1
|
Kavoni H, Savizi ISP, Lewis NE, Shojaosadati SA. Recent advances in culture medium design for enhanced production of monoclonal antibodies in CHO cells: A comparative study of machine learning and systems biology approaches. Biotechnol Adv 2025; 78:108480. [PMID: 39571767 DOI: 10.1016/j.biotechadv.2024.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/24/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
The production of monoclonal antibodies (mAbs) using Chinese Hamster Ovary (CHO) cells has revolutionized the treatment of numerous diseases, solidifying their position as a cornerstone of the biopharmaceutical industry. However, achieving maximum mAb production while upholding strict product quality standards remains a significant hurdle. Optimizing cell culture media emerges as a critical factor in this endeavor, requiring a nuanced understanding of the complex interplay of nutrients, growth factors, and other components that profoundly influence cellular growth, productivity, and product quality. Significant strides have been made in media optimization, including techniques such as media blending, one factor at a time, and statistical design of experiments approaches. The present review provides a comprehensive analysis of the recent advancements in culture media design strategies, focusing on the comparative application of systems biology (SB) and machine learning (ML) approaches. The applications of SB and ML in optimizing CHO cell culture medium and successful examples of their use are summarized. Finally, we highlight the immense potential of integrating SB and ML, emphasizing the development of hybrid models that leverage the strengths of both approaches for robust, efficient, and scalable optimization of mAb production in CHO cells. This review provides a roadmap for researchers and industry professionals to navigate the complex landscape of mAb production optimization, paving the way for developing next-generation CHO cell culture media that drive significant improvements in yield and productivity.
Collapse
Affiliation(s)
- Hossein Kavoni
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Iman Shahidi Pour Savizi
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, CA, USA; Department of Pediatrics, University of California, San Diego, CA, USA
| | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
van Rosmalen R, Moreno-Paz S, Duman-Özdamar Z, Suarez-Diez M. CFSA: Comparative flux sampling analysis as a guide for strain design. Metab Eng Commun 2024; 19:e00244. [PMID: 39072282 PMCID: PMC11283130 DOI: 10.1016/j.mec.2024.e00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Genome-scale metabolic models of microbial metabolism have extensively been used to guide the design of microbial cell factories, still, many of the available strain design algorithms often fail to produce a reduced list of targets for improved performance that can be implemented and validated in a step-wise manner. We present Comparative Flux Sampling Analysis (CFSA), a strain design method based on the extensive comparison of complete metabolic spaces corresponding to maximal or near-maximal growth and production phenotypes. The comparison is complemented by statistical analysis to identify reactions with altered flux that are suggested as targets for genetic interventions including up-regulations, down-regulations and gene deletions. We applied CFSA to the production of lipids by Cutaneotrichosporon oleaginosus and naringenin by Saccharomyces cerevisiae identifying engineering targets in agreement with previous studies as well as new interventions. CFSA is an easy-to-use, robust method that suggests potential metabolic engineering targets for growth-uncoupled production that can be applied to the design of microbial cell factories.
Collapse
Affiliation(s)
| | | | - Z.E. Duman-Özdamar
- Laboratory of Systems and Synthetic Biology, Stippeneng 4 6708 WE Wageningen, the Netherlands
| | - M. Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Stippeneng 4 6708 WE Wageningen, the Netherlands
| |
Collapse
|
3
|
Chapman S, Brunet T, Mourier A, Habermann BH. MitoMAMMAL: a genome scale model of mammalian mitochondria predicts cardiac and BAT metabolism. BIOINFORMATICS ADVANCES 2024; 5:vbae172. [PMID: 39758828 PMCID: PMC11696703 DOI: 10.1093/bioadv/vbae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/07/2025]
Abstract
Motivation Mitochondria are essential for cellular metabolism and are inherently flexible to allow correct function in a wide range of tissues. Consequently, dysregulated mitochondrial metabolism affects different tissues in different ways leading to challenges in understanding the pathology of mitochondrial diseases. System-level metabolic modelling is useful in studying tissue-specific mitochondrial metabolism, yet despite the mouse being a common model organism in research, no mouse specific mitochondrial metabolic model is currently available. Results Building upon the similarity between human and mouse mitochondrial metabolism, we present mitoMammal, a genome-scale metabolic model that contains human and mouse specific gene-product reaction rules. MitoMammal is able to model mouse and human mitochondrial metabolism. To demonstrate this, using an adapted E-Flux algorithm, we integrated proteomic data from mitochondria of isolated mouse cardiomyocytes and mouse brown adipocyte tissue, as well as transcriptomic data from in vitro differentiated human brown adipocytes and modelled the context specific metabolism using flux balance analysis. In all three simulations, mitoMammal made mostly accurate, and some novel predictions relating to energy metabolism in the context of cardiomyocytes and brown adipocytes. This demonstrates its usefulness in research in cardiac disease and diabetes in both mouse and human contexts. Availability and implementation The MitoMammal Jupyter Notebook is available at: https://gitlab.com/habermann_lab/mitomammal.
Collapse
Affiliation(s)
- Stephen Chapman
- Aix-Marseille University, CNRS, IBDM UMR7288, Turing Center for Living Systems (CENTURI), Marseille 13009, France
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Theo Brunet
- Aix-Marseille University, CNRS, IBDM UMR7288, Turing Center for Living Systems (CENTURI), Marseille 13009, France
| | - Arnaud Mourier
- Université de Bordeaux, IBGC UMR 5095, Bordeaux 33077, France
| | - Bianca H Habermann
- Aix-Marseille University, CNRS, IBDM UMR7288, Turing Center for Living Systems (CENTURI), Marseille 13009, France
| |
Collapse
|
4
|
Osinuga A, González Solís A, Cahoon RE, Alsiyabi A, Cahoon EB, Saha R. Deciphering sphingolipid biosynthesis dynamics in Arabidopsis thaliana cell cultures: Quantitative analysis amid data variability. iScience 2024; 27:110675. [PMID: 39297170 PMCID: PMC11409011 DOI: 10.1016/j.isci.2024.110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/22/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024] Open
Abstract
Sphingolipids are pivotal for plant development and stress responses. Growing interest has been directed toward fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its de novo biosynthesis and homeostasis in Arabidopsis thaliana cell cultures, shedding light on fundamental metabolic mechanisms. Employing 15N isotope labeling and quantitative dynamic modeling approach, we obtained data with notable variations and developed a regularized and constraint-based dynamic metabolic flux analysis (r-DMFA) framework to predict metabolic shifts due to enzymatic changes. Our analysis revealed key enzymes such as sphingoid-base hydroxylase (SBH) and long-chain-base kinase (LCBK) to be critical for maintaining sphingolipid homeostasis. Disruptions in these enzymes were found to affect cellular viability and increase the potential for programmed cell death (PCD). Despite challenges posed by data variability, this work enhances our understanding of sphingolipid metabolism and demonstrates the utility of dynamic modeling in analyzing complex metabolic pathways.
Collapse
Affiliation(s)
- Abraham Osinuga
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ariadna González Solís
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rebecca E Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Adil Alsiyabi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
5
|
Beura S, Das AK, Ghosh A. Protocol for genome-scale differential flux analysis to interrogate metabolic differences from gene expression data. STAR Protoc 2024; 5:103291. [PMID: 39235936 PMCID: PMC11404131 DOI: 10.1016/j.xpro.2024.103291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
Deciphering the functional differences between diseased and healthy cells requires understanding the alterations in biochemical flux patterns. We present a genome-scale differential flux analysis (GS-DFA) protocol to elucidate these metabolic disparities by integrating condition-specific gene expression data into the human genome-scale metabolic model (humanGEM). In this protocol, we describe the steps to normalize and integrate data into the humanGEM and analyze differential flux across the biochemical network between diseased and healthy cells. For complete details on the use and execution of this protocol, please refer to Nanda et al.1.
Collapse
Affiliation(s)
- Satyajit Beura
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Kumar Das
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
6
|
Rivera-Galindo MA, Aguirre-Garrido F, Garza-Ramos U, Villavicencio-Pulido JG, Fernández Perrino FJ, López-Pérez M. Relevance of the Adjuvant Effect between Cellular Homeostasis and Resistance to Antibiotics in Gram-Negative Bacteria with Pathogenic Capacity: A Study of Klebsiella pneumoniae. Antibiotics (Basel) 2024; 13:490. [PMID: 38927157 PMCID: PMC11200652 DOI: 10.3390/antibiotics13060490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Antibiotic resistance has become a global issue. The most significant risk is the acquisition of these mechanisms by pathogenic bacteria, which can have a severe clinical impact and pose a public health risk. This problem assumes that bacterial fitness is a constant phenomenon and should be approached from an evolutionary perspective to develop the most appropriate and effective strategies to contain the emergence of strains with pathogenic potential. Resistance mechanisms can be understood as adaptive processes to stressful conditions. This review examines the relevance of homeostatic regulatory mechanisms in antimicrobial resistance mechanisms. We focus on the interactions in the cellular physiology of pathogenic bacteria, particularly Gram-negative bacteria, and specifically Klebsiella pneumoniae. From a clinical research perspective, understanding these interactions is crucial for comprehensively understanding the phenomenon of resistance and developing more effective drugs and treatments to limit or attenuate bacterial sepsis, since the most conserved adjuvant phenomena in bacterial physiology has turned out to be more optimized and, therefore, more susceptible to alterations due to pharmacological action.
Collapse
Affiliation(s)
- Mildred Azucena Rivera-Galindo
- Doctorado en Ciencias Biológicas y de la Salud Universidad Autónoma Metropolitana, Ciudad de México, México Universidad Autónoma Metropolitana-Unidad Xochimilco Calz, del Hueso 1100, Coapa, Villa Quietud, Coyoacán CP 04960, Mexico;
| | - Félix Aguirre-Garrido
- Environmental Sciences Department, Division of Biological and Health Sciences, Autonomous Metropolitan University (Lerma Unit), Av. de las Garzas N◦ 10, Col. El Panteón, Lerma de Villada CP 52005, Mexico; (F.A.-G.); (J.G.V.-P.)
| | - Ulises Garza-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca CP 62100, Mexico;
| | - José Geiser Villavicencio-Pulido
- Environmental Sciences Department, Division of Biological and Health Sciences, Autonomous Metropolitan University (Lerma Unit), Av. de las Garzas N◦ 10, Col. El Panteón, Lerma de Villada CP 52005, Mexico; (F.A.-G.); (J.G.V.-P.)
| | - Francisco José Fernández Perrino
- Department of Biotechnology, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Av. San Rafael Atlixco 186, Leyes de Reforma, México City CP 09340, Mexico;
| | - Marcos López-Pérez
- Environmental Sciences Department, Division of Biological and Health Sciences, Autonomous Metropolitan University (Lerma Unit), Av. de las Garzas N◦ 10, Col. El Panteón, Lerma de Villada CP 52005, Mexico; (F.A.-G.); (J.G.V.-P.)
| |
Collapse
|
7
|
Kishk A, Pires Pacheco M, Heurtaux T, Sauter T. Metabolic models predict fotemustine and the combination of eflornithine/rifamycin and adapalene/cannabidiol for the treatment of gliomas. Brief Bioinform 2024; 25:bbae199. [PMID: 38701414 PMCID: PMC11066901 DOI: 10.1093/bib/bbae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Gliomas are the most common type of malignant brain tumors, with glioblastoma multiforme (GBM) having a median survival of 15 months due to drug resistance and relapse. The treatment of gliomas relies on surgery, radiotherapy and chemotherapy. Only 12 anti-brain tumor chemotherapies (AntiBCs), mostly alkylating agents, have been approved so far. Glioma subtype-specific metabolic models were reconstructed to simulate metabolite exchanges, in silico knockouts and the prediction of drug and drug combinations for all three subtypes. The simulations were confronted with literature, high-throughput screenings (HTSs), xenograft and clinical trial data to validate the workflow and further prioritize the drug candidates. The three subtype models accurately displayed different degrees of dependencies toward glutamine and glutamate. Furthermore, 33 single drugs, mainly antimetabolites and TXNRD1-inhibitors, as well as 17 drug combinations were predicted as potential candidates for gliomas. Half of these drug candidates have been previously tested in HTSs. Half of the tested drug candidates reduce proliferation in cell lines and two-thirds in xenografts. Most combinations were predicted to be efficient for all three glioma types. However, eflornithine/rifamycin and cannabidiol/adapalene were predicted specifically for GBM and low-grade glioma, respectively. Most drug candidates had comparable efficiency in preclinical tests, cerebrospinal fluid bioavailability and mode-of-action to AntiBCs. However, fotemustine and valganciclovir alone and eflornithine and celecoxib in combination with AntiBCs improved the survival compared to AntiBCs in two-arms, phase I/II and higher glioma clinical trials. Our work highlights the potential of metabolic modeling in advancing glioma drug discovery, which accurately predicted metabolic vulnerabilities, repurposable drugs and combinations for the glioma subtypes.
Collapse
Affiliation(s)
- Ali Kishk
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Tony Heurtaux
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Centre of Neuropathology, L-3555 Dudelange, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
8
|
Chalkis A, Fisikopoulos V, Tsigaridas E, Zafeiropoulos H. dingo: a Python package for metabolic flux sampling. BIOINFORMATICS ADVANCES 2024; 4:vbae037. [PMID: 38586119 PMCID: PMC10997433 DOI: 10.1093/bioadv/vbae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/16/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
We present dingo, a Python package that supports a variety of methods to sample from the flux space of metabolic models, based on state-of-the-art random walks and rounding methods. For uniform sampling, dingo's sampling methods provide significant speed-ups and outperform existing software. Indicatively, dingo can sample from the flux space of the largest metabolic model up to now (Recon3D) in less than a day using a personal computer, under several statistical guarantees; this computation is out of reach for other similar software. In addition, dingo supports common analysis methods, such as flux balance analysis and flux variability analysis, and visualization components. dingo contributes to the arsenal of tools in metabolic modelling by enabling flux sampling in high dimensions (in the order of thousands). Availability and implementation The dingo Python library is available in GitHub at https://github.com/GeomScale/dingo and the data underlying this article are available in https://doi.org/10.5281/zenodo.10423335.
Collapse
Affiliation(s)
| | - Vissarion Fisikopoulos
- GeomScale.org
- Department of Informatics & Telecommunications, National and Kapodistrian University of Athens, Panepistimioupolis, Ilisia,16122 Athens, Greece
| | - Elias Tsigaridas
- GeomScale.org
- Inria Paris and IMJ-PRG, Sorbonne Université and Paris Université, France
| | - Haris Zafeiropoulos
- GeomScale.org
- Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Woo H, Kim Y, Kim D, Yoon SH. Machine learning identifies key metabolic reactions in bacterial growth on different carbon sources. Mol Syst Biol 2024; 20:170-186. [PMID: 38291231 PMCID: PMC10912204 DOI: 10.1038/s44320-024-00017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Carbon source-dependent control of bacterial growth is fundamental to bacterial physiology and survival. However, pinpointing the metabolic steps important for cell growth is challenging due to the complexity of cellular networks. Here, the elastic net model and multilayer perception model that integrated genome-wide gene-deletion data and simulated flux distributions were constructed to identify metabolic reactions beneficial or detrimental to Escherichia coli grown on 30 different carbon sources. Both models outperformed traditional in silico methods by identifying not just essential reactions but also nonessential ones that promote growth. They successfully predicted metabolic reactions beneficial to cell growth, with high convergence between the models. The models revealed that biosynthetic pathways generally promote growth across various carbon sources, whereas the impact of energy-generating pathways varies with the carbon source. Intriguing predictions were experimentally validated for findings beyond experimental training data and the impact of various carbon sources on the glyoxylate shunt, pyruvate dehydrogenase reaction, and redundant purine biosynthesis reactions. These highlight the practical significance and predictive power of the models for understanding and engineering microbial metabolism.
Collapse
Affiliation(s)
- Hyunjae Woo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Youngshin Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dohyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Ho Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
10
|
Kugler A, Stensjö K. Machine learning predicts system-wide metabolic flux control in cyanobacteria. Metab Eng 2024; 82:171-182. [PMID: 38395194 DOI: 10.1016/j.ymben.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Metabolic fluxes and their control mechanisms are fundamental in cellular metabolism, offering insights for the study of biological systems and biotechnological applications. However, quantitative and predictive understanding of controlling biochemical reactions in microbial cell factories, especially at the system level, is limited. In this work, we present ARCTICA, a computational framework that integrates constraint-based modelling with machine learning tools to address this challenge. Using the model cyanobacterium Synechocystis sp. PCC 6803 as chassis, we demonstrate that ARCTICA effectively simulates global-scale metabolic flux control. Key findings are that (i) the photosynthetic bioproduction is mainly governed by enzymes within the Calvin-Benson-Bassham (CBB) cycle, rather than by those involve in the biosynthesis of the end-product, (ii) the catalytic capacity of the CBB cycle limits the photosynthetic activity and downstream pathways and (iii) ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a major, but not the most, limiting step within the CBB cycle. Predicted metabolic reactions qualitatively align with prior experimental observations, validating our modelling approach. ARCTICA serves as a valuable pipeline for understanding cellular physiology and predicting rate-limiting steps in genome-scale metabolic networks, and thus provides guidance for bioengineering of cyanobacteria.
Collapse
Affiliation(s)
- Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
11
|
Galuzzi BG, Milazzo L, Damiani C. Adjusting for false discoveries in constraint-based differential metabolic flux analysis. J Biomed Inform 2024; 150:104597. [PMID: 38272432 DOI: 10.1016/j.jbi.2024.104597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
One of the critical steps to characterize metabolic alterations in multifactorial diseases, as well as their heterogeneity across different patients, is the identification of reactions that exhibit significantly different usage (or flux) between cohorts. However, since metabolic fluxes cannot be determined directly, researchers typically use constraint-based metabolic network models, customized on post-genomics datasets. The use of random sampling within the feasible region of metabolic networks is becoming more prevalent for comparing these networks. While many algorithms have been proposed and compared for efficiently and uniformly sampling the feasible region of metabolic networks, their impact on the risk of making false discoveries when comparing different samples has not been investigated yet, and no sampling strategy has been so far specifically designed to mitigate the problem. To be able to precisely assess the False Discovery Rate (FDR), in this work we compared different samples obtained from the very same metabolic model. We compared the FDR obtained for different model scales, sample sizes, parameters of the sampling algorithm, and strategies to filter out non-significant variations. To be able to compare the largely used hit-and-run strategy with the much less investigated corner-based strategy, we first assessed the intrinsic capability of current corner-based algorithms and of a newly proposed one to visit all vertices of a constraint-based region. We show that false discoveries can occur at high rates even for large samples of small-scale networks. However, we demonstrate that a statistical test based on the empirical null distribution of Kullback-Leibler divergence can effectively correct for false discoveries. We also show that our proposed corner-based algorithm is more efficient than state-of-the-art alternatives and much less prone to false discoveries than hit-and-run strategies. We report that the differences in the marginal distributions obtained with the two strategies are related to but not fully explained by differences in sample standard deviation, as previously thought. Overall, our study provides insights into the impact of sampling strategies on FDR in metabolic network analysis and offers new guidelines for more robust and reproducible analyses.
Collapse
Affiliation(s)
- Bruno G Galuzzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, Milan, 20126, Italy; Institute of Molecular Bioimaging and Physiology (IBFM), Segrate, 20054, Italy; SYSBIO Centre of Systems Biology/ ISBE.IT, Milan, Italy.
| | - Luca Milazzo
- Department of Informatics, Systems, and Communications, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, Milan, 20126, Italy
| | - Chiara Damiani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, Milan, 20126, Italy; SYSBIO Centre of Systems Biology/ ISBE.IT, Milan, Italy.
| |
Collapse
|
12
|
Gelbach PE, Cetin H, Finley SD. Flux sampling in genome-scale metabolic modeling of microbial communities. BMC Bioinformatics 2024; 25:45. [PMID: 38287239 PMCID: PMC10826046 DOI: 10.1186/s12859-024-05655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Microbial communities play a crucial role in ecosystem function through metabolic interactions. Genome-scale modeling is a promising method to understand these interactions and identify strategies to optimize the community. Flux balance analysis (FBA) is most often used to predict the flux through all reactions in a genome-scale model; however, the fluxes predicted by FBA depend on a user-defined cellular objective. Flux sampling is an alternative to FBA, as it provides the range of fluxes possible within a microbial community. Furthermore, flux sampling can capture additional heterogeneity across a population, especially when cells exhibit sub-maximal growth rates. RESULTS In this study, we simulate the metabolism of microbial communities and compare the metabolic characteristics found with FBA and flux sampling. With sampling, we find significant differences in the predicted metabolism, including an increase in cooperative interactions and pathway-specific changes in predicted flux. CONCLUSIONS Our results suggest the importance of sampling-based approaches to evaluate metabolic interactions. Furthermore, we emphasize the utility of flux sampling in quantitatively studying interactions between cells and organisms.
Collapse
Affiliation(s)
- Patrick E Gelbach
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Handan Cetin
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Stacey D Finley
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA.
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
13
|
Saa PA, Zapararte S, Drovandi CC, Nielsen LK. LooplessFluxSampler: an efficient toolbox for sampling the loopless flux solution space of metabolic models. BMC Bioinformatics 2024; 25:3. [PMID: 38166586 PMCID: PMC10763395 DOI: 10.1186/s12859-023-05616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/13/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Uniform random sampling of mass-balanced flux solutions offers an unbiased appraisal of the capabilities of metabolic networks. Unfortunately, it is impossible to avoid thermodynamically infeasible loops in flux samples when using convex samplers on large metabolic models. Current strategies for randomly sampling the non-convex loopless flux space display limited efficiency and lack theoretical guarantees. RESULTS Here, we present LooplessFluxSampler, an efficient algorithm for exploring the loopless mass-balanced flux solution space of metabolic models, based on an Adaptive Directions Sampling on a Box (ADSB) algorithm. ADSB is rooted in the general Adaptive Direction Sampling (ADS) framework, specifically the Parallel ADS, for which theoretical convergence and irreducibility results are available for sampling from arbitrary distributions. By sampling directions that adapt to the target distribution, ADSB traverses more efficiently the sample space achieving faster mixing than other methods. Importantly, the presented algorithm is guaranteed to target the uniform distribution over convex regions, and it provably converges on the latter distribution over more general (non-convex) regions provided the sample can have full support. CONCLUSIONS LooplessFluxSampler enables scalable statistical inference of the loopless mass-balanced solution space of large metabolic models. Grounded in a theoretically sound framework, this toolbox provides not only efficient but also reliable results for exploring the properties of the almost surely non-convex loopless flux space. Finally, LooplessFluxSampler includes a Markov Chain diagnostics suite for assessing the quality of the final sample and the performance of the algorithm.
Collapse
Affiliation(s)
- Pedro A Saa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontifical Catholic University of Chile, Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
- Institute for Mathematical and Computational Engineering, Pontifical Catholic University of Chile, Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Sebastian Zapararte
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontifical Catholic University of Chile, Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Christopher C Drovandi
- School of Mathematical Sciences and Centre for Data Science, Queensland University of Technology, 2 George Street, Brisbane, Australia
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cnr College Rd and Cooper Rd, Brisbane, Australia.
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building, Kemitorvet 220, 2800, Kongens Lyngby, Copenhagen, Denmark.
| |
Collapse
|
14
|
Osinuga A, Solis AG, Cahoon RE, Al-Siyabi A, Cahoon EB, Saha R. Quantitative Dynamic Analysis of de novo Sphingolipid Biosynthesis in Arabidopsis thaliana. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570827. [PMID: 38105963 PMCID: PMC10723408 DOI: 10.1101/2023.12.08.570827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Sphingolipids are pivotal for plant development and stress responses. Growing interest has been directed towards fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its de novo biosynthesis and homeostasis in Arabidopsis thaliana cell cultures, shedding light on fundamental metabolic mechanisms. Employing 15N isotope labeling and quantitative dynamic modeling approach, we developed a regularized and constraint-based Dynamic Metabolic Flux Analysis (r-DMFA) framework to predict metabolic shifts due to enzymatic changes. Our analysis revealed key enzymes such as sphingoid-base hydroxylase (SBH) and long-chain-base kinase (LCBK) to be critical for maintaining sphingolipid homeostasis. Disruptions in these enzymes were found to affect cellular viability and increase the potential for programmed cell death (PCD). Thus, this work enhances our understanding of sphingolipid metabolism and demonstrates the utility of dynamic modeling in analyzing complex metabolic pathways.
Collapse
Affiliation(s)
- Abraham Osinuga
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ariadna Gonzalez Solis
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rebecca E Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Adil Al-Siyabi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
15
|
Arora G, Banerjee M, Langthasa J, Bhat R, Chatterjee S. Targeting metabolic fluxes reverts metastatic transitions in ovarian cancer. iScience 2023; 26:108081. [PMID: 37876796 PMCID: PMC10590820 DOI: 10.1016/j.isci.2023.108081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/05/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
The formation of spheroids during epithelial ovarian cancer progression is correlated with peritoneal metastasis, disease recurrence, and poor prognosis. Although metastasis has been demonstrated to be driven by metabolic changes in transformed cells, mechanistic associations between metabolism and phenotypic transitions remain ill-explored. We performed quantitative proteomics to identify protein signatures associated with three distinct phenotypic morphologies (2D monolayers and two geometrically distinct three-dimensional spheroidal states) of the high-grade serous ovarian cancer line OVCAR-3. We obtained disease-driving phenotype-specific metabolic reaction modules and elucidated gene knockout strategies to reduce metabolic alterations that could drive phenotypic transitions. Exploring the DrugBank database, we identified and evaluated drugs that could impair such transitions and, hence, cancer progression. Finally, we experimentally validated our predictions by confirming the ability of one of our predicted drugs, the neuraminidase inhibitor oseltamivir, to inhibit spheroidogenesis in three ovarian cancer cell lines without any cytotoxic effects on untransformed stromal mesothelia.
Collapse
Affiliation(s)
- Garhima Arora
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Mallar Banerjee
- Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Jimpi Langthasa
- Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Ramray Bhat
- Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
- BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| |
Collapse
|
16
|
Wendering P, Nikoloski Z. Model-driven insights into the effects of temperature on metabolism. Biotechnol Adv 2023; 67:108203. [PMID: 37348662 DOI: 10.1016/j.biotechadv.2023.108203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Temperature affects cellular processes at different spatiotemporal scales, and identifying the genetic and molecular mechanisms underlying temperature responses paves the way to develop approaches for mitigating the effects of future climate scenarios. A systems view of the effects of temperature on cellular physiology can be obtained by focusing on metabolism since: (i) its functions depend on transcription and translation and (ii) its outcomes support organisms' development, growth, and reproduction. Here we provide a systematic review of modelling efforts directed at investigating temperature effects on properties of single biochemical reactions, system-level traits, metabolic subsystems, and whole-cell metabolism across different prokaryotes and eukaryotes. We compare and contrast computational approaches and theories that facilitate modelling of temperature effects on key properties of enzymes and their consideration in constraint-based as well as kinetic models of metabolism. In addition, we provide a summary of insights from computational approaches, facilitating integration of omics data from temperature-modulated experiments with models of metabolic networks, and review the resulting biotechnological applications. Lastly, we provide a perspective on how different types of metabolic modelling can profit from developments in machine learning and models of different cellular layers to improve model-driven insights into the effects of temperature relevant for biotechnological applications.
Collapse
Affiliation(s)
- Philipp Wendering
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany.
| |
Collapse
|
17
|
Jadebeck JF, Wiechert W, Nöh K. Practical sampling of constraint-based models: Optimized thinning boosts CHRR performance. PLoS Comput Biol 2023; 19:e1011378. [PMID: 37566638 PMCID: PMC10446239 DOI: 10.1371/journal.pcbi.1011378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/23/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Thinning is a sub-sampling technique to reduce the memory footprint of Markov chain Monte Carlo. Despite being commonly used, thinning is rarely considered efficient. For sampling constraint-based models, a highly relevant use-case in systems biology, we here demonstrate that thinning boosts computational and, thereby, sampling efficiencies of the widely used Coordinate Hit-and-Run with Rounding (CHRR) algorithm. By benchmarking CHRR with thinning with simplices and genome-scale metabolic networks of up to thousands of dimensions, we find a substantial increase in computational efficiency compared to unthinned CHRR, in our examples by orders of magnitude, as measured by the effective sample size per time (ESS/t), with performance gains growing with polytope (effective network) dimension. Using a set of benchmark models we derive a ready-to-apply guideline for tuning thinning to efficient and effective use of compute resources without requiring additional coding effort. Our guideline is validated using three (out-of-sample) large-scale networks and we show that it allows sampling convex polytopes uniformly to convergence in a fraction of time, thereby unlocking the rigorous investigation of hitherto intractable models. The derivation of our guideline is explained in detail, allowing future researchers to update it as needed as new model classes and more training data becomes available. CHRR with deliberate utilization of thinning thereby paves the way to keep pace with progressing model sizes derived with the constraint-based reconstruction and analysis (COBRA) tool set. Sampling and evaluation pipelines are available at https://jugit.fz-juelich.de/IBG-1/ModSim/fluxomics/chrrt.
Collapse
Affiliation(s)
- Johann F. Jadebeck
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
18
|
Scott WT, Benito-Vaquerizo S, Zimmermann J, Bajić D, Heinken A, Suarez-Diez M, Schaap PJ. A structured evaluation of genome-scale constraint-based modeling tools for microbial consortia. PLoS Comput Biol 2023; 19:e1011363. [PMID: 37578975 PMCID: PMC10449394 DOI: 10.1371/journal.pcbi.1011363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/24/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
Harnessing the power of microbial consortia is integral to a diverse range of sectors, from healthcare to biotechnology to environmental remediation. To fully realize this potential, it is critical to understand the mechanisms behind the interactions that structure microbial consortia and determine their functions. Constraint-based reconstruction and analysis (COBRA) approaches, employing genome-scale metabolic models (GEMs), have emerged as the state-of-the-art tool to simulate the behavior of microbial communities from their constituent genomes. In the last decade, many tools have been developed that use COBRA approaches to simulate multi-species consortia, under either steady-state, dynamic, or spatiotemporally varying scenarios. Yet, these tools have not been systematically evaluated regarding their software quality, most suitable application, and predictive power. Hence, it is uncertain which tools users should apply to their system and what are the most urgent directions that developers should take in the future to improve existing capacities. This study conducted a systematic evaluation of COBRA-based tools for microbial communities using datasets from two-member communities as test cases. First, we performed a qualitative assessment in which we evaluated 24 published tools based on a list of FAIR (Findability, Accessibility, Interoperability, and Reusability) features essential for software quality. Next, we quantitatively tested the predictions in a subset of 14 of these tools against experimental data from three different case studies: a) syngas fermentation by C. autoethanogenum and C. kluyveri for the static tools, b) glucose/xylose fermentation with engineered E. coli and S. cerevisiae for the dynamic tools, and c) a Petri dish of E. coli and S. enterica for tools incorporating spatiotemporal variation. Our results show varying performance levels of the best qualitatively assessed tools when examining the different categories of tools. The differences in the mathematical formulation of the approaches and their relation to the results were also discussed. Ultimately, we provide recommendations for refining future GEM microbial modeling tools.
Collapse
Affiliation(s)
- William T. Scott
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen, the Netherlands
| | - Sara Benito-Vaquerizo
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Johannes Zimmermann
- Christian-Albrechts-University Kiel, Institute of Experimental Medicine, Research Group Medical Systems Biology, Kiel, Germany
| | - Djordje Bajić
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Almut Heinken
- Inserm U1256 Laboratoire nGERE, Université de Lorraine, Nancy, France
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen, the Netherlands
| |
Collapse
|
19
|
Correia GD, Marchesi JR, MacIntyre DA. Moving beyond DNA: towards functional analysis of the vaginal microbiome by non-sequencing-based methods. Curr Opin Microbiol 2023; 73:102292. [PMID: 36931094 DOI: 10.1016/j.mib.2023.102292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Over the last two decades, sequencing-based methods have revolutionised our understanding of niche-specific microbial complexity. In the lower female reproductive tract, these approaches have enabled identification of bacterial compositional structures associated with health and disease. Application of metagenomics and metatranscriptomics strategies have provided insight into the putative function of these communities but it is increasingly clear that direct measures of microbial and host cell function are required to understand the contribution of microbe-host interactions to pathophysiology. Here we explore and discuss current methods and approaches, many of which rely upon mass-spectrometry, being used to capture functional insight into the vaginal mucosal interface. In addition to improving mechanistic understanding, these methods offer innovative solutions for the development of diagnostic and therapeutic strategies designed to improve women's health.
Collapse
Affiliation(s)
- Gonçalo Ds Correia
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Julian R Marchesi
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK; Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, Imperial College London, London W2 1NY, UK
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK.
| |
Collapse
|
20
|
Kuriya Y, Murata M, Yamamoto M, Watanabe N, Araki M. Prediction of Metabolic Flux Distribution by Flux Sampling: As a Case Study, Acetate Production from Glucose in Escherichia coli. Bioengineering (Basel) 2023; 10:636. [PMID: 37370567 DOI: 10.3390/bioengineering10060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Omics data was acquired, and the development and research of metabolic simulation and analysis methods using them were also actively carried out. However, it was a laborious task to acquire such data each time the medium composition, culture conditions, and target organism changed. Therefore, in this study, we aimed to extract and estimate important variables and necessary numbers for predicting metabolic flux distribution as the state of cell metabolism by flux sampling using a genome-scale metabolic model (GSM) and its analysis. Acetic acid production from glucose in Escherichia coli with GSM iJO1366 was used as a case study. Flux sampling obtained by OptGP using 1000 pattern constraints on substrate, product, and growth fluxes produced a wider sample than the default case. The analysis also suggested that the fluxes of iron ions, O2, CO2, and NH4+, were important for predicting the metabolic flux distribution. Additionally, the comparison with the literature value of 13C-MFA using CO2 emission flux as an example of an important flux suggested that the important flux obtained by this method was valid for the prediction of flux distribution. In this way, the method of this research was useful for extracting variables that were important for predicting flux distribution, and as a result, the possibility of contributing to the reduction of measurement variables in experiments was suggested.
Collapse
Affiliation(s)
- Yuki Kuriya
- Artificial Intelligence Center for Health and Biomedical Research, National Institute of Biomedical Innovation, Health and Nutrition, 3-17 Senrioka-shinmachi, Settsu 566-0002, Japan
| | - Masahiro Murata
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Masaki Yamamoto
- Artificial Intelligence Center for Health and Biomedical Research, National Institute of Biomedical Innovation, Health and Nutrition, 3-17 Senrioka-shinmachi, Settsu 566-0002, Japan
| | - Naoki Watanabe
- Artificial Intelligence Center for Health and Biomedical Research, National Institute of Biomedical Innovation, Health and Nutrition, 3-17 Senrioka-shinmachi, Settsu 566-0002, Japan
| | - Michihiro Araki
- Artificial Intelligence Center for Health and Biomedical Research, National Institute of Biomedical Innovation, Health and Nutrition, 3-17 Senrioka-shinmachi, Settsu 566-0002, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
21
|
Alonso-Vásquez T, Fondi M, Perrin E. Understanding Antimicrobial Resistance Using Genome-Scale Metabolic Modeling. Antibiotics (Basel) 2023; 12:antibiotics12050896. [PMID: 37237798 DOI: 10.3390/antibiotics12050896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The urgent necessity to fight antimicrobial resistance is universally recognized. In the search of new targets and strategies to face this global challenge, a promising approach resides in the study of the cellular response to antimicrobial exposure and on the impact of global cellular reprogramming on antimicrobial drugs' efficacy. The metabolic state of microbial cells has been shown to undergo several antimicrobial-induced modifications and, at the same time, to be a good predictor of the outcome of an antimicrobial treatment. Metabolism is a promising reservoir of potential drug targets/adjuvants that has not been fully exploited to date. One of the main problems in unraveling the metabolic response of cells to the environment resides in the complexity of such metabolic networks. To solve this problem, modeling approaches have been developed, and they are progressively gaining in popularity due to the huge availability of genomic information and the ease at which a genome sequence can be converted into models to run basic phenotype predictions. Here, we review the use of computational modeling to study the relationship between microbial metabolism and antimicrobials and the recent advances in the application of genome-scale metabolic modeling to the study of microbial responses to antimicrobial exposure.
Collapse
Affiliation(s)
- Tania Alonso-Vásquez
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto F.no, 50019 Florence, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto F.no, 50019 Florence, Italy
| | - Elena Perrin
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto F.no, 50019 Florence, Italy
| |
Collapse
|
22
|
Gelbach PE, Finley SD. Flux Sampling in Genome-scale Metabolic Modeling of Microbial Communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537368. [PMID: 37197028 PMCID: PMC10173371 DOI: 10.1101/2023.04.18.537368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Microbial communities play a crucial role in ecosystem function through metabolic interactions. Genome-scale modeling is a promising method to understand these interactions. Flux balance analysis (FBA) is most often used to predict the flux through all reactions in a genome-scale model. However, the fluxes predicted by FBA depend on a user-defined cellular objective. Flux sampling is an alternative to FBA, as it provides the range of fluxes possible within a microbial community. Furthermore, flux sampling may capture additional heterogeneity across cells, especially when cells exhibit sub-maximal growth rates. In this study, we simulate the metabolism of microbial communities and compare the metabolic characteristics found with FBA and flux sampling. We find significant differences in the predicted metabolism with sampling, including increased cooperative interactions and pathway-specific changes in predicted flux. Our results suggest the importance of sampling-based and objective function-independent approaches to evaluate metabolic interactions and emphasize their utility in quantitatively studying interactions between cells and organisms.
Collapse
Affiliation(s)
- Patrick E. Gelbach
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Stacey D. Finley
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
23
|
Santos-Merino M, Gargantilla-Becerra Á, de la Cruz F, Nogales J. Highlighting the potential of Synechococcus elongatus PCC 7942 as platform to produce α-linolenic acid through an updated genome-scale metabolic modeling. Front Microbiol 2023; 14:1126030. [PMID: 36998399 PMCID: PMC10043229 DOI: 10.3389/fmicb.2023.1126030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 03/15/2023] Open
Abstract
Cyanobacteria are prokaryotic organisms that capture energy from sunlight using oxygenic photosynthesis and transform CO2 into products of interest such as fatty acids. Synechococcus elongatus PCC 7942 is a model cyanobacterium efficiently engineered to accumulate high levels of omega-3 fatty acids. However, its exploitation as a microbial cell factory requires a better knowledge of its metabolism, which can be approached by using systems biology tools. To fulfill this objective, we worked out an updated, more comprehensive, and functional genome-scale model of this freshwater cyanobacterium, which was termed iMS837. The model includes 837 genes, 887 reactions, and 801 metabolites. When compared with previous models of S. elongatus PCC 7942, iMS837 is more complete in key physiological and biotechnologically relevant metabolic hubs, such as fatty acid biosynthesis, oxidative phosphorylation, photosynthesis, and transport, among others. iMS837 shows high accuracy when predicting growth performance and gene essentiality. The validated model was further used as a test-bed for the assessment of suitable metabolic engineering strategies, yielding superior production of non-native omega-3 fatty acids such as α-linolenic acid (ALA). As previously reported, the computational analysis demonstrated that fabF overexpression is a feasible metabolic target to increase ALA production, whereas deletion and overexpression of fabH cannot be used for this purpose. Flux scanning based on enforced objective flux, a strain-design algorithm, allowed us to identify not only previously known gene overexpression targets that improve fatty acid synthesis, such as Acetyl-CoA carboxylase and β-ketoacyl-ACP synthase I, but also novel potential targets that might lead to higher ALA yields. Systematic sampling of the metabolic space contained in iMS837 identified a set of ten additional knockout metabolic targets that resulted in higher ALA productions. In silico simulations under photomixotrophic conditions with acetate or glucose as a carbon source boosted ALA production levels, indicating that photomixotrophic nutritional regimens could be potentially exploited in vivo to improve fatty acid production in cyanobacteria. Overall, we show that iMS837 is a powerful computational platform that proposes new metabolic engineering strategies to produce biotechnologically relevant compounds, using S. elongatus PCC 7942 as non-conventional microbial cell factory.
Collapse
Affiliation(s)
- María Santos-Merino
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria—CSIC, Santander, Cantabria, Spain
- *Correspondence: María Santos-Merino,
| | - Álvaro Gargantilla-Becerra
- Department of Systems Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria—CSIC, Santander, Cantabria, Spain
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
- Juan Nogales,
| |
Collapse
|
24
|
Rios Garza D, Gonze D, Zafeiropoulos H, Liu B, Faust K. Metabolic models of human gut microbiota: Advances and challenges. Cell Syst 2023; 14:109-121. [PMID: 36796330 DOI: 10.1016/j.cels.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 02/17/2023]
Abstract
The human gut is a complex ecosystem consisting of hundreds of microbial species interacting with each other and with the human host. Mathematical models of the gut microbiome integrate our knowledge of this system and help to formulate hypotheses to explain observations. The generalized Lotka-Volterra model has been widely used for this purpose, but it does not describe interaction mechanisms and thus does not account for metabolic flexibility. Recently, models that explicitly describe gut microbial metabolite production and consumption have become popular. These models have been used to investigate the factors that shape gut microbial composition and to link specific gut microorganisms to changes in metabolite concentrations found in diseases. Here, we review how such models are built and what we have learned so far from their application to human gut microbiome data. In addition, we discuss current challenges of these models and how these can be addressed in the future.
Collapse
Affiliation(s)
- Daniel Rios Garza
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Didier Gonze
- Unité de Chronobiologie Théorique, Faculté des Sciences, CP 231, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Bruxelles, Belgium
| | - Haris Zafeiropoulos
- Biology Department, University of Crete, Heraklion 700 13, Greece; Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Bin Liu
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Karoline Faust
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| |
Collapse
|
25
|
Context-Specific Genome-Scale Metabolic Modelling and Its Application to the Analysis of COVID-19 Metabolic Signatures. Metabolites 2023; 13:metabo13010126. [PMID: 36677051 PMCID: PMC9866716 DOI: 10.3390/metabo13010126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Genome-scale metabolic models (GEMs) have found numerous applications in different domains, ranging from biotechnology to systems medicine. Herein, we overview the most popular algorithms for the automated reconstruction of context-specific GEMs using high-throughput experimental data. Moreover, we describe different datasets applied in the process, and protocols that can be used to further automate the model reconstruction and validation. Finally, we describe recent COVID-19 applications of context-specific GEMs, focusing on the analysis of metabolic implications, identification of biomarkers and potential drug targets.
Collapse
|
26
|
Sen P, Govaere O, Sinioja T, McGlinchey A, Geng D, Ratziu V, Bugianesi E, Schattenberg JM, Vidal-Puig A, Allison M, Cockell S, Daly AK, Hyötyläinen T, Anstee QM, Orešič M. Quantitative modeling of human liver reveals dysregulation of glycosphingolipid pathways in nonalcoholic fatty liver disease. iScience 2022; 25:104949. [PMID: 36065182 PMCID: PMC9440293 DOI: 10.1016/j.isci.2022.104949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/21/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an increasingly prevalent disease that is associated with multiple metabolic disturbances, yet the metabolic pathways underlying its progression are poorly understood. Here, we studied metabolic pathways of the human liver across the full histological spectrum of NAFLD. We analyzed whole liver tissue transcriptomics and serum metabolomics data obtained from a large, prospectively enrolled cohort of 206 histologically characterized patients derived from the European NAFLD Registry and developed genome-scale metabolic models (GEMs) of human hepatocytes at different stages of NAFLD. We identified several metabolic signatures in the liver and blood of these patients, specifically highlighting the alteration of vitamins (A, E) and glycosphingolipids, and their link with complex glycosaminoglycans in advanced fibrosis. Furthermore, we derived GEMs and identified metabolic signatures of three common NAFLD-associated gene variants (PNPLA3, TM6SF2, and HSD17B13). The study demonstrates dysregulated liver metabolic pathways which may contribute to the progression of NAFLD.
Collapse
Affiliation(s)
- Partho Sen
- School of Medical Sciences, Örebro University, 70281 Örebro, Sweden
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tim Sinioja
- Department of Chemistry, Örebro University, 70281 Örebro, Sweden
| | - Aidan McGlinchey
- School of Medical Sciences, Örebro University, 70281 Örebro, Sweden
| | - Dawei Geng
- Department of Chemistry, Örebro University, 70281 Örebro, Sweden
| | - Vlad Ratziu
- Assistance Publique-Hôpitaux de Paris, hôpital Beaujon, University Paris-Diderot, Paris, France
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastro-Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Jörn M. Schattenberg
- Metabolic Liver Research Programm, Department of Medicine, University Hospital Mainz, Mainz, Germany
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Michael Allison
- Liver Unit, Department of Medicine, Cambridge Biomedical Research Centre, Cambridge University NHS Foundation Trust, UK
| | - Simon Cockell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ann K. Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Quentin M. Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Matej Orešič
- School of Medical Sciences, Örebro University, 70281 Örebro, Sweden
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
27
|
Rajagopal S, Hmar RV, Mookherjee D, Ghatak A, Shanbhag AP, Katagihallimath N, Venkatraman J, Ks R, Datta S. Validated In Silico Population Model of Escherichia coli. ACS Synth Biol 2022; 11:2672-2684. [PMID: 35801944 DOI: 10.1021/acssynbio.2c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Flux balance analysis (FBA) and ordinary differential equation models have been instrumental in depicting the metabolic functioning of a cell. Nevertheless, they demonstrate a population's average behavior (summation of individuals), thereby portraying homogeneity. However, living organisms such as Escherichia coli contain more biochemical reactions than engaging metabolites, making them an underdetermined and degenerate system. This results in a heterogeneous population with varying metabolic patterns. We have formulated a population systems biology model that predicts this degeneracy by emulating a diverse metabolic makeup with unique biochemical signatures. The model mimics the universally accepted experimental view that a subpopulation of bacteria, even under normal growth conditions, renders a unique biochemical state, leading to the synthesis of metabolites and persister progenitors of antibiotic resistance and biofilms. We validate the platform's predictions by producing commercially important heterologous (isobutanol) and homologous (shikimate) metabolites. The predicted fluxes are tested in vitro resulting in 32- and 42-fold increased product of isobutanol and shikimate, respectively. Moreover, we authenticate the platform by mimicking a bacterial population in the presence of glyphosate, a metabolic pathway inhibitor. Here, we observe a fraction of subsisting persisters despite inhibition, thus affirming the signature of a heterogeneous populace. The platform has multiple uses based on the disposition of the user.
Collapse
Affiliation(s)
- Sreenath Rajagopal
- Bugworks Research India Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560065, India
| | - Rothangmawi Victoria Hmar
- Biomoneta Research Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560092, India
| | - Debdatto Mookherjee
- Bugworks Research India Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560065, India
| | - Arindam Ghatak
- Biomoneta Research Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560092, India.,Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata 700073, India
| | - Anirudh P Shanbhag
- Bugworks Research India Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560065, India.,Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata 700073, India
| | - Nainesh Katagihallimath
- Bugworks Research India Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560065, India
| | - Janani Venkatraman
- Biomoneta Research Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560092, India
| | - Ramanujan Ks
- Biomoneta Research Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560092, India
| | - Santanu Datta
- Bugworks Research India Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560065, India
| |
Collapse
|
28
|
Ng RH, Lee JW, Baloni P, Diener C, Heath JR, Su Y. Constraint-Based Reconstruction and Analyses of Metabolic Models: Open-Source Python Tools and Applications to Cancer. Front Oncol 2022; 12:914594. [PMID: 35875150 PMCID: PMC9303011 DOI: 10.3389/fonc.2022.914594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The influence of metabolism on signaling, epigenetic markers, and transcription is highly complex yet important for understanding cancer physiology. Despite the development of high-resolution multi-omics technologies, it is difficult to infer metabolic activity from these indirect measurements. Fortunately, genome-scale metabolic models and constraint-based modeling provide a systems biology framework to investigate the metabolic states and define the genotype-phenotype associations by integrations of multi-omics data. Constraint-Based Reconstruction and Analysis (COBRA) methods are used to build and simulate metabolic networks using mathematical representations of biochemical reactions, gene-protein reaction associations, and physiological and biochemical constraints. These methods have led to advancements in metabolic reconstruction, network analysis, perturbation studies as well as prediction of metabolic state. Most computational tools for performing these analyses are written for MATLAB, a proprietary software. In order to increase accessibility and handle more complex datasets and models, community efforts have started to develop similar open-source tools in Python. To date there is a comprehensive set of tools in Python to perform various flux analyses and visualizations; however, there are still missing algorithms in some key areas. This review summarizes the availability of Python software for several components of COBRA methods and their applications in cancer metabolism. These tools are evolving rapidly and should offer a readily accessible, versatile way to model the intricacies of cancer metabolism for identifying cancer-specific metabolic features that constitute potential drug targets.
Collapse
Affiliation(s)
- Rachel H. Ng
- Institute for Systems Biology, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Jihoon W. Lee
- Medical Scientist Training Program, University of Washington, Seattle, WA, United States
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | | | | | - James R. Heath
- Institute for Systems Biology, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Yapeng Su
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Herbold Computational Biology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
29
|
Benito-Vaquerizo S, Parera Olm I, de Vroet T, Schaap PJ, Sousa DZ, Martins Dos Santos VAP, Suarez-Diez M. Genome-scale metabolic modelling enables deciphering ethanol metabolism via the acrylate pathway in the propionate-producer Anaerotignum neopropionicum. Microb Cell Fact 2022; 21:116. [PMID: 35710409 PMCID: PMC9205015 DOI: 10.1186/s12934-022-01841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microbial production of propionate from diluted streams of ethanol (e.g., deriving from syngas fermentation) is a sustainable alternative to the petrochemical production route. Yet, few ethanol-fermenting propionigenic bacteria are known, and understanding of their metabolism is limited. Anaerotignum neopropionicum is a propionate-producing bacterium that uses the acrylate pathway to ferment ethanol and CO2 to propionate and acetate. In this work, we used computational and experimental methods to study the metabolism of A. neopropionicum and, in particular, the pathway for conversion of ethanol into propionate. RESULTS Our work describes iANEO_SB607, the first genome-scale metabolic model (GEM) of A. neopropionicum. The model was built combining the use of automatic tools with an extensive manual curation process, and it was validated with experimental data from this and published studies. The model predicted growth of A. neopropionicum on ethanol, lactate, sugars and amino acids, matching observed phenotypes. In addition, the model was used to implement a dynamic flux balance analysis (dFBA) approach that accurately predicted the fermentation profile of A. neopropionicum during batch growth on ethanol. A systematic analysis of the metabolism of A. neopropionicum combined with model simulations shed light into the mechanism of ethanol fermentation via the acrylate pathway, and revealed the presence of the electron-transferring complexes NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (Nfn) and acryloyl-CoA reductase-EtfAB, identified for the first time in this bacterium. CONCLUSIONS The realisation of the GEM iANEO_SB607 is a stepping stone towards the understanding of the metabolism of the propionate-producer A. neopropionicum. With it, we have gained insight into the functioning of the acrylate pathway and energetic aspects of the cell, with focus on the fermentation of ethanol. Overall, this study provides a basis to further exploit the potential of propionigenic bacteria as microbial cell factories.
Collapse
Affiliation(s)
- Sara Benito-Vaquerizo
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Ivette Parera Olm
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Thijs de Vroet
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands.,Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Vening Meinesz building C, Princetonlaan 6, Utrecht, 3584 CB, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands.,Bioprocess Engineering, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands.
| |
Collapse
|
30
|
Režen T, Martins A, Mraz M, Zimic N, Rozman D, Moškon M. Integration of omics data to generate and analyse COVID-19 specific genome-scale metabolic models. Comput Biol Med 2022; 145:105428. [PMID: 35339845 PMCID: PMC8940269 DOI: 10.1016/j.compbiomed.2022.105428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 12/16/2022]
Abstract
COVID-19 presents a complex disease that needs to be addressed using systems medicine approaches that include genome-scale metabolic models (GEMs). Previous studies have used a single model extraction method (MEM) and/or a single transcriptomic dataset to reconstruct context-specific models, which proved to be insufficient for the broader biological contexts. We have applied four MEMs in combination with five COVID-19 datasets. Models produced by GIMME were separated by infection, while tINIT preserved the biological variability in the data and enabled the best prediction of the enrichment of metabolic subsystems. Vitamin D3 metabolism was predicted to be down-regulated in one dataset by GIMME, and in all by tINIT. Models generated by tINIT and GIMME predicted downregulation of retinol metabolism in different datasets, while downregulated cholesterol metabolism was predicted only by tINIT-generated models. Predictions are in line with the observations in COVID-19 patients. Our data indicated that GIMME and tINIT models provided the most biologically relevant results and should have a larger emphasis in further analyses. Particularly tINIT models identified the metabolic pathways that are a part of the host response and are potential antiviral targets. The code and the results of the analyses are available to download from https://github.com/CompBioLj/COVID_GEMs_and_MEMs.
Collapse
Affiliation(s)
- Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Miha Mraz
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Nikolaj Zimic
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Moškon
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
31
|
Saunders HA, Calzadilla PI, Schwartz JM, Johnson GN. Cytosolic fumarase acts as a metabolic fail-safe for both high and low temperature acclimation of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2112-2124. [PMID: 34951633 DOI: 10.1093/jxb/erab560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Plants acclimate their photosynthetic capacity (Pmax) in response to changing environmental conditions. In Arabidopsis thaliana, photosynthetic acclimation to cold requires the accumulation of the organic acid fumarate, catalysed by a cytosolically localized fumarase, FUM2. However, the role of this accumulation is currently unknown. Here, we use an integrated experimental and modelling approach to examine the role of FUM2 and fumarate across the physiological temperature range. We have studied three genotypes: Col-0; a fum2 mutant in a Col-0 background; and C24, an accession with reduced FUM2 expression. While low temperature causes an increase in Pmax in the Col-0 plants, this parameter decreases following exposure of plants to 30 °C for 7 d. Plants in which fumarate accumulation is partially (C24) or completely (fum2) abolished show a reduced acclimation of Pmax across the physiological temperature range (i.e. Pmax changes less in response to changing temperature). To understand the role of fumarate accumulation, we have adapted a reliability engineering technique, Failure Mode and Effect Analysis (FMEA), to formalize a rigorous approach for ranking metabolites according to the potential risk that they pose to the metabolic system. FMEA identifies fumarate as a low-risk metabolite, while its precursor, malate, is shown to be high risk and liable to cause system instability. We propose that the role of FUM2 is to provide a fail-safe in order to control malate concentration, maintaining system stability in a changing environment. We suggest that FMEA is a technique that is not only useful in understanding plant metabolism but can also be used to study reliability in other systems and synthetic pathways.
Collapse
Affiliation(s)
- Helena A Saunders
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PT, UK
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Pablo I Calzadilla
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PT, UK
| | - Jean-Marc Schwartz
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Giles N Johnson
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
32
|
Santamaria G, Ruiz-Rodriguez P, Renau-Mínguez C, Pinto FR, Coscollá M. In Silico Exploration of Mycobacterium tuberculosis Metabolic Networks Shows Host-Associated Convergent Fluxomic Phenotypes. Biomolecules 2022; 12:376. [PMID: 35327567 PMCID: PMC8945471 DOI: 10.3390/biom12030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is composed of several lineages characterized by a genome identity higher than 99%. Although the majority of the lineages are associated with humans, at least four lineages are adapted to other mammals, including different M. tuberculosis ecotypes. Host specificity is associated with higher virulence in its preferred host in ecotypes such as M. bovis. Deciphering what determines the preference of the host can reveal host-specific virulence patterns. However, it is not clear which genomic determinants might be influencing host specificity. In this study, we apply a combination of unsupervised and supervised classification methods on genomic data of ~27,000 M. tuberculosis clinical isolates to decipher host-specific genomic determinants. Host-specific genomic signatures are scarce beyond known lineage-specific mutations. Therefore, we integrated lineage-specific mutations into the iEK1011 2.0 genome-scale metabolic model to obtain lineage-specific versions of it. Flux distributions sampled from the solution spaces of these models can be accurately separated according to host association. This separation correlated with differences in cell wall processes, lipid, amino acid and carbon metabolic subsystems. These differences were observable when more than 95% of the samples had a specific growth rate significantly lower than the maximum achievable by the models. This suggests that these differences might manifest at low growth rate settings, such as the restrictive conditions M. tuberculosis suffers during macrophage infection.
Collapse
Affiliation(s)
- Guillem Santamaria
- ISysBio, University of Valencia-FISABIO Joint Unit, 46980 Paterna, Spain; (G.S.); (P.R.-R.); (C.R.-M.)
- BioISI—Biosciences & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Paula Ruiz-Rodriguez
- ISysBio, University of Valencia-FISABIO Joint Unit, 46980 Paterna, Spain; (G.S.); (P.R.-R.); (C.R.-M.)
| | - Chantal Renau-Mínguez
- ISysBio, University of Valencia-FISABIO Joint Unit, 46980 Paterna, Spain; (G.S.); (P.R.-R.); (C.R.-M.)
| | - Francisco R. Pinto
- BioISI—Biosciences & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Mireia Coscollá
- ISysBio, University of Valencia-FISABIO Joint Unit, 46980 Paterna, Spain; (G.S.); (P.R.-R.); (C.R.-M.)
| |
Collapse
|
33
|
Di Filippo M, Pescini D, Galuzzi BG, Bonanomi M, Gaglio D, Mangano E, Consolandi C, Alberghina L, Vanoni M, Damiani C. INTEGRATE: Model-based multi-omics data integration to characterize multi-level metabolic regulation. PLoS Comput Biol 2022; 18:e1009337. [PMID: 35130273 PMCID: PMC8853556 DOI: 10.1371/journal.pcbi.1009337] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 02/17/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Metabolism is directly and indirectly fine-tuned by a complex web of interacting regulatory mechanisms that fall into two major classes. On the one hand, the expression level of the catalyzing enzyme sets the maximal theoretical flux level (i.e., the net rate of the reaction) for each enzyme-controlled reaction. On the other hand, metabolic regulation controls the metabolic flux through the interactions of metabolites (substrates, cofactors, allosteric modulators) with the responsible enzyme. High-throughput data, such as metabolomics and transcriptomics data, if analyzed separately, do not accurately characterize the hierarchical regulation of metabolism outlined above. They must be integrated to disassemble the interdependence between different regulatory layers controlling metabolism. To this aim, we propose INTEGRATE, a computational pipeline that integrates metabolomics and transcriptomics data, using constraint-based stoichiometric metabolic models as a scaffold. We compute differential reaction expression from transcriptomics data and use constraint-based modeling to predict if the differential expression of metabolic enzymes directly originates differences in metabolic fluxes. In parallel, we use metabolomics to predict how differences in substrate availability translate into differences in metabolic fluxes. We discriminate fluxes regulated at the metabolic and/or gene expression level by intersecting these two output datasets. We demonstrate the pipeline using a set of immortalized normal and cancer breast cell lines. In a clinical setting, knowing the regulatory level at which a given metabolic reaction is controlled will be valuable to inform targeted, truly personalized therapies in cancer patients.
Collapse
Affiliation(s)
- Marzia Di Filippo
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
- ISBE/SYSBIO Centre of Systems Biology, Milan, Italy
| | - Dario Pescini
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
- ISBE/SYSBIO Centre of Systems Biology, Milan, Italy
| | - Bruno Giovanni Galuzzi
- ISBE/SYSBIO Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Marcella Bonanomi
- ISBE/SYSBIO Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Daniela Gaglio
- ISBE/SYSBIO Centre of Systems Biology, Milan, Italy
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
| | - Eleonora Mangano
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate, Italy
| | - Clarissa Consolandi
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate, Italy
| | - Lilia Alberghina
- ISBE/SYSBIO Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Marco Vanoni
- ISBE/SYSBIO Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Chiara Damiani
- ISBE/SYSBIO Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
- * E-mail:
| |
Collapse
|
34
|
Moreno-Paz S, Schmitz J, Martins Dos Santos VAP, Suarez-Diez M. Enzyme-constrained models predict the dynamics of Saccharomyces cerevisiae growth in continuous, batch and fed-batch bioreactors. Microb Biotechnol 2022; 15:1434-1445. [PMID: 35048533 PMCID: PMC9049605 DOI: 10.1111/1751-7915.13995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/29/2022] Open
Abstract
Genome‐scale, constraint‐based models (GEM) and their derivatives are commonly used to model and gain insights into microbial metabolism. Often, however, their accuracy and predictive power are limited and enable only approximate designs. To improve their usefulness for strain and bioprocess design, we studied here their capacity to accurately predict metabolic changes in response to operational conditions in a bioreactor, as well as intracellular, active reactions. We used flux balance analysis (FBA) and dynamic FBA (dFBA) to predict growth dynamics of the model organism Saccharomyces cerevisiae under different industrially relevant conditions. We compared simulations with the latest developed GEM for this organism (Yeast8) and its enzyme‐constrained version (ecYeast8) herein described with experimental data and found that ecYeast8 outperforms Yeast8 in all the simulations. EcYeast8 was able to predict well‐known traits of yeast metabolism including the onset of the Crabtree effect, the order of substrate consumption during mixed carbon cultivation and production of a target metabolite. We showed how the combination of ecGEM and dFBA links reactor operation and genetic modifications to flux predictions, enabling the prediction of yields and productivities of different strains and (dynamic) production processes. Additionally, we present flux sampling as a tool to analyse flux predictions of ecGEM, of major importance for strain design applications. We showed that constraining protein availability substantially improves accuracy of the description of the metabolic state of the cell under dynamic conditions. This therefore enables more realistic and faithful designs of industrially relevant cell‐based processes and, thus, the usefulness of such models.
Collapse
Affiliation(s)
- Sara Moreno-Paz
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Joep Schmitz
- DSM Biotechnology Center, DSM, Delft, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands.,Laboratory of Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands.,Lifeglimmer GmbH, Berlin, Germany
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
35
|
Shameer S, Wang Y, Bota P, Ratcliffe RG, Long SP, Sweetlove LJ. A hybrid kinetic and constraint-based model of leaf metabolism allows predictions of metabolic fluxes in different environments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:295-313. [PMID: 34699645 DOI: 10.1111/tpj.15551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
While flux balance analysis (FBA) provides a framework for predicting steady-state leaf metabolic network fluxes, it does not readily capture the response to environmental variables without being coupled to other modelling formulations. To address this, we coupled an FBA model of 903 reactions of soybean (Glycine max) leaf metabolism with e-photosynthesis, a dynamic model that captures the kinetics of 126 reactions of photosynthesis and associated chloroplast carbon metabolism. Successful coupling was achieved in an iterative formulation in which fluxes from e-photosynthesis were used to constrain the FBA model and then, in turn, fluxes computed from the FBA model used to update parameters in e-photosynthesis. This process was repeated until common fluxes in the two models converged. Coupling did not hamper the ability of the kinetic module to accurately predict the carbon assimilation rate, photosystem II electron flux, and starch accumulation of field-grown soybean at two CO2 concentrations. The coupled model also allowed accurate predictions of additional parameters such as nocturnal respiration, as well as analysis of the effect of light intensity and elevated CO2 on leaf metabolism. Predictions included an unexpected decrease in the rate of export of sucrose from the leaf at high light, due to altered starch-sucrose partitioning, and altered daytime flux modes in the tricarboxylic acid cycle at elevated CO2 . Mitochondrial fluxes were notably different between growing and mature leaves, with greater anaplerotic, tricarboxylic acid cycle and mitochondrial ATP synthase fluxes predicted in the former, primarily to provide carbon skeletons and energy for protein synthesis.
Collapse
Affiliation(s)
- Sanu Shameer
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Yu Wang
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pedro Bota
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - R George Ratcliffe
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Stephen P Long
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
36
|
Seydel C, Kitashova A, Fürtauer L, Nägele T. Temperature-induced dynamics of plant carbohydrate metabolism. PHYSIOLOGIA PLANTARUM 2022; 174:e13602. [PMID: 34802152 DOI: 10.1111/ppl.13602] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Carbohydrates are direct products of photosynthetic CO2 assimilation. Within a changing temperature regime, both photosynthesis and carbohydrate metabolism need tight regulation to prevent irreversible damage of plant tissue and to sustain energy metabolism, growth and development. Due to climate change, plants are and will be exposed to both long-term and short-term temperature changes with increasing amplitude. Particularly sudden fluctuations, which might comprise a large temperature amplitude from low to high temperature, pose a challenge for plants from the cellular to the ecosystem level. A detailed understanding of fundamental regulatory processes, which link photosynthesis and carbohydrate metabolism under such fluctuating environmental conditions, is essential for an estimate of climate change consequences. Further, understanding these processes is important for biotechnological application, breeding and engineering. Environmental light and temperature regimes are sensed by a molecular network that comprises photoreceptors and molecular components of the circadian clock. Photosynthetic efficiency and plant productivity then critically depend on enzymatic regulation and regulatory circuits connecting plant cells with their environment and re-stabilising photosynthetic efficiency and carbohydrate metabolism after temperature-induced deflection. This review summarises and integrates current knowledge about re-stabilisation of photosynthesis and carbohydrate metabolism after perturbation by changing temperature (heat and cold).
Collapse
Affiliation(s)
- Charlotte Seydel
- Faculty of Biology, Plant Development, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anastasia Kitashova
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Lisa Fürtauer
- Institute for Biology III, Unit of Plant Molecular Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Nägele
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
37
|
Metabolic Model of the Nitrogen-Fixing Obligate Aerobe Azotobacter vinelandii Predicts Its Adaptation to Oxygen Concentration and Metal Availability. mBio 2021; 12:e0259321. [PMID: 34903060 PMCID: PMC8686835 DOI: 10.1128/mbio.02593-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is considerable interest in promoting biological nitrogen fixation (BNF) as a mechanism to reduce the inputs of nitrogenous fertilizers in agriculture, but considerable fundamental knowledge gaps still need to be addressed. BNF is catalyzed by nitrogenase, which requires a large input of energy in the form of ATP and low potential electrons. Diazotrophs that respire aerobically have an advantage in meeting the ATP demands of BNF but face challenges in protecting nitrogenase from inactivation by oxygen. Here, we constructed a genome-scale metabolic model of the nitrogen-fixing bacterium Azotobacter vinelandii, which uses a complex respiratory protection mechanism to consume oxygen at a high rate to keep intracellular conditions microaerobic. Our model accurately predicts growth rate under high oxygen and substrate concentrations, consistent with a large electron flux directed to the respiratory protection mechanism. While a partially decoupled electron transport chain compensates for some of the energy imbalance under high-oxygen conditions, it does not account for all substrate intake, leading to increased maintenance rates. Interestingly, the respiratory protection mechanism is required for accurate predictions even when ammonia is supplemented during growth, suggesting that the respiratory protection mechanism might be a core principle of metabolism and not just used for nitrogenase protection. We have also shown that rearrangement of flux through the electron transport system allows A. vinelandii to adapt to different oxygen concentrations, metal availability, and genetic disruption, which cause an ammonia excretion phenotype. Accurately determining the energy balance in an aerobic nitrogen-fixing metabolic model is required for future engineering approaches.
Collapse
|
38
|
Scott WT, Smid EJ, Block DE, Notebaart RA. Metabolic flux sampling predicts strain-dependent differences related to aroma production among commercial wine yeasts. Microb Cell Fact 2021; 20:204. [PMID: 34674718 PMCID: PMC8532357 DOI: 10.1186/s12934-021-01694-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metabolomics coupled with genome-scale metabolic modeling approaches have been employed recently to quantitatively analyze the physiological states of various organisms, including Saccharomyces cerevisiae. Although yeast physiology in laboratory strains is well-studied, the metabolic states under industrially relevant scenarios such as winemaking are still not sufficiently understood, especially as there is considerable variation in metabolism between commercial strains. To study the potential causes of strain-dependent variation in the production of volatile compounds during enological conditions, random flux sampling and statistical methods were used, along with experimental extracellular metabolite flux data to characterize the differences in predicted intracellular metabolic states between strains. RESULTS It was observed that four selected commercial wine yeast strains (Elixir, Opale, R2, and Uvaferm) produced variable amounts of key volatile organic compounds (VOCs). Principal component analysis was performed on extracellular metabolite data from the strains at three time points of cell cultivation (24, 58, and 144 h). Separation of the strains was observed at all three time points. Furthermore, Uvaferm at 24 h, for instance, was most associated with propanol and ethyl hexanoate. R2 was found to be associated with ethyl acetate and Opale could be associated with isobutanol while Elixir was most associated with phenylethanol and phenylethyl acetate. Constraint-based modeling (CBM) was employed using the latest genome-scale metabolic model of yeast (Yeast8) and random flux sampling was performed with experimentally derived fluxes at various stages of growth as constraints for the model. The flux sampling simulations allowed us to characterize intracellular metabolic flux states and illustrate the key parts of metabolism that likely determine the observed strain differences. Flux sampling determined that Uvaferm and Elixir are similar while R2 and Opale exhibited the highest degree of differences in the Ehrlich pathway and carbon metabolism, thereby causing strain-specific variation in VOC production. The model predictions also established the top 20 fluxes that relate to phenotypic strain variation (e.g. at 24 h). These fluxes indicated that Opale had a higher median flux for pyruvate decarboxylase reactions compared with the other strains. Conversely, R2 which was lower in all VOCs, had higher median fluxes going toward central metabolism. For Elixir and Uvaferm, the differences in metabolism were most evident in fluxes pertaining to transaminase and hexokinase associated reactions. The applied analysis of metabolic divergence unveiled strain-specific differences in yeast metabolism linked to fusel alcohol and ester production. CONCLUSIONS Overall, this approach proved useful in elucidating key reactions in amino acid, carbon, and glycerophospholipid metabolism which suggest genetic divergence in activity in metabolic subsystems among these wine strains related to the observed differences in VOC formation. The findings in this study could steer more focused research endeavors in developing or selecting optimal aroma-producing yeast stains for winemaking and other types of alcoholic fermentations.
Collapse
Affiliation(s)
- William T Scott
- Department of Chemical Engineering, University of California, Davis, CA, USA.,Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Eddy J Smid
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - David E Block
- Department of Chemical Engineering, University of California, Davis, CA, USA.,Department of Viticulture and Enology, University of California, Davis, CA, USA
| | - Richard A Notebaart
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
39
|
How to Tackle Underdeterminacy in Metabolic Flux Analysis? A Tutorial and Critical Review. Processes (Basel) 2021. [DOI: 10.3390/pr9091577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Metabolic flux analysis is often (not to say almost always) faced with system underdeterminacy. Indeed, the linear algebraic system formed by the steady-state mass balance equations around the intracellular metabolites and the equality constraints related to the measurements of extracellular fluxes do not define a unique solution for the distribution of intracellular fluxes, but instead a set of solutions belonging to a convex polytope. Various methods have been proposed to tackle this underdeterminacy, including flux pathway analysis, flux balance analysis, flux variability analysis and sampling. These approaches are reviewed in this article and a toy example supports the discussion with illustrative numerical results.
Collapse
|
40
|
Jadebeck JF, Theorell A, Leweke S, Nöh K. HOPS: high-performance library for (non-)uniform sampling of convex-constrained models. Bioinformatics 2021; 37:1776-1777. [PMID: 33045081 DOI: 10.1093/bioinformatics/btaa872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022] Open
Abstract
SUMMARY The C++ library Highly Optimized Polytope Sampling (HOPS) provides implementations of efficient and scalable algorithms for sampling convex-constrained models that are equipped with arbitrary target functions. For uniform sampling, substantial performance gains were achieved compared to the state-of-the-art. The ease of integration and utility of non-uniform sampling is showcased in a Bayesian inference setting, demonstrating how HOPS interoperates with third-party software. AVAILABILITY AND IMPLEMENTATION Source code is available at https://github.com/modsim/hops/, tested on Linux and MS Windows, includes unit tests, detailed documentation, example applications and a Dockerfile. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Johann F Jadebeck
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, 52062 Aachen, Germany
| | - Axel Theorell
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Samuel Leweke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
41
|
Theorell A, Jadebeck JF, Nöh K, Stelling J. PolyRound: polytope rounding for random sampling in metabolic networks. Bioinformatics 2021; 38:566-567. [PMID: 34329395 PMCID: PMC8723145 DOI: 10.1093/bioinformatics/btab552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/25/2021] [Accepted: 07/29/2021] [Indexed: 02/03/2023] Open
Abstract
SUMMARY Random flux sampling is a powerful tool for the constraint-based analysis of metabolic networks. The most efficient sampling method relies on a rounding transform of the constraint polytope, but no available rounding implementation can round all relevant models. By removing redundant polytope constraints on the go, PolyRound simplifies the numerical problem and rounds all the 108 models in the BiGG database without parameter tuning, compared to ∼50% for the state-of-the-art implementation. AVAILABILITY AND IMPLEMENTATION The implementation is available on gitlab: https://gitlab.com/csb.ethz/PolyRound. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Johann F Jadebeck
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany,Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, 52062 Aachen, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | |
Collapse
|
42
|
Ramirez-Malule H, López-Agudelo VA, Gómez-Ríos D, Ochoa S, Ríos-Estepa R, Junne S, Neubauer P. TCA Cycle and Its Relationship with Clavulanic Acid Production: A Further Interpretation by Using a Reduced Genome-Scale Metabolic Model of Streptomyces clavuligerus. Bioengineering (Basel) 2021; 8:103. [PMID: 34436106 PMCID: PMC8389198 DOI: 10.3390/bioengineering8080103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/04/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022] Open
Abstract
Streptomyces clavuligerus (S. clavuligerus) has been widely studied for its ability to produce clavulanic acid (CA), a potent inhibitor of β-lactamase enzymes. In this study, S. clavuligerus cultivated in 2D rocking bioreactor in fed-batch operation produced CA at comparable rates to those observed in stirred tank bioreactors. A reduced model of S. clavuligerus metabolism was constructed by using a bottom-up approach and validated using experimental data. The reduced model was implemented for in silico studies of the metabolic scenarios arisen during the cultivations. Constraint-based analysis confirmed the interrelations between succinate, oxaloacetate, malate, pyruvate, and acetate accumulations at high CA synthesis rates in submerged cultures of S. clavuligerus. Further analysis using shadow prices provided a first view of the metabolites positive and negatively associated with the scenarios of low and high CA production.
Collapse
Affiliation(s)
| | | | - David Gómez-Ríos
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Medellín 050010, Colombia; (D.G.-R.); (S.O.)
| | - Silvia Ochoa
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Medellín 050010, Colombia; (D.G.-R.); (S.O.)
| | - Rigoberto Ríos-Estepa
- Escuela de Biociencias, Universidad Nacional de Colombia sede Medellín, Medellín 050010, Colombia;
| | - Stefan Junne
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, D-13355 Berlin, Germany; (S.J.); (P.N.)
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, D-13355 Berlin, Germany; (S.J.); (P.N.)
| |
Collapse
|
43
|
Walakira A, Rozman D, Režen T, Mraz M, Moškon M. Guided extraction of genome-scale metabolic models for the integration and analysis of omics data. Comput Struct Biotechnol J 2021; 19:3521-3530. [PMID: 34194675 PMCID: PMC8225705 DOI: 10.1016/j.csbj.2021.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
Omics data can be integrated into a reference model using various model extraction methods (MEMs) to yield context-specific genome-scale metabolic models (GEMs). How to chose the appropriate MEM, thresholding rule and threshold remains a challenge. We integrated mouse transcriptomic data from a Cyp51 knockout mice diet experiment (GSE58271) using five MEMs (GIMME, iMAT, FASTCORE, INIT an tINIT) in a combination with a recently published mouse GEM iMM1865. Except for INIT and tINIT, the size of extracted models varied with the MEM used (t-test: p-value < 0.001). The Jaccard index of iMAT models ranged from 0.27 to 1.0. Out of the three factors under study in the experiment (diet, gender and genotype), gender explained most of the variability ( > 90%) in PC1 for FASTCORE. In iMAT, each of the three factors explained less than 40% of the variability within PC1, PC2 and PC3. Among all the MEMs, FASTCORE captured the most of the true variability in the data by clustering samples by gender. Our results show that for the efficient use of MEMs in the context of omics data integration and analysis, one should apply various MEMs, thresholding rules, and thresholding values to select the MEM and its configuration that best captures the true variability in the data. This selection can be guided by the methodology as proposed and used in this paper. Moreover, we describe certain approaches that can be used to analyse the results obtained with the selected MEM and to put these results in a biological context.
Collapse
Affiliation(s)
- Andrew Walakira
- Centre for Functional Genomics and Bio-Chips, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Mraz
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Moškon
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
44
|
Gjindali A, Herrmann HA, Schwartz JM, Johnson GN, Calzadilla PI. A Holistic Approach to Study Photosynthetic Acclimation Responses of Plants to Fluctuating Light. FRONTIERS IN PLANT SCIENCE 2021; 12:668512. [PMID: 33936157 PMCID: PMC8079764 DOI: 10.3389/fpls.2021.668512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/23/2021] [Indexed: 05/10/2023]
Abstract
Plants in natural environments receive light through sunflecks, the duration and distribution of these being highly variable across the day. Consequently, plants need to adjust their photosynthetic processes to avoid photoinhibition and maximize yield. Changes in the composition of the photosynthetic apparatus in response to sustained changes in the environment are referred to as photosynthetic acclimation, a process that involves changes in protein content and composition. Considering this definition, acclimation differs from regulation, which involves processes that alter the activity of individual proteins over short-time periods, without changing the abundance of those proteins. The interconnection and overlapping of the short- and long-term photosynthetic responses, which can occur simultaneously or/and sequentially over time, make the study of long-term acclimation to fluctuating light in plants challenging. In this review we identify short-term responses of plants to fluctuating light that could act as sensors and signals for acclimation responses, with the aim of understanding how plants integrate environmental fluctuations over time and tailor their responses accordingly. Mathematical modeling has the potential to integrate physiological processes over different timescales and to help disentangle short-term regulatory responses from long-term acclimation responses. We review existing mathematical modeling techniques for studying photosynthetic responses to fluctuating light and propose new methods for addressing the topic from a holistic point of view.
Collapse
Affiliation(s)
- Armida Gjindali
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Helena A. Herrmann
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jean-Marc Schwartz
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Giles N. Johnson
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Pablo I. Calzadilla
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
45
|
Bernstein DB, Sulheim S, Almaas E, Segrè D. Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. Genome Biol 2021; 22:64. [PMID: 33602294 PMCID: PMC7890832 DOI: 10.1186/s13059-021-02289-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
The reconstruction and analysis of genome-scale metabolic models constitutes a powerful systems biology approach, with applications ranging from basic understanding of genotype-phenotype mapping to solving biomedical and environmental problems. However, the biological insight obtained from these models is limited by multiple heterogeneous sources of uncertainty, which are often difficult to quantify. Here we review the major sources of uncertainty and survey existing approaches developed for representing and addressing them. A unified formal characterization of these uncertainties through probabilistic approaches and ensemble modeling will facilitate convergence towards consistent reconstruction pipelines, improved data integration algorithms, and more accurate assessment of predictive capacity.
Collapse
Affiliation(s)
- David B Bernstein
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Snorre Sulheim
- Bioinformatics Program, Boston University, Boston, MA, USA
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Eivind Almaas
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Daniel Segrè
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA.
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Biology and Department of Physics, Boston University, Boston, MA, USA.
| |
Collapse
|
46
|
|
47
|
Herrmann HA, Dyson BC, Miller MAE, Schwartz JM, Johnson GN. Metabolic flux from the chloroplast provides signals controlling photosynthetic acclimation to cold in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2021; 44:171-185. [PMID: 32981099 DOI: 10.1111/pce.13896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Photosynthesis is especially sensitive to environmental conditions, and the composition of the photosynthetic apparatus can be modulated in response to environmental change, a process termed photosynthetic acclimation. Previously, we identified a role for a cytosolic fumarase, FUM2 in acclimation to low temperature in Arabidopsis thaliana. Mutant lines lacking FUM2 were unable to acclimate their photosynthetic apparatus to cold. Here, using gas exchange measurements and metabolite assays of acclimating and non-acclimating plants, we show that acclimation to low temperature results in a change in the distribution of photosynthetically fixed carbon to different storage pools during the day. Proteomic analysis of wild-type Col-0 Arabidopsis and of a fum2 mutant, which was unable to acclimate to cold, indicates that extensive changes occurring in response to cold are affected in the mutant. Metabolic and proteomic data were used to parameterize metabolic models. Using an approach called flux sampling, we show how the relative export of triose phosphate and 3-phosphoglycerate provides a signal of the chloroplast redox state that could underlie photosynthetic acclimation to cold.
Collapse
Affiliation(s)
- Helena A Herrmann
- School of Natural Sciences, University of Manchester, Michael Smith Building, Manchester, UK
- Institue of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Beth C Dyson
- School of Natural Sciences, University of Manchester, Michael Smith Building, Manchester, UK
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Matthew A E Miller
- School of Natural Sciences, University of Manchester, Michael Smith Building, Manchester, UK
| | - Jean-Marc Schwartz
- School of Natural Sciences, University of Manchester, Michael Smith Building, Manchester, UK
| | - Giles N Johnson
- School of Natural Sciences, University of Manchester, Michael Smith Building, Manchester, UK
| |
Collapse
|
48
|
Rivas-Astroza M, Conejeros R. Metabolic flux configuration determination using information entropy. PLoS One 2020; 15:e0243067. [PMID: 33275628 PMCID: PMC7717585 DOI: 10.1371/journal.pone.0243067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/14/2020] [Indexed: 11/20/2022] Open
Abstract
Constraint-based models use steady-state mass balances to define a solution space of flux configurations, which can be narrowed down by measuring as many fluxes as possible. Due to loops and redundant pathways, this process typically yields multiple alternative solutions. To address this ambiguity, flux sampling can estimate the probability distribution of each flux, or a flux configuration can be singled out by further minimizing the sum of fluxes according to the assumption that cellular metabolism favors states where enzyme-related costs are economized. However, flux sampling is susceptible to artifacts introduced by thermodynamically infeasible cycles and is it not clear if the economy of fluxes assumption (EFA) is universally valid. Here, we formulated a constraint-based approach, MaxEnt, based on the principle of maximum entropy, which in this context states that if more than one flux configuration is consistent with a set of experimentally measured fluxes, then the one with the minimum amount of unwarranted assumptions corresponds to the best estimation of the non-observed fluxes. We compared MaxEnt predictions to Escherichia coli and Saccharomyces cerevisiae publicly available flux data. We found that the mean square error (MSE) between experimental and predicted fluxes by MaxEnt and EFA-based methods are three orders of magnitude lower than the median of 1,350,000 MSE values obtained using flux sampling. However, only MaxEnt and flux sampling correctly predicted flux through E. coli’s glyoxylate cycle, whereas EFA-based methods, in general, predict no flux cycles. We also tested MaxEnt predictions at increasing levels of overflow metabolism. We found that MaxEnt accuracy is not affected by overflow metabolism levels, whereas the EFA-based methods show a decreasing performance. These results suggest that MaxEnt is less sensitive than flux sampling to artifacts introduced by thermodynamically infeasible cycles and that its predictions are less susceptible to overfitting than EFA-based methods.
Collapse
Affiliation(s)
- Marcelo Rivas-Astroza
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- * E-mail:
| | - Raúl Conejeros
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
49
|
Wanichthanarak K, Boonchai C, Kojonna T, Chadchawan S, Sangwongchai W, Thitisaksakul M. Deciphering rice metabolic flux reprograming under salinity stress via in silico metabolic modeling. Comput Struct Biotechnol J 2020; 18:3555-3566. [PMID: 33304454 PMCID: PMC7708941 DOI: 10.1016/j.csbj.2020.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
Abstract
Rice is one of the most economically important commodities globally. However, rice plants are salt susceptible species in which high salinity can significantly constrain its productivity. Several physiological parameters in adaptation to salt stress have been observed, though changes in metabolic aspects remain to be elucidated. In this study, rice metabolic activities of salt-stressed flag leaf were systematically characterized. Transcriptomics and metabolomics data were combined to identify disturbed pathways, altered metabolites and metabolic hotspots within the rice metabolic network under salt stress condition. Besides, the feasible flux solutions in different context-specific metabolic networks were estimated and compared. Our findings highlighted metabolic reprogramming in primary metabolic pathways, cellular respiration, antioxidant biosynthetic pathways, and phytohormone biosynthetic pathways. Photosynthesis and hexose utilization were among the major disturbed pathways in the stressed flag leaf. Notably, the increased flux distribution of the photorespiratory pathway could contribute to cellular redox control. Predicted flux statuses in several pathways were consistent with the results from transcriptomics, end-point metabolomics, and physiological studies. Our study illustrated that the contextualized genome-scale model together with multi-omics analysis is a powerful approach to unravel the metabolic responses of rice to salinity stress.
Collapse
Key Words
- 3-PGA, 3-Phosphoglycerate
- ADH, Arogenate dehydrogenase
- ASA, Ascorbate
- CGS, Cystathionine γ-synthase
- CINV, Cytosolic invertase
- Ci, Intercellular CO2 concentration
- E, Transpiration rate
- GAPDH, Glyceraldehyde-3-phosphate dehydrogenase
- GC-TOF-MS, Gas chromatography time-of-flight mass spectrometry
- GEM, Genome-scale metabolic model
- GLYK, 3-Phosphoglycerate kinase
- GMD, Golm Metabolome Database
- GSH, Glutathione
- GSSG, Glutathione disulfide
- IAA, Indole-3-acetic acid
- IPA, Indolepyruvate
- MAPK, Mitogen-activated protein kinase
- MDH, Malate dehydrogenase
- Metabolic flux analysis
- Metabolic modeling
- Metabolomics
- Multi-omics analysis
- PFK, Phosphofructokinase
- PGK, Phosphoglycerate kinase
- PLS-DA, Partial-Least Squares Discriminant Analysis
- Pn, Net photosynthesis rate
- Rice (Oryza sativa L.)
- SOD, Superoxide dismutase
- Salinity stress
- Systems biology
- TAT, Tyrosine aminotransferase
- Transcriptomics
- gs, Stomatal conductance
- iMAT, Integrative Metabolic Analysis Tool
Collapse
Affiliation(s)
- Kwanjeera Wanichthanarak
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chuthamas Boonchai
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Future Innovation and Research in Science and Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thammaporn Kojonna
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wichian Sangwongchai
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Maysaya Thitisaksakul
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
50
|
Sertbas M, Ulgen KO. Genome-Scale Metabolic Modeling for Unraveling Molecular Mechanisms of High Threat Pathogens. Front Cell Dev Biol 2020; 8:566702. [PMID: 33251208 PMCID: PMC7673413 DOI: 10.3389/fcell.2020.566702] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogens give rise to a wide range of diseases threatening global health and hence drawing public health agencies' attention to establish preventative and curative solutions. Genome-scale metabolic modeling is ever increasingly used tool for biomedical applications including the elucidation of antibiotic resistance, virulence, single pathogen mechanisms and pathogen-host interaction systems. With this approach, the sophisticated cellular system of metabolic reactions inside the pathogens as well as between pathogen and host cells are represented in conjunction with their corresponding genes and enzymes. Along with essential metabolic reactions, alternate pathways and fluxes are predicted by performing computational flux analyses for the growth of pathogens in a very short time. The genes or enzymes responsible for the essential metabolic reactions in pathogen growth are regarded as potential drug targets, as a priori guide to researchers in the pharmaceutical field. Pathogens alter the key metabolic processes in infected host, ultimately the objective of these integrative constraint-based context-specific metabolic models is to provide novel insights toward understanding the metabolic basis of the acute and chronic processes of infection, revealing cellular mechanisms of pathogenesis, identifying strain-specific biomarkers and developing new therapeutic approaches including the combination drugs. The reaction rates predicted during different time points of pathogen development enable us to predict active pathways and those that only occur during certain stages of infection, and thus point out the putative drug targets. Among others, fatty acid and lipid syntheses reactions are recent targets of new antimicrobial drugs. Genome-scale metabolic models provide an improved understanding of how intracellular pathogens utilize the existing microenvironment of the host. Here, we reviewed the current knowledge of genome-scale metabolic modeling in pathogen cells as well as pathogen host interaction systems and the promising applications in the extension of curative strategies against pathogens for global preventative healthcare.
Collapse
Affiliation(s)
- Mustafa Sertbas
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.,Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Kutlu O Ulgen
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|