis facilitate subtype stratification, adaptive response monitoring, and identification of biomarkers and therapeutic targets in TNBC. However, challenges in analyzing protein phosphorylation, especially in deep spatially resolved analysis of malignant cells and the tumor ecosystem, hinder the translation of phosphoproteomics to the CLIA setting. Nonetheless, phosphoproteomics offers a powerful tool that, when integrated into routine clinical practice, has the potential to revolutionize patient care.
Collapse
Affiliation(s)
- Yuhan Sheng
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gordon Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Xuejiao Zhao
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Rapier-Sharman N, Spendlove MD, Poulsen JB, Appel AE, Wiscovitch-Russo R, Vashee S, Gonzalez-Juarbe N, Pickett BE. Secondary Transcriptomic Analysis of Triple-Negative Breast Cancer Reveals Reliable Universal and Subtype-Specific Mechanistic Markers. Cancers (Basel) 2024; 16:3379. [PMID: 39409999 PMCID: PMC11476281 DOI: 10.3390/cancers16193379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Breast cancer is diagnosed in 2.3 million women each year and kills 685,000 (~30% of patients) worldwide. The prognosis for many breast cancer subtypes has improved due to treatments targeting the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). In contrast, patients with triple-negative breast cancer (TNBC) tumors, which lack all three commonly targeted membrane markers, more frequently relapse and have lower survival rates due to a lack of tumor-selective TNBC treatments. We aim to investigate TNBC mechanistic markers that could be targeted for treatment. Methods: We performed a secondary TNBC analysis of 196 samples across 10 publicly available bulk RNA-sequencing studies to better understand the molecular mechanism(s) of disease and predict robust mechanistic markers that could be used to improve the mechanistic understanding of and diagnostic capabilities for TNBC. Results: Our analysis identified ~12,500 significant differentially expressed genes (FDR-adjusted p-value < 0.05), including KIF14 and ELMOD3, and two significantly modulated pathways. Additionally, our novel findings include highly accurate mechanistic markers identified using machine learning methods, including CIDEC (97.1% accuracy alone), CD300LG, ASPM, and RGS1 (98.9% combined accuracy), as well as TNBC subtype-differentiating mechanistic markers, including the targets PDE3B, CFD, IFNG, and ADM, which have associated therapeutics that can potentially be repurposed to improve treatment options. We then experimentally and computationally validated a subset of these findings. Conclusions: The results of our analyses can be used to better understand the mechanism(s) of disease and contribute to the development of improved diagnostics and/or treatments for TNBC.
Collapse
Affiliation(s)
- Naomi Rapier-Sharman
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (N.R.-S.); (M.D.S.); (J.B.P.)
| | - Mauri Dobbs Spendlove
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (N.R.-S.); (M.D.S.); (J.B.P.)
| | - Jenna Birchall Poulsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (N.R.-S.); (M.D.S.); (J.B.P.)
| | - Amanda E. Appel
- Infectious Diseases and Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD 20850, USA; (A.E.A.); (R.W.-R.); (N.G.-J.)
| | - Rosana Wiscovitch-Russo
- Infectious Diseases and Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD 20850, USA; (A.E.A.); (R.W.-R.); (N.G.-J.)
| | - Sanjay Vashee
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, Rockville, MD 20850, USA;
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases and Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD 20850, USA; (A.E.A.); (R.W.-R.); (N.G.-J.)
| | - Brett E. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (N.R.-S.); (M.D.S.); (J.B.P.)
| |
Collapse
|
7
|
Peng Z, Ye L. Comparison of the crystal structures of the JAK1/2 inhibitor ruxolitinib and its hydrate and phosphate. Acta Crystallogr C Struct Chem 2024; 80:440-447. [PMID: 39046815 DOI: 10.1107/s2053229624006740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Ruxolitinib {RUX; systematic name: (3R)-3-cyclopentyl-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile, C17H18N6} is an orally bioavailable JAK1/2 inhibitor approved for treating intermediate- or high-risk myelofibrosis (MF) and high-risk polycythemia vera (PV). Recent patents claim that RUX can exist in many different forms, information for which is important for the clinical utilization of RUX, especially for the formulation and bioavailability of the drug. But there has been no detailed study on its forms so far. Herein crystals of RUX and its dihydrate (RUX-2H; C17H18N6·2H2O) and phosphate (RUX-P; systematic name: 4-{1-[(1R)-2-cyano-1-cyclopentylethyl]-1H-pyrazol-4-yl}-7H-pyrrolo[2,3-d]pyrimidin-3-ium dihydrogen phosphate, C17H19N6+·H2PO4-) were prepared successfully and their structures studied in detail for the first time. Our study shows that the three crystals of RUX differ in the orientation of the pyrimidine ring relative to the pyrazole ring of the RUX molecule, and in their hydrogen-bond interactions. The water molecules in RUX-2H and the dihydrogen phosphate anion in RUX-P enrich the hydrogen-bond networks in these forms. The expected proton transfer occurs in RUX phosphate and the protonated N atom is engaged in a charge-assisted hydrogen bond with the counter-anion. Hydrogen-bonding interactions dominate in the crystal packing of the three forms. The detailed conformations and packing of the three forms were compared through the calculation of both Hirshfeld surfaces and fingerprint plots.
Collapse
Affiliation(s)
- Ziyu Peng
- College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Long Ye
- College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| |
Collapse
|
8
|
Celik EG, Eroglu O. Ruxolitinib-loaded poly-ɛ-caprolactone (PCL) nanoparticles inhibit JAK2/STAT5 signaling in BT474 breast cancer cells by downregulating Bcl-2 and Mcl-1. Mol Biol Rep 2024; 51:832. [PMID: 39037638 DOI: 10.1007/s11033-024-09764-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND JAK/STAT signaling plays an important role in regulating cell proliferation. Reducing proliferation and inducing cell death with gene-specific inhibitors such as ruxolitinib, Receptor tyrosine kinases (RTK) inhibitor targeting JAK1/2, are therapeutic approaches. The use of nanoparticles can reduce the toxicity and side effects of drugs, as they act directly on cancer cells and can selectively increase drug accumulation in tumor cells. Poly-ɛ-caprolactone (PCL) is a polymer that is frequently used in drug development. In this study, Rux-PCL-NPs were synthesized to increase the effectiveness of ruxolitinib. In addition, this study aimed to determine the effect of Rux-PCL-NPs on JAK/STAT signaling and apoptotic cell death. METHODS AND RESULTS Rux-PCL-NPs were synthesized by nanoprecipitation. The Rux-PCL-NPs had a spherical and mean particle size of 219 ± 88.66 nm and a zeta potential of 0.471 ± 0.453 mV. In vitro cytotoxicity and antiproliferative effects were determined by MTT and soft agar colony formation assays, respectively. The effects of ruxolitinib, PCL-NPs, and Rux-PCL-NPs on apoptosis and the JAK/STAT pathway in cells were examined by western blot analysis. PCL-NPs did not have a toxic effect on the cells. The IC50 value of Rux-PCL-NPs was decreased 50-fold compared to that of ruxolitinib. Rux-PCL-NPs promoted cell death by downregulating JAK2 and STAT5, thereby inhibiting the JAK/STAT pathway. CONCLUSIONS Our results revealed that Rux-PCL-NPs, which increased the efficacy of ruxolitinib, regulated apoptosis and the JAK2/STAT5 pathway.
Collapse
Affiliation(s)
- Esin Guvenir Celik
- Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Seyh Edebali University, Bilecik, Turkey.
- Department of Molecular Biology and Genetics, Institute of Graduate Education, Bilecik Şeyh Edebali University, Bilecik, Turkey.
| | - Onur Eroglu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|
9
|
Long L, Xu J, Qi X, Pen Y, Wang C, Jiang W, Peng X, Hu Z, Yi W, Xie L, Lei X, Wang Z, Zhuo L. Discovery of novel small molecules targeting the USP21/JAK2/STAT3 axis for the treatment of triple-negative breast cancer. Eur J Med Chem 2024; 273:116500. [PMID: 38776807 DOI: 10.1016/j.ejmech.2024.116500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
The deficiency in available targeted agents and frequency of chemoresistance are primary challenges in clinical management of triple-negative breast cancer (TNBC). The aberrant expression of USP21 and JAK2 represents a characterized mechanism of TNBC progression and resistance to paclitaxel (PTX). Despite its clear that high expression of USP21-mediated de-ubiquitination leads to increased levels of JAK2 protein, we lack regulator molecules to dissect the mechanisms that the interaction between USP21 and JAK2 contributes to the phenotype and resistance of TNBC. Here, we report a USP21/JAK2/STAT3 axis-targeting regulator 13c featuring a N-anthraniloyl tryptamine scaffold that showed excellent anti-TNBC potency and promising safety profile. Importantly, the therapeutic potential of using 13c in combination with PTX in PTX-resistant TNBC was demonstrated. This study showcases N-anthraniloyl tryptamine derivatives as a novel anti-TNBC chemotype with a pharmacological mode of action targeting the USP21/JAK2/STAT3 axis and provides a potential therapeutic target for the treatment of TNBC.
Collapse
Affiliation(s)
- Lin Long
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiachi Xu
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China; Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiaowen Qi
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yan Pen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Chengkun Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zecheng Hu
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Liming Xie
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Xiaoyong Lei
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Zhen Wang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China.
| | - Linsheng Zhuo
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China.
| |
Collapse
|
10
|
Constantin M, Chifiriuc MC, Bleotu C, Vrancianu CO, Cristian RE, Bertesteanu SV, Grigore R, Bertesteanu G. Molecular pathways and targeted therapies in head and neck cancers pathogenesis. Front Oncol 2024; 14:1373821. [PMID: 38952548 PMCID: PMC11215092 DOI: 10.3389/fonc.2024.1373821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024] Open
Abstract
The substantial heterogeneity exhibited by head and neck cancer (HNC), encompassing diverse cellular origins, anatomical locations, and etiological contributors, combined with the prevalent late-stage diagnosis, poses significant challenges for clinical management. Genomic sequencing endeavors have revealed extensive alterations in key signaling pathways that regulate cellular proliferation and survival. Initiatives to engineer therapies targeting these dysregulated pathways are underway, with several candidate molecules progressing to clinical evaluation phases, including FDA approval for agents like the EGFR-targeting monoclonal antibody cetuximab for K-RAS wild-type, EGFR-mutant HNSCC treatment. Non-coding RNAs (ncRNAs), owing to their enhanced stability in biological fluids and their important roles in intracellular and intercellular signaling within HNC contexts, are now recognized as potent biomarkers for disease management, catalyzing further refined diagnostic and therapeutic strategies, edging closer to the personalized medicine desideratum. Enhanced comprehension of the genomic and immunological landscapes characteristic of HNC is anticipated to facilitate a more rigorous assessment of targeted therapies benefits and limitations, optimize their clinical deployment, and foster innovative advancements in treatment approaches. This review presents an update on the molecular mechanisms and mutational spectrum of HNC driving the oncogenesis of head and neck malignancies and explores their implications for advancing diagnostic methodologies and precision therapeutics.
Collapse
Affiliation(s)
- Marian Constantin
- Department of Microbiology, Institute of Biology of Romanian Academy, Bucharest, Romania
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | - Coralia Bleotu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Cellular and Molecular Pathology Department, Ştefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Serban Vifor Bertesteanu
- ENT, Head& Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Coltea Clinical Hospital, Bucharest, Romania
| | - Raluca Grigore
- ENT, Head& Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Coltea Clinical Hospital, Bucharest, Romania
| | - Gloria Bertesteanu
- ENT, Head& Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Coltea Clinical Hospital, Bucharest, Romania
| |
Collapse
|
11
|
Xu C, Sun L, Wang H, Sun J, Feng Y, Wang X, Song Z. Identifying the mechanism of polysaccharopeptide against breast cancer based on network pharmacology and experimental verification. BMC Cancer 2024; 24:726. [PMID: 38872110 DOI: 10.1186/s12885-024-12494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
Polysaccharopeptide (PSP) is a potential active component in traditional Chinese medicine because of its anticancer effects on a variety of cancer cells and as immune enhancers of the immune system. Previous studies on the role of PSP in breast cancer have been limited, and the mechanism has not been clarified. This study is based on network pharmacology and molecular docking technology to predict the possible target of PSP treatment of breast cancer, and use experiments to verify the effect and mechanism of PSP on breast cancer. In this study, 287 PSP targets were obtained using SwissTargetPrediction database and PharmMapper database, and 183 breast cancer targets were obtained using DisGenNET database. By intersections of PSP targets and breast cancer targets, a total of 10 intersections were obtained. GO functional enrichment, KEGG pathway enrichment and molecular docking of these 10 target genes were performed to obtain the potential targets of PSP on breast cancer. In vitro experiments, we found that PSP significantly inhibited the proliferation and induced apoptosis of breast cancer cell lines MDA-MB-231, SUM-159 and MCF-7. Western Blot results showed that PSP could down-regulate the expression of p-JAK2 and p-STAT3 proteins. Similarly, the results of in vivo experiments showed that PSP can directly inhibit the tumor of MDA-MB-231 tumor-bearing mice, and the mechanism of action is mainly to inhibit the JAK2-STAT3 pathway. The above results were consistent with the results of network pharmacology, which provides a scientific basis for the clinical application of PSP in breast cancer patients.
Collapse
Affiliation(s)
- Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, 710068, Shaanxi, China
| | - Lijun Sun
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, 710068, Shaanxi, China
| | - Huxia Wang
- Department of Breast Disease Center, Shaanxi Provincial Cancer Hospital, Xi'an, 710065, Shaanxi, China
| | - Jingying Sun
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, 710068, Shaanxi, China
| | - Yangmeng Feng
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, 710068, Shaanxi, China
| | - Xingguang Wang
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, 256 Youyi Road, Xi'an, 710068, Shaanxi, China
| | - Zhangjun Song
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, 256 Youyi Road, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
12
|
James N, Owusu E, Rivera G, Bandyopadhyay D. Small Molecule Therapeutics in the Pipeline Targeting for Triple-Negative Breast Cancer: Origin, Challenges, Opportunities, and Mechanisms of Action. Int J Mol Sci 2024; 25:6285. [PMID: 38892472 PMCID: PMC11172743 DOI: 10.3390/ijms25116285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Triple-negative breast cancer (TNBC) cells are devoid of estrogen receptors (ERs), progesterone receptor (PRs), and human epidermal growth factor receptor 2 (HER2), and it (TNBC) counts for about 10-15% of all breast cancers. TNBC is highly invasive, having a faster growth rate and a higher risk of metastasis and recurrence. Still, chemotherapy is one of the widely used options for treating TNBC. This study reviewed the histological and molecular characterization of TNBC subtypes, signaling pathways that are aberrantly expressed, and small molecules targeting these pathways, as either single agents or in combination with other therapeutic agents like chemotherapeutics, immunotherapeutics, and antibody-drug conjugates; their mechanisms of action, challenges, and future perspectives were also reviewed. A detailed analytical review was carried out using the literature collected from the SciFinder, PubMed, ScienceDirect, Google Scholar, ACS, Springer, and Wiley databases. Several small molecule inhibitors were found to be therapeutics for treating TNBC. The mechanism of action and the different signaling pathways through which the small molecules exert their effects were studied, including clinical trials, if reported. These small molecule inhibitors include buparlisib, everolimus, vandetanib, apatinib, olaparib, salidroside, etc. Some of the signaling pathways involved in TNBC, including the VEGF, PARP, STAT3, MAPK, EGFR, P13K, and SRC pathways, were discussed. Due to the absence of these biomarkers, drug development for treating TNBC is challenging, with chemotherapy being the main therapeutic agent. However, chemotherapy is associated with chemoresistance and a high toxicity to healthy cells as side effects. Hence, there is a continuous demand for small-molecule inhibitors that specifically target several signaling pathways that are abnormally expressed in TNBC. We attempted to include all the recent developments in this field. Any omission is truly unintentional.
Collapse
Affiliation(s)
- Nneoma James
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
| | - Esther Owusu
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico;
| | - Debasish Bandyopadhyay
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
13
|
Li JK, Jiang XL, Zhang Z, Chen WQ, Peng JJ, Liu B, Zhu PL, Yung KKL. Isoalantolactone exerts anti-melanoma effects via inhibiting PI3K/AKT/mTOR and STAT3 signaling in cell and mouse models. Phytother Res 2024; 38:2800-2817. [PMID: 38526171 DOI: 10.1002/ptr.8132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND AIM Although the anti-cancer activity of isoalantolactone (IATL) has been extensively studied, the anti-melanoma effects of IATL are still unknown. Here, we have investigated the anti-melanoma effects and mechanism of action of IATL. MTT and crystal violet staining assays were performed to detect the inhibitory effect of IATL on melanoma cell viability. Apoptosis and cell cycle arrest induced by IATL were examined using flow cytometry. The molecular mechanism of IATL was explored by Western blotting, confocal microscope analysis, molecular docking, and cellular thermal shift assay (CETSA). A B16F10 allograft mouse model was constructed to determine the anti-melanoma effects of IATL in vivo. The results showed that IATL exerted anti-melanoma effects in vitro and in vivo. IATL induced cytoprotective autophagy in melanoma cells by inhibiting the PI3K/AKT/mTOR signaling. Moreover, IATL inhibited STAT3 activation both in melanoma cells and allograft tumors not only by binding to the SH2 domain of STAT3 but also by suppressing the activity of its upstream kinase Src. These findings demonstrate that IATL exerts anti-melanoma effects via inhibiting the STAT3 and PI3K/AKT/mTOR signaling pathways, and provides a pharmacological basis for developing IATL as a novel phytotherapeutic agent for treating melanoma clinically.
Collapse
Affiliation(s)
- Jun-Kui Li
- Department of Biology, Hong Kong Baptist University (HKBU), Hong Kong SAR, China
- Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Xiao-Li Jiang
- Department of Biology, Hong Kong Baptist University (HKBU), Hong Kong SAR, China
- Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Hong Kong SAR, China
| | - Zhu Zhang
- Department of Biology, Hong Kong Baptist University (HKBU), Hong Kong SAR, China
- Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Hong Kong SAR, China
| | - Wen-Qing Chen
- Department of Biology, Hong Kong Baptist University (HKBU), Hong Kong SAR, China
- Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Hong Kong SAR, China
| | - Jun-Jie Peng
- Department of Biology, Hong Kong Baptist University (HKBU), Hong Kong SAR, China
- Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Hong Kong SAR, China
| | - Bin Liu
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Pei-Li Zhu
- Department of Biology, Hong Kong Baptist University (HKBU), Hong Kong SAR, China
- Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Ken-Kin-Lam Yung
- Department of Biology, Hong Kong Baptist University (HKBU), Hong Kong SAR, China
- Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, Shenzhen, China
| |
Collapse
|
14
|
Long L, Fei X, Chen L, Yao L, Lei X. Potential therapeutic targets of the JAK2/STAT3 signaling pathway in triple-negative breast cancer. Front Oncol 2024; 14:1381251. [PMID: 38699644 PMCID: PMC11063389 DOI: 10.3389/fonc.2024.1381251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its propensity for metastasis and poor prognosis. TNBC evades the body's immune system recognition and attack through various mechanisms, including the Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. This pathway, characterized by heightened activity in numerous solid tumors, exhibits pronounced activation in specific TNBC subtypes. Consequently, targeting the JAK2/STAT3 signaling pathway emerges as a promising and precise therapeutic strategy for TNBC. The signal transduction cascade of the JAK2/STAT3 pathway predominantly involves receptor tyrosine kinases, the tyrosine kinase JAK2, and the transcription factor STAT3. Ongoing preclinical studies and clinical research are actively investigating this pathway as a potential therapeutic target for TNBC treatment. This article comprehensively reviews preclinical and clinical investigations into TNBC treatment by targeting the JAK2/STAT3 signaling pathway using small molecule compounds. The review explores the role of the JAK2/STAT3 pathway in TNBC therapeutics, evaluating the benefits and limitations of active inhibitors and proteolysis-targeting chimeras in TNBC treatment. The aim is to facilitate the development of novel small-molecule compounds that target TNBC effectively. Ultimately, this work seeks to contribute to enhancing therapeutic efficacy for patients with TNBC.
Collapse
Affiliation(s)
- Lin Long
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiangyu Fei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liucui Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang Yao
- Department of Pharmacy, Central Hospital of Hengyang, Hengyang, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
15
|
Rani D, Kaur S, Shahjahan, Dey JK, Dey SK. Engineering immune response to regulate cardiovascular disease and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:381-417. [PMID: 38762276 DOI: 10.1016/bs.apcsb.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Cardiovascular disease (CVD) and cancer are major contributors to global morbidity and mortality. This book chapter delves into the intricate relationship between the immune system and the pathogenesis of both cardiovascular and cancer diseases, exploring the roles of innate and adaptive immunities, immune regulation, and immunotherapy in these complex conditions. The innate immune system acts as the first line of defense against tissue damage and infection, with a significant impact on the initiation and progression of CVD and cancer. Endothelial dysfunction, a hallmark in CVD, shares commonalities with the tumor microenvironment in cancer, emphasizing the parallel involvement of the immune system in both conditions. The adaptive immune system, particularly T cells, contributes to prolonged inflammation in both CVD and cancer. Regulatory T cells and the intricate balance between different T cell subtypes influence disease progression, wound healing, and the outcomes of ischemic injury and cancer immunosurveillance. Dysregulation of immune homeostasis can lead to chronic inflammation, contributing to the development and progression of both CVD and cancer. Thus, immunotherapy emerged as a promising avenue for preventing and managing these diseases, with strategies targeting immune cell modulation, cytokine manipulation, immune checkpoint blockade, and tolerance induction. The impact of gut microbiota on CVD and cancer too is explored in this chapter, highlighting the role of gut leakiness, microbial metabolites, and the potential for microbiome-based interventions in cardiovascular and cancer immunotherapies. In conclusion, immunomodulatory strategies and immunotherapy hold promise in reshaping the landscape of cardiovascular and cancer health. Additionally, harnessing the gut microbiota for immune modulation presents a novel approach to prevent and manage these complex diseases, emphasizing the importance of personalized and precision medicine in healthcare. Ongoing research and clinical trials are expected to further elucidate the complex immunological underpinnings of CVD and cancer thereby refining these innovative approaches.
Collapse
Affiliation(s)
- Diksha Rani
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Smaranjot Kaur
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Shahjahan
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Joy Kumar Dey
- Central Council for Research in Homoeopathy, Ministry of Ayush, Govt. of India, New Delhi, Delhi, India
| | - Sanjay Kumar Dey
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India.
| |
Collapse
|
16
|
Patil K, Sher G, Kuttikrishnan S, Moton S, Alam M, Buddenkotte J, Ahmad A, Steinhoff M, Uddin S. The cross-talk between miRNAs and JAK/STAT pathway in cutaneous T cell lymphoma: Emphasis on therapeutic opportunities. Semin Cell Dev Biol 2024; 154:239-249. [PMID: 36216715 DOI: 10.1016/j.semcdb.2022.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 02/25/2023]
Abstract
Mycosis Fungoides (MF) and Sézary Syndrome (SS) belong to a wide spectrum of T cell lymphoproliferative disorders collectively termed cutaneous T cell lymphomas (CTCL). CTCLs represent an archetype of heterogeneous and dynamically variable lymphoproliferative neoplasms typified by distinct clinical, histological, immunophenotypic, and genetic features. Owing to its complex dynamics, the pathogenesis of CTCL remains elusive. However, in recent years, progress in CTCL classification combined with next-generation sequencing analyses has broadened the genetic and epigenetic spectrum of clearly defined CTCL entities such as MF and SS. Several large-scale genome studies have identified the polygenic nature of CTCL and unveiled an idiosyncratic mutational landscape involving genetic aberrations, epigenetic alterations, cell cycle dysregulation, apoptosis, and the constitutive activation of T cell/NF-κB/JAK-STAT signaling pathways. In this review, we summarize the evolving insights on how the intrinsic epigenetic events driven by dysregulated miRNAs, including the oncogenic and tumor-suppressive miRNAs, influence the pathogenesis of MF and SS. We also focus on the interplay between the JAK/STAT pathway and miRNAs in CTCL as well as the significance of the miRNA/STAT axis as a relevant pathogenetic mechanism underlying CTCL initiation and progression. Based on these biologic insights, the current status and recent progress on novel therapies with a strong biological rationale, including miRNA-targeted molecules and JAK/STAT-targeted therapy for CTCL management, are discussed.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Safwan Moton
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33200, USA
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine-New York 10065, New York, USA.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
17
|
Lynce F, Stevens LE, Li Z, Brock JE, Gulvady A, Huang Y, Nakhlis F, Patel A, Force JM, Haddad TC, Ueno N, Stearns V, Wolff AC, Clark AS, Bellon JR, Richardson ET, Balko JM, Krop IE, Winer EP, Lange P, Hwang ES, King TA, Tolaney SM, Thompson A, Gupta GP, Mittendorf EA, Regan MM, Overmoyer B, Polyak K. TBCRC 039: a phase II study of preoperative ruxolitinib with or without paclitaxel for triple-negative inflammatory breast cancer. Breast Cancer Res 2024; 26:20. [PMID: 38297352 PMCID: PMC10829369 DOI: 10.1186/s13058-024-01774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Patients with inflammatory breast cancer (IBC) have overall poor clinical outcomes, with triple-negative IBC (TN-IBC) being associated with the worst survival, warranting the investigation of novel therapies. Preclinical studies implied that ruxolitinib (RUX), a JAK1/2 inhibitor, may be an effective therapy for TN-IBC. METHODS We conducted a randomized phase II study with nested window-of-opportunity in TN-IBC. Treatment-naïve patients received a 7-day run-in of RUX alone or RUX plus paclitaxel (PAC). After the run-in, those who received RUX alone proceeded to neoadjuvant therapy with either RUX + PAC or PAC alone for 12 weeks; those who had received RUX + PAC continued treatment for 12 weeks. All patients subsequently received 4 cycles of doxorubicin plus cyclophosphamide prior to surgery. Research tumor biopsies were performed at baseline (pre-run-in) and after run-in therapy. Tumors were evaluated for phosphorylated STAT3 (pSTAT3) by immunostaining, and a subset was also analyzed by RNA-seq. The primary endpoint was the percent of pSTAT3-positive pre-run-in tumors that became pSTAT3-negative. Secondary endpoints included pathologic complete response (pCR). RESULTS Overall, 23 patients were enrolled, of whom 21 completed preoperative therapy. Two patients achieved pCR (8.7%). pSTAT3 and IL-6/JAK/STAT3 signaling decreased in post-run-in biopsies of RUX-treated samples, while sustained treatment with RUX + PAC upregulated IL-6/JAK/STAT3 signaling compared to RUX alone. Both treatments decreased GZMB+ T cells implying immune suppression. RUX alone effectively inhibited JAK/STAT3 signaling but its combination with PAC led to incomplete inhibition. The immune suppressive effects of RUX alone and in combination may negate its growth inhibitory effects on cancer cells. CONCLUSION In summary, the use of RUX in TN-IBC was associated with a decrease in pSTAT3 levels despite lack of clinical benefit. Cancer cell-specific-targeting of JAK2/STAT3 or combinations with immunotherapy may be required for further evaluation of JAK2/STAT3 signaling as a cancer therapeutic target. TRIAL REGISTRATION www. CLINICALTRIALS gov , NCT02876302. Registered 23 August 2016.
Collapse
Affiliation(s)
- Filipa Lynce
- Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA.
- Harvard Medical School, Boston, MA, USA.
- Brigham and Women's Hospital, Boston, MA, USA.
| | - Laura E Stevens
- Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Zheqi Li
- Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Jane E Brock
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Anushree Gulvady
- Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Ying Huang
- Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Faina Nakhlis
- Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Ashka Patel
- Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - Naoto Ueno
- MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Amy S Clark
- University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer R Bellon
- Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Edward T Richardson
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Justin M Balko
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ian E Krop
- Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Eric P Winer
- Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Paulina Lange
- Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA
| | | | - Tari A King
- Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Sara M Tolaney
- Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - Elizabeth A Mittendorf
- Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Meredith M Regan
- Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
| | - Beth Overmoyer
- Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Kornelia Polyak
- Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA.
- Harvard Medical School, Boston, MA, USA.
- Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
18
|
Nishida J, Cristea S, Bodapati S, Puleo J, Bai G, Patel A, Hughes M, Snow C, Borges V, Ruddy KJ, Collins LC, Feeney AM, Slowik K, Bossuyt V, Dillon D, Lin NU, Partridge AH, Michor F, Polyak K. Peripheral blood TCR clonotype diversity as an age-associated marker of breast cancer progression. Proc Natl Acad Sci U S A 2023; 120:e2316763120. [PMID: 38011567 DOI: 10.1073/pnas.2316763120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023] Open
Abstract
Immune escape is a prerequisite for tumor growth. We previously described a decline in intratumor activated cytotoxic T cells and T cell receptor (TCR) clonotype diversity in invasive breast carcinomas compared to ductal carcinoma in situ (DCIS), implying a central role of decreasing T cell responses in tumor progression. To determine potential associations between peripheral immunity and breast tumor progression, here, we assessed the peripheral blood TCR clonotype of 485 breast cancer patients diagnosed with either DCIS or de novo stage IV disease at younger (<45) or older (≥45) age. TCR clonotype diversity was significantly lower in older compared to younger breast cancer patients regardless of tumor stage at diagnosis. In the younger age group, TCR-α clonotype diversity was lower in patients diagnosed with de novo stage IV breast cancer compared to those diagnosed with DCIS. In the older age group, DCIS patients with higher TCR-α clonotype diversity were more likely to have a recurrence compared to those with lower diversity. Whole blood transcriptome profiles were distinct depending on the TCR-α Chao1 diversity score. There were more CD8+ T cells and a more active immune environment in DCIS tumors of young patients with higher peripheral blood TCR-α Chao1 diversity than in those with lower diversity. These results provide insights into the role that host immunity plays in breast cancer development across different age groups.
Collapse
MESH Headings
- Humans
- Aged
- Female
- Breast Neoplasms/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- CD8-Positive T-Lymphocytes/pathology
- Biomarkers, Tumor/genetics
- Receptors, Antigen, T-Cell/genetics
- Neoplastic Processes
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Carcinoma, Ductal, Breast/pathology
Collapse
Affiliation(s)
- Jun Nishida
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Simona Cristea
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Sudheshna Bodapati
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Julieann Puleo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Gali Bai
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Ashka Patel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Melissa Hughes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Craig Snow
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Virginia Borges
- Medicine-Medical Oncology, University of Colorado Comprehensive Cancer Center, Aurora, CO 80045
| | - Kathryn J Ruddy
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN 55905
| | - Laura C Collins
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Anne-Marie Feeney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Kara Slowik
- The Broad Institute of MIT and Harvard, Cambridge, MA 02138
| | - Veerle Bossuyt
- Mass General Pathology, Massachusetts General Hospital, Boston, MA 02114
| | - Deborah Dillon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Ann H Partridge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115
- The Broad Institute of MIT and Harvard, Cambridge, MA 02138
- The Ludwig Center at Harvard, Boston, MA 02115
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
- Mass General Pathology, Massachusetts General Hospital, Boston, MA 02114
- The Ludwig Center at Harvard, Boston, MA 02115
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA 02215
| |
Collapse
|
19
|
Bhat Y, Thrishna MR, Banerjee S. Molecular targets and therapeutic strategies for triple-negative breast cancer. Mol Biol Rep 2023; 50:10535-10577. [PMID: 37924450 DOI: 10.1007/s11033-023-08868-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/29/2023] [Indexed: 11/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is known for its heterogeneous complexity and is often difficult to treat. TNBC lacks the expression of major hormonal receptors like estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 and is further subdivided into androgen receptor (AR) positive and AR negative. In contrast, AR negative is also known as quadruple-negative breast cancer (QNBC). Compared to AR-positive TNBC, QNBC has a great scarcity of prognostic biomarkers and therapeutic targets. QNBC shows excessive cellular growth and proliferation of tumor cells due to increased expression of growth factors like EGF and various surface proteins. This study briefly reviews the limited data available as protein biomarkers that can be used as molecular targets in treating TNBC as well as QNBC. Targeted therapy and immune checkpoint inhibitors have recently changed cancer treatment. Many studies in medicinal chemistry continue to focus on the synthesis of novel compounds to discover new antiproliferative medicines capable of treating TNBC despite the abundance of treatments currently on the market. Drug repurposing is one of the therapeutic methods for TNBC that has been examined. Moreover, some additional micronutrients, nutraceuticals, and functional foods may be able to lower cancer risk or slow the spread of malignant diseases that have already been diagnosed with cancer. Finally, nanomedicines, or applications of nanotechnology in medicine, introduce nanoparticles with variable chemistry and architecture for the treatment of cancer. This review emphasizes the most recent research on nutraceuticals, medication repositioning, and novel therapeutic strategies for the treatment of TNBC.
Collapse
Affiliation(s)
- Yashasvi Bhat
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - M R Thrishna
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
20
|
Masci D, Naro C, Puxeddu M, Urbani A, Sette C, La Regina G, Silvestri R. Recent Advances in Drug Discovery for Triple-Negative Breast Cancer Treatment. Molecules 2023; 28:7513. [PMID: 38005235 PMCID: PMC10672974 DOI: 10.3390/molecules28227513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most heterogeneous and aggressive breast cancer subtypes with a high risk of death on recurrence. To date, TNBC is very difficult to treat due to the lack of an effective targeted therapy. However, recent advances in the molecular characterization of TNBC are encouraging the development of novel drugs and therapeutic combinations for its therapeutic management. In the present review, we will provide an overview of the currently available standard therapies and new emerging therapeutic strategies against TNBC, highlighting the promises that newly developed small molecules, repositioned drugs, and combination therapies have of improving treatment efficacy against these tumors.
Collapse
Affiliation(s)
- Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (D.M.); (A.U.)
| | - Chiara Naro
- Department of Neurosciences, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (C.N.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (D.M.); (A.U.)
| | - Claudio Sette
- Department of Neurosciences, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (C.N.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| |
Collapse
|
21
|
Shakya R, Byun MR, Joo SH, Chun KS, Choi JS. Domperidone Exerts Antitumor Activity in Triple-Negative Breast Cancer Cells by Modulating Reactive Oxygen Species and JAK/STAT3 Signaling. Biomol Ther (Seoul) 2023; 31:692-699. [PMID: 37899746 PMCID: PMC10616512 DOI: 10.4062/biomolther.2023.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
The lack of molecular targets hampers the treatment of triple-negative breast cancer (TNBC). In this study, we determined the cytotoxicity of domperidone, a dopamine D2 receptor (DRD2) antagonist in human TNBC BT-549 and CAL-51 cells. Domperidone inhibited cell growth in a dose- and time-dependent manner. The annexin V/propidium iodide staining showed that domperidone induced apoptosis. The domperidone-induced apoptosis was accompanied by the generation of mitochondrial superoxide and the down-regulation of cyclins and CDKs. The apoptotic effect of domperidone on TNBC cells was prevented by pre-treatment with Mito-TEMPO, a mitochondria-specific antioxidant. The prevention of apoptosis with Mito-TEMPO even at concentrations as low as 100 nM, implies that the generation of mitochondrial ROS mediated the domperidone-induced apoptosis. Immunoblot analysis showed that domperidone-induced apoptosis occurred through the down-regulation of the phosphorylation of JAK2 and STAT3. Moreover, domperidone downregulated the levels of D2-like dopamine receptors including DRD2, regardless of their mRNA levels. Our results support further development of DRD2 antagonists as potential therapeutic strategy treating TNBC.
Collapse
Affiliation(s)
- Rajina Shakya
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Mi Ran Byun
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| |
Collapse
|
22
|
Khan SU, Fatima K, Malik F, Kalkavan H, Wani A. Cancer metastasis: Molecular mechanisms and clinical perspectives. Pharmacol Ther 2023; 250:108522. [PMID: 37661054 DOI: 10.1016/j.pharmthera.2023.108522] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Metastatic progression combined with non-responsiveness towards systemic therapy often shapes the course of disease for cancer patients and commonly determines its lethal outcome. The complex molecular events that promote metastasis are a combination of both, the acquired pro-metastatic properties of cancer cells and a metastasis-permissive or -supportive tumor micro-environment (TME). Yet, dissemination is a challenging process for cancer cells that requires a series of events to enable cancer cell survival and growth. Metastatic cancer cells have to initially detach themselves from primary tumors, overcome the challenges of their intravasal journey and colonize distant sites that are suited for their metastases. The implicated obstacles including anoikis and immune surveillance, can be overcome by intricate intra- and extracellular signaling pathways, which we will summarize and discuss in this review. Further, emerging modulators of metastasis, like the immune-microenvironment, microbiome, sublethal cell death engagement, or the nervous system will be integrated into the existing working model of metastasis.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- The University of Texas MD Anderson Cancer Center, Division of Genitourinary Medical Oncology, Holcombe Blvd, Houston, TX 77030, USA; Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India.
| | - Halime Kalkavan
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Abubakar Wani
- St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, United States.
| |
Collapse
|
23
|
Zajac KK, Malla S, Babu RJ, Raman D, Tiwari AK. Ethnic disparities in the immune microenvironment of triple negative breast cancer and its role in therapeutic outcomes. Cancer Rep (Hoboken) 2023; 6 Suppl 1:e1779. [PMID: 36632988 PMCID: PMC10440847 DOI: 10.1002/cnr2.1779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
In 2020, newly diagnosed breast cancer (BC) cases surpassed that of lung cancer among women, making it the most common female cancer globally. In spite of recent increases in incidence rates, mortality due to BC has declined since 1989. These declines have been attributed to advancements in treatment modalities as well as increased mammography surveillance. Despite these advances, African American (AA) women are 40% more likely to die from BC than Caucasian women. Multifactorial etiology has been implicated in the disparity of BC mortality rates among AA women. As an example, AA women have a disproportionate incidence of triple negative breast cancer (TNBC), which has a poor prognosis and marginal treatment options. Increasingly, the tumor microenvironment (TME) has gained relevance as it relates to primary tumor progression, metastasis and treatment possibilities. The treatment outcomes or pathological complete response (pCR) in TNBC among AA women are affected by differences in TME. The TME of AA women exhibit several variances in acellular and cellular components associated with pro-tumorigenic effects. For example, increased levels of the adipocyte-related hormone, resistin, the pro-inflammatory cytokine, IL-6, and the CC chemokine, CCL2, within the TME of AA women gives rise to an increased density of M2 macrophages, also known as tumor-associated macrophages. Elevated levels of vascular endothelial growth factor in the TME of AA women increase the vascular density or vascularity, which facilitate aggressive tumor growth and metastasis. Furthermore, a pro-tumorigenic TME is supported by increased levels of the CXC chemokine, CXCL12 that results in the recruitment of regulatory T lymphocytes (Tregs ). Due to these and other differences in the TME of AA women, precision oncology can target specific aspects of the TME that may contribute to a poorer prognosis. In addition to the discrepancies in the TME, AA women face socio-economic barriers that limit their ability to access state-of-the-art, novel therapies against metastatic TNBC. In this review, we will provide a brief overview of the tumor immune microenvironment, immune-based treatment options for TNBC and their potential to decrease health disparities due to ethnicity.
Collapse
Affiliation(s)
- Kelsee K. Zajac
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
| | - Saloni Malla
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
| | - Ramapuram Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of PharmacyAuburn UniversityAuburnAlabamaUSA
| | - Dayanidhi Raman
- Department of Cell and Cancer BiologyUniversity of Toledo Health Science CampusToledoOhioUSA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
- Department of Cell and Cancer BiologyUniversity of Toledo Health Science CampusToledoOhioUSA
| |
Collapse
|
24
|
Montazeri Aliabadi H, Manda A, Sidgal R, Chung C. Targeting Breast Cancer: The Familiar, the Emerging, and the Uncharted Territories. Biomolecules 2023; 13:1306. [PMID: 37759706 PMCID: PMC10526846 DOI: 10.3390/biom13091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer became the most diagnosed cancer in the world in 2020. Chemotherapy is still the leading clinical strategy in breast cancer treatment, followed by hormone therapy (mostly used in hormone receptor-positive types). However, with our ever-expanding knowledge of signaling pathways in cancer biology, new molecular targets are identified for potential novel molecularly targeted drugs in breast cancer treatment. While this has resulted in the approval of a few molecularly targeted drugs by the FDA (including drugs targeting immune checkpoints), a wide array of signaling pathways seem to be still underexplored. Also, while combinatorial treatments have become common practice in clinics, the majority of these approaches seem to combine molecularly targeted drugs with chemotherapeutic agents. In this manuscript, we start by analyzing the list of FDA-approved molecularly targeted drugs for breast cancer to evaluate where molecular targeting stands in breast cancer treatment today. We will then provide an overview of other options currently under clinical trial or being investigated in pre-clinical studies.
Collapse
Affiliation(s)
- Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | | | | | | |
Collapse
|
25
|
Preclinical and Clinical Trials of New Treatment Strategies Targeting Cancer Stem Cells in Subtypes of Breast Cancer. Cells 2023; 12:cells12050720. [PMID: 36899854 PMCID: PMC10001180 DOI: 10.3390/cells12050720] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Breast cancer (BC) can be classified into various histological subtypes, each associated with different prognoses and treatment options, including surgery, radiation, chemotherapy, and endocrine therapy. Despite advances in this area, many patients still face treatment failure, the risk of metastasis, and disease recurrence, which can ultimately lead to death. Mammary tumors, like other solid tumors, contain a population of small cells known as cancer stem-like cells (CSCs) that have high tumorigenic potential and are involved in cancer initiation, progression, metastasis, tumor recurrence, and resistance to therapy. Therefore, designing therapies specifically targeting at CSCs could help to control the growth of this cell population, leading to increased survival rates for BC patients. In this review, we discuss the characteristics of CSCs, their surface biomarkers, and the active signaling pathways associated with the acquisition of stemness in BC. We also cover preclinical and clinical studies that focus on evaluating new therapy systems targeted at CSCs in BC through various combinations of treatments, targeted delivery systems, and potential new drugs that inhibit the properties that allow these cells to survive and proliferate.
Collapse
|
26
|
Dai X, Zhu K. Cold atmospheric plasma: Novel opportunities for tumor microenvironment targeting. Cancer Med 2023; 12:7189-7206. [PMID: 36762766 PMCID: PMC10067048 DOI: 10.1002/cam4.5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/17/2022] [Accepted: 11/17/2022] [Indexed: 02/11/2023] Open
Abstract
With mounting preclinical and clinical evidences on the prominent roles of the tumor microenvironment (TME) played during carcinogenesis, the TME has been recognized and used as an important onco-therapeutic target during the past decade. Delineating our current knowledge on TME components and their functionalities can help us recognize novel onco-therapeutic opportunities and establish treatment modalities towards desirable anti-cancer outcome. By identifying and focusing on primary cellular components in the TME, that is, tumor-infiltrating lymphocytes, tumor-associated macrophages, cancer-associated fibroblasts and mesenchymal stem cells, we decomposed their primary functionalities during carcinogenesis, categorized current therapeutic approaches utilizing traits of these components, and forecasted possible benefits that cold atmospheric plasma, a redox modulating tool with selectivity against cancer cells, may convey by targeting the TME. Our insights may open a novel therapeutic avenue for cancer control taking advantages of redox homeostasis and immunostasis.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Kaiyuan Zhu
- Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Orso F, Virga F, Dettori D, Dalmasso A, Paradzik M, Savino A, Pomatto MAC, Quirico L, Cucinelli S, Coco M, Mareschi K, Fagioli F, Salmena L, Camussi G, Provero P, Poli V, Mazzone M, Pandolfi PP, Taverna D. Stroma-derived miR-214 coordinates tumor dissemination. J Exp Clin Cancer Res 2023; 42:20. [PMID: 36639824 PMCID: PMC9837925 DOI: 10.1186/s13046-022-02553-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/29/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Tumor progression is based on a close interaction between cancer cells and Tumor MicroEnvironment (TME). Here, we focus on the role that Cancer Associated Fibroblasts (CAFs), Mesenchymal Stem Cells (MSCs) and microRNAs (miRs) play in breast cancer and melanoma malignancy. METHODS We used public databases to investigate miR-214 expression in the stroma compartment of primary human samples and evaluated tumor formation and dissemination following tumor cell injections in miR-214 overexpressing (miR-214over) and knock out (miR-214ko) mice. In addition, we dissected the impact of Conditioned Medium (CM) or Extracellular Vesicles (EVs) derived from miR-214-rich or depleted stroma cells on cell metastatic traits. RESULTS We evidence that the expression of miR-214 in human cancer or metastasis samples mostly correlates with stroma components and, in particular, with CAFs and MSCs. We present data revealing that the injection of tumor cells in miR-214over mice leads to increased extravasation and metastasis formation. In line, treatment of cancer cells with CM or EVs derived from miR-214-enriched stroma cells potentiate cancer cell migration/invasion in vitro. Conversely, dissemination from tumors grown in miR-214ko mice is impaired and metastatic traits significantly decreased when CM or EVs from miR-214-depleted stroma cells are used to treat cells in culture. Instead, extravasation and metastasis formation are fully re-established when miR-214ko mice are pretreated with miR-214-rich EVs of stroma origin. Mechanistically, we also show that tumor cells are able to induce miR-214 production in stroma cells, following the activation of IL-6/STAT3 signaling, which is then released via EVs subsequently up-taken by cancer cells. Here, a miR-214-dependent pro-metastatic program becomes activated. CONCLUSIONS Our findings highlight the relevance of stroma-derived miR-214 and its release in EVs for tumor dissemination, which paves the way for miR-214-based therapeutic interventions targeting not only tumor cells but also the TME.
Collapse
Affiliation(s)
- Francesca Orso
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
- Dept. of Translational Medicine (DIMET), Università del Piemonte Orientale, Novara, Italy
| | - Federico Virga
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Louvain, Belgium
- Present Address: Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Daniela Dettori
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Alberto Dalmasso
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Mladen Paradzik
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Aurora Savino
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | | | - Lorena Quirico
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Stefania Cucinelli
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Martina Coco
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Katia Mareschi
- Paediatric Onco-Haematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Franca Fagioli
- Paediatric Onco-Haematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Leonardo Salmena
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paolo Provero
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Valeria Poli
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Massimiliano Mazzone
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Louvain, Belgium
| | - Pier Paolo Pandolfi
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy.
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy.
- William N. Pennington Cancer Institute, Renown Health, Nevada System of Higher Education, Reno, NV, 89502, USA.
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy.
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy.
| |
Collapse
|
28
|
Shiah JV, Johnson DE, Grandis JR. Transcription Factors and Cancer: Approaches to Targeting. Cancer J 2023; 29:38-46. [PMID: 36693157 PMCID: PMC9881838 DOI: 10.1097/ppo.0000000000000639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ABSTRACT Cancer is defined by the presence of uncontrollable cell growth, whereby improper proliferative signaling has overcome regulation by cellular mechanisms. Transcription factors are uniquely situated at the helm of signaling, merging extracellular stimuli with intracellular responses. Therefore, this class of proteins plays a pivotal role in coordinating the correct gene expression levels for maintaining normal cellular functions. Dysregulation of transcription factor activity unsurprisingly drives tumorigenesis and oncogenic transformation. Although this imparts considerable therapeutic potential to targeting transcription factors, their lack of enzymatic activity renders intervention challenging and has contributed to a sense that transcription factors are "undruggable." Yet, enduring efforts to elucidate strategies for targeting transcription factors as well as a deeper understanding of their interactions with binding partners have led to advancements that are emerging to counter this narrative. Here, we highlight some of these approaches, focusing primarily on therapeutics that have advanced to the clinic.
Collapse
Affiliation(s)
- Jamie V Shiah
- From the Department Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA
| | | | | |
Collapse
|
29
|
Guvenir Celik E, Eroglu O. Combined treatment with ruxolitinib and MK-2206 inhibits the JAK2/STAT5 and PI3K/AKT pathways via apoptosis in MDA-MB-231 breast cancer cell line. Mol Biol Rep 2023; 50:319-329. [PMID: 36331743 DOI: 10.1007/s11033-022-08034-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Due to deficiencies in the expression of hormone receptors, such as PR, ER and HER2, it is challenging to treat triple-negative breast cancer, which does not respond to single targeted therapy. Ruxolitinib is a Janus kinase (JAK)1/JAK2 inhibitor. MK-2206 is an allosteric AKT inhibitor. Due to the limited activities of ruxolitinib and MK-2206 for monotherapy, the need for cotreatment with other drugs has emerged. This study is the first to examine the effects of ruxolitinib and MK-2206 cotreatment on apoptosis and JAK2/STAT5 and PI3K/AKT signaling in MDA-MB-231 breast cancer cells. Additionally, this work aimed to decrease the side effects of ruxolitinib and increase its anticancer effects with MK-2206 cotreatment. METHODS AND RESULTS Cell viability was reduced in a dose- and time-dependent manner after exposure to ruxolitinib, MK-2206 or both for 48 h, as shown by MTT assay. Ruxolitinib had a synergistic antiproliferative effect, as demonstrated by colony formation and wound healing assays. The effects of ruxolitinib, MK-2206 and their combination on apoptosis, as well as PI3K/AKT and JAK/STAT signaling, were examined by western blot analyses. Cotreatment with ruxolitinib and MK-2206 reduced proliferation with the dual inhibition of JAK2/STAT5 and PI3K/AKT signaling by decreasing PI3K, AKT, JAK2, STAT5, Caspase-9, Caspase-7, PARP, c-Myc, and Bcl-2 and increasing P53 and PTEN protein expression. CONCLUSIONS Our results revealed the roles of P53 and PTEN in the regulation of apoptosis and the PI3K/AKT and JAK2/STAT5 signaling pathways. The dual inhibition of JAK2/STAT5 and PI3K/AKT may reduce metastasis by decreasing tumor cell survival.
Collapse
Affiliation(s)
- Esin Guvenir Celik
- Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Seyh Edebali University, Bilecik, Turkey. .,Biotechnology Research and Application Center, Bilecik Seyh Edebali University, Bilecik, Turkey. .,Department of Molecular Biology and Genetics, Institute of Graduate Education, Bilecik Şeyh Edebali University, Bilecik, Turkey.
| | - Onur Eroglu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Seyh Edebali University, Bilecik, Turkey.,Biotechnology Research and Application Center, Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|
30
|
Makhlin I, McAndrew NP, Wileyto EP, Clark AS, Holmes R, Bottalico LN, Mesaros C, Blair IA, Jeschke GR, Fox KR, Domchek SM, Matro JM, Bradbury AR, Feldman MD, Hexner EO, Bromberg JF, DeMichele A. Ruxolitinib and exemestane for estrogen receptor positive, aromatase inhibitor resistant advanced breast cancer. NPJ Breast Cancer 2022; 8:122. [PMID: 36369506 PMCID: PMC9652412 DOI: 10.1038/s41523-022-00487-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Circulating IL-6, an activator of JAK/STAT signaling, is associated with poor prognosis and aromatase inhibitor (AI) resistance in hormone-receptor positive (HR+) breast cancer. Here we report the results of a phase 2 single-arm Simon 2-stage trial combining Ruxolitinib, an oral selective inhibitor of JAK1/2, with exemestane, a steroidal AI, in patients with HR+ metastatic breast cancer (MBC) after progression on non-steroidal AI (NSAI). Safety and efficacy were primary objectives, and analysis of inflammatory markers as predictors of response was a key secondary objective. Twenty-five subjects enrolled. The combination of ruxolitinib and exemestane was safe, though anemia requiring transfusion in 5/15 (33%) at the 25 mg dose in stage 1 led to a reduction to 15 mg twice daily in stage 2 (with no additional transfusions). Clinical benefit rate (CBR) in the overall study population was 24% (95% CI 9.4-45.1); 6/25 patients demonstrated stable disease for ≥6 months. Median progression-free survival was 2.8 months (95% CI 2.6-3.9). Exploratory biomarkers revealed high levels of systemic inflammation and 60% harbored a high-risk IL-6 genotype. Pharmacodynamics demonstrated modest on-target inhibition of phosphorylated-STAT3 by ruxolitinib at a tolerable dose. Thus, ruxolitinib combined with exemestane at a tolerable dose was safe but minimally active in AI-resistant tumors of patients with high levels of systemic inflammation. These findings highlight the need for more potent and specific therapies targeting inflammation in MBC.
Collapse
Affiliation(s)
- Igor Makhlin
- Division of Hematology/Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| | - Nicholas P McAndrew
- Division of Hematology/Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - E Paul Wileyto
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy S Clark
- Division of Hematology/Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Robin Holmes
- University of Pennsylvania, Abramson Cancer Center, Philadelphia, PA, USA
| | - Lisa N Bottalico
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Clementina Mesaros
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kevin R Fox
- Division of Hematology/Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Susan M Domchek
- Division of Hematology/Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Basser Center at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer M Matro
- Division of Hematology/Oncology, UC San Diego, San Diego, CA, USA
| | - Angela R Bradbury
- Division of Hematology/Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael D Feldman
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth O Hexner
- Division of Hematology/Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Angela DeMichele
- Division of Hematology/Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
31
|
Wong GL, Manore SG, Doheny DL, Lo HW. STAT family of transcription factors in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Semin Cancer Biol 2022; 86:84-106. [PMID: 35995341 PMCID: PMC9714692 DOI: 10.1016/j.semcancer.2022.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and second-leading cause of cancer deaths in women. Breast cancer stem cells (BCSCs) promote metastasis and therapeutic resistance contributing to tumor relapse. Through activating genes important for BCSCs, transcription factors contribute to breast cancer metastasis and therapeutic resistance, including the signal transducer and activator of transcription (STAT) family of transcription factors. The STAT family consists of six major isoforms, STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6. Canonical STAT signaling is activated by the binding of an extracellular ligand to a cell-surface receptor followed by STAT phosphorylation, leading to STAT nuclear translocation and transactivation of target genes. It is important to note that STAT transcription factors exhibit diverse effects in breast cancer; some are either pro- or anti-tumorigenic while others maintain dual, context-dependent roles. Among the STAT transcription factors, STAT3 is the most widely studied STAT protein in breast cancer for its critical roles in promoting BCSCs, breast cancer cell proliferation, invasion, angiogenesis, metastasis, and immune evasion. Consequently, there have been substantial efforts in developing cancer therapeutics to target breast cancer with dysregulated STAT3 signaling. In this comprehensive review, we will summarize the diverse roles that each STAT family member plays in breast cancer pathobiology, as well as, the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators in the context of breast cancer treatment.
Collapse
Affiliation(s)
- Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
32
|
Dinakar YH, Kumar H, Mudavath SL, Jain R, Ajmeer R, Jain V. Role of STAT3 in the initiation, progression, proliferation and metastasis of breast cancer and strategies to deliver JAK and STAT3 inhibitors. Life Sci 2022; 309:120996. [PMID: 36170890 DOI: 10.1016/j.lfs.2022.120996] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Breast cancer (BC) accounts for the majority of cancers among the female population. Anomalous activation of various signaling pathways has become an issue of concern. The JAK-STAT signaling pathway is activated in numerous cancers, including BC. STAT3 is widely involved in BCs, as 40 % of BCs display phosphorylated STAT3. JAK-STAT signaling is crucial for proliferation, survival, metastasis and other cellular events associated with the tumor microenvironment. Hence, targeting this pathway has become an area of interest among researchers. KEY FINDINGS This review article focuses on the role of STAT3 in the initiation, proliferation, progression and metastasis of BC. The roles of various phytochemicals, synthetic molecules and biologicals against JAK-STAT and STAT3 in various cancers have been discussed, with special emphasis on BC. SIGNIFICANCE JAK and STAT3 are involved in various phases from initiation to metastasis, and targeting this pathway is a promising approach to inhibit the various stages of BC development and to prevent metastasis. A number of phytochemicals and synthetic and biological molecules have demonstrated potential inhibitory effects on JAK and STAT3, thereby paving the way for the development of better therapeutics against BC.
Collapse
Affiliation(s)
- Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Mohali 140306, Punjab, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Ramkishan Ajmeer
- Central Drugs Standard Control Organization, East Zone, Kolkata 700020, West Bengal, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| |
Collapse
|
33
|
Xiong F, Wang Q, Wu GH, Liu WZ, Wang B, Chen YJ. Direct and indirect effects of IFN-α2b in malignancy treatment: not only an archer but also an arrow. Biomark Res 2022; 10:69. [PMID: 36104718 PMCID: PMC9472737 DOI: 10.1186/s40364-022-00415-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Interferon-α2b (IFN-α2b) is a highly active cytokine that belongs to the interferon-α (IFN-α) family. IFN-α2b has beneficial antiviral, antitumour, antiparasitic and immunomodulatory activities. Direct and indirect antiproliferative effects of IFN-α2b have been found to occur via multiple pathways, mainly the JAK-STAT pathway, in certain cancers. This article reviews mechanistic studies and clinical trials on IFN-α2b. Potential regulators of the function of IFN-α2b were also reviewed, which could be utilized to relieve the poor response to IFN-α2b. IFN-α2b can function not only by enhancing the systematic immune response but also by directly killing tumour cells. Different parts of JAK-STAT pathway activated by IFN-α2b, such as interferon alpha and beta receptors (IFNARs), Janus kinases (JAKs) and IFN‐stimulated gene factor 3 (ISGF3), might serve as potential target for enhancing the pharmacological action of IFN-α2b. Despite some issues that remain to be solved, based on current evidence, IFN-α2b can inhibit disease progression and improve the survival of patients with certain types of malignant tumours. More efforts should be made to address potential adverse effects and complications.
Collapse
|
34
|
Widyananda MH, Wicaksono ST, Rahmawati K, Puspitarini S, Ulfa SM, Jatmiko YD, Masruri M, Widodo N. A Potential Anticancer Mechanism of Finger Root ( Boesenbergia rotunda) Extracts against a Breast Cancer Cell Line. SCIENTIFICA 2022; 2022:9130252. [PMID: 36106139 PMCID: PMC9467824 DOI: 10.1155/2022/9130252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/13/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Breast cancer is the most common type of cancer women suffer from worldwide in 2020 and the 4th leading cause of cancer death. Boesenbergia rotunda is an herb with high potential as an anticancer agent. This study explores the potential bioactive compounds in B. rotunda as anti-breast cancer agents using in silico and in vitro approaches. The in silico study was used for active compound analysis, selection of anticancer compound candidates, prediction of target protein, functional annotation, molecular docking, and molecular dynamics simulation, respectively. The in vitro study was conducted by measurement toxicity, rhodamine 123, and apoptosis assays on T47D cells. Based on the KNApSAcK database, B. rotunda contained 20 metabolites, which are dominated by chalcone and flavonoid groups. Seven of them were predicted to have anticancer activity, namely, sakuranetin, cardamonin, alpinetin, 2S-pinocembrin, 7.4'-dihydroxy-5-methoxyflavanone, 5.6-dehydrokawain, and pinostrobin chalcone. These compounds targeted proteins related to cancer progression pathways such as the PI3K/Akt, FOXO, JAK/STAT, and estrogen signaling pathways. Therefore, these compounds are predicted to inhibit growth and induce apoptosis of cancer cells through their interactions with MMP12, MMP13, CDK4, JAK3, VEGFR1, VEGFR2, and KCNA3. Anticancer activity of B. rotunda through in vitro study confirmed that B. rotunda extract is strong cytotoxic and induces apoptosis of breast cancer cell lines. This study concludes that Boesenbergia rotunda has potency as an anticancer candidate.
Collapse
Affiliation(s)
| | - Septian Tri Wicaksono
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Kurnia Rahmawati
- Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Malang, Indonesia
| | - Sapti Puspitarini
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Siti Mariyah Ulfa
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Yoga Dwi Jatmiko
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Masruri Masruri
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Nashi Widodo
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| |
Collapse
|
35
|
Heterogeneity of triple negative breast cancer: Current advances in subtyping and treatment implications. J Exp Clin Cancer Res 2022; 41:265. [PMID: 36050786 PMCID: PMC9434975 DOI: 10.1186/s13046-022-02476-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractAs the field of translational ‘omics has progressed, refined classifiers at both genomic and proteomic levels have emerged to decipher the heterogeneity of breast cancer in a clinically-applicable way. The integration of ‘omics knowledge at the DNA, RNA and protein levels is further expanding biologic understanding of breast cancer and opportunities for customized treatment, a particularly pressing need in clinically triple negative tumors. For this group of aggressive breast cancers, work from multiple groups has now validated at least four major biologically and clinically distinct omics-based subtypes. While to date most clinical trial designs have considered triple negative breast cancers as a single group, with an expanding arsenal of targeted therapies applicable to distinct biological pathways, survival benefits may be best realized by designing and analyzing clinical trials in the context of major molecular subtypes. While RNA-based classifiers are the most developed, proteomic classifiers proposed for triple negative breast cancer based on new technologies have the potential to more directly identify the most clinically-relevant biomarkers and therapeutic targets. Phospho-proteomic data further identify targetable signalling pathways in a unique subtype-specific manner. Single cell profiling of the tumor microenvironment represents a promising way to allow a better characterization of the heterogeneity of triple negative breast cancer which could be integrated in a spatially resolved context to build an ecosystem-based patient classification. Multi-omic data further allows in silico analysis of genetic and pharmacologic screens to map therapeutic vulnerabilities in a subtype-specific context. This review describes current knowledge about molecular subtyping of triple negative breast cancer, recent advances in omics-based genomics and proteomics diagnostics addressing the diversity of this disease, key advances made through single cell analysis approaches, and developments in treatments including targeted therapeutics being tested in major clinical trials.
Collapse
|
36
|
Kapoor-Narula U, Lenka N. Cancer stem cells and tumor heterogeneity: Deciphering the role in tumor progression and metastasis. Cytokine 2022; 157:155968. [PMID: 35872504 DOI: 10.1016/j.cyto.2022.155968] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
Tumor heterogeneity, in principle, reflects the variation among different cancer cell populations. It can be termed inter- or intra-tumoral heterogeneity, respectively, based on its occurrence in various tissues from diverse patients or within a single tumor. The intra-tumoral heterogeneity is one of the leading causes of cancer progression and treatment failure, with the cancer stem cells (CSCs) contributing immensely to the same. These niche cells, similar to normal stem cells, possess the characteristics of self-renewal and differentiation into multiple cell types. Moreover, CSCs contribute to tumor growth and surveillance by promoting recurrence, metastasis, and therapeutic resistance. Diverse factors, including intracellular signalling pathways and tumor microenvironment (TME), play a vital role in regulating these CSCs. Although a panel of markers is considered to identify the CSC pool in various cancers, further research is needed to discriminate cancer-specific CSC markers in those. CSCs have also been found to be promising therapeutic targets for cancer therapy. Several small molecules, natural compounds, antibodies, chimeric antigen receptor T (CAR-T) cells, and CAR-natural killer (CAR-NK) cells have emerged as therapeutic tools for specific targeting of CSCs. Interestingly, many of these are in clinical trials too. Despite being a much-explored avenue of research for years, and we have come to understand its nitty-gritty, there is still a tremendous gap in our knowledge concerning its precise genesis and regulation. Hence, a concrete understanding is needed to assess the CSC-TME link and how to target different cancer-specific CSCs by designing newer tools. In this review, we have summarized CSC, its causative, different pathways and factors regulating its growth, association with tumor heterogeneity, and last but not least, discussed many of the promising CSC-targeted therapies for combating cancer metastasis.
Collapse
|
37
|
Dey P, Joshi M, Mujawar A, Malhotra R, De A. Direct knockdown of phospho-PTM targets mediated by TRIM21 can improve personalized treatment in breast cancer. Cell Oncol (Dordr) 2022; 45:873-891. [PMID: 35834098 DOI: 10.1007/s13402-022-00693-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE In this work for the first time, we showed specific and direct knockdown of important oncogenic proteins of interest and their phospho-PTM targets in tripartite motif containing-21 (TRIM21) overexpressing breast cancer (BC) cells. We revealed the functional and therapeutic consequences of this protein knockdown approach called 'TRIM-ing'. METHODS To target HER2, HER3, STAT3 or their activated forms, electroporation and puls-in transfection were standardized for mAb delivery in AU565 and MCF7 BC cell lines. Cancer cells were treated with HER2-targeted medicines (Trastuzumab and Neratinib) or STAT3 targeted inhibitors (Stattic and Niclosamide) with or without respective target TRIM-ing. Real-time PCR, immunoblotting, immunofluorescence, cytotoxicity, short- and long-term cell survival assessments were done following standard methodologies. 3-D structure modelling was used to verify the binding of mAb onto the STAT3 target. RESULTS TRIM-ing of HER2 or HER3 receptors or their activated phospho-forms in BC cells showed rapid degradation of respective protein forms, shattering down the downstream signaling (p-ERK, p-AKT) that lasts for up to 7-8 days. This significantly inhibited BC survival (p < 0.001), showing a synergistic therapeutic effect with HER2 medicine trastuzumab or neratinib. Additionally, specific TRIM-ing ability of canonical pY705 or non-canonical pS727 PTMs of STAT3 protein was demonstrated in MCF7 cells, causing significant cytotoxicity (p < 0.05). TRIM-ing of STAT3 PTM, when combined with the same PTM-specific inhibitors, a synergistic treatment effect was observed. CONCLUSION The work demonstrated that TRIM-ing could directly reduce various oncogenic targets or their specific activated form inside the cancer cells without compensatory pathway activation, a conundrum limiting the therapeutic benefit of current personalized medicines.
Collapse
Affiliation(s)
- Pranay Dey
- Molecular Functional Imaging Laboratory, KS232c, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai, 410210, India.,Faculty of Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Mansi Joshi
- Molecular Functional Imaging Laboratory, KS232c, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai, 410210, India.,Faculty of Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Aaiyas Mujawar
- Molecular Functional Imaging Laboratory, KS232c, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai, 410210, India.,Faculty of Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Renu Malhotra
- Molecular Functional Imaging Laboratory, KS232c, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai, 410210, India
| | - Abhijit De
- Molecular Functional Imaging Laboratory, KS232c, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai, 410210, India. .,Faculty of Life Sciences, Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
38
|
Liu C, Li Y, Xing X, Zhuang J, Wang J, Wang C, Zhang L, Liu L, Feng F, Li H, Gao C, Yu Y, Liu J, Sun C. Immunogenomic landscape analyses of immune molecule signature-based risk panel for patients with triple-negative breast cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:670-684. [PMID: 35614988 PMCID: PMC9123090 DOI: 10.1016/j.omtn.2022.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/28/2022] [Indexed: 12/27/2022]
Abstract
Triple-negative breast cancer (TNBC) presented as high heterogeneous immunogenicity that lacks useful clinical signatures to risk-stratify immune-benefit subtypes. We hypothesized that molecular-based phenotypic characterization of TNBC tumors and their immunity may overcome these challenges. We enrolled 1,145 patients with TNBC for analysis. Through combining algorithm integration analysis and TNBC datasets, a tumor immune risk score (TIRS) panel consisting of 8 potential biomarkers was identified. The TIRS panel represented excellent effectiveness as an independent predictor. High- and low risk stratification of patients was further achieved by TIRS, and significant survival and immune-infiltration pattern differences were found in each cohort, both at the transcriptome and protein levels. Non-negative matrix factorization clustering further identified four different tumor immune microenvironment types (TIMTs), among which TIMT-II was associated with the best prognosis and immune status, whereas TIMT-IV had the opposite effect, TIMT-III was associated with highly unstable genomes, and TIMT-I displayed stem-cell-related characteristics along with high stromal scores and may have extensive enrichment of tumor-associated fibroblasts and vascular cells. In conclusion, our TIRS panel could serve as a robust prognostic signature and provide therapeutic benefits for immunotherapy. Additionally, coordinating four TIMTs may be helpful for clinical decision-making in TNBC patients.
Collapse
Affiliation(s)
- Cun Liu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Ye Li
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Xiaoming Xing
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China
| | - Jigang Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chunyan Wang
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang 261000, China
| | - Lujun Zhang
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang 261000, China
| | - Lijuan Liu
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Fubin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.,Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Chundi Gao
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Yang Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Jingyang Liu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.,College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266000, China
| |
Collapse
|
39
|
Dewi C, Fristiohady A, Amalia R, Khairul Ikram NK, Ibrahim S, Muchtaridi M. Signaling Pathways and Natural Compounds in Triple-Negative Breast Cancer Cell Line. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123661. [PMID: 35744786 PMCID: PMC9227697 DOI: 10.3390/molecules27123661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, having a poor prognosis and rapid metastases. TNBC is characterized by the absence of estrogen, progesterone, and human epidermal growth receptor-2 (HER2) expressions and has a five-year survival rate. Compared to other breast cancer subtypes, TNBC patients only respond to conventional chemotherapies, and even then, with limited success. Shortages of chemotherapeutic medication can lead to resistance, pressured index therapy, non-selectivity, and severe adverse effects. Finding targeted treatments for TNBC is difficult owing to the various features of cancer. Hence, identifying the most effective molecular targets in TNBC pathogenesis is essential for predicting response to targeted therapies and preventing TNBC cell metastases. Nowadays, natural compounds have gained attention as TNBC treatments, and have offered new strategies for solving drug resistance. Here, we report a systematic review using the database from Pubmed, Science Direct, MDPI, BioScince, Springer, and Nature for articles screening from 2003 to 2022. This review analyzes relevant signaling pathways and the prospect of utilizing natural compounds as a therapeutic agent to improve TNBC treatments in the future.
Collapse
Affiliation(s)
- Citra Dewi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Pharmacy Department, Faculty of Science and Technology, Mandala Waluya University, Kendari 93561, Indonesia
| | - Adryan Fristiohady
- Faculty of Pharmacy, Halu Oleo University, Kampus Hijau Bumi Tridharma, Kendari 93232, Indonesia;
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Sugeng Ibrahim
- Department of Molecular Biology, Faculty of Medicine, Universitas Katolik Soegijapranata, Semarang 50234, Indonesia;
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence:
| |
Collapse
|
40
|
Mehlich D, Marusiak AA. Kinase inhibitors for precision therapy of triple-negative breast cancer: Progress, challenges, and new perspectives on targeting this heterogeneous disease. Cancer Lett 2022; 547:215775. [DOI: 10.1016/j.canlet.2022.215775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 12/21/2022]
|
41
|
Wang H, Man Q, Huo F, Gao X, Lin H, Li S, Wang J, Su F, Cai, L, Shi Y, Liu, B, Bu L. STAT3 pathway in cancers: Past, present, and future. MedComm (Beijing) 2022; 3:e124. [PMID: 35356799 PMCID: PMC8942302 DOI: 10.1002/mco2.124] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, discovered in the cytoplasm of almost all types of mammalian cells, plays a significant role in biological functions. The duration of STAT3 activation in normal tissues is a transient event and is strictly regulated. However, in cancer tissues, STAT3 is activated in an aberrant manner and is induced by certain cytokines. The continuous activation of STAT3 regulates the expression of downstream proteins associated with the formation, progression, and metastasis of cancers. Thus, elucidating the mechanisms of STAT3 regulation and designing inhibitors targeting the STAT3 pathway are considered promising strategies for cancer treatment. This review aims to introduce the history, research advances, and prospects concerning the STAT3 pathway in cancer. We review the mechanisms of STAT3 pathway regulation and the consequent cancer hallmarks associated with tumor biology that are induced by the STAT3 pathway. Moreover, we summarize the emerging development of inhibitors that target the STAT3 pathway and novel drug delivery systems for delivering these inhibitors. The barriers against targeting the STAT3 pathway, the focus of future research on promising targets in the STAT3 pathway, and our perspective on the overall utility of STAT3 pathway inhibitors in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Han‐Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Qi‐Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fang‐Yi Huo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xin Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Hao Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Su‐Ran Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fu‐Chuan Su
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lulu Cai,
- Personalized Drug Therapy Key Laboratory of Sichuan ProvinceDepartment of PharmacySchool of MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bing Liu,
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lin‐Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
42
|
|
43
|
Morrow RJ, Allam AH, Yeo B, Deb S, Murone C, Lim E, Johnstone CN, Ernst M. Paracrine IL-6 Signaling Confers Proliferation between Heterogeneous Inflammatory Breast Cancer Sub-Clones. Cancers (Basel) 2022; 14:cancers14092292. [PMID: 35565421 PMCID: PMC9105876 DOI: 10.3390/cancers14092292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary This study provides novel mechanistic insights into the capacity of the inflammatory cytokine IL-6 and its associated STAT3-dependent signaling pathway to stimulate proliferation in trans between individual sub-clones in a model of heterogeneity in inflammatory breast cancer. The clinical relevance of this discovery is provided by our observation that proliferation of the IL-6 responsive subclone is sensitive to inhibition with the clinically approved anti-IL-6 receptor humanized monoclonal antibody Tocilizumab. These findings therefore provide a rationale for potentially repurposing Tocilizumab for the treatment of a subset of inflammatory breast cancer patients. Abstract Inflammatory breast cancer (IBC) describes a highly aggressive form of breast cancer of diverse molecular subtypes and clonal heterogeneity across individual tumors. Accordingly, IBC is recognized by its clinical signs of inflammation, associated with expression of interleukin (IL)-6 and other inflammatory cytokines. Here, we investigate whether sub-clonal differences between expression of components of the IL-6 signaling cascade reveal a novel role for IL-6 to mediate a proliferative response in trans using two prototypical IBC cell lines. We find that SUM149 and SUM 190 cells faithfully replicate differential expression observed in a subset of human IBC specimens between IL-6, the activated form of the key downstream transcription factor STAT3, and of the HER2 receptor. Surprisingly, the high level of IL-6 produced by SUM149 cells activates STAT3 and stimulates proliferation in SUM190 cells, but not in SUM149 cells with low IL-6R expression. Importantly, SUM149 conditioned medium or co-culture with SUM149 cells induced growth of SUM190 cells, and this effect was abrogated by the IL-6R neutralizing antibody Tocilizumab. The results suggest a novel function for inter-clonal IL-6 signaling in IBC, whereby IL-6 promotes in trans proliferation of IL-6R and HER2-expressing responsive sub-clones and, therefore, may provide a vulnerability that can be exploited therapeutically by repurposing of a clinically approved antibody.
Collapse
Affiliation(s)
- Riley J. Morrow
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- La Trobe University School of Cancer Medicine, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Amr H. Allam
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- La Trobe University School of Cancer Medicine, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Belinda Yeo
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- Department of Anatomical Pathology, Austin Hospital, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Siddhartha Deb
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- Department of Anatomical Pathology, Austin Hospital, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Carmel Murone
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- Department of Anatomical Pathology, Austin Hospital, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia;
- School of Clinical Medicine, University of New South Wales, Randwick, NSW 2052, Australia
| | - Cameron N. Johnstone
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- La Trobe University School of Cancer Medicine, 145 Studley Rd, Heidelberg, VIC 3084, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- La Trobe University School of Cancer Medicine, 145 Studley Rd, Heidelberg, VIC 3084, Australia
- Correspondence: ; Tel.: +61-3-9496-9775
| |
Collapse
|
44
|
Firoozbakht F, Rezaeian I, Rueda L, Ngom A. Computationally repurposing drugs for breast cancer subtypes using a network-based approach. BMC Bioinformatics 2022; 23:143. [PMID: 35443626 PMCID: PMC9020161 DOI: 10.1186/s12859-022-04662-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
‘De novo’ drug discovery is costly, slow, and with high risk. Repurposing known drugs for treatment of other diseases offers a fast, low-cost/risk and highly-efficient method toward development of efficacious treatments. The emergence of large-scale heterogeneous biomolecular networks, molecular, chemical and bioactivity data, and genomic and phenotypic data of pharmacological compounds is enabling the development of new area of drug repurposing called ‘in silico’ drug repurposing, i.e., computational drug repurposing (CDR). The aim of CDR is to discover new indications for an existing drug (drug-centric) or to identify effective drugs for a disease (disease-centric). Both drug-centric and disease-centric approaches have the common challenge of either assessing the similarity or connections between drugs and diseases. However, traditional CDR is fraught with many challenges due to the underlying complex pharmacology and biology of diseases, genes, and drugs, as well as the complexity of their associations. As such, capturing highly non-linear associations among drugs, genes, diseases by most existing CDR methods has been challenging. We propose a network-based integration approach that can best capture knowledge (and complex relationships) contained within and between drugs, genes and disease data. A network-based machine learning approach is applied thereafter by using the extracted knowledge and relationships in order to identify single and pair of approved or experimental drugs with potential therapeutic effects on different breast cancer subtypes. Indeed, further clinical analysis is needed to confirm the therapeutic effects of identified drugs on each breast cancer subtype.
Collapse
Affiliation(s)
- Forough Firoozbakht
- School of Computer Science, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada
| | - Iman Rezaeian
- School of Computer Science, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada.,Rocket Innovation Studio, 156 Chatham St W, Windsor, ON, Canada
| | - Luis Rueda
- School of Computer Science, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada.
| | - Alioune Ngom
- School of Computer Science, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada
| |
Collapse
|
45
|
Manore SG, Doheny DL, Wong GL, Lo HW. IL-6/JAK/STAT3 Signaling in Breast Cancer Metastasis: Biology and Treatment. Front Oncol 2022; 12:866014. [PMID: 35371975 PMCID: PMC8964978 DOI: 10.3389/fonc.2022.866014] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women. Metastasis is the primary cause of mortality for breast cancer patients. Multiple mechanisms underlie breast cancer metastatic dissemination, including the interleukin-6 (IL-6)-mediated signaling pathway. IL-6 is a pleiotropic cytokine that plays an important role in multiple physiological processes including cell proliferation, immune surveillance, acute inflammation, metabolism, and bone remodeling. IL-6 binds to the IL-6 receptor (IL-6Rα) which subsequently binds to the glycoprotein 130 (gp130) receptor creating a signal transducing hexameric receptor complex. Janus kinases (JAKs) are recruited and activated; activated JAKs, in turn, phosphorylate signal transducer and activator of transcription 3 (STAT3) for activation, leading to gene regulation. Constitutively active IL-6/JAK/STAT3 signaling drives cancer cell proliferation and invasiveness while suppressing apoptosis, and STAT3 enhances IL-6 signaling to promote a vicious inflammatory loop. Aberrant expression of IL-6 occurs in multiple cancer types and is associated with poor clinical prognosis and metastasis. In breast cancer, the IL-6 pathway is frequently activated, which can promote breast cancer metastasis while simultaneously suppressing the anti-tumor immune response. Given these important roles in human cancers, multiple components of the IL-6 pathway are promising targets for cancer therapeutics and are currently being evaluated preclinically and clinically for breast cancer. This review covers the current biological understanding of the IL-6 signaling pathway and its impact on breast cancer metastasis, as well as, therapeutic interventions that target components of the IL-6 pathway including: IL-6, IL-6Rα, gp130 receptor, JAKs, and STAT3.
Collapse
Affiliation(s)
- Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
46
|
STAT3 Signaling in Breast Cancer: Multicellular Actions and Therapeutic Potential. Cancers (Basel) 2022; 14:cancers14020429. [PMID: 35053592 PMCID: PMC8773745 DOI: 10.3390/cancers14020429] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Many signaling pathways are overactive in breast cancer, and among them is the STAT3 signaling pathway. STAT3 is activated by secreted factors within the breast tumor, many of which are elevated and correlate to advanced disease and poor survival outcomes. This review examines how STAT3 signaling is activated in breast cancer by the proinflammatory, gp130 cytokines, interleukins 6 and 11. We evaluate how this signaling cascade functions in the various cells of the tumor microenvironment to drive disease progression and metastasis. We discuss how our understanding of these processes may lead to the development of novel therapeutics to tackle advanced disease. Abstract Interleukin (IL)-6 family cytokines, such as IL-6 and IL-11, are defined by the shared use of the gp130 receptor for the downstream activation of STAT3 signaling and the activation of genes which contribute to the “hallmarks of cancer”, including proliferation, survival, invasion and metastasis. Increased expression of these cytokines, or the ligand-specific receptors IL-6R and IL-11RA, in breast tumors positively correlate to disease progression and poorer patient outcome. In this review, we examine evidence from pre-clinical studies that correlate enhanced IL-6 and IL-11 mediated gp130/STAT3 signaling to the progression of breast cancer. Key processes by which the IL-6 family cytokines contribute to the heterogeneous nature of breast cancer, immune evasion and metastatic potential, are discussed. We examine the latest research into the therapeutic targeting of IL-6 family cytokines that inhibit STAT3 transcriptional activity as a potential breast cancer treatment, including current clinical trials. The importance of the IL-6 family of cytokines in cellular processes that promote the development and progression of breast cancer warrants further understanding of the molecular basis for its actions to help guide the development of future therapeutic targets.
Collapse
|
47
|
Kharel Z, Nemer OP, Xi W, Upadhayaya B, Falkson CI, O'Regan RM, Dhakal A. Inflammatory breast cancer with excellent response to pembrolizumab-chemotherapy combination: A case report. Breast Dis 2022; 41:255-260. [PMID: 35599460 DOI: 10.3233/bd-210041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inflammatory breast cancer (IBC) is a rare variety of breast cancer accounting for two percent of breast cancer diagnoses in the United States. It is characterized by peau d'orange, breast edema and erythema on physical examination and dermal lymphatic invasion by tumor emboli on histological examination. Micrometastases to lymphatics and bone marrow at the time of diagnosis and angiogenic properties of IBC explain the high propensity of this cancer to relapse and metastasize, its aggressiveness and poor prognosis. Preoperative sequential anthracycline and taxane (plus trastuzumab and pertuzumab if HER2-positive) based chemotherapy is the current standard of care for IBC. We herein report a case of stage IIIC triple-negative IBC treated with pembrolizumab plus chemotherapy based neoadjuvant therapy with a complete clinical and complete pathological response. This is the first case of triple-negative IBC treated with this regimen reported in the literature, thereby providing clinical data on the tolerability and efficacy of pembrolizumab plus chemotherapy based neoadjuvant regimen for the treatment of IBC.
Collapse
Affiliation(s)
- Zeni Kharel
- Department of Internal Medicine, Rochester General Hospital, Rochester, NY, USA
| | - Omar P Nemer
- Department of Radiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Wang Xi
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | - Bimala Upadhayaya
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Carla I Falkson
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Ruth M O'Regan
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Ajay Dhakal
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
48
|
Fu X, De Angelis C, Schiff R. Interferon Signaling in Estrogen Receptor-positive Breast Cancer: A Revitalized Topic. Endocrinology 2022; 163:6429717. [PMID: 34791151 DOI: 10.1210/endocr/bqab235] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Indexed: 12/25/2022]
Abstract
Cancer immunology is the most rapidly expanding field in cancer research, with the importance of immunity in cancer pathogenesis now well accepted including in the endocrine-related cancers. The immune system plays an essential role in the development of ductal and luminal epithelial differentiation in the mammary gland. Originally identified as evolutionarily conserved antipathogen cytokines, interferons (IFNs) have shown important immune-modulatory and antineoplastic properties when administered to patients with various types of cancer, including breast cancer. Recent studies have drawn attention to the role of tumor- and stromal-infiltrating lymphocytes in dictating therapy response and outcome of breast cancer patients, which, however, is highly dependent on the breast cancer subtype. The emerging role of tumor cell-inherent IFN signaling in the subtype-defined tumor microenvironment could influence therapy response with protumor activities in breast cancer. Here we review evidence with new insights into tumor cell-intrinsic and tumor microenvironment-derived IFN signaling, and the crosstalk of IFN signaling with key signaling pathways in estrogen receptor-positive (ER+) breast cancer. We also discuss clinical implications and opportunities exploiting IFN signaling to treat advanced ER+ breast cancer.
Collapse
Affiliation(s)
- Xiaoyong Fu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
49
|
Zeinalzadeh E, Valerievich Yumashev A, Rahman HS, Marofi F, Shomali N, Kafil HS, Solali S, Sajjadi-Dokht M, Vakili-Samiani S, Jarahian M, Hagh MF. The Role of Janus Kinase/STAT3 Pathway in Hematologic Malignancies With an Emphasis on Epigenetics. Front Genet 2021; 12:703883. [PMID: 34992627 PMCID: PMC8725977 DOI: 10.3389/fgene.2021.703883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway has been known to be involved in cell growth, cellular differentiation processes development, immune cell survival, and hematopoietic system development. As an important member of the STAT family, STAT3 participates as a major regulator of cellular development and differentiation-associated genes. Prolonged and persistent STAT3 activation has been reported to be associated with tumor cell survival, proliferation, and invasion. Therefore, the JAK-STAT pathway can be a potential target for drug development to treat human cancers, e.g., hematological malignancies. Although STAT3 upregulation has been reported in hematopoietic cancers, protein-level STAT3 mutations have also been reported in invasive leukemias/lymphomas. The principal role of STAT3 in tumor cell growth clarifies the importance of approaches that downregulate this molecule. Epigenetic modifications are a major regulatory mechanism controlling the activity and function of STAT3. So far, several compounds have been developed to target epigenetic regulatory enzymes in blood malignancies. Here, we discuss the current knowledge about STAT3 abnormalities and carcinogenic functions in hematopoietic cancers, novel STAT3 inhibitors, the role of epigenetic mechanisms in STAT3 regulation, and targeted therapies, by focusing on STAT3-related epigenetic modifications.
Collapse
Affiliation(s)
- Elham Zeinalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| | - Faroogh Marofi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| | - Saeed Solali
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sajjadi-Dokht
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Vakili-Samiani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| | - Majid Farshdousti Hagh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
Lashgari NA, Roudsari NM, Momtaz S, Sathyapalan T, Abdolghaffari AH, Sahebkar A. The involvement of JAK/STAT signaling pathway in the treatment of Parkinson's disease. J Neuroimmunol 2021; 361:577758. [PMID: 34739911 DOI: 10.1016/j.jneuroim.2021.577758] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder in which inflammation and oxidative stress play key etiopathological role. The pathology of PD brain is characterized by inclusions of aggregated α-synuclein (α-SYN) in the cytoplasmic region of neurons. Clinical evidence suggests that stimulation of pro-inflammatory cytokines leads to neuroinflammation in the affected brain regions. Upon neuroinflammation, the Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway, and other transcription factors such as nuclear factor κB (NF-κB), NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), mammalian target of rapamycin (mTOR), and toll-like receptors (TLRs) are upregulated and induce the microglial activation, contributing to PD via dopaminergic neuron autophagy. Aberrant activation or phosphorylation of the components of JAK/STAT signaling pathway has been implicated in increased transcription of the inflammation-associated genes and many neurodegenerative disorders such as PD. Interferon gamma (IFN-γ), and interleukine (IL)-6 are two of the most potent activators of the JAK/STAT pathway, and it was shown to be elevated in PD. Stimulation of microglial cell with aggregated α-SYN results in production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and IL-1β in PD. Dysregulation of the JAK/STAT in PD and its involvement in various inflammatory pathways make it a promising PD therapy approach. So far, a variety of synthetic or natural small-molecule JAK inhibitors (Jakinibs) have been found promising in managing a spectrum of ailments, many of which are in preclinical research or clinical trials. Herein, we provided a perspective on the function of the JAK/STAT signaling pathway in PD progression and gathered data that describe the rationale evidence on the potential application of Jakinibs to improve neuroinflammation in PD.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Amir Hossein Abdolghaffari
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|