1
|
Nagy CA, Hann F, Brezóczki B, Farkas K, Vékony T, Pesthy O, Németh D. Intact ultrafast memory consolidation in adults with autism and neurotypicals with autism traits. Brain Res 2025; 1847:149299. [PMID: 39486781 DOI: 10.1016/j.brainres.2024.149299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
The processes of learning and memory consolidation are closely interlinked. Therefore, to uncover statistical learning in autism spectrum disorder (ASD), an in-depth examination of memory consolidation is essential. Studies of the last five years have revealed that learning can take place not only during practice but also during micro rest (<1 min) between practice blocks, termed micro offline gains. The concept of micro offline gains refers to performance improvements during short rest periods interspersed with practice, rather than during practice itself. This phenomenon is crucial for the acquisition and consolidation of motor skills and has been observed across various learning contexts. Numerous studies on learning in autism have identified intact learning but there has been no investigation into this fundamental aspect of memory consolidation in autistic individuals to date. We conducted two studies with two different samples: 1) neurotypical adults with distinct levels of autistic traits (N = 166) and 2) ASD-diagnosed adults (NASD = 22, NNTP = 20). Participants performed a well-established probabilistic learning task, allowing us to measure two learning processes separately in the same experimental design: statistical learning (i.e., learning probability-based regularities) and visuomotor performance (i.e., speed-up regardless of probabilities). Here we show considerable individual differences in offline (between blocks) changes during statistical learning and between-blocks improvement during visuomotor performance. However, cumulative evidence from individual studies suggests that the degree of autistic traits and ASD status are not associated with micro offline gains, indicating that, like statistical learning, rapid memory consolidation is intact.
Collapse
Affiliation(s)
- Cintia Anna Nagy
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Flóra Hann
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Experimental Medicine, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Bianka Brezóczki
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France; Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Orsolya Pesthy
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dezső Németh
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France; Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain; BML-NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
2
|
Kim T, Kim H, Philip BA, Wright DL. M1 recruitment during interleaved practice is important for encoding, not just consolidation, of skill memory. NPJ SCIENCE OF LEARNING 2024; 9:77. [PMID: 39695110 DOI: 10.1038/s41539-024-00290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
The primary motor cortex (M1) is crucial for motor skill learning. We examined its role in interleaved practice, which enhances retention (vs. repetitive practice) through M1-dependent consolidation. We hypothesized that cathodal transcranial direct current stimulation (ctDCS) to M1 would disrupt retention. We found that ctDCS reduced retention due to weakened encoding during acquisition, not disrupted consolidation. These results highlight M1's broad role in encoding and retention of novel motor skills.
Collapse
Affiliation(s)
- Taewon Kim
- Department of Physical Medicine and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA.
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, PA, USA.
- Program in Occupational Therapy, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Hakjoo Kim
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Benjamin A Philip
- Program in Occupational Therapy, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - David L Wright
- Division of Kinesiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Suresh T, Iwane F, Zhang M, McElmurry M, Manesiya M, Freedberg MV, Hussain SJ. Motor sequence learning elicits mu peak-specific corticospinal plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606022. [PMID: 39211097 PMCID: PMC11361050 DOI: 10.1101/2024.07.31.606022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Motor cortical (M1) transcranial magnetic stimulation (TMS) interventions increase corticospinal output and improve motor learning when delivered during sensorimotor mu rhythm trough but not peak phases, suggesting that the mechanisms supporting motor learning may be most active during mu trough phases. Based on these findings, we predicted that motor sequence learning-related corticospinal plasticity would be most evident when measured during mu trough phases. Healthy adults were assigned to either a sequence or no-sequence group. Participants in the sequence group practiced the implicit serial reaction time task (SRTT), which contained an embedded, repeating 12-item sequence. Participants in the no-sequence group practiced a version of the SRTT that contained no sequence. We measured mu phase-independent and mu phase-dependent MEP amplitudes using EEG-informed single-pulse TMS before, immediately after, and 30 minutes after the SRTT in both groups. All participants performed a retention test one hour after SRTT acquisition. In both groups, mu phase-independent MEP amplitudes increased following SRTT acquisition, but the pattern of mu phase-dependent MEP amplitude changes after SRTT acquisition differed between groups. Relative to the no-sequence group, the sequence group showed greater peak-specific MEP amplitude increases 30 minutes after SRTT acquisition. Further, the magnitude of these peak-specific MEP amplitude increases was negatively associated with the magnitude of sequence-specific learning. Contrary to our original hypothesis, results revealed that motor sequence-specific learning elicits peak-specific corticospinal plasticity. Findings provide first direct evidence for the presence of a mu phase-dependent motor learning mechanism in the human brain. New and Noteworthy Recent work suggests that motor learning's neural mechanisms may be most active during specific sensorimotor mu rhythm phases. If so, motor sequence learning-induced corticospinal plasticity should be more evident during some mu phases than others. Our results show that motor sequence-specific learning elicits corticospinal plasticity that is most prominent during mu peak phases. Further, this peak-specific plasticity correlates with learning. Findings establish the presence of a mu phase-dependent motor learning mechanism in the human brain.
Collapse
|
4
|
Kimel E, Ball LV, Keller VG. The Role of the Hippocampus in Consolidating Motor Learning during Wakefulness. J Neurosci 2024; 44:e0984242024. [PMID: 39384408 PMCID: PMC11466063 DOI: 10.1523/jneurosci.0984-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/19/2024] [Accepted: 08/23/2024] [Indexed: 10/11/2024] Open
Affiliation(s)
- Eva Kimel
- Department of Psychology, University of York, York YO10 5DD
| | - Lewis V Ball
- Department of Psychology, University of York, York YO10 5DD
| | | |
Collapse
|
5
|
Cattani A, Arnold DB, McCarthy M, Kopell N. Basolateral amygdala oscillations enable fear learning in a biophysical model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.28.538604. [PMID: 37163011 PMCID: PMC10168360 DOI: 10.1101/2023.04.28.538604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3-6 Hz), high theta (~6-12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.
Collapse
Affiliation(s)
- Anna Cattani
- Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, United States
| | - Don B Arnold
- Department of Biology, University of Southern California, Los Angeles, California, United States
| | - Michelle McCarthy
- Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, United States
| | - Nancy Kopell
- Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
6
|
Lanir-Azaria S, Chishinski R, Tauman R, Nir Y, Giladi N. Sleep improves accuracy, but not speed, of generalized motor learning in young and older adults and in individuals with Parkinson's disease. Front Behav Neurosci 2024; 18:1466696. [PMID: 39390986 PMCID: PMC11464313 DOI: 10.3389/fnbeh.2024.1466696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
An essential aspect of motor learning is generalizing procedural knowledge to facilitate skill acquisition across diverse conditions. Here, we examined the development of generalized motor learning during initial practice-dependent learning, and how distinct components of learning are consolidated over longer timescales during wakefulness or sleep. In the first experiment, a group of young healthy volunteers engaged in a novel motor sequence task over 36 h in a two-arm experimental design (either morning-evening-morning, or evening-morning-evening) aimed at controlling for circadian confounders. The findings unveiled an immediate, rapid generalization of sequential learning, accompanied by an additional long-timescale performance gain. Sleep modulated accuracy, but not speed, above and beyond equivalent wake intervals. To further elucidate the role of sleep across ages and under neurodegenerative disorders, a second experiment utilized the same task in a group of early-stage, drug-naïve individuals with Parkinson's disease and in healthy individuals of comparable age. Participants with Parkinson's disease exhibited comparable performance to their healthy age-matched group with the exception of reduced performance in recalling motor sequences, revealing a disease-related cognitive shortfall. In line with the results found in young subjects, both groups exhibited improved accuracy, but not speed, following a night of sleep. This result emphasizes the role of sleep in skill acquisition and provides a potential framework for deeper investigation of the intricate relationship between sleep, aging, Parkinson's disease, and motor learning.
Collapse
Affiliation(s)
- Saar Lanir-Azaria
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | | | - Riva Tauman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Yuval Nir
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Nir Giladi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
McNally M, Byczynski G, Vanneste S. An overview of the effects and mechanisms of transcranial stimulation frequency on motor learning. J Neuroeng Rehabil 2024; 21:157. [PMID: 39267118 PMCID: PMC11391832 DOI: 10.1186/s12984-024-01464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
Many studies over the recent decades have attempted the modulation of motor learning using brain stimulation. Alternating currents allow for researchers not only to electrically stimulate the brain, but to further investigate the effects of specific frequencies, in and beyond the context of their endogenous associations. Transcranial alternating current stimulation (tACS) has therefore been used during motor learning to modulate aspects of acquisition, consolidation and performance of a learned motor skill. Despite numerous reviews on the effects of tACS, and its role in motor learning, there are few studies which synthesize the numerous frequencies and their respective theoretical mechanisms as they relate to motor and perceptual processes. Here we provide a short overview of the main stimulation frequencies used in motor learning modulation (e.g., alpha, beta, and gamma), and discuss the effect and proposed mechanisms of these studies. We summarize with the current state of the field, the effectiveness and variability in motor learning modulation, and novel mechanistic proposals from other fields.
Collapse
Affiliation(s)
- Michelle McNally
- Department of Physiology, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Gabriel Byczynski
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
- School of Psychology, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland.
- School of Psychology, Trinity College Dublin, Dublin, D02 PN40, Ireland.
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, D02 PN40, Ireland.
| |
Collapse
|
8
|
Hernández N, Galves A, García JE, Gubitoso MD, Vargas CD. Probabilistic prediction and context tree identification in the Goalkeeper game. Sci Rep 2024; 14:15467. [PMID: 38969702 PMCID: PMC11226460 DOI: 10.1038/s41598-024-66009-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
In this article we address two related issues on the learning of probabilistic sequences of events. First, which features make the sequence of events generated by a stochastic chain more difficult to predict. Second, how to model the procedures employed by different learners to identify the structure of sequences of events. Playing the role of a goalkeeper in a video game, participants were told to predict step by step the successive directions-left, center or right-to which the penalty kicker would send the ball. The sequence of kicks was driven by a stochastic chain with memory of variable length. Results showed that at least three features play a role in the first issue: (1) the shape of the context tree summarizing the dependencies between present and past directions; (2) the entropy of the stochastic chain used to generate the sequences of events; (3) the existence or not of a deterministic periodic sequence underlying the sequences of events. Moreover, evidence suggests that best learners rely less on their own past choices to identify the structure of the sequences of events.
Collapse
Affiliation(s)
| | - Antonio Galves
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | | | - Marcos D Gubitoso
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Claudia D Vargas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Cesanek E, Shivkumar S, Ingram JN, Wolpert DM. Ouvrai opens access to remote virtual reality studies of human behavioural neuroscience. Nat Hum Behav 2024; 8:1209-1224. [PMID: 38671286 PMCID: PMC11199109 DOI: 10.1038/s41562-024-01834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/18/2024] [Indexed: 04/28/2024]
Abstract
Modern virtual reality (VR) devices record six-degree-of-freedom kinematic data with high spatial and temporal resolution and display high-resolution stereoscopic three-dimensional graphics. These capabilities make VR a powerful tool for many types of behavioural research, including studies of sensorimotor, perceptual and cognitive functions. Here we introduce Ouvrai, an open-source solution that facilitates the design and execution of remote VR studies, capitalizing on the surge in VR headset ownership. This tool allows researchers to develop sophisticated experiments using cutting-edge web technologies such as WebXR to enable browser-based VR, without compromising on experimental design. Ouvrai's features include easy installation, intuitive JavaScript templates, a component library managing front- and backend processes and a streamlined workflow. It integrates with Firebase, Prolific and Amazon Mechanical Turk and provides data processing utilities for analysis. Unlike other tools, Ouvrai remains free, with researchers managing their web hosting and cloud database via personal Firebase accounts. Ouvrai is not limited to VR studies; researchers can also develop and run desktop or touchscreen studies using the same streamlined workflow. Through three distinct motor learning experiments, we confirm Ouvrai's efficiency and viability for conducting remote VR studies.
Collapse
Affiliation(s)
- Evan Cesanek
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.
| | - Sabyasachi Shivkumar
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
| | - James N Ingram
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
| | - Daniel M Wolpert
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Van Roy A, Albouy G, Burns RD, King BR. Children exhibit a developmental advantage in the offline processing of a learned motor sequence. COMMUNICATIONS PSYCHOLOGY 2024; 2:30. [PMID: 39242845 PMCID: PMC11332225 DOI: 10.1038/s44271-024-00082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/20/2024] [Indexed: 09/09/2024]
Abstract
Changes in specific behaviors across the lifespan are frequently reported as an inverted-U trajectory. That is, young adults exhibit optimal performance, children are conceptualized as developing systems progressing towards this ideal state, and older adulthood is characterized by performance decrements. However, not all behaviors follow this trajectory, as there are instances in which children outperform young adults. Here, we acquired data from 7-35 and >55 year-old participants and assessed potential developmental advantages in motor sequence learning and memory consolidation. Results revealed no credible evidence for differences in initial learning dynamics among age groups, but 7- to 12-year-old children exhibited smaller sequence-specific learning relative to adolescents, young adults and older adults. Interestingly, children demonstrated the greatest performance gains across the 5 h and 24 h offline periods, reflecting enhanced motor memory consolidation. These results suggest that children exhibit an advantage in the offline processing of recently learned motor sequences.
Collapse
Affiliation(s)
- Anke Van Roy
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Geneviève Albouy
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ryan D Burns
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
11
|
Zvornik A, Andersen KA, Petersen AD, Novén M, Siebner HR, Lundbye-Jensen J, Karabanov AN. Older and younger adults differ in time course of skill acquisition but not in overall improvement in a bimanual visuomotor tracking task. Front Aging Neurosci 2024; 16:1373252. [PMID: 38665899 PMCID: PMC11043555 DOI: 10.3389/fnagi.2024.1373252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
Manual motor performance declines with age, but the extent to which age influences the acquisition of new skills remains a topic of debate. Here, we examined whether older healthy adults show less training-dependent performance improvements during a single session of a bimanual pinch task than younger adults. We also explored whether physical and cognitive factors, such as grip strength or motor-cognitive ability, are associated with performance improvements. Healthy younger (n = 16) and older (n = 20) adults performed three training blocks separated by short breaks. Participants were tasked with producing visually instructed changes in pinch force using their right and left thumb and index fingers. Task complexity was varied by shifting between bimanual mirror-symmetric and inverse-asymmetric changes in pinch force. Older adults generally displayed higher visuomotor force tracking errors during the more complex inverse-asymmetric task compared to younger adults. Both groups showed a comparable net decrease in visuomotor force tracking error over the entire session, but their improvement trajectories differed. Young adults showed enhanced visuomotor tracking error only in the first block, while older adults exhibited a more gradual improvement over the three training blocks. Furthermore, grip strength and performance on a motor-cognitive test battery scaled positively with individual performance improvements during the first block in both age groups. Together, the results show subtle age-dependent differences in the rate of bimanual visuomotor skill acquisition, while overall short-term learning ability is maintained.
Collapse
Affiliation(s)
- Ana Zvornik
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Keenie Ayla Andersen
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Deigaard Petersen
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Novén
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anke Ninija Karabanov
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| |
Collapse
|
12
|
Mylonas D, Schapiro AC, Verfaellie M, Baxter B, Vangel M, Stickgold R, Manoach DS. Maintenance of Procedural Motor Memory across Brief Rest Periods Requires the Hippocampus. J Neurosci 2024; 44:e1839232024. [PMID: 38351000 PMCID: PMC10993031 DOI: 10.1523/jneurosci.1839-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 03/26/2024] Open
Abstract
Research on the role of the hippocampus in memory acquisition has generally focused on active learning. But to understand memory, it is at least as important to understand processes that happen offline, during both wake and sleep. In a study of patients with amnesia, we previously demonstrated that although a functional hippocampus is not necessary for the acquisition of procedural motor memory during training session, it is required for its offline consolidation during sleep. Here, we investigated whether an intact hippocampus is also required for the offline consolidation of procedural motor memory while awake. Patients with amnesia due to hippocampal damage (n = 4, all male) and demographically matched controls (n = 10, 8 males) trained on the finger tapping motor sequence task. Learning was measured as gains in typing speed and was divided into online (during task execution) and offline (during interleaved 30 s breaks) components. Amnesic patients and controls showed comparable total learning, but differed in the pattern of performance improvement. Unlike younger adults, who gain speed across breaks, both groups gained speed only while typing. Only controls retained these gains over the breaks; amnesic patients slowed down and compensated for these losses during subsequent typing. In summary, unlike their peers, whose motor performance remained stable across brief breaks in typing, amnesic patients showed evidence of impaired access to motor procedural memory. We conclude that in addition to being necessary for the offline consolidation of motor memories during sleep, the hippocampus maintains access to motor memory across brief offline periods during wake.
Collapse
Affiliation(s)
- Dimitrios Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114
- Harvard Medical School, Boston, Massachusetts 02115
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129
| | - Anna C Schapiro
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mieke Verfaellie
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, Massachusetts 02130
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02215
| | - Bryan Baxter
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114
- Harvard Medical School, Boston, Massachusetts 02115
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129
| | - Mark Vangel
- Harvard Medical School, Boston, Massachusetts 02115
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129
- Department of Biostatistics, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Robert Stickgold
- Harvard Medical School, Boston, Massachusetts 02115
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114
- Harvard Medical School, Boston, Massachusetts 02115
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129
| |
Collapse
|
13
|
McConnell PA, Finetto C, Heise KF. Methodological considerations for behavioral studies relying on response time outcomes through online crowdsourcing platforms. Sci Rep 2024; 14:7719. [PMID: 38565854 PMCID: PMC10987629 DOI: 10.1038/s41598-024-58300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
This perspective paper explores challenges associated with online crowdsourced data collection, particularly focusing on longitudinal tasks with time-sensitive outcomes like response latencies. Based on our research, we identify two significant sources of bias: technical shortcomings such as low, variable frame rates, and human factors, contributing to high attrition rates. We explored potential solutions to these problems, such as enforcing hardware acceleration and defining study-specific frame rate thresholds, as well as pre-screening participants and monitoring hardware performance and task engagement over each experimental session. With this discussion, we intend to provide recommendations on how to improve the quality and reliability of data collected via online crowdsourced platforms and emphasize the need for researchers to be cognizant of potential pitfalls in online research.
Collapse
Affiliation(s)
- Patrick A McConnell
- Integrative Neuromodulation and Recovery (iNR) Laboratory, Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street, Charleston, SC, 29425, USA
| | - Christian Finetto
- Integrative Neuromodulation and Recovery (iNR) Laboratory, Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street, Charleston, SC, 29425, USA
| | - Kirstin-Friederike Heise
- Integrative Neuromodulation and Recovery (iNR) Laboratory, Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street, Charleston, SC, 29425, USA.
| |
Collapse
|
14
|
Brooks E, Wallis S, Hendrikse J, Coxon J. Micro-consolidation occurs when learning an implicit motor sequence, but is not influenced by HIIT exercise. NPJ SCIENCE OF LEARNING 2024; 9:23. [PMID: 38509108 PMCID: PMC10954609 DOI: 10.1038/s41539-024-00238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
We investigated if micro-consolidation, a phenomenon recently discovered during the brief rest periods between practice when learning an explicit motor sequence, generalises to learning an implicit motor sequence task. We demonstrate micro-consolidation occurs in the absence of explicit sequence awareness. We also investigated the effect of a preceding bout of high-intensity exercise, as exercise is known to augment the consolidation of new motor skills. Micro-consolidation was not modified by exercise.
Collapse
Affiliation(s)
- Emily Brooks
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, VIC, 3800, Australia
| | - Sarah Wallis
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, VIC, 3800, Australia
| | - Joshua Hendrikse
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, VIC, 3800, Australia
| | - James Coxon
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, VIC, 3800, Australia.
| |
Collapse
|
15
|
Tsay JS, Asmerian H, Germine LT, Wilmer J, Ivry RB, Nakayama K. Large-scale citizen science reveals predictors of sensorimotor adaptation. Nat Hum Behav 2024; 8:510-525. [PMID: 38291127 DOI: 10.1038/s41562-023-01798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024]
Abstract
Sensorimotor adaptation is essential for keeping our movements well calibrated in response to changes in the body and environment. For over a century, researchers have studied sensorimotor adaptation in laboratory settings that typically involve small sample sizes. While this approach has proved useful for characterizing different learning processes, laboratory studies are not well suited for exploring the myriad of factors that may modulate human performance. Here, using a citizen science website, we collected over 2,000 sessions of data on a visuomotor rotation task. This unique dataset has allowed us to replicate, reconcile and challenge classic findings in the learning and memory literature, as well as discover unappreciated demographic constraints associated with implicit and explicit processes that support sensorimotor adaptation. More generally, this study exemplifies how a large-scale exploratory approach can complement traditional hypothesis-driven laboratory research in advancing sensorimotor neuroscience.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Hrach Asmerian
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Jeremy Wilmer
- Department of Psychology, Wellesley College, Wellesley, MA, USA
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Ken Nakayama
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
16
|
Shiga K, Miyaguchi S, Inukai Y, Otsuru N, Onishi H. Transcranial alternating current stimulation does not affect microscale learning. Behav Brain Res 2024; 459:114770. [PMID: 37984522 DOI: 10.1016/j.bbr.2023.114770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
A theory has been posited that microscale learning, which involves short intervals of a few seconds during explicit motor skill learning, considerably enhances performance. This phenomenon correlates with diminished beta-band activity in the frontal and parietal regions. However, there is a lack of neurophysiological studies regarding the relationship between microscale learning and implicit motor skill learning. In the present study, we aimed to determine the effects of transcranial alternating current stimulation (tACS) during short rest periods on microscale learning in an implicit motor task. We investigated the effects of 20-Hz β-tACS delivered during short rest periods while participants performed an implicit motor task. In Experiments 1 and 2, β-tACS targeted the right dorsolateral prefrontal cortex and the right frontoparietal network, respectively. The participants performed a finger-tapping task using their nondominant left hand, and microscale learning was separately analyzed for micro-online gains (MOnGs) and micro-offline gains (MOffGs). Contrary to our expectations, β-tACS exhibited no statistically significant effects on MOnGs or MOffGs in either Experiment 1 or Experiment 2. In addition, microscale learning during the performance of the implicit motor task was improved by MOffGs in the early learning phase and by MOnGs in the late learning phase. These results revealed that the stimulation protocol employed in this study did not affect microscale learning, indicating a novel aspect of microscale learning in implicit motor tasks. This is the first study to examine microscale learning in implicit motor tasks and may provide baseline information that will be useful in future studies.
Collapse
Affiliation(s)
- Kyosuke Shiga
- Graduate School, Niigata University of Health and Welfare, Niigata 950-3198, Japan.
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| |
Collapse
|
17
|
Gupta MW, Rickard TC. Comparison of online, offline, and hybrid hypotheses of motor sequence learning using a quantitative model that incorporate reactive inhibition. Sci Rep 2024; 14:4661. [PMID: 38409296 PMCID: PMC11269601 DOI: 10.1038/s41598-024-52726-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Two hypotheses have been advanced for when motor sequence learning occurs: offline between bouts of practice or online concurrently with practice. A third possibility is that learning occurs both online and offline. A complication for differentiating between those hypotheses is a process known as reactive inhibition, whereby performance worsens over consecutively executed sequences, but dissipates during breaks. We advance a new quantitative modeling framework that incorporates reactive inhibition and in which the three learning accounts can be implemented. Our results show that reactive inhibition plays a far larger role in performance than is appreciated in the literature. Across four groups of participants in which break times and correct sequences per trial were varied, the best overall fits were provided by a hybrid model. The version of the offline model that does not account for reactive inhibition, which is widely assumed in the literature, had the worst fits. We discuss implications for extant hypotheses and directions for future research.
Collapse
Affiliation(s)
- Mohan W Gupta
- Department of Psychology , University of California, La Jolla, San Diego, CA, 92093-0109, USA
| | - Timothy C Rickard
- Department of Psychology , University of California, La Jolla, San Diego, CA, 92093-0109, USA.
| |
Collapse
|
18
|
Hayward W, Buch ER, Norato G, Iwane F, Dash D, Salamanca-Girón RF, Bartrum E, Walitt B, Nath A, Cohen LG. Procedural Motor Memory Deficits in Patients With Long-COVID. Neurology 2024; 102:e208073. [PMID: 38237090 PMCID: PMC11097756 DOI: 10.1212/wnl.0000000000208073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/26/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND AND OBJECTIVES At least 15% of patients who recover from acute severe acute respiratory syndrome coronavirus 2 infection experience lasting symptoms ("Long-COVID") including "brain fog" and deficits in declarative memory. It is not known if Long-COVID affects patients' ability to form and retain procedural motor skill memories. The objective was to determine the ability of patients with Long-COVID to acquire and consolidate a new procedural motor skill over 2 training days. The primary outcome was to determine difference in early learning, measured as the increase in correct sequence typing speed over the initial 11 practice trials of a new skill. The secondary outcomes were initial and final typing speed on days 1 and 2, learning rate, overnight consolidation, and typing accuracy. METHODS In this prospective, cross-sectional, online, case-control study, participants learned a sequential motor skill over 2 consecutive days (NCT05746624). Patients with Long-COVID (reporting persistent post-coronavirus disease 2019 [COVID-19] symptoms for more than 4 weeks) were recruited at the NIH. Patients were matched one-to-one by age and sex to controls recruited during the pandemic using a crowd-sourcing platform. Selection criteria included age 18-90 years, English speaking, right-handed, able to type with the left hand, denied active fever or respiratory infection, and no previous task exposure. Data were also compared with an age-matched and sex-matched control group who performed the task online before the COVID-19 pandemic (prepandemic controls). RESULTS In total, 105 of 236 patients contacted agreed to participate and completed the experiment (mean ± SD age 46 ± 12.8 years, 82% female). Both healthy control groups had 105 participants (mean age 46 ± 13.1 and 46 ± 11.9 years, 82% female). Early learning was comparable across groups (Long-COVID: 0.36 ± 0.24 correct sequences/second, pandemic controls: 0.36 ± 0.53 prepandemic controls: 0.38 ± 0.57, patients vs pandemic controls [CI -0.068 to 0.067], vs prepandemic controls [CI -0.084 to 0.052], and between controls [CI -0.083 to 0.053], p = 0.82). Initial and final typing speeds on days 1 and 2 were slower in patients than controls. Patients with Long-COVID showed a significantly reduced overnight consolidation and a nonsignificant trend to reduced learning rates. DISCUSSION Early learning was comparable in patients with Long-COVID and controls. Anomalous initial performance is consistent with executive dysfunction. Reduction in overnight consolidation may relate to deficits in procedural memory formation.
Collapse
Affiliation(s)
- William Hayward
- From the Human Cortical Physiology and Neurorehabilitation Section (W.H., E.R.B., F.I., D.D., R.F.S.-G., L.G.C.), Clinical Trials Unit (G.N.), Office of the Clinical Director, and Section of Infections of the Nervous System (E.B., B.W., A.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Ethan R Buch
- From the Human Cortical Physiology and Neurorehabilitation Section (W.H., E.R.B., F.I., D.D., R.F.S.-G., L.G.C.), Clinical Trials Unit (G.N.), Office of the Clinical Director, and Section of Infections of the Nervous System (E.B., B.W., A.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Gina Norato
- From the Human Cortical Physiology and Neurorehabilitation Section (W.H., E.R.B., F.I., D.D., R.F.S.-G., L.G.C.), Clinical Trials Unit (G.N.), Office of the Clinical Director, and Section of Infections of the Nervous System (E.B., B.W., A.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Fumiaki Iwane
- From the Human Cortical Physiology and Neurorehabilitation Section (W.H., E.R.B., F.I., D.D., R.F.S.-G., L.G.C.), Clinical Trials Unit (G.N.), Office of the Clinical Director, and Section of Infections of the Nervous System (E.B., B.W., A.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Dabedatta Dash
- From the Human Cortical Physiology and Neurorehabilitation Section (W.H., E.R.B., F.I., D.D., R.F.S.-G., L.G.C.), Clinical Trials Unit (G.N.), Office of the Clinical Director, and Section of Infections of the Nervous System (E.B., B.W., A.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Roberto F Salamanca-Girón
- From the Human Cortical Physiology and Neurorehabilitation Section (W.H., E.R.B., F.I., D.D., R.F.S.-G., L.G.C.), Clinical Trials Unit (G.N.), Office of the Clinical Director, and Section of Infections of the Nervous System (E.B., B.W., A.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Elizabeth Bartrum
- From the Human Cortical Physiology and Neurorehabilitation Section (W.H., E.R.B., F.I., D.D., R.F.S.-G., L.G.C.), Clinical Trials Unit (G.N.), Office of the Clinical Director, and Section of Infections of the Nervous System (E.B., B.W., A.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Brian Walitt
- From the Human Cortical Physiology and Neurorehabilitation Section (W.H., E.R.B., F.I., D.D., R.F.S.-G., L.G.C.), Clinical Trials Unit (G.N.), Office of the Clinical Director, and Section of Infections of the Nervous System (E.B., B.W., A.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Avindra Nath
- From the Human Cortical Physiology and Neurorehabilitation Section (W.H., E.R.B., F.I., D.D., R.F.S.-G., L.G.C.), Clinical Trials Unit (G.N.), Office of the Clinical Director, and Section of Infections of the Nervous System (E.B., B.W., A.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Leonardo G Cohen
- From the Human Cortical Physiology and Neurorehabilitation Section (W.H., E.R.B., F.I., D.D., R.F.S.-G., L.G.C.), Clinical Trials Unit (G.N.), Office of the Clinical Director, and Section of Infections of the Nervous System (E.B., B.W., A.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| |
Collapse
|
19
|
Wang Y, Huynh AT, Bao S, Buchanan JJ, Wright DL, Lei Y. Memory consolidation of sequence learning and dynamic adaptation during wakefulness. Cereb Cortex 2024; 34:bhad507. [PMID: 38185987 DOI: 10.1093/cercor/bhad507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
Motor learning involves acquiring new movement sequences and adapting motor commands to novel conditions. Labile motor memories, acquired through sequence learning and dynamic adaptation, undergo a consolidation process during wakefulness after initial training. This process stabilizes the new memories, leading to long-term memory formation. However, it remains unclear if the consolidation processes underlying sequence learning and dynamic adaptation are independent and if distinct neural regions underpin memory consolidation associated with sequence learning and dynamic adaptation. Here, we first demonstrated that the initially labile memories formed during sequence learning and dynamic adaptation were stabilized against interference through time-dependent consolidation processes occurring during wakefulness. Furthermore, we found that sequence learning memory was not disrupted when immediately followed by dynamic adaptation and vice versa, indicating distinct mechanisms for sequence learning and dynamic adaptation consolidation. Finally, by applying patterned transcranial magnetic stimulation to selectively disrupt the activity in the primary motor (M1) or sensory (S1) cortices immediately after sequence learning or dynamic adaptation, we found that sequence learning consolidation depended on M1 but not S1, while dynamic adaptation consolidation relied on S1 but not M1. For the first time in a single experimental framework, this study revealed distinct neural underpinnings for sequence learning and dynamic adaptation consolidation during wakefulness, with significant implications for motor skill enhancement and rehabilitation.
Collapse
Affiliation(s)
- Yiyu Wang
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Angelina T Huynh
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Shancheng Bao
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - John J Buchanan
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - David L Wright
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Yuming Lei
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
20
|
Shyr MC, Joshi SS. A Case Study of the Validity of Web-based Visuomotor Rotation Experiments. J Cogn Neurosci 2024; 36:71-94. [PMID: 37902584 DOI: 10.1162/jocn_a_02080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Web-based experiments are gaining momentum in motor learning research because of the desire to increase statistical power, decrease overhead for human participant experiments, and utilize a more demographically inclusive sample population. However, there is a vital need to understand the general feasibility and considerations necessary to shift tightly controlled human participant experiments to an online setting. We developed and deployed an online experimental platform modeled after established in-laboratory visuomotor rotation experiments to serve as a case study examining remotely collected data quality for an 80-min experiment. Current online motor learning experiments have thus far not exceeded 60 min, and current online crowdsourced studies have a median duration of approximately 10 min. Thus, the impact of a longer-duration, web-based experiment is unknown. We used our online platform to evaluate perturbation-driven motor adaptation behavior under three rotation sizes (±10°, ±35°, and ±65°) and two sensory uncertainty conditions. We hypothesized that our results would follow predictions by the relevance estimation hypothesis. Remote execution allowed us to double (n = 49) the typical participant population size from similar studies. Subsequently, we performed an in-depth examination of data quality by analyzing single-trial data quality, participant variability, and potential temporal effects across trials. Results replicated in-laboratory findings and provided insight on the effect of induced sensory uncertainty on the relevance estimation hypothesis. Our experiment also highlighted several specific challenges associated with online data collection including potentially smaller effect sizes, higher data variability, and lower recommended experiment duration thresholds. Overall, online paradigms present both opportunities and challenges for future motor learning research.
Collapse
|
21
|
Takemi M, Akahoshi M, Ushiba J, Furuya S. Behavioral and physiological fatigue-related factors influencing timing and force control learning in pianists. Sci Rep 2023; 13:21646. [PMID: 38062126 PMCID: PMC10703774 DOI: 10.1038/s41598-023-49226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Optimizing the training regimen depending on neuromuscular fatigue is crucial for the well-being of professionals intensively practicing motor skills, such as athletes and musicians, as persistent fatigue can hinder learning and cause neuromuscular injuries. However, accurate assessment of fatigue is challenging because of the dissociation between subjective perception and its impact on motor and cognitive performance. To address this issue, we investigated the interplay between fatigue and learning development in 28 pianists during three hours of auditory-motor training, dividing them into two groups subjected to different resting conditions. Changes in behavior and muscle activity during training were measured to identify potential indicators capable of detecting fatigue before subjective awareness. Our results indicate that motor learning and fatigue development are independent of resting frequency and timing. Learning indices, such as reduction in force and timing errors throughout training, did not differ between the groups. No discernible distinctions emerged in fatigue-related behavioral and physiological indicators between the groups. Regression analysis revealed that several fatigue-related indicators, such as tapping speed variability and electromyogram amplitude per unit force, could explain the learning of timing and force control. Our findings suggest the absence of a universal resting schedule for optimizing auditory-motor learning.
Collapse
Affiliation(s)
- Mitsuaki Takemi
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
| | - Mai Akahoshi
- Sony Computer Science Laboratories, Inc., Tokyo, Japan
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
| | | |
Collapse
|
22
|
Kondat T, Aderka M, Censor N. Modulating temporal dynamics of performance across retinotopic locations enhances the generalization of perceptual learning. iScience 2023; 26:108276. [PMID: 38026175 PMCID: PMC10654611 DOI: 10.1016/j.isci.2023.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Human visual perception can be improved through perceptual learning. However, such learning is often specific to stimulus and learning conditions. Here, we explored how temporal dynamics of performance across conditions impact learning generalization. Participants performed a visual task, with the target at retinotopic location A. Then, the target was presented at location B either immediately after location A (same-session performance) or following a 48h consolidation period (different-session performance). Long-term generalization was measured the following week. Following initial training, both groups demonstrated generalization, consistent with previous accounts of fast learning. However, long-term generalization was enhanced in the same-session performance group. Consistently, improvements at locations A and B were correlated only following same-session performance, implying an integrated learning process across locations. The results support a new account of perceptual learning and generalization dynamics, suggesting that the temporal proximity of learning and consolidation of different conditions may integrate correlated learning processes, facilitating generalized learning.
Collapse
Affiliation(s)
- Taly Kondat
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Maya Aderka
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nitzan Censor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
23
|
Malanchini M, Allegrini AG, Nivard MG, Biroli P, Rimfeld K, Cheesman R, von Stumm S, Demange PA, van Bergen E, Grotzinger AD, Raffington L, De la Fuente J, Pingault JB, Harden KP, Tucker-Drob EM, Plomin R. Genetic contributions of noncognitive skills to academic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535380. [PMID: 37066409 PMCID: PMC10103958 DOI: 10.1101/2023.04.03.535380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Noncognitive skills such as motivation and self-regulation, are partly heritable and predict academic achievement beyond cognitive skills. However, how the relationship between noncognitive skills and academic achievement changes over development is unclear. The current study examined how cognitive and noncognitive skills contribute to academic achievement from ages 7 to 16 in a sample of over 10,000 children from England and Wales. Noncognitive skills were increasingly predictive of academic achievement across development. Twin and polygenic scores analyses found that the contribution of noncognitive genetics to academic achievement became stronger over the school years. Results from within-family analyses indicated that associations with noncognitive genetics could not simply be attributed to confounding by environmental differences between nuclear families and are consistent with a possible role for evocative/active gene-environment correlations. By studying genetic effects through a developmental lens, we provide novel insights into the role of noncognitive skills in academic development.
Collapse
Affiliation(s)
- Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, United Kingdom
- Social, Genetic and Developmental Psychiatry Centre, King’s College London, United Kingdom
| | - Andrea G. Allegrini
- Social, Genetic and Developmental Psychiatry Centre, King’s College London, United Kingdom
- Department of Clinical, Educational and Health Psychology, University College London, United Kingdom
| | - Michel G. Nivard
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Pietro Biroli
- Department of Economics, Universita’ di Bologna, Bologna, Italy
| | - Kaili Rimfeld
- Social, Genetic and Developmental Psychiatry Centre, King’s College London, United Kingdom
- Royal Holloway University of London, United Kingdom
| | - Rosa Cheesman
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Perline A. Demange
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Research Institute LEARN!, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Mental Health, Amsterdam, the Netherlands
| | - Elsje van Bergen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Research Institute LEARN!, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Mental Health, Amsterdam, the Netherlands
| | - Andrew D. Grotzinger
- Institute for Behavioral Genetics, University of Colorado Boulder, United States
| | - Laurel Raffington
- Max Planck Research Group Biosocial – Biology, Social Disparities, and Development; Max Planck Institute for Human Development, Berlin, Germany
| | | | - Jean-Baptiste Pingault
- Department of Clinical, Educational and Health Psychology, University College London, United Kingdom
| | - K. Paige Harden
- Department of Psychology, The University of Texas at Austin, United States
| | | | - Robert Plomin
- Social, Genetic and Developmental Psychiatry Centre, King’s College London, United Kingdom
| |
Collapse
|
24
|
Giuriato M, Filipas L, Crociani M, Carnevale Pellino V, Vandoni M, Gallo G, La Torre A, Rossi C, Lovecchio N, Codella R. Inter-Trial Rest Interval Affects Learning Throwing Skills among Adolescents. J Mot Behav 2023; 56:132-138. [PMID: 37828754 DOI: 10.1080/00222895.2023.2265869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
Newly acquired motor skills can be critically driven by different rest periods during practice. Specifically, in the initial stages of motor skill acquisition, the interval between individual trials plays a pivotal role in facilitating effective motor performance, such as in the case of throwing. The objective of this research was to determine the optimal inter-trial rest period promoting efficient motor performance, focusing on two specific motor task actions. In a randomized counterbalanced cross-over research design 169 high-school students aged 14 were studied (M = 150; F = 19). In one block, participants performed 10 basketball free throws with a short rest interval (< 5 s) and 10 other throws with a long rest interval (∼50-60 s). In a second block, they threw a regular size tennis ball into a 1-m diameter circle on the floor at 6.75 m, again throwing 10 times with a short inter-trial rest interval and 10 times with a long inter-trial rest interval. The order of the rest intervals within each block was randomized and counterbalanced. With a repeated measures two-way analysis of variance, greater accuracy seemed to be associated with short intra-set rest intervals as there were significant main effects of both conditions (F1,167 = 368.0, p < 0.001, η2p = 0.271) and resting time (F1,167 = 18.6, p < 0.001, η2p = 0.192) and no significant interaction "condition by time". Fast practice was efficient independently of the complexity of the throwing task, suggesting robust support for schema theory.
Collapse
Affiliation(s)
- Matteo Giuriato
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, Pavia, Italy
| | - Luca Filipas
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Mariele Crociani
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Vittoria Carnevale Pellino
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, Pavia, Italy
| | - Matteo Vandoni
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, Pavia, Italy
| | - Gabriele Gallo
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
- Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Antonio La Torre
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Carlo Rossi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Nicola Lovecchio
- Department of Human and Social Sciences, Università di Bergamo, Bergamo, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
25
|
Johnson BP, Iturrate I, Fakhreddine RY, Bönstrup M, Buch ER, Robertson EM, Cohen LG. Generalization of procedural motor sequence learning after a single practice trial. NPJ SCIENCE OF LEARNING 2023; 8:45. [PMID: 37803003 PMCID: PMC10558563 DOI: 10.1038/s41539-023-00194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 09/14/2023] [Indexed: 10/08/2023]
Abstract
When humans begin learning new motor skills, they typically display early rapid performance improvements. It is not well understood how knowledge acquired during this early skill learning period generalizes to new, related skills. Here, we addressed this question by investigating factors influencing generalization of early learning from a skill A to a different, but related skill B. Early skill generalization was tested over four experiments (N = 2095). Subjects successively learned two related motor sequence skills (skills A and B) over different practice schedules. Skill A and B sequences shared ordinal (i.e., matching keypress locations), transitional (i.e., ordered keypress pairs), parsing rule (i.e., distinct sequence events like repeated keypresses that can be used as a breakpoint for segmenting the sequence into smaller units) structures, or possessed no structure similarities. Results showed generalization for shared parsing rule structure between skills A and B after only a single 10-second practice trial of skill A. Manipulating the initial practice exposure to skill A (1 to 12 trials) and inter-practice rest interval (0-30 s) between skills A and B had no impact on parsing rule structure generalization. Furthermore, this generalization was not explained by stronger sensorimotor mapping between individual keypress actions and their symbolic representations. In contrast, learning from skill A did not generalize to skill B during early learning when the sequences shared only ordinal or transitional structure features. These results document sequence structure that can be very rapidly generalized during initial learning to facilitate generalization of skill.
Collapse
Affiliation(s)
- B P Johnson
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, USA
- Washington University in St Louis, St. Louis, USA
| | - I Iturrate
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, USA
- Amazon EU, Barcelona, Spain
| | - R Y Fakhreddine
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, USA
- UT Austin, Austin, USA
| | | | - E R Buch
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, USA.
| | - E M Robertson
- Center for Cognitive Neuroimaging, University of Glasgow, Glasgow, Scotland, UK
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, USA.
| |
Collapse
|
26
|
Gann MA, Dolfen N, King BR, Robertson EM, Albouy G. Prefrontal stimulation as a tool to disrupt hippocampal and striatal reactivations underlying fast motor memory consolidation. Brain Stimul 2023; 16:1336-1345. [PMID: 37647985 DOI: 10.1016/j.brs.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Recent evidence suggests that hippocampal replay in humans support rapid motor memory consolidation during epochs of wakefulness interleaved with task practice. OBJECTIVES/HYPOTHESES The goal of this study was to test whether such reactivation patterns can be modulated with experimental interventions and in turn influence fast consolidation. We hypothesized that non-invasive brain stimulation targeting hippocampal and striatal networks via the prefrontal cortex would influence brain reactivation and the rapid form of motor memory consolidation. METHODS Theta-burst stimulation was applied to a prefrontal cluster functionally connected to both the hippocampus and striatum of young healthy participants before they learned a motor sequence task in a functional magnetic resonance imaging (fMRI) scanner. Neuroimaging data acquired during task practice and the interleaved rest epochs were analyzed to comprehensively characterize the effect of stimulation on the neural processes supporting fast motor memory consolidation. RESULTS Our results collectively show that active, as compared to control, theta-burst stimulation of the prefrontal cortex hindered fast motor memory consolidation. Converging evidence from both univariate and multivariate analyses of fMRI data indicate that active stimulation disrupted hippocampal and caudate responses during inter-practice rest, presumably altering the reactivation of learning-related patterns during the micro-offline consolidation episodes. Last, stimulation altered the link between the brain and the behavioral markers of the fast consolidation process. CONCLUSION These results suggest that stimulation targeting deep brain regions via the prefrontal cortex can be used to modulate hippocampal and striatal reactivations in the human brain and influence motor memory consolidation.
Collapse
Affiliation(s)
- Mareike A Gann
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Nina Dolfen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - Edwin M Robertson
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Geneviève Albouy
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
27
|
Conessa A, Debarnot U, Siegler I, Boutin A. Sleep-related motor skill consolidation and generalizability after physical practice, motor imagery, and action observation. iScience 2023; 26:107314. [PMID: 37520714 PMCID: PMC10374463 DOI: 10.1016/j.isci.2023.107314] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/15/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Sleep benefits the consolidation of motor skills learned by physical practice, mainly through periodic thalamocortical sleep spindle activity. However, motor skills can be learned without overt movement through motor imagery or action observation. Here, we investigated whether sleep spindle activity also supports the consolidation of non-physically learned movements. Forty-five electroencephalographic sleep recordings were collected during a daytime nap after motor sequence learning by physical practice, motor imagery, or action observation. Our findings reveal that a temporal cluster-based organization of sleep spindles underlies motor memory consolidation in all groups, albeit with distinct behavioral outcomes. A daytime nap offers an early sleep window promoting the retention of motor skills learned by physical practice and motor imagery, and its generalizability toward the inter-manual transfer of skill after action observation. Findings may further have practical impacts with the development of non-physical rehabilitation interventions for patients having to remaster skills following peripherical or brain injury.
Collapse
Affiliation(s)
- Adrien Conessa
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- Université d’Orléans, CIAMS, 45067 Orléans, France
| | - Ursula Debarnot
- University Lyon, UCBL-Lyon 1, Inter-University Laboratory of Human Movement Biology, EA7424, 69622 Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Isabelle Siegler
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- Université d’Orléans, CIAMS, 45067 Orléans, France
| | - Arnaud Boutin
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- Université d’Orléans, CIAMS, 45067 Orléans, France
| |
Collapse
|
28
|
Iwane F, Dash D, Salamanca-Giron RF, Hayward W, Bönstrup M, Buch ER, Cohen LG. Combined low-frequency brain oscillatory activity and behavior predict future errors in human motor skill. Curr Biol 2023; 33:3145-3154.e5. [PMID: 37442139 DOI: 10.1016/j.cub.2023.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/24/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Human skills are composed of sequences of individual actions performed with utmost precision. When occasional errors occur, they may have serious consequences, for example, when pilots are manually landing a plane. In such cases, the ability to predict an error before it occurs would clearly be advantageous. Here, we asked whether it is possible to predict future errors in a keyboard procedural human motor skill. We report that prolonged keypress transition times (KTTs), reflecting slower speed, and anomalous delta-band oscillatory activity in cingulate-entorhinal-precuneus brain regions precede upcoming errors in skill. Combined anomalous low-frequency activity and prolonged KTTs predicted up to 70% of future errors. Decoding strength (posterior probability of error) increased progressively approaching the errors. We conclude that it is possible to predict future individual errors in skill sequential performance.
Collapse
Affiliation(s)
- Fumiaki Iwane
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD 20892, USA
| | - Debadatta Dash
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD 20892, USA
| | | | - William Hayward
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD 20892, USA
| | - Marlene Bönstrup
- Department of Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Ethan R Buch
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD 20892, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Abeles D, Herszage J, Shahar M, Censor N. Initial motor skill performance predicts future performance, but not learning. Sci Rep 2023; 13:11359. [PMID: 37443195 PMCID: PMC10344907 DOI: 10.1038/s41598-023-38231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
People show vast variability in skill performance and learning. What determines a person's individual performance and learning ability? In this study we explored the possibility to predict participants' future performance and learning, based on their behavior during initial skill acquisition. We recruited a large online multi-session sample of participants performing a sequential tapping skill learning task. We used machine learning to predict future performance and learning from raw data acquired during initial skill acquisition, and from engineered features calculated from the raw data. Strong correlations were observed between initial and final performance, and individual learning was not predicted. While canonical experimental tasks developed and selected to detect average effects may constrain insights regarding individual variability, development of novel tasks may shed light on the underlying mechanism of individual skill learning, relevant for real-life scenarios.
Collapse
Affiliation(s)
- Dekel Abeles
- School of Psychological Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Jasmine Herszage
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Moni Shahar
- AI and Data Science Center of Tel Aviv University (TAD), 69978, Tel Aviv, Israel
| | - Nitzan Censor
- School of Psychological Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
30
|
Cesanek E, Flanagan JR, Wolpert DM. Memory, perceptual, and motor costs affect the strength of categorical encoding during motor learning of object properties. Sci Rep 2023; 13:8619. [PMID: 37244891 PMCID: PMC10224949 DOI: 10.1038/s41598-023-33515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/13/2023] [Indexed: 05/29/2023] Open
Abstract
Nearly all tasks of daily life involve skilled object manipulation, and successful manipulation requires knowledge of object dynamics. We recently developed a motor learning paradigm that reveals the categorical organization of motor memories of object dynamics. When participants repeatedly lift a constant-density "family" of cylindrical objects that vary in size, and then an outlier object with a greater density is interleaved into the sequence of lifts, they often fail to learn the weight of the outlier, persistently treating it as a family member despite repeated errors. Here we examine eight factors (Similarity, Cardinality, Frequency, History, Structure, Stochasticity, Persistence, and Time Pressure) that could influence the formation and retrieval of category representations in the outlier paradigm. In our web-based task, participants (N = 240) anticipated object weights by stretching a virtual spring attached to the top of each object. Using Bayesian t-tests, we analyze the relative impact of each manipulated factor on categorical encoding (strengthen, weaken, or no effect). Our results suggest that category representations of object weight are automatic, rigid, and linear and, as a consequence, the key determinant of whether an outlier is encoded as a member of the family is its discriminability from the family members.
Collapse
Affiliation(s)
- Evan Cesanek
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - J Randall Flanagan
- Department of Psychology, Centre for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Daniel M Wolpert
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
| |
Collapse
|
31
|
Cubillos LH, Augenstein TE, Ranganathan R, Krishnan C. Breaking the barriers to designing online experiments: A novel open-source platform for supporting procedural skill learning experiments. Comput Biol Med 2023; 154:106627. [PMID: 36753980 DOI: 10.1016/j.compbiomed.2023.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/13/2022] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Motor learning experiments are typically performed in laboratory environments, which can be time-consuming and require dedicated equipment/personnel, thus limiting the ability to gather data from large samples. To address this problem, some researchers have transitioned to unsupervised online experiments, showing advantages in participant recruitment without losing validity. However, most online platforms require coding experience or time-consuming setups to create and run experiments, limiting their usage across the field. METHOD To tackle this issue, an open-source web-based platform was developed (https://experiments.neurro-lab.engin.umich.edu/) to create, run, and manage procedural skill learning experiments without coding or setup requirements. The feasibility of the platform and the comparability of the results between supervised (n = 17) and unsupervised (n = 24) were tested in 41 naive right-handed participants using an established sequential finger tapping task. The study also tested if a previously reported rapid form of offline consolidation (i.e., microscale learning) in procedural skill learning could be replicated with the developed platform and evaluated the extent of interlimb transfer associated with the finger tapping task. RESULTS The results indicated that the performance metrics were comparable between the supervised and unsupervised groups (all p's > 0.05). The learning curves, mean tapping speeds, and micro-scale learning were similar to previous studies. Training led to significant improvements in mean tapping speed (2.22 ± 1.48 keypresses/s, p < 0.001) and a significant interlimb transfer of learning (1.22 ± 1.43 keypresses/s, p < 0.05). CONCLUSIONS The results show that the presented platform may serve as a valuable tool for conducting online procedural skill-learning experiments.
Collapse
Affiliation(s)
- Luis H Cubillos
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, 48108, USA; Robotics Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Thomas E Augenstein
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, 48108, USA; Robotics Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rajiv Ranganathan
- Department of Kinesiology, Michigan State University, East Lansing, MI, 48824, USA; Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Chandramouli Krishnan
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, 48108, USA; Robotics Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
32
|
Herszage J, Bönstrup M, Cohen LG, Censor N. Reactivation-induced motor skill modulation does not operate at a rapid micro-timescale level. Sci Rep 2023; 13:2930. [PMID: 36808164 PMCID: PMC9941091 DOI: 10.1038/s41598-023-29963-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Abundant evidence shows that consolidated memories are susceptible to modifications following their reactivation. Processes of memory consolidation and reactivation-induced skill modulation have been commonly documented after hours or days. Motivated by studies showing rapid consolidation in early stages of motor skill acquisition, here we asked whether motor skill memories are susceptible to modifications following brief reactivations, even at initial stages of learning. In a set of experiments, we collected crowdsourced online motor sequence data to test whether post-encoding interference and performance enhancement occur following brief reactivations in early stages of learning. Results indicate that memories forming during early learning are not susceptible to interference nor to enhancement within a rapid reactivation-induced time window, relative to control conditions. This set of evidence suggests that reactivation-induced motor skill memory modulation might be dependent on consolidation at the macro-timescale level, requiring hours or days to occur.
Collapse
Affiliation(s)
- Jasmine Herszage
- grid.12136.370000 0004 1937 0546School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Sharet Building, 69978 Tel Aviv, Israel
| | - Marlene Bönstrup
- grid.9647.c0000 0004 7669 9786Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Leonardo G. Cohen
- grid.416870.c0000 0001 2177 357XHuman Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD USA
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Sharet Building, 69978, Tel Aviv, Israel.
| |
Collapse
|
33
|
Szücs-Bencze L, Fanuel L, Szabó N, Quentin R, Nemeth D, Vékony T. Manipulating the Rapid Consolidation Periods in a Learning Task Affects General Skills More than Statistical Learning and Changes the Dynamics of Learning. eNeuro 2023; 10:ENEURO.0228-22.2022. [PMID: 36792360 PMCID: PMC9961365 DOI: 10.1523/eneuro.0228-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 02/17/2023] Open
Abstract
Memory consolidation processes have traditionally been investigated from the perspective of hours or days. However, recent developments in memory research have shown that memory consolidation processes could occur even within seconds, possibly because of the neural replay of just practiced memory traces during short breaks. Here, we investigate this rapid form of consolidation during statistical learning. We aim to answer (1) whether this rapid consolidation occurs in implicit statistical learning and general skill learning, and (2) whether the duration of rest periods affects these two learning types differently. Human participants performed a widely used statistical learning task-the alternating serial reaction time (ASRT) task-that enables us to measure implicit statistical and general skill learning separately. The ASRT task consisted of 25 learning blocks with a rest period between the blocks. In a between-subjects design, the length of the rest periods was fixed at 15 or 30 s, or the participants could control the length themselves. We found that the duration of rest periods does not affect the amount of statistical knowledge acquired but does change the dynamics of learning. Shorter rest periods led to better learning during the learning blocks, whereas longer rest periods promoted learning also in the between-block rest periods, possibly because of the higher amount of replay. Moreover, we found weaker general skill learning in the self-paced group than in the fixed rest period groups. These results suggest that distinct learning processes are differently affected by the duration of short rest periods.
Collapse
Affiliation(s)
| | - Lison Fanuel
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France
| | - Nikoletta Szabó
- Department of Neurology, University of Szeged, H-6725, Szeged, Hungary
| | - Romain Quentin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France
| | - Dezso Nemeth
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France
- Institute of Psychology, ELTE Eötvös Loránd University, H-1064, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, H-1117, Budapest, Hungary
| | - Teodóra Vékony
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France
| |
Collapse
|
34
|
Leizerowitz GM, Gabai R, Plotnik M, Keren O, Karni A. Improving old tricks as new: Young adults learn from repeating everyday activities. PLoS One 2023; 18:e0285469. [PMID: 37167235 PMCID: PMC10174589 DOI: 10.1371/journal.pone.0285469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
The notion that young healthy adults can substantially improve in activities that are part of their daily routine is often overlooked because it is assumed that such activities have come to be fully mastered. We followed, in young healthy adults, the effects of repeated executions of the Timed-Up-and-Go (TUG) task, a clinical test that assesses the ability to execute motor activities relevant to daily function-rising from a seated position, walking, turning and returning to a seated position. The participants (N = 15) performed 18 consecutive trials of the TUG in one session, and were retested on the following day and a week later. The participants were video recorded and wore inertial measurement units. Task execution times improved robustly; performance was well fitted by a power function, with large gains at the beginning of the session and nearing plateau in later trials, as one would expect in the learning of a novel task. Moreover, these gains were well retained overnight and a week later, with further gains accruing in the subsequent test-sessions. Significant intra-session and inter-session changes occurred in step kinematics as well; some aspects underwent inter-sessions recalibrations, but other aspects showed delayed inter-session changes, suggesting post-practice memory consolidation processes. Even common everyday tasks can be improved upon by practice; a small number of consecutive task repetitions can trigger lasting gains in young healthy individuals performing highly practiced routine tasks. This new learning in highly familiar tasks proceeded in a time-course characteristic of the acquisition of novel 'how to' (procedural) knowledge.
Collapse
Affiliation(s)
- Gil Meir Leizerowitz
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- The Rehabilitation Hospital, C. Sheba Medical Center, Ramat Gan, Israel
| | - Ran Gabai
- Technion-Israel Institute of Technology, Haifa, Israel
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, C. Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine & Sagol School of Neuroscience, Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Keren
- The Rehabilitation Hospital, C. Sheba Medical Center, Ramat Gan, Israel
- Galilee Rehabilitation Center, Karmiel, Israel
| | - Avi Karni
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- The E. J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
- Department of Diagnostic Imaging, C. Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
35
|
Johnson BP, Cohen LG. Applied strategies of neuroplasticity. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:599-609. [PMID: 37620093 DOI: 10.1016/b978-0-323-98817-9.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Various levels of somatotopic organization are present throughout the human nervous system. However, this organization can change when needed based on environmental demands, a phenomenon known as neuroplasticity. Neuroplasticity can occur when learning a new motor skill, adjusting to life after blindness, or following a stroke. Following an injury, these neuroplastic changes can be adaptive or maladaptive, and often occur regardless of whether rehabilitation occurs or not. But not all movements produce neuroplasticity, nor do all rehabilitation interventions. Here, we focus on research regarding how to maximize adaptive neuroplasticity while also minimizing maladaptive plasticity, known as applied neuroplasticity. Emphasis is placed on research exploring how best to apply neuroplastic principles to training environments and rehabilitation protocols. By studying and applying these principles in research and clinical practice, it is hoped that learning of skills and regaining of function and independence can be optimized.
Collapse
Affiliation(s)
- Brian P Johnson
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
36
|
Enhancement of motor skill acquisition by intermittent theta burst stimulation: a pilot study. Acta Neurol Belg 2022:10.1007/s13760-022-02155-0. [DOI: 10.1007/s13760-022-02155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
|
37
|
Gupta MW, Rickard TC. Dissipation of reactive inhibition is sufficient to explain post-rest improvements in motor sequence learning. NPJ SCIENCE OF LEARNING 2022; 7:25. [PMID: 36202812 PMCID: PMC9537514 DOI: 10.1038/s41539-022-00140-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
The prevailing hypothesis for observed post-rest motor reaction time improvements is offline consolidation. In the present study, we present evidence for an alternate account involving the accrual and dissipation of reactive inhibition. Four groups of participants (N = 159) performed a finger-tapping task involving either massed (30 s per trial) or spaced (10 s per trial) training, and with one of two break intervals between each trial: 10 s or 30 s. After 360 s of training in each group, there was a 300 s rest period followed by a final test on the same task. The results show that the smaller the ratio of break time to on-task trial time during training, the larger the improvement in reaction time after the rest period. Those results are fully consistent with a model that assumes no facilitating offline consolidation, but rather learning that is concurrent with performance and reactive inhibition that builds during performance and dissipates during breaks.
Collapse
Affiliation(s)
- Mohan W Gupta
- Department of Psychology, University of California, San Diego, CA, USA
| | - Timothy C Rickard
- Department of Psychology, University of California, San Diego, CA, USA.
| |
Collapse
|
38
|
Klorfeld-Auslender S, Paz Y, Shinder I, Rosenblatt J, Dinstein I, Censor N. A distinct route for efficient learning and generalization in autism. Curr Biol 2022; 32:3203-3209.e3. [PMID: 35700734 DOI: 10.1016/j.cub.2022.05.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/06/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Visual skill learning is the process of improving responses to surrounding visual stimuli.1 For individuals with autism spectrum disorders (ASDs), efficient skill learning may be especially valuable due to potential difficulties with sensory processing2 and challenges in adjusting flexibly to changing environments.3,4 Standard skill learning protocols require extensive practice with multiple stimulus repetitions,5-7 which may be difficult for individuals with ASD and create abnormally specific learning with poor ability to generalize.4 Motivated by findings indicating that brief memory reactivations can facilitate skill learning,8,9 we hypothesized that reactivation learning with few stimulus repetitions will enable efficient learning in individuals with ASD, similar to their learning with standard extensive practice protocols used in previous studies.4,10,11 We further hypothesized that in contrast to experience-dependent plasticity often resulting in specificity, reactivation-induced learning would enable generalization patterns in ASD. To test our hypotheses, high-functioning adults with ASD underwent brief reactivations of an encoded visual learning task, consisting of only 5 trials each instead of hundreds. Remarkably, individuals with ASD improved their visual discrimination ability in the task substantially, demonstrating successful learning. Furthermore, individuals with ASD generalized learning to an untrained visual location, indicating a unique benefit of reactivation learning mechanisms for ASD individuals. Finally, an additional experiment showed that without memory reactivations ASD subjects did not demonstrate efficient learning and generalization patterns. Taken together, the results provide proof-of-concept evidence supporting a distinct route for efficient visual learning and generalization in ASD, which may be beneficial for skill learning in other sensory and motor domains.
Collapse
Affiliation(s)
- Shira Klorfeld-Auslender
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaniv Paz
- Cognitive and Brain Science Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowsky Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ilana Shinder
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jonathan Rosenblatt
- Zlotowsky Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ilan Dinstein
- Cognitive and Brain Science Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Azrieli National Center for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Nitzan Censor
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
39
|
Langsdorf L, Goehringer F, Schween R, Schenk T, Hegele M. Additional cognitive load decreases performance but not adaptation to a visuomotor transformation. Acta Psychol (Amst) 2022; 226:103586. [PMID: 35427929 DOI: 10.1016/j.actpsy.2022.103586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/16/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022] Open
Abstract
Dual-task paradigms are procedures for investigating interference with two tasks performed simultaneously. Studies that previously addressed dual-task paradigms within a visuomotor reaching task yielded mixed results. While some of the studies found evidence of cognitive interference, called dual-task costs, other studies did not. We assume that dual-task costs only manifest themselves within the explicit component of adaptation, as it involves cognitive resources for processing. We suspect the divergent findings to be due to the lack of differentiation between the explicit and implicit component. In this study, we aimed to investigate how a cognitive secondary task affects visuomotor adaptation overall and its different components, both during and after adaptation. In a series of posttests, we examined the explicit and implicit components separately. Eighty participants performed a center-outward reaching movement with a 30° cursor perturbation. Participants were either assigned to a single task group (ST) or a dual-task group (DT) with an additional auditory 1-back task. To further enhance our predicted effect of dual-task interference on the explicit component, we added a visual feedback delay condition to both groups (ST/DTDEL). In the other condition, participants received visual feedback immediately after movement termination (ST/DTNoDEL). While there were clear dual-task costs during the practice phase, there were no dual-task effects on any of the posttest measures. On one hand, our findings suggest that dual-task costs in visuomotor adaptation tasks can occur with sufficient cognitive demand, and on the other hand, that cognitive constraints may affect motor performance but not necessarily motor adaptation.
Collapse
|
40
|
Vassiliadis P, Lete A, Duque J, Derosiere G. Reward timing matters in motor learning. iScience 2022; 25:104290. [PMID: 35573187 PMCID: PMC9095742 DOI: 10.1016/j.isci.2022.104290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/25/2022] [Accepted: 04/20/2022] [Indexed: 12/01/2022] Open
Abstract
Reward timing, that is, the delay after which reward is delivered following an action is known to strongly influence reinforcement learning. Here, we asked if reward timing could also modulate how people learn and consolidate new motor skills. In 60 healthy participants, we found that delaying reward delivery by a few seconds influenced motor learning. Indeed, training with a short reward delay (1 s) induced continuous improvements in performance, whereas a long reward delay (6 s) led to initially high learning rates that were followed by an early plateau in the learning curve and a lower performance at the end of training. Participants who learned the skill with a long reward delay also exhibited reduced overnight memory consolidation. Overall, our data show that reward timing affects the dynamics and consolidation of motor learning, a finding that could be exploited in future rehabilitation programs.
Collapse
Affiliation(s)
- Pierre Vassiliadis
- Institute of Neuroscience, Université Catholique de Louvain, 53, Avenue Mounier, 1200 Brussels, Belgium
- Defitech Chair for Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland
| | - Aegryan Lete
- Institute of Neuroscience, Université Catholique de Louvain, 53, Avenue Mounier, 1200 Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université Catholique de Louvain, 53, Avenue Mounier, 1200 Brussels, Belgium
| | - Gerard Derosiere
- Institute of Neuroscience, Université Catholique de Louvain, 53, Avenue Mounier, 1200 Brussels, Belgium
| |
Collapse
|
41
|
Johnson BP, Cohen LG. Reward and plasticity: Implications for neurorehabilitation. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:331-340. [PMID: 35034746 DOI: 10.1016/b978-0-12-819410-2.00018-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuroplasticity follows nervous system injury in the presence or absence of rehabilitative treatments. Rehabilitative interventions can be used to modulate adaptive neuroplasticity, reducing motor impairment and improving activities of daily living in patients with brain lesions. Learning principles guide some rehabilitative interventions. While basic science research has shown that reward combined with training enhances learning, this principle has been only recently explored in the context of neurorehabilitation. Commonly used reinforcers may be more or less rewarding depending on the individual or the context in which the task is performed. Studies in healthy humans showed that both reward and punishment can enhance within-session motor performance; but reward, and not punishment, improves consolidation and retention of motor skills. On the other hand, neurorehabilitative training after brain lesions involves complex tasks (e.g., walking and activities of daily living). The contribution of reward to neurorehabilitation is incompletely understood. Here, we discuss recent research on the role of reward in neurorehabilitation and the needed directions of future research.
Collapse
Affiliation(s)
- Brian P Johnson
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
42
|
Listman JB, Tsay JS, Kim HE, Mackey WE, Heeger DJ. Long-Term Motor Learning in the "Wild" With High Volume Video Game Data. Front Hum Neurosci 2021; 15:777779. [PMID: 34987368 PMCID: PMC8720934 DOI: 10.3389/fnhum.2021.777779] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/25/2021] [Indexed: 01/12/2023] Open
Abstract
Motor learning occurs over long periods of practice during which motor acuity, the ability to execute actions more accurately, precisely, and in less time, improves. Laboratory-based studies of motor learning are typically limited to a small number of participants and a time frame of minutes to several hours per participant. There is a need to assess the generalizability of theories and findings from lab-based motor learning studies on larger samples and time scales. In addition, laboratory-based studies of motor learning use relatively simple motor tasks which participants are unlikely to be intrinsically motivated to learn, limiting the interpretation of their findings in more ecologically valid settings ("in the wild"). We studied the acquisition and longitudinal refinement of a complex sensorimotor skill embodied in a first-person shooter video game scenario, with a large sample size (N = 7174, 682,564 repeats of the 60 s game) over a period of months. Participants voluntarily practiced the gaming scenario for up to several hours per day up to 100 days. We found improvement in performance accuracy (quantified as hit rate) was modest over time but motor acuity (quantified as hits per second) improved considerably, with 40-60% retention from 1 day to the next. We observed steady improvements in motor acuity across multiple days of video game practice, unlike most motor learning tasks studied in the lab that hit a performance ceiling rather quickly. Learning rate was a non-linear function of baseline performance level, amount of daily practice, and to a lesser extent, number of days between practice sessions. In addition, we found that the benefit of additional practice on any given day was non-monotonic; the greatest improvements in motor acuity were evident with about an hour of practice and 90% of the learning benefit was achieved by practicing 30 min per day. Taken together, these results provide a proof-of-concept in studying motor skill acquisition outside the confines of the traditional laboratory, in the presence of unmeasured confounds, and provide new insights into how a complex motor skill is acquired in an ecologically valid setting and refined across much longer time scales than typically explored.
Collapse
Affiliation(s)
| | - Jonathan S. Tsay
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Hyosub E. Kim
- Department of Physical Therapy, University of Delaware, Newark, DE, United States
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | | | | |
Collapse
|
43
|
Quentin R, Fanuel L, Kiss M, Vernet M, Vékony T, Janacsek K, Cohen LG, Nemeth D. Statistical learning occurs during practice while high-order rule learning during rest period. NPJ SCIENCE OF LEARNING 2021; 6:14. [PMID: 34210989 PMCID: PMC8249495 DOI: 10.1038/s41539-021-00093-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Knowing when the brain learns is crucial for both the comprehension of memory formation and consolidation and for developing new training and neurorehabilitation strategies in healthy and patient populations. Recently, a rapid form of offline learning developing during short rest periods has been shown to account for most of procedural learning, leading to the hypothesis that the brain mainly learns during rest between practice periods. Nonetheless, procedural learning has several subcomponents not disentangled in previous studies investigating learning dynamics, such as acquiring the statistical regularities of the task, or else the high-order rules that regulate its organization. Here we analyzed 506 behavioral sessions of implicit visuomotor deterministic and probabilistic sequence learning tasks, allowing the distinction between general skill learning, statistical learning, and high-order rule learning. Our results show that the temporal dynamics of apparently simultaneous learning processes differ. While high-order rule learning is acquired offline, statistical learning is evidenced online. These findings open new avenues on the short-scale temporal dynamics of learning and memory consolidation and reveal a fundamental distinction between statistical and high-order rule learning, the former benefiting from online evidence accumulation and the latter requiring short rest periods for rapid consolidation.
Collapse
Affiliation(s)
- Romain Quentin
- MEMO Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France.
- COPHY Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France.
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA.
| | - Lison Fanuel
- MEMO Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Mariann Kiss
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Marine Vernet
- IMPACT Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Teodóra Vékony
- MEMO Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, UK
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Dezso Nemeth
- MEMO Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France.
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
44
|
Buch ER, Claudino L, Quentin R, Bönstrup M, Cohen LG. Consolidation of human skill linked to waking hippocampo-neocortical replay. Cell Rep 2021; 35:109193. [PMID: 34107255 PMCID: PMC8259719 DOI: 10.1016/j.celrep.2021.109193] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/10/2021] [Accepted: 05/09/2021] [Indexed: 01/05/2023] Open
Abstract
The introduction of rest intervals interspersed with practice strengthens wakeful consolidation of skill. The mechanisms by which the brain binds discrete action representations into consolidated, highly temporally resolved skill sequences during waking rest are not known. To address this question, we recorded magnetoencephalography (MEG) during acquisition and rapid consolidation of a sequential motor skill. We report the presence of prominent, fast waking neural replay during the same rest periods in which rapid consolidation occurs. The observed replay is temporally compressed by approximately 20-fold relative to the acquired skill, is selective for the trained sequence, and predicts the magnitude of skill consolidation. Replay representations extend beyond the hippocampus and entorhinal cortex to the contralateral sensorimotor cortex. These results document the presence of robust hippocampo-neocortical replay supporting rapid wakeful consolidation of skill.
Collapse
Affiliation(s)
- Ethan R Buch
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA.
| | - Leonardo Claudino
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Romain Quentin
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Marlene Bönstrup
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA.
| |
Collapse
|
45
|
Johnson BP, Dayan E, Censor N, Cohen LG. Crowdsourcing in Cognitive and Systems Neuroscience. Neuroscientist 2021; 28:425-437. [PMID: 34032146 DOI: 10.1177/10738584211017018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Behavioral research in cognitive and human systems neuroscience has been largely carried out in-person in laboratory settings. Underpowering and lack of reproducibility due to small sample sizes have weakened conclusions of these investigations. In other disciplines, such as neuroeconomics and social sciences, crowdsourcing has been extensively utilized as a data collection tool, and a means to increase sample sizes. Recent methodological advances allow scientists, for the first time, to test online more complex cognitive, perceptual, and motor tasks. Here we review the nascent literature on the use of online crowdsourcing in cognitive and human systems neuroscience. These investigations take advantage of the ability to reliably track the activity of a participant's computer keyboard, mouse, and eye gaze in the context of large-scale studies online that involve diverse research participant pools. Crowdsourcing allows for testing the generalizability of behavioral hypotheses in real-life environments that are less accessible to lab-designed investigations. Crowdsourcing is further useful when in-laboratory studies are limited, for example during the current COVID-19 pandemic. We also discuss current limitations of crowdsourcing research, and suggest pathways to address them. We conclude that online crowdsourcing is likely to widen the scope and strengthen conclusions of cognitive and human systems neuroscience investigations.
Collapse
Affiliation(s)
- Brian P Johnson
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
46
|
Johnson BP, Cohen LG, Westlake KP. The Intersection of Offline Learning and Rehabilitation. Front Hum Neurosci 2021; 15:667574. [PMID: 33967725 PMCID: PMC8098688 DOI: 10.3389/fnhum.2021.667574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brian P Johnson
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, United States.,Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Kelly P Westlake
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
47
|
Sequence Structure Has a Differential Effect on Underlying Motor Learning Processes. JOURNAL OF MOTOR LEARNING AND DEVELOPMENT 2021. [DOI: 10.1123/jmld.2020-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Current methods to understand implicit motor sequence learning inadequately assess motor skill acquisition in daily life. Using fixed sequences in the serial reaction time task is not ideal as participants may become aware of the sequence, thereby changing the learning from implicit to explicit. Probabilistic sequences, in which stimuli are linked by statistical, rather than deterministic, associations can ensure that learning remains implicit. Additionally, the processes underlying the learning of motor sequences may differ based on sequence structure. Here, the authors compared the learning of fixed and probabilistic sequences to randomly ordered stimuli using a modified serial reaction time task. Both the fixed and probabilistic sequence groups exhibited learning as indicated by decreased response time and variability. In the initial stage of learning, fixed sequences exhibited both online and offline gains in response time; however, only the offline gain was observed during the learning of probabilistic sequences. These results indicated that probabilistic structures may be learned differently from fixed structures and have important implications for our current understanding of motor learning. Probabilistic sequences more accurately reflect motor skill acquisition in daily life, offer ecological validity to the serial reaction time framework, and advance our understanding of motor learning.
Collapse
|
48
|
Larssen BC, Ho DK, Kraeutner SN, Hodges NJ. Combining Observation and Physical Practice: Benefits of an Interleaved Schedule for Visuomotor Adaptation and Motor Memory Consolidation. Front Hum Neurosci 2021; 15:614452. [PMID: 33613210 PMCID: PMC7890187 DOI: 10.3389/fnhum.2021.614452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
Visuomotor adaptation to novel environments can occur via non-physical means, such as observation. Observation does not appear to activate the same implicit learning processes as physical practice, rather it appears to be more strategic in nature. However, there is evidence that interspersing observational practice with physical practice can benefit performance and memory consolidation either through the combined benefits of separate processes or through a change in processes activated during observation trials. To test these ideas, we asked people to practice aiming to targets with visually rotated cursor feedback or engage in a combined practice schedule comprising physical practice and observation of projected videos showing successful aiming. Ninety-three participants were randomly assigned to one of five groups: massed physical practice (Act), distributed physical practice (Act+Rest), or one of 3 types of combined practice: alternating blocks (Obs_During), or all observation before (Obs_Pre) or after (Obs_Post) blocked physical practice. Participants received 100 practice trials (all or half were physical practice). All groups improved in adaptation trials and showed savings across the 24-h retention interval relative to initial practice. There was some forgetting for all groups, but the magnitudes were larger for physical practice groups. The Act and Obs_During groups were most accurate in retention and did not differ, suggesting that observation can serve as a replacement for physical practice if supplied intermittently and offers advantages above just resting. However, after-effects associated with combined practice were smaller than those for physical practice control groups, suggesting that beneficial learning effects as a result of observation were not due to activation of implicit learning processes. Reaction time, variable error, and post-test rotation drawings supported this conclusion that adaptation for observation groups was promoted by explicit/strategic processes.
Collapse
Affiliation(s)
- Beverley C Larssen
- Motor Skills Lab, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Brain Behaviour Laboratory, Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Daniel K Ho
- Motor Skills Lab, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sarah N Kraeutner
- Brain Behaviour Laboratory, Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nicola J Hodges
- Motor Skills Lab, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|