1
|
Hedin W, Bergman P, Akhirunessa M, Söderholm S, Buggert M, Granberg T, Gredmark-Russ S, Smith CIE, Pettke A, Wahren Borgström E. Severe Tick-Borne Encephalitis (TBE) in a Patient with X-Linked Agammaglobulinemia; Treatment with TBE Virus IgG Positive Plasma, Clinical Outcome and T Cell Responses. J Clin Immunol 2024; 44:116. [PMID: 38676861 PMCID: PMC11055791 DOI: 10.1007/s10875-024-01718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE A patient with X-linked agammaglobulinemia (XLA) and severe tick-borne encephalitis (TBE) was treated with TBE virus (TBEV) IgG positive plasma. The patient's clinical response, humoral and cellular immune responses were characterized pre- and post-infection. METHODS ELISA and neutralisation assays were performed on sera and TBEV PCR assay on sera and cerebrospinal fluid. T cell assays were conducted on peripheral blood the patient and five healthy vaccinated controls. RESULTS The patient was admitted to the hospital with headache and fever. He was not vaccinated against TBE but receiving subcutaneous IgG-replacement therapy (IGRT). TBEV IgG antibodies were low-level positive (due to scIGRT), but the TBEV IgM and TBEV neutralisation tests were negative. During hospitalisation his clinical condition deteriorated (Glasgow coma scale 3/15) and he was treated in the ICU with corticosteroids and external ventricular drainage. He was then treated with plasma containing TBEV IgG without apparent side effects. His symptoms improved within a few days and the TBEV neutralisation test converted to positive. Robust CD8+ T cell responses were observed at three and 18-months post-infection, in the absence of B cells. This was confirmed by tetramers specific for TBEV. CONCLUSION TBEV IgG-positive plasma given to an XLA patient with TBE without evident adverse reactions may have contributed to a positive clinical outcome. Similar approaches could offer a promising foundation for researching therapeutic options for patients with humoral immunodeficiencies. Importantly, a robust CD8+ T cell response was observed after infection despite the lack of B cells and indicates that these patients can clear acute viral infections and could benefit from future vaccination programs.
Collapse
Affiliation(s)
- Wilhelm Hedin
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Bergman
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Clinical Immunology, Karolinska Institutet, Stockholm, Sweden
| | - Mily Akhirunessa
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Söderholm
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Granberg
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aleksandra Pettke
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Emilie Wahren Borgström
- Department of Laboratory Medicine, Clinical Immunology, Karolinska Institutet, Stockholm, Sweden.
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
2
|
Ochwoto M, Offerdahl DK, Leung JM, Schwartz CL, Long D, Rosenke R, Stewart PE, Saturday GA, Bloom ME. Cytoarchitecture of ex vivo midgut cultures of unfed Ixodes scapularis infected with a tick-borne flavivirus. Ticks Tick Borne Dis 2024; 15:102301. [PMID: 38134511 PMCID: PMC10923016 DOI: 10.1016/j.ttbdis.2023.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
A bite from an infected tick is the primary means of transmission for tick-borne flaviviruses (TBFV). Ticks ingest the virus while feeding on infected blood. The traditional view is that the virus first replicates in and transits the tick midgut prior to dissemination to other organs, including salivary glands. Thus, understanding TBFV infection in the tick midgut is a key first step in identifying potential countermeasures against infection. Ex vivo midgut cultures prepared from unfed adult female Ixodes scapularis ticks were viable and remained morphologically intact for more than 8 days. The midgut consisted of two clearly defined cell layers separated by a basement membrane: an exterior network of smooth muscle cells and an internal epithelium composed of digestive generative cells. The smooth muscle cells were arranged in a stellate circumferential pattern spaced at regular intervals along the long axis of midgut diverticula. When the cultures were infected with the TBFV Langat virus (LGTV), virus production increased by two logs with a peak at 96 hours post-infection. Infected cells were readily identified by immunofluorescence staining for the viral envelope protein, nonstructural protein 3 (NS3) and dsRNA. Microscopy of the stained cultures suggested that generative cells were the primary target for virus infection in the midgut. Infected cells exhibited an expansion of membranes derived from the endoplasmic reticulum; a finding consistent with TBFV infected cell cultures. Electron microscopy of infected cultures revealed virus particles in the basolateral region between epithelial cells. These results demonstrated LGTV replication in midgut generative cells of artificially infected, ex vivo cultures of unfed adult female I. scapularis ticks.
Collapse
Affiliation(s)
- Missiani Ochwoto
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, USA.
| | - Danielle K Offerdahl
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Jacqueline M Leung
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Cindi L Schwartz
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Dan Long
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Philip E Stewart
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Greg A Saturday
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Marshall E Bloom
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, USA.
| |
Collapse
|
3
|
Ackermann-Gäumann R, Lang P, Zens KD. Defining the "Correlate(s) of Protection" to tick-borne encephalitis vaccination and infection - key points and outstanding questions. Front Immunol 2024; 15:1352720. [PMID: 38318179 PMCID: PMC10840404 DOI: 10.3389/fimmu.2024.1352720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Tick-borne Encephalitis (TBE) is a severe disease of the Central Nervous System (CNS) caused by the tick-borne encephalitis virus (TBEV). The generation of protective immunity after TBEV infection or TBE vaccination relies on the integrated responses of many distinct cell types at distinct physical locations. While long-lasting memory immune responses, in particular, form the basis for the correlates of protection against many diseases, these correlates of protection have not yet been clearly defined for TBE. This review addresses the immune control of TBEV infection and responses to TBE vaccination. Potential correlates of protection and the durability of protection against disease are discussed, along with outstanding questions in the field and possible areas for future research.
Collapse
Affiliation(s)
- Rahel Ackermann-Gäumann
- Microbiologie, ADMED Analyses et Diagnostics Médicaux, La Chaux-de-Fonds, Switzerland
- Swiss National Reference Center for Tick-transmitted Diseases, La Chaux-de-Fonds, Switzerland
| | - Phung Lang
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Kyra D. Zens
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
- Institute for Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Hills SL, Poehling KA, Chen WH, Staples JE. Tick-Borne Encephalitis Vaccine: Recommendations of the Advisory Committee on Immunization Practices, United States, 2023. MMWR Recomm Rep 2023; 72:1-29. [PMID: 37943707 PMCID: PMC10651317 DOI: 10.15585/mmwr.rr7205a1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Tick-borne encephalitis (TBE) virus is focally endemic in parts of Europe and Asia. The virus is primarily transmitted to humans by the bites of infected Ixodes species ticks but can also be acquired less frequently by alimentary transmission. Other rare modes of transmission include through breastfeeding, blood transfusion, solid organ transplantation, and slaughtering of viremic animals. TBE virus can cause acute neurologic disease, which usually results in hospitalization, often permanent neurologic or cognitive sequelae, and sometimes death. TBE virus infection is a risk for certain travelers and for laboratory workers who work with the virus. In August 2021, the Food and Drug Administration approved Ticovac TBE vaccine for use among persons aged ≥1 year. This report summarizes the epidemiology of and risks for infection with TBE virus, provides information on the immunogenicity and safety of TBE vaccine, and summarizes the recommendations of the Advisory Committee on Immunization Practices (ACIP) for use of TBE vaccine among U.S. travelers and laboratory workers. The risk for TBE for most U.S. travelers to areas where the disease is endemic is very low. The risk for exposure to infected ticks is highest for persons who are in areas where TBE is endemic during the main TBE virus transmission season of April–November and who are planning to engage in recreational activities in woodland habitats or who might be occupationally exposed. All persons who travel to areas where TBE is endemic should be advised to take precautions to avoid tick bites and to avoid the consumption of unpasteurized dairy products because alimentary transmission of TBE virus can occur. TBE vaccine can further reduce infection risk and might be indicated for certain persons who are at higher risk for TBE. The key factors in the risk-benefit assessment for vaccination are likelihood of exposure to ticks based on activities and itinerary (e.g., location, rurality, season, and duration of travel or residence). Other risk-benefit considerations should include 1) the rare occurrence of TBE but its potentially high morbidity and mortality, 2) the higher risk for severe disease among certain persons (e.g., older persons aged ≥60 years), 3) the availability of an effective vaccine, 4) the possibility but low probability of serious adverse events after vaccination, 5) the likelihood of future travel to areas where TBE is endemic, and 6) personal perception and tolerance of risk ACIP recommends TBE vaccine for U.S. persons who are moving or traveling to an area where the disease is endemic and will have extensive exposure to ticks based on their planned outdoor activities and itinerary. Extensive exposure can be considered based on the duration of travel and frequency of exposure and might include shorter-term (e.g., <1 month) travelers with daily or frequent exposure or longer-term travelers with regular (e.g., a few times a month) exposure to environments that might harbor infected ticks. In addition, TBE vaccine may be considered for persons who might engage in outdoor activities in areas where ticks are likely to be found, with a decision to vaccinate made on the basis of an assessment of their planned activities and itinerary, risk factors for a poor medical outcome, and personal perception and tolerance of risk. In the laboratory setting, ACIP recommends TBE vaccine for laboratory workers with a potential for exposure to TBE virus
Collapse
|
5
|
Tang J, Fu M, Xu C, Xue B, Zhou A, Chen S, Zhao H, Zhou Y, Chen J, Yang Q, Chen X. Development of a novel virus-like particle-based vaccine for preventing tick-borne encephalitis virus infection. Virol Sin 2023; 38:767-777. [PMID: 37328107 PMCID: PMC10590693 DOI: 10.1016/j.virs.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is an important tick-borne pathogen that poses as a serious public health concern. The coverage and immunogenicity of the currently available vaccines against TBEV are relatively low; therefore, it is crucial to develop novel and effective vaccines against TBEV. The present study describes a novel strategy for the assembly of virus-like particles (VLPs) by co-expressing the structural (core/prM/E) and non-structural (NS2B/NS3Pro) proteins of TBEV. The efficacy of the VLPs was subsequently evaluated in C57BL/6 mice, and the resultant IgG serum could neutralize both Far-Eastern and European subtypes of TBEV. These findings indicated that the VLP-based vaccine elicited the production of cross-subtype reactive antibodies. The VLPs provided protection to mice lacking the type I interferon receptor (IFNAR-/-) against lethal TBEV challenge, with undetectable viral load in brain and intestinal tissues. Furthermore, the group that received the VLP vaccine did not exhibit significant pathological changes and the inflammatory factors were significantly suppressed compared to the control group. Immunization with the VLP vaccine induced the production of multiple-cytokine-producing antiviral CD4+ T cells in vivo, including TNF-α+, IL-2+, and IFN-γ+ T cells. Altogether, the findings suggest that noninfectious VLPs can serve as a potentially safe and effective vaccine candidate against diverse subtypes of TBEV.
Collapse
Affiliation(s)
- Jielin Tang
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Muqing Fu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chonghui Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bao Xue
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Anqi Zhou
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Sijie Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - He Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jizheng Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qi Yang
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
6
|
Jaeger AS, Crooks CM, Weiler AM, Bliss MI, Rybarczyk S, Richardson A, Einwalter M, Peterson E, Capuano S, Barkhymer A, Becker JT, Greene JT, Freedman TS, Langlois RA, Friedrich TC, Aliota MT. Primary infection with Zika virus provides one-way heterologous protection against Spondweni virus infection in rhesus macaques. SCIENCE ADVANCES 2023; 9:eadg3444. [PMID: 37390207 PMCID: PMC10313173 DOI: 10.1126/sciadv.adg3444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/30/2023] [Indexed: 07/02/2023]
Abstract
Spondweni virus (SPONV) is the closest known relative of Zika virus (ZIKV). SPONV pathogenesis resembles that of ZIKV in pregnant mice, and both viruses are transmitted by Aedes aegypti mosquitoes. We aimed to develop a translational model to further understand SPONV transmission and pathogenesis. We found that cynomolgus macaques (Macaca fascicularis) inoculated with ZIKV or SPONV were susceptible to ZIKV but resistant to SPONV infection. In contrast, rhesus macaques (Macaca mulatta) supported productive infection with both ZIKV and SPONV and developed robust neutralizing antibody responses. Crossover serial challenge in rhesus macaques revealed that SPONV immunity did not protect against ZIKV infection, whereas ZIKV immunity was fully protective against SPONV infection. These findings establish a viable model for future investigation into SPONV pathogenesis and suggest that the risk of SPONV emergence is low in areas with high ZIKV seroprevalence due to one-way cross-protection between ZIKV and SPONV.
Collapse
Affiliation(s)
- Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Saint Paul, Minnesota, USA
| | - Chelsea M. Crooks
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mason I. Bliss
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sierra Rybarczyk
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alex Richardson
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Morgan Einwalter
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric Peterson
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alison Barkhymer
- Department of Microbiology and Immunology, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Jordan T. Becker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Joseph T. Greene
- Department of Pharmacology, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Tanya S. Freedman
- Department of Pharmacology, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Saint Paul, Minnesota, USA
| |
Collapse
|
7
|
Bestehorn-Willmann M, Girl P, Greiner F, Mackenstedt U, Dobler G, Lang D. Increased Vaccination Diversity Leads to Higher and Less-Variable Neutralization of TBE Viruses of the European Subtype. Vaccines (Basel) 2023; 11:1044. [PMID: 37376433 DOI: 10.3390/vaccines11061044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Tick-borne encephalitis (TBE) is an infectious disease of the central nervous system. The causative agent is the tick-borne encephalitis virus (TBEV), which is most commonly transmitted by tick bites, but which may also be transmitted through the consumption of raw dairy products or, in rare instances, via infected transfusions, transplants, or the slaughter of infected animals. The only effective preventive option is active immunization. Currently, two vaccines are available in Europe-Encepur® and FSME-IMMUN®. In Central, Eastern, and Northern Europe, isolated TBEV genotypes belong mainly to the European subtype (TBEV-EU). In this study, we investigated the ability of these two vaccines to induce neutralizing antibodies against a panel of diverse natural TBEV-EU isolates from TBE-endemic areas in southern Germany and in regions of neighboring countries. Sera of 33 donors vaccinated with either FSME-IMMUN®, Encepur®, or a mixture of both were tested against 16 TBEV-EU strains. Phylogenetic analysis of the TBEV-EU genomes revealed substantial genetic diversity and ancestry of the identified 13 genotypic clades. Although all sera were able to neutralize the TBEV-EU strains, there were significant differences among the various vaccination groups. The neutralization assays revealed that the vaccination using the two different vaccine brands significantly increased neutralization titers, decreased intra-serum variance, and reduced the inter-virus variation.
Collapse
Affiliation(s)
- Malena Bestehorn-Willmann
- Institute for Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Philipp Girl
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Franziska Greiner
- Institute for Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
| | - Ute Mackenstedt
- Institute for Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
| | - Gerhard Dobler
- Institute for Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Daniel Lang
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| |
Collapse
|
8
|
Kubinski M, Beicht J, Zdora I, Saletti G, Kircher M, Petry-Gusmag M, Steffen I, Puff C, Jung K, Baumgärtner W, Rimmelzwaan GF, Osterhaus ADME, Prajeeth CK. Cross-reactive antibodies against Langat virus protect mice from lethal tick-borne encephalitis virus infection. Front Immunol 2023; 14:1134371. [PMID: 36926332 PMCID: PMC10011100 DOI: 10.3389/fimmu.2023.1134371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Naturally attenuated Langat virus (LGTV) and highly pathogenic tick-borne encephalitis virus (TBEV) share antigenically similar viral proteins and are grouped together in the same flavivirus serocomplex. In the early 1970s, this has encouraged the usage of LGTV as a potential live attenuated vaccine against tick-borne encephalitis (TBE) until cases of encephalitis were reported among vaccinees. Previously, we have shown in a mouse model that immunity induced against LGTV protects mice against lethal TBEV challenge infection. However, the immune correlates of this protection have not been studied. Methods We used the strategy of adoptive transfer of either serum or T cells from LGTV infected mice into naïve recipient mice and challenged them with lethal dose of TBEV. Results We show that mouse infection with LGTV induced both cross-reactive antibodies and T cells against TBEV. To identify correlates of protection, Monitoring the disease progression in these mice for 16 days post infection, showed that serum from LGTV infected mice efficiently protected from developing severe disease. On the other hand, adoptive transfer of T cells from LGTV infected mice failed to provide protection. Histopathological investigation of infected brains suggested a possible role of microglia and T cells in inflammatory processes within the brain. Discussion Our data provide key information regarding the immune correlates of protection induced by LGTV infection of mice which may help design better vaccines against TBEV.
Collapse
Affiliation(s)
- Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center of Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Magdalena Kircher
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Monique Petry-Gusmag
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Imke Steffen
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center of Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Chittappen Kandiyil Prajeeth
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
9
|
Abstract
Powassan virus is an increasingly recognized cause of severe encephalitis that is transmitted by Ixodes ticks. Given the nonspecific clinical, laboratory, and imaging features of Powassan virus disease, providers should consider it in patients with compatible exposures and request appropriate testing.
Collapse
Affiliation(s)
- Anne Piantadosi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA.
| | - Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, AL360U.2, Boston, MA 02115, USA
| |
Collapse
|
10
|
Stone ET, Hassert M, Geerling E, Wagner C, Brien JD, Ebel GD, Hirsch AJ, German C, Smith JL, Pinto AK. Balanced T and B cell responses are required for immune protection against Powassan virus in virus-like particle vaccination. Cell Rep 2022; 38:110388. [PMID: 35172138 PMCID: PMC8919300 DOI: 10.1016/j.celrep.2022.110388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
Powassan virus (POWV) is a tick-borne pathogen for which humans are an incidental host. POWV infection can be fatal or result in long-term neurological sequelae; however, there are no approved vaccinations for POWV. Integral to efficacious vaccine development is the identification of correlates of protection, which we accomplished in this study by utilizing a murine model of POWV infection. Using POWV lethal and sub-lethal challenge models, we show that (1) robust B and T cell responses are necessary for immune protection, (2) POWV lethality can be attributed to both viral- and host-mediated drivers of disease, and (3) knowledge of the immune correlates of protection against POWV can be applied in a virus-like particle (VLP)-based vaccination approach that provides protection from lethal POWV challenge. Identification of these immune protection factors is significant as it will aid in the rational design of POWV vaccines.
Collapse
Affiliation(s)
- E Taylor Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO 63104, USA
| | - Mariah Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO 63104, USA
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO 63104, USA
| | - Colleen Wagner
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO 63104, USA
| | - James D Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO 63104, USA
| | - Gregory D Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Alec J Hirsch
- The Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Cody German
- The Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jessica L Smith
- The Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Amelia K Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO 63104, USA.
| |
Collapse
|
11
|
Bhatia B, Meade-White K, Haddock E, Feldmann F, Marzi A, Feldmann H. A live-attenuated viral vector vaccine protects mice against lethal challenge with Kyasanur Forest disease virus. NPJ Vaccines 2021; 6:152. [PMID: 34907224 PMCID: PMC8671490 DOI: 10.1038/s41541-021-00416-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
Kyasanur Forest disease virus (KFDV) is a tick-borne flavivirus endemic in India known to cause severe hemorrhagic and encephalitic disease in humans. In recent years, KFDV has spread beyond its original endemic zone raising public health concerns. Currently, there is no treatment available for KFDV but a vaccine with limited efficacy is used in India. Here, we generated two new KFDV vaccine candidates based on the vesicular stomatitis virus (VSV) platform. We chose the VSV-Ebola virus (VSV-EBOV) vector either with the full-length or a truncated EBOV glycoprotein as the vehicle to express the precursor membrane (prM) and envelope (E) proteins of KFDV (VSV-KFDV). For efficacy testing, we established a mouse disease model by comparing KFDV infections in three immunocompetent mouse strains (BALB/c, C57Bl/6, and CD1). Both vaccine vectors provided promising protection against lethal KFDV challenge in the BALB/c model following prime-only prime-boost and immunizations. Only prime-boost immunization with VSV-KFDV expressing full-length EBOV GP resulted in uniform protection. Hyperimmune serum derived from prime-boost immunized mice protected naïve BALB/c mice from lethal KFDV challenge indicating the importance of antibodies for protection. The new VSV-KFDV vectors are promising vaccine candidates to combat an emerging, neglected public health problem in a densely populated part of the world.
Collapse
Affiliation(s)
- Bharti Bhatia
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
12
|
Broeckel RM, Feldmann F, McNally KL, Chiramel AI, Sturdevant GL, Leung JM, Hanley PW, Lovaglio J, Rosenke R, Scott DP, Saturday G, Bouamr F, Rasmussen AL, Robertson SJ, Best SM. A pigtailed macaque model of Kyasanur Forest disease virus and Alkhurma hemorrhagic disease virus pathogenesis. PLoS Pathog 2021; 17:e1009678. [PMID: 34855915 PMCID: PMC8638978 DOI: 10.1371/journal.ppat.1009678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Kyasanur Forest disease virus (KFDV) and the closely related Alkhurma hemorrhagic disease virus (AHFV) are emerging flaviviruses that cause severe viral hemorrhagic fevers in humans. Increasing geographical expansion and case numbers, particularly of KFDV in southwest India, class these viruses as a public health threat. Viral pathogenesis is not well understood and additional vaccines and antivirals are needed to effectively counter the impact of these viruses. However, current animal models of KFDV pathogenesis do not accurately reproduce viral tissue tropism or clinical outcomes observed in humans. Here, we show that pigtailed macaques (Macaca nemestrina) infected with KFDV or AHFV develop viremia that peaks 2 to 4 days following inoculation. Over the course of infection, animals developed lymphocytopenia, thrombocytopenia, and elevated liver enzymes. Infected animals exhibited hallmark signs of human disease characterized by a flushed appearance, piloerection, dehydration, loss of appetite, weakness, and hemorrhagic signs including epistaxis. Virus was commonly present in the gastrointestinal tract, consistent with human disease caused by KFDV and AHFV where gastrointestinal symptoms (hemorrhage, vomiting, diarrhea) are common. Importantly, RNAseq of whole blood revealed that KFDV downregulated gene expression of key clotting factors that was not observed during AHFV infection, consistent with increased severity of KFDV disease observed in this model. This work characterizes a nonhuman primate model for KFDV and AHFV that closely resembles human disease for further utilization in understanding host immunity and development of antiviral countermeasures.
Collapse
MESH Headings
- Animals
- Chlorocebus aethiops
- Cytokines/blood
- Disease Models, Animal
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/pathology
- Encephalitis, Tick-Borne/virology
- Female
- HEK293 Cells
- Hemorrhagic Fevers, Viral/immunology
- Hemorrhagic Fevers, Viral/pathology
- Hemorrhagic Fevers, Viral/virology
- Humans
- Lymph Nodes/virology
- Macaca nemestrina
- Vero Cells
- Viremia
Collapse
Affiliation(s)
- Rebecca M. Broeckel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kristin L. McNally
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Abhilash I. Chiramel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Gail L. Sturdevant
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Jacqueline M. Leung
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Angela L. Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Center for Global Health Science and Security, Georgetown University, Washington, District of Columbia, United States of America
| | - Shelly J. Robertson
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Sonja M. Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
13
|
Pavletič M, Korva M, Knap N, Bogovič P, Lusa L, Strle K, Nahtigal Klevišar M, Vovko T, Tomažič J, Lotrič-Furlan S, Strle F, Avšič-Županc T. Upregulated Intrathecal Expression of VEGF-A and Long Lasting Global Upregulation of Proinflammatory Immune Mediators in Vaccine Breakthrough Tick-Borne Encephalitis. Front Cell Infect Microbiol 2021; 11:696337. [PMID: 34277474 PMCID: PMC8281926 DOI: 10.3389/fcimb.2021.696337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 12/30/2022] Open
Abstract
Although anti-TBE vaccines are highly effective, vaccine breakthrough (VBT) cases have been reported. With increasing evidence for immune system involvement in TBE pathogenesis, we characterized the immune mediators reflecting innate and adaptive T and B cell responses in neurological and convalescent phase in VBT TBE patients. At the beginning of the neurological phase, VBT patients have significantly higher serum levels of several innate and adaptive inflammatory cytokines compared to healthy donors, reflecting a global inflammatory state. The majority of cytokines, particularly those associated with innate and Th1 responses, are highly concentrated in CSF and positively correlate with intrathecal immune cell counts, demonstrating the localization of Th1 and proinflammatory responses in CNS, the site of disease in TBE. Interestingly, compared to unvaccinated TBE patients, VBT TBE patients have significantly higher CSF levels of VEGF-A and IFN-β and higher systemic levels of neutrophil chemoattractants IL-8/CXCL8 and GROα/CXCL1 on admission. Moreover, serum levels of IL-8/CXCL8 and GROα/CXCL1 remain elevated for two months after the onset of neurological symptoms, indicating a prolonged systemic immune activation in VBT patients. These findings provide the first insights into the type of immune responses and their dynamics during TBE in VBT patients. An observed systemic upregulation of neutrophil derived inflammation in acute and convalescent phase of TBE together with highly expressed VEGF-A could contribute to BBB disruption that facilitates the entry of immune cells and supports the intrathecal localization of Th1 responses observed in VBT patients.
Collapse
Affiliation(s)
- Miša Pavletič
- Laboratory for Diagnostic of Zoonoses and World Health Organization (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Misa Korva
- Laboratory for Diagnostic of Zoonoses and World Health Organization (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Knap
- Laboratory for Diagnostic of Zoonoses and World Health Organization (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Lara Lusa
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Mathematics, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Klemen Strle
- Division of Infectious Diseases, Microbial Pathogenesis and Immunology Laboratory, Wadsworth Center, New York State (NYS) Department of Health, Albany, NY, United States
| | | | - Tomaž Vovko
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Janez Tomažič
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Stanka Lotrič-Furlan
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Laboratory for Diagnostic of Zoonoses and World Health Organization (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
Cimica V, Saleem S, Matuczinski E, Adams-Fish D, McMahon C, Rashid S, Stedman TT. A Virus-Like Particle-Based Vaccine Candidate against the Tick-Borne Powassan Virus Induces Neutralizing Antibodies in a Mouse Model. Pathogens 2021; 10:pathogens10060680. [PMID: 34072726 PMCID: PMC8229747 DOI: 10.3390/pathogens10060680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Powassan virus (POWV) is a tick-borne flavivirus circulating in North America and the Russian Far East that can cause severe neuroinvasive diseases, including encephalitis, meningitis, and meningoencephalitis. The reported neuroinvasive case fatality is about 10%, and approximately 50% of the survivors from the neuroinfection exhibit long-lasting or permanent neurological sequelae. Currently, treatment of POWV infection is supportive, and no FDA-approved vaccines or specific therapeutics are available. A novel Powassan vaccine candidate was created using virus-like particle technology (POW-VLP) and assembled with the viral structural proteins pre-Membrane (prM) and Envelope (E). Western blot immunoassay demonstrated high antigenicity of POW-VLP structural proteins. Transmission electron microscopy indicated that the POW-VLP exhibited icosahedral morphology typical of flaviviruses. A dose-escalation study in a murine model was performed to test immunogenicity and safety. Serum antibody was tested by ELISA, demonstrating that POW-VLP afforded 100% seroconversion to the E protein. Reporter viral-particle neutralization assay demonstrated high levels of neutralizing antibodies in the serum of immunized mice. Hybridomas expressing monoclonal antibodies were produced following POW-VLP immunization. The POW-VLP vaccine candidate created in this study provides a strategy for inducing protective antibodies against Powassan neuroinvasive infection.
Collapse
|
15
|
VanBlargan LA, Errico JM, Kafai NM, Burgomaster KE, Jethva PN, Broeckel RM, Meade-White K, Nelson CA, Himansu S, Wang D, Handley SA, Gross ML, Best SM, Pierson TC, Fremont DH, Diamond MS. Broadly neutralizing monoclonal antibodies protect against multiple tick-borne flaviviruses. J Exp Med 2021; 218:e20210174. [PMID: 33831142 PMCID: PMC8040518 DOI: 10.1084/jem.20210174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/30/2022] Open
Abstract
Although Powassan virus (POWV) is an emerging tick-transmitted flavivirus that causes severe or fatal neuroinvasive disease in humans, medical countermeasures have not yet been developed. Here, we developed a panel of neutralizing anti-POWV mAbs recognizing six distinct antigenic sites. The most potent of these mAbs bind sites within domain II or III of the envelope (E) protein and inhibit postattachment viral entry steps. A subset of these mAbs cross-react with other flaviviruses. Both POWV type-specific and cross-reactive neutralizing mAbs confer protection in mice against POWV infection when given as prophylaxis or postexposure therapy. Several cross-reactive mAbs mapping to either domain II or III also protect in vivo against heterologous tick-transmitted flaviviruses including Langat and tick-borne encephalitis virus. Our experiments define structural and functional correlates of antibody protection against POWV infection and identify epitopes targeted by broadly neutralizing antibodies with therapeutic potential against multiple tick-borne flaviviruses.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Cell Line
- Chlorocebus aethiops
- Cross Reactions/immunology
- Encephalitis Viruses, Tick-Borne/drug effects
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/physiology
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/prevention & control
- Encephalitis, Tick-Borne/virology
- Epitopes/immunology
- HEK293 Cells
- Humans
- Immunoglobulin G/administration & dosage
- Immunoglobulin G/immunology
- Mice, Inbred C57BL
- Mutation
- Vero Cells
- Viral Envelope Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- Mice
Collapse
Affiliation(s)
- Laura A. VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - John M. Errico
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Natasha M. Kafai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Katherine E. Burgomaster
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | | | - Rebecca M. Broeckel
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Kimberly Meade-White
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Christopher A. Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | | | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | | | - Sonja M. Best
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Theodore C. Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
16
|
Agudelo M, Palus M, Keeffe JR, Bianchini F, Svoboda P, Salát J, Peace A, Gazumyan A, Cipolla M, Kapoor T, Guidetti F, Yao KH, Elsterová J, Teislerová D, Chrdle A, Hönig V, Oliveira T, West AP, Lee YE, Rice CM, MacDonald MR, Bjorkman PJ, Růžek D, Robbiani DF, Nussenzweig MC. Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease. J Exp Med 2021; 218:e20210236. [PMID: 33831141 PMCID: PMC8040517 DOI: 10.1084/jem.20210236] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is an emerging human pathogen that causes potentially fatal disease with no specific treatment. Mouse monoclonal antibodies are protective against TBEV, but little is known about the human antibody response to infection. Here, we report on the human neutralizing antibody response to TBEV in a cohort of infected and vaccinated individuals. Expanded clones of memory B cells expressed closely related anti-envelope domain III (EDIII) antibodies in both groups of volunteers. However, the most potent neutralizing antibodies, with IC50s below 1 ng/ml, were found only in individuals who recovered from natural infection. These antibodies also neutralized other tick-borne flaviviruses, including Langat, louping ill, Omsk hemorrhagic fever, Kyasanur forest disease, and Powassan viruses. Structural analysis revealed a conserved epitope near the lateral ridge of EDIII adjoining the EDI-EDIII hinge region. Prophylactic or early therapeutic antibody administration was effective at low doses in mice that were lethally infected with TBEV.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Cells, Cultured
- Cohort Studies
- Cross Reactions/immunology
- Encephalitis Viruses, Tick-Borne/drug effects
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/physiology
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/prevention & control
- Encephalitis, Tick-Borne/virology
- Epitopes/immunology
- Female
- Humans
- Immunoglobulin G/administration & dosage
- Immunoglobulin G/immunology
- Mice, Inbred BALB C
- Sequence Homology, Amino Acid
- Survival Analysis
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Mice
Collapse
Affiliation(s)
- Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Filippo Bianchini
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Pavel Svoboda
- Veterinary Research Institute, Brno, Czech Republic
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jiří Salát
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Tania Kapoor
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Francesca Guidetti
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Jana Elsterová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | | | - Aleš Chrdle
- Hospital České Budějovice, České Budějovice, Czech Republic
- Faculty of Social and Health Sciences, University of South Bohemia, České Budějovice, Czech Republic
- Royal Liverpool University Hospital, Liverpool, UK
| | - Václav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | - Thiago Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Yu E. Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | - Davide F. Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| |
Collapse
|
17
|
Burthe SJ, Schäfer SM, Asaaga FA, Balakrishnan N, Chanda MM, Darshan N, Hoti SL, Kiran SK, Seshadri T, Srinivas PN, Vanak AT, Purse BV. Reviewing the ecological evidence base for management of emerging tropical zoonoses: Kyasanur Forest Disease in India as a case study. PLoS Negl Trop Dis 2021; 15:e0009243. [PMID: 33793560 PMCID: PMC8016103 DOI: 10.1371/journal.pntd.0009243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Zoonoses disproportionately affect tropical communities and are associated with human modification and use of ecosystems. Effective management is hampered by poor ecological understanding of disease transmission and often focuses on human vaccination or treatment. Better ecological understanding of multi-vector and multi-host transmission, social and environmental factors altering human exposure, might enable a broader suite of management options. Options may include "ecological interventions" that target vectors or hosts and require good knowledge of underlying transmission processes, which may be more effective, economical, and long lasting than conventional approaches. New frameworks identify the hierarchical series of barriers that a pathogen needs to overcome before human spillover occurs and demonstrate how ecological interventions may strengthen these barriers and complement human-focused disease control. We extend these frameworks for vector-borne zoonoses, focusing on Kyasanur Forest Disease Virus (KFDV), a tick-borne, neglected zoonosis affecting poor forest communities in India, involving complex communities of tick and host species. We identify the hierarchical barriers to pathogen transmission targeted by existing management. We show that existing interventions mainly focus on human barriers (via personal protection and vaccination) or at barriers relating to Kyasanur Forest Disease (KFD) vectors (tick control on cattle and at the sites of host (monkey) deaths). We review the validity of existing management guidance for KFD through literature review and interviews with disease managers. Efficacy of interventions was difficult to quantify due to poor empirical understanding of KFDV-vector-host ecology, particularly the role of cattle and monkeys in the disease transmission cycle. Cattle are hypothesised to amplify tick populations. Monkeys may act as sentinels of human infection or are hypothesised to act as amplifying hosts for KFDV, but the spatial scale of risk arising from ticks infected via monkeys versus small mammal reservoirs is unclear. We identified 19 urgent research priorities for refinement of current management strategies or development of ecological interventions targeting vectors and host barriers to prevent disease spillover in the future.
Collapse
Affiliation(s)
- Sarah J. Burthe
- UK Centre for Ecology & Hydrology, Edinburgh, United Kingdom
| | | | | | - Natrajan Balakrishnan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, India
| | | | - Narayanaswamy Darshan
- Department of Health and Family Welfare Services, Government of Karnataka, Shivamogga, India
- ICMR-National Institute for Traditional Medicine, Belgavi, India
| | - Subhash L. Hoti
- ICMR-National Institute for Traditional Medicine, Belgavi, India
| | - Shivani K. Kiran
- Department of Health and Family Welfare Services, Government of Karnataka, Shivamogga, India
| | - Tanya Seshadri
- Vivekananda Gorukana Kalyana Kendra (VGKK), Chamarajanagar, India
| | - Prashanth N. Srinivas
- Ashoka Trust for Ecology and the Environment, Bengaluru, India
- DBT/Wellcome Trust India Alliance Fellow, Hyderabad, India
- Institute of Public Health, Bangalore, India
| | - Abi T. Vanak
- Ashoka Trust for Ecology and the Environment, Bengaluru, India
- DBT/Wellcome Trust India Alliance Fellow, Hyderabad, India
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bethan V. Purse
- UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
| |
Collapse
|
18
|
Lindqvist R, Rosendal E, Weber E, Asghar N, Schreier S, Lenman A, Johansson M, Dobler G, Bestehorn M, Kröger A, Överby AK. The envelope protein of tick-borne encephalitis virus influences neuron entry, pathogenicity, and vaccine protection. J Neuroinflammation 2020; 17:284. [PMID: 32988388 PMCID: PMC7523050 DOI: 10.1186/s12974-020-01943-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022] Open
Abstract
Background Tick-borne encephalitis virus (TBEV) is considered to be the medically most important arthropod-borne virus in Europe. The symptoms of an infection range from subclinical to mild flu-like disease to lethal encephalitis. The exact determinants of disease severity are not known; however, the virulence of the strain as well as the immune status of the host are thought to be important factors for the outcome of the infection. Here we investigated virulence determinants in TBEV infection. Method Mice were infected with different TBEV strains, and high virulent and low virulent TBEV strains were chosen. Sequence alignment identified differences that were cloned to generate chimera virus. The infection rate of the parental and chimeric virus were evaluated in primary mouse neurons, astrocytes, mouse embryonic fibroblasts, and in vivo. Neutralizing capacity of serum from individuals vaccinated with the FSME-IMMUN® and Encepur® or combined were evaluated. Results We identified a highly pathogenic and neurovirulent TBEV strain, 93/783. Using sequence analysis, we identified the envelope (E) protein of 93/783 as a potential virulence determinant and cloned it into the less pathogenic TBEV strain Torö. We found that the chimeric virus specifically infected primary neurons more efficiently compared to wild-type (WT) Torö and this correlated with enhanced pathogenicity and higher levels of viral RNA in vivo. The E protein is also the major target of neutralizing antibodies; thus, genetic variation in the E protein could influence the efficiency of the two available vaccines, FSME-IMMUN® and Encepur®. As TBEV vaccine breakthroughs have occurred in Europe, we chose to compare neutralizing capacity from individuals vaccinated with the two different vaccines or a combination of them. Our data suggest that the different vaccines do not perform equally well against the two Swedish strains. Conclusions Our findings show that two amino acid substitutions of the E protein found in 93/783, A83T, and A463S enhanced Torö infection of neurons as well as pathogenesis and viral replication in vivo; furthermore, we found that genetic divergence from the vaccine strain resulted in lower neutralizing antibody titers in vaccinated individuals.
Collapse
Affiliation(s)
- Richard Lindqvist
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Ebba Rosendal
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Elvira Weber
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.,Current affiliation: Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Naveed Asghar
- School of Medical Sciences, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Sarah Schreier
- Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Annasara Lenman
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden.,Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Magnus Johansson
- School of Medical Sciences, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Malena Bestehorn
- Bundeswehr Institute of Microbiology, Munich, Germany.,Parasitology Unit, University of Hohenheim, D-, Stuttgart, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany. .,Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Anna K Överby
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden. .,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.
| |
Collapse
|
19
|
Kubinski M, Beicht J, Gerlach T, Volz A, Sutter G, Rimmelzwaan GF. Tick-Borne Encephalitis Virus: A Quest for Better Vaccines against a Virus on the Rise. Vaccines (Basel) 2020; 8:E451. [PMID: 32806696 PMCID: PMC7564546 DOI: 10.3390/vaccines8030451] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV), a member of the family Flaviviridae, is one of the most important tick-transmitted viruses in Europe and Asia. Being a neurotropic virus, TBEV causes infection of the central nervous system, leading to various (permanent) neurological disorders summarized as tick-borne encephalitis (TBE). The incidence of TBE cases has increased due to the expansion of TBEV and its vectors. Since antiviral treatment is lacking, vaccination against TBEV is the most important protective measure. However, vaccination coverage is relatively low and immunogenicity of the currently available vaccines is limited, which may account for the vaccine failures that are observed. Understanding the TBEV-specific correlates of protection is of pivotal importance for developing novel and improved TBEV vaccines. For affording robust protection against infection and development of TBE, vaccines should induce both humoral and cellular immunity. In this review, the adaptive immunity induced upon TBEV infection and vaccination as well as novel approaches to produce improved TBEV vaccines are discussed.
Collapse
Affiliation(s)
- Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany;
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University (LMU) Munich, Veterinaerstr. 13, 80539 Munich, Germany;
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| |
Collapse
|
20
|
Abstract
Increases in tick-borne disease prevalence and transmission are important public health issues. Efforts to control these emerging diseases are frustrated by the struggle to control tick populations and to detect and treat infections caused by the pathogens that they transmit. This review covers tick-borne infectious diseases of nonrickettsial bacterial, parasitic, and viral origins. While tick surveillance and tracking inform our understanding of the importance of the spread and ecology of ticks and help identify areas of risk for disease transmission, the vectors are not the focus of this document. Here, we emphasize the most significant pathogens that infect humans as well as the epidemiology, clinical features, diagnosis, and treatment of diseases that they cause. Although detection via molecular or immunological methods has improved, tick-borne diseases continue to remain underdiagnosed, making the scope of the problem difficult to assess. Our current understanding of the incidence of tick-borne diseases is discussed in this review. An awareness of the diseases that can be transmitted by ticks in specific locations is key to detection and selection of appropriate treatment. As tick-transmitted pathogens are discovered and emerge in new geographic regions, our ability to detect, describe, and understand the growing public health threat must also grow to meet the challenge.
Collapse
|
21
|
VanBlargan LA, Himansu S, Foreman BM, Ebel GD, Pierson TC, Diamond MS. An mRNA Vaccine Protects Mice against Multiple Tick-Transmitted Flavivirus Infections. Cell Rep 2019; 25:3382-3392.e3. [PMID: 30566864 PMCID: PMC6353567 DOI: 10.1016/j.celrep.2018.11.082] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
Powassan virus (POWV) is an emerging tick-transmitted flavivirus that circulates in North America and Russia. Up to 5% of deer ticks now test positive for POWV in certain regions of the northern United States. Although POWV infections cause life-threatening encephalitis, there is no vaccine or countermeasure available for prevention or treatment. Here, we developed a lipid nanoparticle (LNP)-encapsulated modified mRNA vaccine encoding the POWV prM and E genes and demonstrated its immunogenicity and efficacy in mice following immunization with one or two doses. The POWV mRNA vaccine induced high titers of neutralizing antibody and sterilizing immunity against lethal challenge with different POWV strains. The mRNA vaccine also induced cross-neutralizing antibodies against multiple other tick-borne flaviviruses and protected mice against the distantly related Langat virus. These data demonstrate the utility of the LNP-mRNA vaccine platform for the development of vaccines with protective activity against multiple flaviviruses.
Collapse
Affiliation(s)
- Laura A VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sunny Himansu
- Moderna, Inc., 500 Technology Square, Cambridge, MA 02139, USA
| | - Bryant M Foreman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Gregory D Ebel
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
22
|
Virus-Like Particle Systems for Vaccine Development against Viruses in the Flaviviridae Family. Vaccines (Basel) 2019; 7:vaccines7040123. [PMID: 31547131 PMCID: PMC6963367 DOI: 10.3390/vaccines7040123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 01/07/2023] Open
Abstract
Viruses in the Flaviviridae family are important human and animal pathogens that impose serious threats to global public health. This family of viruses includes emerging and re-emerging viruses, most of which are transmitted by infected mosquito or tick bites. Currently, there is no protective vaccine or effective antiviral treatment against the majority of these viruses, and due to their growing spread, several strategies have been employed to manufacture prophylactic vaccines against these infectious agents including virus-like particle (VLP) subunit vaccines. VLPs are genomeless viral particles that resemble authentic viruses and contain critical repetitive conformational structures on their surface that can trigger the induction of both humoral and cellular responses, making them safe and ideal vaccine candidates against these viruses. In this review, we focus on the potential of the VLP platform in the current vaccine development against the medically important viruses in the Flaviviridae family.
Collapse
|
23
|
Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res 2019; 164:23-51. [PMID: 30710567 DOI: 10.1016/j.antiviral.2019.01.014] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/10/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
Tick-borne encephalitis (TBE) is an illness caused by tick-borne encephalitis virus (TBEV) infection which is often limited to a febrile illness, but may lead to very aggressive downstream neurological manifestations. The disease is prevalent in forested areas of Europe and northeastern Asia, and is typically caused by infection involving one of three TBEV subtypes, namely the European (TBEV-Eu), the Siberian (TBEV-Sib), or the Far Eastern (TBEV-FE) subtypes. In addition to the three main TBEV subtypes, two other subtypes; i.e., the Baikalian (TBEV-Bkl) and the Himalayan subtype (TBEV-Him), have been described recently. In Europe, TBEV-Eu infection usually results in only mild TBE associated with a mortality rate of <2%. TBEV-Sib infection also results in a generally mild TBE associated with a non-paralytic febrile form of encephalitis, although there is a tendency towards persistent TBE caused by chronic viral infection. TBE-FE infection is considered to induce the most severe forms of TBE. Importantly though, viral subtype is not the sole determinant of TBE severity; both mild and severe cases of TBE are in fact associated with infection by any of the subtypes. In keeping with this observation, the overall TBE mortality rate in Russia is ∼2%, in spite of the fact that TBEV-Sib and TBEV-FE subtypes appear to be inducers of more severe TBE than TBEV-Eu. On the other hand, TBEV-Sib and TBEV-FE subtype infections in Russia are associated with essentially unique forms of TBE rarely seen elsewhere if at all, such as the hemorrhagic and chronic (progressive) forms of the disease. For post-exposure prophylaxis and TBE treatment in Russia and Kazakhstan, a specific anti-TBEV immunoglobulin is currently used with well-documented efficacy, but the use of specific TBEV immunoglobulins has been discontinued in Europe due to concerns regarding antibody-enhanced disease in naïve individuals. Therefore, new treatments are essential. This review summarizes available data on the pathogenesis and clinical features of TBE, plus different vaccine preparations available in Europe and Russia. In addition, new treatment possibilities, including small molecule drugs and experimental immunotherapies are reviewed. The authors caution that their descriptions of approved or experimental therapies should not be considered to be recommendations for patient care.
Collapse
|
24
|
Blom K, Cuapio A, Sandberg JT, Varnaite R, Michaëlsson J, Björkström NK, Sandberg JK, Klingström J, Lindquist L, Gredmark Russ S, Ljunggren HG. Cell-Mediated Immune Responses and Immunopathogenesis of Human Tick-Borne Encephalitis Virus-Infection. Front Immunol 2018; 9:2174. [PMID: 30319632 PMCID: PMC6168641 DOI: 10.3389/fimmu.2018.02174] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a flavivirus that belongs to the Flaviviridae family. TBEV is transmitted to humans primarily from infected ticks. The virus causes tick-borne encephalitis (TBE), an acute viral disease that affects the central nervous system (CNS). Infection can lead to acute neurological symptoms of significant severity due to meningitis or meningo(myelo)encephalitis. TBE can cause long-term suffering and has been recognized as an increasing public health problem. TBEV-affected areas currently include large parts of central and northern Europe as well as northern Asia. Infection with TBEV triggers a humoral as well as a cell-mediated immune response. In contrast to the well-characterized humoral antibody-mediated response, the cell-mediated immune responses elicited to natural TBEV-infection have been poorly characterized until recently. Here, we review recent progress in our understanding of the cell-mediated immune response to human TBEV-infection. A particular emphasis is devoted to studies of the response mediated by natural killer (NK) cells and CD8 T cells. The studies described include results revealing the temporal dynamics of the T cell- as well as NK cell-responses in relation to disease state and functional characterization of these cells. Additionally, we discuss specific immunopathological aspects of TBEV-infection in the CNS.
Collapse
Affiliation(s)
- Kim Blom
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Angelica Cuapio
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J. Tyler Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Renata Varnaite
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Michaëlsson
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K. Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K. Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Lindquist
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Gredmark Russ
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Chernokhaeva LL, Rogova YV, Kozlovskaya LI, Romanova LI, Osolodkin DI, Vorovitch MF, Karganova GG. Experimental Evaluation of the Protective Efficacy of Tick-Borne Encephalitis (TBE) Vaccines Based on European and Far-Eastern TBEV Strains in Mice and in Vitro. Front Microbiol 2018; 9:1487. [PMID: 30061869 PMCID: PMC6054986 DOI: 10.3389/fmicb.2018.01487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/14/2018] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis (TBE), caused by the TBE virus (TBEV), is a serious public health threat in northern Eurasia. Three subtypes of TBEV are distinguished. Inactivated vaccines are available for TBE prophylaxis, and their efficacy to prevent the disease has been demonstrated by years of implication. Nevertheless, rare TBE cases among the vaccinated have been registered. The present study aimed to evaluate the protective efficacy of 4 TBEV vaccines against naturally circulating TBEV variants. For the first time, the protection was evaluated against an extended number of phylogenetically distinct TBEV strains isolated in different years in different territories. The protective effect did not strongly depend on the infectious dose of the challenge virus or the scheme of vaccination. All vaccines induced neutralizing antibodies in protective titers against the TBEV strains used, although the vaccines varied in the spectra of induced antibodies and protective efficacy. The protective efficacy of the vaccines depended on the individual properties of the vaccine strain and the challenge virus, rather than on the subtypes. The neutralization efficiency appeared to be dependent not only on the presence of antibodies to particular epitopes and the amino acid composition of the virion surface but also on the intrinsic properties of the challenge virus E protein structure.
Collapse
Affiliation(s)
- Liubov L. Chernokhaeva
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products Russian Academy of Science, Chumakov FSC R&D IBP RAS, Moscow, Russia
| | - Yulia V. Rogova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products Russian Academy of Science, Chumakov FSC R&D IBP RAS, Moscow, Russia
| | - Liubov I. Kozlovskaya
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products Russian Academy of Science, Chumakov FSC R&D IBP RAS, Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lidiya I. Romanova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products Russian Academy of Science, Chumakov FSC R&D IBP RAS, Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Dmitry I. Osolodkin
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products Russian Academy of Science, Chumakov FSC R&D IBP RAS, Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail F. Vorovitch
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products Russian Academy of Science, Chumakov FSC R&D IBP RAS, Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Galina G. Karganova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products Russian Academy of Science, Chumakov FSC R&D IBP RAS, Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
26
|
Kellman EM, Offerdahl DK, Melik W, Bloom ME. Viral Determinants of Virulence in Tick-Borne Flaviviruses. Viruses 2018; 10:v10060329. [PMID: 29914165 PMCID: PMC6024809 DOI: 10.3390/v10060329] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/27/2022] Open
Abstract
Tick-borne flaviviruses have a global distribution and cause significant human disease, including encephalitis and hemorrhagic fever, and often result in neurologic sequelae. There are two distinct properties that determine the neuropathogenesis of a virus. The ability to invade the central nervous system (CNS) is referred to as the neuroinvasiveness of the agent, while the ability to infect and damage cells within the CNS is referred to as its neurovirulence. Examination of laboratory variants, cDNA clones, natural isolates with varying pathogenicity, and virally encoded immune evasion strategies have contributed extensively to our understanding of these properties. Here we will review the major viral determinants of virulence that contribute to pathogenesis and influence both neuroinvasiveness and neurovirulence properties of tick-borne flaviviruses, focusing particularly on the envelope protein (E), nonstructural protein 5 (NS5), and the 3′ untranslated region (UTR).
Collapse
Affiliation(s)
- Eliza M Kellman
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| | - Danielle K Offerdahl
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| | - Wessam Melik
- School of Medical Sciences, Orebro University, SE-703 62 Örebro, Sweden.
| | - Marshall E Bloom
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| |
Collapse
|
27
|
Tick-Borne Encephalitis Virus Vaccine-Induced Human Antibodies Mediate Negligible Enhancement of Zika Virus Infection InVitro and in a Mouse Model. mSphere 2018; 3:mSphere00011-18. [PMID: 29435494 PMCID: PMC5806211 DOI: 10.1128/mspheredirect.00011-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/13/2018] [Indexed: 12/30/2022] Open
Abstract
Recent reports in the scientific literature have suggested that anti-dengue virus (DENV) and anti-West Nile virus (WNV) immunity exacerbates Zika virus (ZIKV) pathogenesis in vitro and in vivo in mouse models. Large populations of immune individuals exist for a related flavivirus (tick-borne encephalitis virus [TBEV]), due to large-scale vaccination campaigns and endemic circulation throughout most of northern Europe and the southern Russian Federation. As a result, the question of whether anti-TBEV immunity can affect Zika virus pathogenesis is a pertinent one. For this study, we obtained 50 serum samples from individuals vaccinated with the TBEV vaccine FSME-IMMUN (Central European/Neudörfl strain) and evaluated their enhancement capacity in vitro using K562 human myeloid cells expressing CD32 and in vivo using a mouse model of ZIKV pathogenesis. Among the 50 TBEV vaccinee samples evaluated, 29 had detectable reactivity against ZIKV envelope (E) protein by enzyme-linked immunosorbent assay (ELISA), and 36 showed enhancement of ZIKV infection in vitro. A pool of the most highly reacting and enhanced samples resulted in no significant change in the morbidity/mortality of ZIKV disease in immunocompromised Stat2-/- mice. Our results suggest that humoral immunity against TBEV is unlikely to enhance Zika virus pathogenesis in humans. No clinical reports indicating that TBEV vaccinees experiencing enhanced ZIKV disease have been published so far, and though the epidemiological data are sparse, our findings suggest that there is little reason for concern. This study also displays a clear relationship between the phylogenetic distance between two flaviviruses and their capacity for pathogenic enhancement. IMPORTANCE The relationship between serial infections of two different serotypes of dengue virus and more severe disease courses is well-documented in the literature, driven by so-called antibody-dependent enhancement (ADE). Recently, studies have shown the possibility of ADE in cells exposed to anti-DENV human plasma and then infected with ZIKV and also in mouse models of ZIKV pathogenesis after passive transfer of anti-DENV human plasma. In this study, we evaluated the extent to which this phenomenon occurs using sera from individuals immunized against tick-borne encephalitis virus (TBEV). This is highly relevant, since large proportions of the European population are vaccinated against TBEV or otherwise seropositive.
Collapse
|