1
|
Dang TV, Jang IS, Nguyen QH, Choi HS, Yu BJ, Kim MI. Signal-off colorimetric and signal-on fluorometric dual-mode aptasensor for ultrasensitive detection of Salmonella Typhimurium using graphitic carbon nitride. Food Chem 2025; 465:142176. [PMID: 39579407 DOI: 10.1016/j.foodchem.2024.142176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Food safety is severely burdened by the prevalence of foodborne pathogens and the diseases they cause, necessitating the development of rapid, easy-to-use, highly sensitive, and reliable detection methods. Here, a signal-off colorimetric and signal-on fluorometric dual-mode detection method for Salmonella Typhimurium (S. typhimurium) was developed based on its unique interaction with aptamer DNA and graphitic carbon nitride (GCN). In the absence of a target Salmonella species, 6-carboxyfluorescein (FAM)-labeled aptamers are adsorbed on the surface of GCN primarily via a π-π interaction, resulting in reduced fluorescence of FAM through GCN-mediated quenching as well as improved peroxidase-like activity of GCN to generate intense blue color through facilitated electrostatic attraction between the negatively charged aptamer and positively charged 3,3',5,5'-tetramethylbenzidine (TMB) substrate. The introduction of S. typhimurium to the sample solution causes the detachment of the aptamer from GCN due to its higher affinity for S. typhimurium than GCN, thereby rapidly reducing the colorimetric signal and recovering the fluorescence. We successfully determined the number of S. typhimurium using this method in a remarkably short duration (10-30 min), highlighting its rapidity. The limit of detection values for S. typhimurium were as low as 8 and 3 CFU/mL when using colorimetric and fluorometric methods, respectively. Moreover, this method can be used to detect S. typhimurium spiked in real vegetable extract and milk with high reproducibility and reliability. This method serves as a convenient route to the rapid, sensitive, selective, and reliable detection of pathogens from complex food samples, with the potential to replace conventional yet laborious methods currently in use.
Collapse
Affiliation(s)
- Thinh Viet Dang
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - In Seung Jang
- Low-Carbon Transition R&D Department, Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Quynh Huong Nguyen
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Hyeun Seok Choi
- Regional Industrial Innovation Department, Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Byung Jo Yu
- Low-Carbon Transition R&D Department, Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea.
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea.
| |
Collapse
|
2
|
Wu W, Jiang X, Zeng Q, Zou H, Deng C. Facile and green synthesis of Au nanoparticles decorated Epigallocatechin-3-Gallate nanospheres with enhanced performance in stability, photothermal conversion and nanozymatic activity. BIOMATERIALS ADVANCES 2025; 166:214050. [PMID: 39317045 DOI: 10.1016/j.bioadv.2024.214050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
In this study, epigallocatechin-3-gallate nanospheres (EGCG NSs) are employed as an innovative alternative to traditional reducing agents for the in-situ growth of AuNPs on the EGCG NS surface to produce the Au nanoparticles decorated EGCG nanospheres (EGCG NS@AuNPs). This eco-friendly approach avoids toxic chemicals and simplifies the synthesis process, enhancing biocompatibility and functional properties of the resulting EGCG NS@AuNPs nanocomposite. The nanocomposite exhibits remarkable stability, photothermal properties, and peroxidase-like enzymatic activity. Taking advantage of the enhanced photothermal properties, the application of EGCG NS@AuNPs in the antibacterial field was investigated, and the antibacterial activity was greatly improved against both Gram-negative and Gram-positive bacteria comparing to bare AuNPs or EGCG NS. Additionally, based on the excellent enzymatic activity, the sensing application of EGCG NS@AuNPs was explored by developing a colorimetric method for detecting ascorbic acid (AA). A remarkably low detection limit of 0.076 μM was achieved. This method has been successfully applied to measure the AA content in vitamin C tablets, demonstrating the practicality and accuracy of this approach. Therefore, the synthesis for EGCG NS@AuNPs is not only rapid, and cost-effective, but also eco-friendly and not harmful to biological systems, which is potential in biosensing, clinical diagnosis, and therapeutics. Future research could explore further applications of EGCG NS@AuNPs in biomedicine field, revealing even more of its remarkable potential.
Collapse
Affiliation(s)
- Wuming Wu
- School of Electronics and Communication Engineering, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Xiaolian Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qin Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huiyu Zou
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Chunyan Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China..
| |
Collapse
|
3
|
Li Y, Zhao L, Bai Y, Feng F. Applications of covalent organic frameworks (COFs)-based sensors for food safety: Synthetic strategies, characteristics and current state-of-art. Food Chem 2024; 469:142495. [PMID: 39719784 DOI: 10.1016/j.foodchem.2024.142495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
Food safety is a pressing global public issue that has garnered significant attention worldwide, especially recent outbreaks of foodborne illnesses. The use of emerging porous materials enables the development of effective and durable detection methods for the detection of food contaminants. Covalent organic frameworks (COFs), as a class of emerging porous crystalline materials, rendered with the advantage of large specific surface area, highly controllable and ordered structures, diverse pore structures, high stability, and controllable surface functionalization. Especially in the development of sensors, COFs exhibit versatile roles as signal amplifiers, molecular recognizers, molecular transfer mediators, carriers, catalysts, and reporters, making them highly valuable in various applications. In the context of food safety, COFs-based sensing platforms have shown great potential. This review aims to provide an in-depth understanding of COFs-based sensors by discussing recent advancements in this field. It begins with a systemic introduction of the synthetic strategies of COFs and the pros and cons, followed by the distinctive characteristics of COFs and their diverse functional roles in sensing strategies, emphasizing their importance in analysing food safety risks. Then the review further presented a comprehensive summary of the applications of COFs in sensing, specifically highlighting significant breakthroughs in the detection of various food contaminants like foodborne pathogens, mycotoxins, pesticides, antibiotics, heavy metals, etc. Additionally, the review addressed the challenges and opportunities associated with COFs-based sensors in the detection of food safety issues. The aim of the review was to contribute to the ongoing development and advancement of COFs for ensuring food safety.
Collapse
Affiliation(s)
- Yaru Li
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China.
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Yunfeng Bai
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China; School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China.
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China.
| |
Collapse
|
4
|
Chen P, Yang Q, Li S, Liu X, Li B, Zhang J, Wang J, Yue X, Wang Y. Nanobody-Induced Aggregation of Gold Nanoparticles: A Mix-and-Read Strategy for the Rapid Detection of Cronobacter sakazakii. Anal Chem 2024; 96:17602-17611. [PMID: 39445484 DOI: 10.1021/acs.analchem.4c03463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Protein-nanoparticle interactions play a crucial role in both biomedical applications and the biosafety assessment of nanomaterials. Here, we found that nanobodies can induce citrate-capped gold nanoparticles (AuNPs) to aggregate into large clusters. Subsequently, we explored the mechanism behind this aggregation and proposed the "gold nucleation mechanism" to explain this phenomenon. Building on this observation, we developed a one-step label-free colorimetric method based on nanobody-induced AuNP aggregation. When nanobodies bind to target bacteria, spatial hindrance occurs, preventing further AuNPs aggregation. This alteration in surface plasmon resonance properties results in visible color changes. As an example, we present a simple and sensitive "mix-and-read" chromogenic immunosensor for Cronobacter sakazakii (C. sakazakii). The experiment can be completed within 20 min, with a visual detection limit of 103 CFU/mL and a quantitative detection limit of 136 CFU/mL. Importantly, our method exhibits no cross-reactivity with other bacterial species. This strategy harnesses the excellent properties of nanobodies and the optical characteristics of AuNPs for direct and rapid detection of foodborne pathogen.
Collapse
Affiliation(s)
- Pengyu Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qinkai Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shurong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingzhi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiahao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
5
|
Liu Z, Ji L, Li Y, Cao X, Shao X, Xia J, Wang Z. Colorimetric aptasensor based on self-screened aptamers and cascaded catalytic reaction for the detection of quarantine plant bacteria. Talanta 2024; 279:126655. [PMID: 39098241 DOI: 10.1016/j.talanta.2024.126655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Quarantine plant bacteria (QPB) are significant component of invasive alien species that result in substantial economic losses and serious environmental damage. Herein, a colorimetric aptasensor has been proposed based on the sandwich structure and the cascaded catalytic strategy for on-site detecting Xanthomonas hyacinthi, a type of QPB, in natural environments. The self-screened aptamer obtained through SELEX can bind to specific sites on the surface of viable organism with high affinity and specificity, which guarantees the selectivity of aptasensor. As an important part of the aptasensor, MIL-88-NH2(Fe) not only acts as a multifunctional carrier for both aptamers and glucose oxidase, but also catalyzes enzyme-like reaction because of specific surface area, amino and peroxidase-like activity. The present of Xanthomonas hyacinthi can trigger the formation of a sandwich structure and the occurrence of cascade catalytic reaction, enabling the detection with UV-Vis spectra and naked eyes. The proposed aptasensor presents a low detection limit of 2 cfu/mL and a wide linear range of 10 -107 cfu/mL. Compared to traditional detection methods for QPB, the reasonable design, high selectivity and convenience significantly improve the detection efficiency and contribute to environmental protection.
Collapse
Affiliation(s)
- Zhichao Liu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Qingdao University, Qingdao, 266071, PR China; Technical Center of Qingdao Customs District, Qingdao, 266000, PR China
| | - Lei Ji
- Technical Center of Qingdao Customs District, Qingdao, 266000, PR China
| | - Yan Li
- Technical Center of Qingdao Customs District, Qingdao, 266000, PR China
| | - Xiyue Cao
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Qingdao University, Qingdao, 266071, PR China.
| | - Xiuling Shao
- Technical Center of Qingdao Customs District, Qingdao, 266000, PR China.
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Qingdao University, Qingdao, 266071, PR China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Qingdao University, Qingdao, 266071, PR China
| |
Collapse
|
6
|
Li H, Xu H, Yao S, Wei S, Liu Y, Shi X, Zhao W, Zhao C. Target-inhibited MCOF-Apt-AuNPs self-assembly for multicolor colorimetric detection of Salmonella Typhimurium. NPJ Sci Food 2024; 8:78. [PMID: 39368968 PMCID: PMC11455847 DOI: 10.1038/s41538-024-00321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Pathogens detection is a crucial measure in the prevention of foodborne diseases. This study developed a novel multicolor colorimetric assay to visually detect Salmonella Typhimurium (S. Typhimurium), by utilizing the etching process of gold nanorods (AuNRs) with TMB2+. The strategy involved the construction of nanozyme by assembling magnetic covalent organic framework (MCOF) with aptamer-conjugated AuNPs (Apt-AuNPs), exhibiting remarkable peroxidase-like activity to catalyze the oxidation of TMB/H2O2 and inducing the etching of AuNRs. The presence of S. Typhimurium could inhibit this process, resulting in the generation of vivid colors. The multicolor colorimetric assay could specifically determine S. Typhimurium from 102 to 108 CFU mL-1 in 60 min with visual detection limit of 102 CFU mL-1, and instrumental detection limit of 2.3 CFU mL-1. Moreover, detecting S. Typhimurium in chicken, milk, pork and lettuce samples has shown promise in practical applications.
Collapse
Affiliation(s)
- Hang Li
- School of Public Health, Jilin University, Changchun, China
| | - Hui Xu
- School of Public Health, Jilin University, Changchun, China
| | - Shuo Yao
- School of Public Health, Jilin University, Changchun, China
| | - Shengnan Wei
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yi Liu
- School of Public Health, Jilin University, Changchun, China
| | - Xuening Shi
- School of Public Health, Jilin University, Changchun, China
| | - Wei Zhao
- Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
7
|
Li H, Xu H, Shi X, Zhao C, Li J, Wang J. Colorimetry/fluorescence dual-mode detection of Salmonella typhimurium based on a "three-in-one" nanohybrid with high oxidase-like activity for AIEgen. Food Chem 2024; 449:139220. [PMID: 38579657 DOI: 10.1016/j.foodchem.2024.139220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/03/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
A colorimetry/fluorescence dual-mode assay based on the aptamer-functionalized magnetic covalent organic framework-supported CuO and Au NPs (MCOF-CuO/Au@apt) was developed for Salmonella typhimurium (S. typhimurium) biosensing. The nanohybrid combined three functions in one: good magnetic separation characteristic, excellent oxidase-mimic activity for tetrap-aminophenylethylene (TPE-4A), and target recognition capability. The attachment of MCOF-CuO/Au@apt onto the surface of S. typhimurium resulted in a significant reduction in the oxidase-mimicking activity of the nanohybrid, which could generate dual-signal of colorimetry and fluorescence through the catalytic oxidation of TPE-4A. Based on this, S. typhimurium could be specifically detected in the linear ranges of 102- 106 CFU·mL-1 and 101- 106 CFU·mL-1, with LODs of 7.6 and 2.1 CFU·mL-1, respectively in colorimetry/fluorescence modes. Moreover, the smartphone and linear discrimination analysis-based system could be used for on-site and portable testing. In addition, this platform showed applicability in detecting S. typhimurium in milk, egg liquid and chicken samples.
Collapse
Affiliation(s)
- Hang Li
- School of Public Health, Jilin University, Changchun 130021, China
| | - Hui Xu
- School of Public Health, Jilin University, Changchun 130021, China
| | - Xuening Shi
- School of Public Health, Jilin University, Changchun 130021, China
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Juan Li
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Juan Wang
- School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
8
|
Guo Y, Zhao J, Ma X, Cai M, Liu S, Sun C, Chi Y, Xu K. A colorimetric biosensor with infrared sterilization based on CuSe nanoparticles for the detection of E. coli O157:H7 in food samples. Microbiol Spectr 2024; 12:e0397823. [PMID: 38990030 PMCID: PMC11302273 DOI: 10.1128/spectrum.03978-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/16/2024] [Indexed: 07/12/2024] Open
Abstract
It is critical to develop quick, accurate, and efficient sterilization for detecting Escherichia coli O157:H7 in order to prevent infections and outbreaks of foodborne illnesses. Herein, we established a colorimetric biosensor with sterilizing properties using copper selenide nanoparticles to detect E. coli O157:H7. The sample was mixed with magnetic nanoprobes and nanozyme probes to form a sandwich structure, and then the unbound nanozyme probes were collected by magnetic separation. Finally, the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate)-hydrogen peroxide (H2O2) reporting system was added for signal amplification. The change from colorless to green can be seen with the naked eye. Under the optimal conditions, the detection range of E. coli O157:H7 was 102-106 CFU/mL, and the detection limit was 0.35 × 102 CFU/mL. The total detection time was 80 minutes, which can be successfully applied to milk and mineral water. In addition, the colorimetric sensor can kill the target bacteria by irradiating it under a 980-nm laser for 5 minutes. In conclusion, this sensor is a promising tool for rapidly detecting foodborne pathogens and promptly eliminating bacteria. IMPORTANCE Escherichia coli O157:H7 is a major threat to public health. At present, the detection methods for E. coli O157:H7 mainly include traditional bacterial culture, immunology (enzyme-linked immune-sorbent assay) and molecular biology techniques (polymerase chain reaction). These methods have the limitations of professional operation, waste of time and energy, and high cost. Therefore, we have developed a simple, fast, bactericidal colorimetric biosensor to detect E. coli. O157:H7. The entire process was completed in 80 minutes. The method has been successfully applied to milk and mineral water samples with satisfactory results, proving that the method is an effective method for real-time detection and inactivation of bacteria.
Collapse
Affiliation(s)
- Yulan Guo
- School of Medicine, Hunan Normal University, Changsha, China
- School of Public Health, Jilin University, Changchun, China
| | - Jinbin Zhao
- School of Public Health, Jilin University, Changchun, China
| | - Xueer Ma
- School of Public Health, Jilin University, Changchun, China
| | - Ming Cai
- School of Public Health, Jilin University, Changchun, China
| | - Shitong Liu
- School of Public Health, Jilin University, Changchun, China
| | - Chunmeng Sun
- School of Public Health, Jilin University, Changchun, China
| | - Yuyang Chi
- School of Public Health, Jilin University, Changchun, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| |
Collapse
|
9
|
Dou S, Liu M, Wang H, Zhou S, Marrazza G, Guo Y, Sun X, Darwish IA. Synthesis of dual models multivalent activatable aptamers based on HCR and RCA for ultrasensitive detection of Salmonella typhimurium. Talanta 2024; 275:126101. [PMID: 38631268 DOI: 10.1016/j.talanta.2024.126101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Aptamers have superior structural properties and have been widely used in bacterial detection methods. However, the problem of low affinity still exists in complex sample detection. In contrast, hybridization chain reaction (HCR)-based model I and rolling circle amplification (RCA)-based model II multivalent activatable aptamers (multi-Apts) can fulfill the need for low-cost, rapid, highly sensitive and high affinity detection of S. typhimurium. In our research, two models of multi-Apts were designed. First, a monovalent activatable aptamer (mono-Apt) was constructed by fluorescence resonance energy transfer (FRET) with an S. typhimurium aptamer and its complementary chain of BHQ1. Next, the DNA scaffold was obtained by HCR and RCA, and the multi-Apts were obtained by self-assembly of the mono-Apt with a DNA scaffold. In model I, when target was presented, the complementary chain BHQ1 was released due to the binding of multi-Apts to the target and was subsequently adsorbed by UIO66. Finally, a FRET-based fluorescence detection signal was obtained. In mode II, the multi-Apts bound to the target, and the complementary chain BHQ1 was released to become the trigger chain for the next round of amplification of HCR with a fluorescence detection signal. HCR and RCA based multi-Apts were able to detect S. typhimurium as low as 2 CFU mL-1 and 1 CFU mL-1 respectively. Multi-Apts amplification strategy provides a new method for early diagnosis of pathogenic microorganisms in foods.
Collapse
Affiliation(s)
- Shouyi Dou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Mengyue Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Shuxian Zhou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Giovanna Marrazza
- "Ugo Schiff" Chemistry Department, University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| | - Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
10
|
Sutarlie L, Chee HL, Ow SY, Su X. A Rapid Total Bacterial Count Method for Food Samples using Syringe Filters and Lectin-Conjugated Semiconductor Nanorods. Chem Asian J 2024; 19:e202400332. [PMID: 38785228 DOI: 10.1002/asia.202400332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Total bacterial count in food is one of important food safety criteria. The current plate count method (Heterotrophic Plate Count) for food analysis requires microbiology lab facilities and at least 2 days turnover time. We developed a rapid fluorescence-based total bacterial count method that utilises semiconductor nanorods (SNRs) conjugated with a lectin Griffonia simplicifolia II (GSII-SNRs) to stain bacterial cells captured on syringe filters, via the common N-acetylglucosamine molecules on bacterial cell wall. This "Filter-and-Stain" detection method has a rapid turnover time of 20 min. The fluorescence emission can be seen under UV light with minimum interference from food sample background. The fluorescence intensity quantified through image analysis is proportional to the bacterial concentration with a limit of detection of 1000 CFU/mL, for total bacterial count assessment in food safety. Moreover, the GSII-SNRs do not bind to heat inactivated bacterial cells, and thus can differentiate live and dead bacteria. Our method has been validated with representative food (coffee powder, raw spinach leaves, and ready-to-eat tomato salsa) to demonstrate its high potential for on-site food safety assessment, especially in places with no immediate access to microbiology labs.
Collapse
Affiliation(s)
- Laura Sutarlie
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Heng Li Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Sian Yang Ow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Chemistry, National University of Singapore, Block S8, level 3, 3 Science Drive 3, Singapore, Singapore, 117543
| |
Collapse
|
11
|
Zhou Y, Tang Z, Li L, Chen Y, Xu Y, Liu R, Zhang Y, Liu X, Yang W, Wang B, Zhang J, Jiang Q, Wang Y. Highly sensitive detection of Salmonella typhimurium via gold and magnetic nanoparticle-mediated sandwich hybridization coupled with ICP-MS. J Mater Chem B 2024. [PMID: 38954469 DOI: 10.1039/d4tb00291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Foodborne pathogens including Salmonella typhimurium (S. typhimurium) are responsible for over 600 million global incidences of illness annually, posing a significant threat to public health. Inductively coupled plasma mass spectrometry (ICP-MS), coupled with element labeling strategies, has emerged as a promising platform for multivariate and accurate pathogen detection. However, achieving high specificity and sensitivity remains a critical challenge. Herein, we synthesize clustered magnetic nanoparticles (MNPs) and popcorn-shaped gold nanoparticles (AuNPs) to conjugate capture and report DNA probes for S. typhimurium, respectively. These engineered nanoparticles facilitate the identification of S. typhimurium DNA through a sandwich hybridization technique. ICP-MS quantification of Au within the sandwich-structure complexes allows for precise S. typhimurium detection. The unique morphology of the AuNPs and MNPs increases the available sites for probe attachment, enhancing the efficiency of S. typhimurium DNA capture, broadening the detection range to 101-1010 copies mL-1, and achieving a low detection limit of 1 copy mL-1, and the overall assay time is 70 min. The high specificity of this method is verified by anti-interference assays against ten other pathogens. The recovery was 96.8-102.8% for detecting S. typhimurium DNA in biological samples. As these specially designed nanoparticles may facilitate the attachment of various proteins and nucleic acid probes, they may become an effective platform for detecting multiple pathogens.
Collapse
Affiliation(s)
- Yujie Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Zhihui Tang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Yuzuo Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Renjie Liu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanrong Zhang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoyan Liu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University/West China School of Nursing, Chengdu, Sichuan, 610041, China
| | - Wenjuan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Baoning Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
12
|
Li H, Xu H, Yao S, Wei S, Shi X, Zhao C, Li J, Wang J. Colorimetry/fluorescence dual-mode detection of Salmonella typhimurium based on self-assembly of MCOF with Au NPs nanozyme coupled AIEgen. Talanta 2024; 270:125505. [PMID: 38101030 DOI: 10.1016/j.talanta.2023.125505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Sensitive, accurate, simple and quick monitoring of Salmonella typhimurium (S. typhimurium) in food is significant for preventing food poisoning, but still remains a challenge. Herein, a colorimetry/fluorescence dual-mode sensing strategy was fabricated to detect S. typhimurium by integrating the self-assembly of magnetic covalent organic framework (MCOF) with gold nanoparticles (Au NPs) as the peroxidase-mimicking nanozyme and aggregation-induced emission luminogen (AIEgen). S. typhimurium could competitive bind to aptamer conjugated Au NPs (Au NPs@apt), inhibit the self-assembly of MCOF with Au NPs, and shield the catalytic activity of AuNPs. After adding H2O2 and TPE-4A, the dark green solution changed to light with increasing S. typhimurium concentration, on the contrary, the fluorescent signals were generated. As a result, in colorimetry/fluorescence modes, S. typhimurium could be detected in the linear ranges of 103-108 CFU mL-1 and 101-107 CFU mL-1, with LODs of 1000 and 10 CFU mL-1, respectively. Importantly, different colors consistent with various S. typhimurium concentrations can be accurately classified by smartphone app and linear discriminant analysis (LDA). The smartphone-assisted data interpretation can generate complementary colorimetry and fluorescence signals without any sophisticated equipment and achieve on-site detection. Moreover, the proposed strategy could be explored for S. typhimurium monitoring in milk with satisfactory recoveries (97.6-100.4 %) in colorimetry and fluorescence mode and good classification and prediction performance in smartphone/LDA system, suggesting the feasibility and potential applications of the sensing platform.
Collapse
Affiliation(s)
- Hang Li
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Hui Xu
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Shuo Yao
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Shengnan Wei
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Xuening Shi
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Juan Li
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Juan Wang
- School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
13
|
Yao D, Xia L, Li G. Research Progress on the Application of Covalent Organic Framework Nanozymes in Analytical Chemistry. BIOSENSORS 2024; 14:163. [PMID: 38667156 PMCID: PMC11048148 DOI: 10.3390/bios14040163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Covalent organic frameworks (COFs) are porous crystals that have high designability and great potential in designing, encapsulating, and immobilizing nanozymes. COF nanozymes have also attracted extensive attention in analyte sensing and detection because of their abundant active sites, high enzyme-carrying capacity, and significantly improved stability. In this paper, we classify COF nanozymes into three types and review their characteristics and advantages. Then, the synthesis methods of these COF nanozymes are introduced, and their performances are compared in a list. Finally, the applications of COF nanozymes in environmental analysis, food analysis, medicine analysis, disease diagnosis, and treatment are reviewed. Furthermore, we also discuss the application prospects of COF nanozymes and the challenges they face.
Collapse
Affiliation(s)
- Dongmei Yao
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China; (D.Y.); (L.X.)
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China
| | - Ling Xia
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China; (D.Y.); (L.X.)
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China; (D.Y.); (L.X.)
| |
Collapse
|
14
|
Kasputis T, He Y, Ci Q, Chen J. On-Site Fluorescent Detection of Sepsis-Inducing Bacteria using a Graphene-Oxide CRISPR-Cas12a (GO-CRISPR) System. Anal Chem 2024; 96:2676-2683. [PMID: 38290431 PMCID: PMC10867801 DOI: 10.1021/acs.analchem.3c05459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Sepsis is an extremely dangerous medical condition that emanates from the body's response to a pre-existing infection. Early detection of sepsis-inducing bacterial infections can greatly enhance the treatment process and potentially prevent the onset of sepsis. However, current point-of-care (POC) sensors are often complex and costly or lack the ideal sensitivity for effective bacterial detection. Therefore, it is crucial to develop rapid and sensitive biosensors for the on-site detection of sepsis-inducing bacteria. Herein, we developed a graphene oxide CRISPR-Cas12a (GO-CRISPR) biosensor for the detection of sepsis-inducing bacteria in human serum. In this strategy, single-stranded (ssDNA) FAM probes were quenched with single-layer graphene oxide (GO). Target-activated Cas12a trans-cleavage was utilized for the degradation of the ssDNA probes, detaching the short ssDNA probes from GO and recovering the fluorescent signals. Under optimal conditions, we employed our GO-CRISPR system for the detection of Salmonella Typhimurium (S. Typhimurium) with a detection sensitivity of as low as 3 × 103 CFU/mL in human serum, as well as a good detection specificity toward other competing bacteria. In addition, the GO-CRISPR biosensor exhibited excellent sensitivity to the detection of S. Typhimurium in spiked human serum. The GO-CRISPR system offers superior rapidity for the detection of sepsis-inducing bacteria and has the potential to enhance the early detection of bacterial infections in resource-limited settings, expediting the response for patients at risk of sepsis.
Collapse
Affiliation(s)
- Tom Kasputis
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Yawen He
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Qiaoqiao Ci
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Juhong Chen
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
- Department
of Bioengineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
15
|
Feng F, Fu Q, Cao F, Yuan Y, Kong R, Ji D, Liu H. A Lateral Flow Assay Based on Streptavidin-biotin Amplification System with Recombinase Polymerase Amplification for Rapid and Quantitative Detection of Salmonella enteritidis. Chembiochem 2024; 25:e202300575. [PMID: 37963820 DOI: 10.1002/cbic.202300575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Salmonella constitutes a prevalent alimentary pathogen, instigating zoonotic afflictions. Consequently, the prompt discernment of Salmonella in sustenance is of cardinal significance. Lateral flow assays utilizing colorimetric methodologies adequately fulfill the prerequisites of point-of-care diagnostics, however, their detection threshold remains elevated, generally permitting only qualitative discernment, an impediment to the preliminary screening of nascent pathogens. In response to this conundrum, we propose a lateral flow diagnostic predicated upon a streptavidin-biotin amplification system with recombinase polymerase amplification engineered for the expeditious and quantitative discernment of Salmonella enteritidis. Trace nucleic acids within a sample undergo exponential amplification via recombinase polymerase amplification to a level discernable, constituting the initial signal amplification. Subsequently, along the test line (T-line) of the lateral flow strip, the chromatic signal undergoes augmentation by securing a greater quantity of AuNPs through the magnification capacity of the streptavidin-biotin mechanism, affecting the second signal amplification. Quantitative results are procured via smartphone capture and transferred to computer software for precise calculation of the targeted quantity. The lateral flow strip exhibits a LOD at 19.41 CFU/mL for cultured S. enteritidis. The RSD of three varying concentrations were respectively 3.74 %, 5.96 %, and 4.25 %.
Collapse
Affiliation(s)
- Fan Feng
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, 250353, China
| | - Qiang Fu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, 250353, China
| | - Fengrong Cao
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, 250353, China
| | - Yun Yuan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, 250353, China
| | - Ruixue Kong
- Department of Nursing, Shandong Medical College, No 5460 Erhuanan Road, Jinan, Shandong, 250002, China
| | - Dandan Ji
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, 250353, China
| | - Haiyun Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in, Universities of Shandong, Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, Shandong, 250022, China
| |
Collapse
|
16
|
Ma P, Guo H, Li K, Zhang Y, Guo H, Wang Z. Simultaneous detection of patulin and ochratoxin A based on enhanced dual-color AuNCs modified aptamers in apple juice. Talanta 2024; 266:124949. [PMID: 37494770 DOI: 10.1016/j.talanta.2023.124949] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Patulin (PAT) and ochratoxin A (OTA) are the two main mycotoxins present in apples. Herein, a sensitive aptasensor for simultaneous detection of PAT and ochratoxin OTA was developed. Dual-color gold nanoclusters (AuNCs) with enhanced fluorescence properties were synthesized and employed as fluorescence amplifiers. Two separated fluorescence peaks at 650 nm and 530 nm were monitored simultaneously by employing single excitation (405 nm), corresponding to the aptamer probes of Cys@BSA-AuNCs-AptPAT and Arg@ATT-AuNCs-AptOTA, respectively. The fluorescent aptasensor demonstrated satisfying specificity, storage ability and accuracy. Under the optimal experimental conditions, the linear detection range for PAT and OTA was 0.10-50 ng/mL, with the limit of detection of 0.09 ng/mL and 0.06 ng/mL, respectively. Most importantly, practicability of the constructed aptasensor were confirmed by conducting the determination of PAT and OTA in apple juice sample, indicating the great potential of the aptasensor in practical detection applications.
Collapse
Affiliation(s)
- Pengfei Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Hualin Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Ke Li
- Technical Center, Zhengzhou Customs District P.R. China, Zhengzhou, 450003, PR China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, PR China
| | - Huiqing Guo
- Technical Center, Zhengzhou Customs District P.R. China, Zhengzhou, 450003, PR China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
17
|
Patil AVP, Yang PF, Yang CY, Gaur MS, Wu CC. A Critical Review on Detection of Foodborne Pathogens Using Electrochemical Biosensors. Crit Rev Biomed Eng 2024; 52:17-40. [PMID: 38523439 DOI: 10.1615/critrevbiomedeng.2023049469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
An outbreak of foodborne pathogens would cause severe consequences. Detecting and diagnosing foodborne diseases is crucial for food safety, and it is increasingly important to develop fast, sensitive, and cost-effective methods for detecting foodborne pathogens. In contrast to traditional methods, such as medium-based culture, nucleic acid amplification test, and enzyme-linked immunosorbent assay, electrochemical biosensors possess the advantages of simplicity, rapidity, high sensitivity, miniaturization, and low cost, making them ideal for developing pathogen-sensing devices. The biorecognition layer, consisting of recognition elements, such as aptamers, antibodies and bacteriophages, and other biomolecules or polymers, is the most critical component to determine the selectivity, specificity, reproducibility, and lifetime of a biosensor when detecting pathogens in a biosample. Furthermore, nanomaterials have been frequently used to improve electrochemical biosensors for sensitively detecting foodborne pathogens due to their high conductivity, surface-to-volume ratio, and electrocatalytic activity. In this review, we survey the characteristics of biorecognition elements and nanomaterials in constructing electrochemical biosensors applicable for detecting foodborne pathogens during the past five years. As well as the challenges and opportunities of electrochemical biosensors in the application of foodborne pathogen detection are discussed.
Collapse
Affiliation(s)
- Avinash V Police Patil
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan R.O.C
| | - Ping-Feng Yang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan R.O.C
| | - Chiou-Ying Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan R.O.C
| | - M S Gaur
- Department of Physics, Hindustan College of Science and Technology, Farah, Mathura, 281122 U.P., India
| | | |
Collapse
|
18
|
Wang Y, Wang C, Zhou Z, Si J, Li S, Zeng Y, Deng Y, Chen Z. Advances in Simple, Rapid, and Contamination-Free Instantaneous Nucleic Acid Devices for Pathogen Detection. BIOSENSORS 2023; 13:732. [PMID: 37504131 PMCID: PMC10377012 DOI: 10.3390/bios13070732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Pathogenic pathogens invade the human body through various pathways, causing damage to host cells, tissues, and their functions, ultimately leading to the development of diseases and posing a threat to human health. The rapid and accurate detection of pathogenic pathogens in humans is crucial and pressing. Nucleic acid detection offers advantages such as higher sensitivity, accuracy, and specificity compared to antibody and antigen detection methods. However, conventional nucleic acid testing is time-consuming, labor-intensive, and requires sophisticated equipment and specialized medical personnel. Therefore, this review focuses on advanced nucleic acid testing systems that aim to address the issues of testing time, portability, degree of automation, and cross-contamination. These systems include extraction-free rapid nucleic acid testing, fully automated extraction, amplification, and detection, as well as fully enclosed testing and commercial nucleic acid testing equipment. Additionally, the biochemical methods used for extraction, amplification, and detection in nucleic acid testing are briefly described. We hope that this review will inspire further research and the development of more suitable extraction-free reagents and fully automated testing devices for rapid, point-of-care diagnostics.
Collapse
Affiliation(s)
- Yue Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Chengming Wang
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou 412000, China
| | - Zepeng Zhou
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Jiajia Si
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yezhan Zeng
- School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
19
|
Wikantyasning ER, Da’i M, Cholisoh Z, Kalsum U. 3-Aminophenylboronic Acid Conjugation on Responsive Polymer and Gold Nanoparticles for Qualitative Bacterial Detection. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:81-87. [PMID: 37469647 PMCID: PMC10353662 DOI: 10.4103/jpbs.jpbs_646_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/07/2023] [Accepted: 04/08/2023] [Indexed: 07/21/2023] Open
Abstract
Background Because of their sensitive and selective responses to a wide variety of analytes, colorimetric sensors have gained widespread acceptance in recent years. Gold nanoparticles (AuNPs) are widely employed in visual sensor strategies due to their high stability and ease of use. Combining AuNPs with a responsive polymer can result in distinct surface plasmon resonance (SPR) changes that can be utilized as colorimetric biosensors. Objectives The purpose of this research is to develop a colorimetric-based sensor through the utilization of the optical properties of gold nanoparticles (AuNPs) crosslinked with pH-responsive polymers poly (acrylic acid) (PAA) conjugated to 3-aminophenyl boronic acid (APBA). Methods The polymer (PAA) was synthesized via RAFT polymerization. The inversed Turkevic method was used to produce AuNPs, which were subsequently used in a self-assembly process using poly (acrylic acid)-aminophenyl boronic acid (PAA-APBA) to create the self-assembled AuNPs-APBA-PAA. The particle size, zeta potential, and reversibility of the polymer-modified gold nanoparticles were determined using a transmission electron microscope (TEM), a particle size analyzer (PSA), and an Ultraviolet-Visible spectrophotometer (UV-Vis spectrophotometer). Visual, UV-Vis spectrophotometer and TEM observations confirmed the system's ability to identify bacteria. Statistical analysis was performed using a one-way analysis of variance using Excel software. Results Using UV-Vis spectrophotometry, the particle size of AuNPs was determined to be 25.7 nm, and the maximum absorbance occurred at 530 nm. AuNPs PAA APBA colloid exhibited an absorbance maximum of 532 nm, a zeta potential of -41.53, and a pH transition point between 4 and 5. At E. coli concentrations of 4.5 x 107 CFU/mL, the color of the system sensors changed from red to blue after 15 hours of incubation, whereas at S. aureus concentrations of 1.2 x 109 CFU/mL, the color changed to purple immediately after mixing. The TEM confirmed that the detection mechanism is based on the boronate-polyol bonding of saccharides on the outer membranes of Escherichia coli and Staphylococcus aureus. Conclusions The use of APBA in conjunction with pH-responsive PAA polymers containing AuNPs to detect E. coli and S. aureus bacteria induces a maximum wavelength transition, followed by a color change from red to blue. By the process of de-swelling of the responsive polymer, which induces the aggregation of the AuNPs, the established sensor system is able to alter the color. The conjugated polymer and gold nanoparticle-based sensor system demonstrated a promising method for bacterial detection.
Collapse
Affiliation(s)
| | - Muhammad Da’i
- Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jl. A. Yani 157, Sukoharjo, Indonesia
| | - Zakky Cholisoh
- Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jl. A. Yani 157, Sukoharjo, Indonesia
| | - Ummi Kalsum
- Study Program of Pharmacy, STIKES Telogorejo, Jl. Yos Sudarso, Semarang, Jawa Tengah, Indonesia
| |
Collapse
|
20
|
Xu Z, Liu B, Li D, Yu Z, Gan N. Dual-Mode Biosensor for Simultaneous and Rapid Detection of Live and Whole Salmonella typhimurium Based on Bioluminescence and Fluorescence Detection. BIOSENSORS 2023; 13:401. [PMID: 36979613 PMCID: PMC10046507 DOI: 10.3390/bios13030401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Both live and dead Salmonella typhimurium (S.T) are harmful to human health, but there are differences in pathological mechanism, dosage, and security. It is crucial to develop a rapid and simultaneous assay to distinguish and quantify live and dead S.T in foods. Herein, one dual-mode biosensor for simultaneous detection of live and dead S.T was fabricated based on two phage probes, using portable bioluminescence and fluorescent meter as detectors, respectively. Firstly, a magnetic phage capture probe (M-P1) and a phage signal tag (P2-S) labeled with SYTO 13 fluorescent dye were prepared, respectively. Both M-P1 and P2-S can specifically conjugate with S.T to form a magnetic sandwich complex. After magnetic separation, the isolated complex can emit a fluorescent signal under an excited 365 nm laser, which can reflect the total amount of S.T. Afterwards, the lysozyme was added to decompose the captured live S.T, which can release ATP and produce a bioluminescent signal corresponding to the live S.T amount. The dead S.T concentration can be deduced by the difference between total and live examples. The detection limit of 55 CFU/mL for total S.T and 9 CFU/mL for live ones was within 20 min. The assay was successfully employed in milk samples and prospectively for on-site screening of other dead and live bacteria, while changing the phages for the targets.
Collapse
Affiliation(s)
- Zhenli Xu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Bailu Liu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Dengfeng Li
- Faculty of Marine, Ningbo University, Ningbo 315211, China
| | - Zhenzhong Yu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|