1
|
Wongnak R, Brindha S, Oba M, Yoshizue T, Islam MD, Islam MM, Takemae H, Mizutani T, Kuroda Y. Non-Glycosylated SARS-CoV-2 Omicron BA.5 Receptor Binding Domain (RBD) with a Native-like Conformation Induces a Robust Immune Response with Potent Neutralization in a Mouse Model. Molecules 2024; 29:2676. [PMID: 38893549 PMCID: PMC11173568 DOI: 10.3390/molecules29112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The Omicron BA.5 variant of SARS-CoV-2 is known for its high transmissibility and its capacity to evade immunity provided by vaccine protection against the (original) Wuhan strain. In our prior research, we successfully produced the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein in an E. coli expression system. Extensive biophysical characterization indicated that, even without glycosylation, the RBD maintained native-like conformational and biophysical properties. The current study explores the immunogenicity and neutralization capacity of the E. coli-expressed Omicron BA.5 RBD using a mouse model. Administration of three doses of the RBD without any adjuvant elicited high titer antisera of up to 7.3 × 105 and up to 1.6 × 106 after a booster shot. Immunization with RBD notably enhanced the population of CD44+CD62L+ T cells, indicating the generation of T cell memory. The in vitro assays demonstrated the antisera's protective efficacy through significant inhibition of the interaction between SARS-CoV-2 and its human receptor, ACE2, and through potent neutralization of a pseudovirus. These findings underscore the potential of our E. coli-expressed RBD as a viable vaccine candidate against the Omicron variant of SARS-CoV-2.
Collapse
Affiliation(s)
- Rawiwan Wongnak
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan; (R.W.); (S.B.); (T.Y.); (M.D.I.)
| | - Subbaian Brindha
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan; (R.W.); (S.B.); (T.Y.); (M.D.I.)
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan; (M.O.); (H.T.); (T.M.)
| | - Mami Oba
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan; (M.O.); (H.T.); (T.M.)
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu-shi 183-8509, Japan
| | - Takahiro Yoshizue
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan; (R.W.); (S.B.); (T.Y.); (M.D.I.)
| | - Md. Din Islam
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan; (R.W.); (S.B.); (T.Y.); (M.D.I.)
| | - M. Monirul Islam
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Hitoshi Takemae
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan; (M.O.); (H.T.); (T.M.)
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu-shi 183-8509, Japan
| | - Tetsuya Mizutani
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan; (M.O.); (H.T.); (T.M.)
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu-shi 183-8509, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan; (R.W.); (S.B.); (T.Y.); (M.D.I.)
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan; (M.O.); (H.T.); (T.M.)
| |
Collapse
|
2
|
Magazine N, Zhang T, Bungwon AD, McGee MC, Wu Y, Veggiani G, Huang W. Immune Epitopes of SARS-CoV-2 Spike Protein and Considerations for Universal Vaccine Development. Immunohorizons 2024; 8:214-226. [PMID: 38427047 PMCID: PMC10985062 DOI: 10.4049/immunohorizons.2400003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Despite the success of global vaccination programs in slowing the spread of COVID-19, these efforts have been hindered by the emergence of new SARS-CoV-2 strains capable of evading prior immunity. The mutation and evolution of SARS-CoV-2 have created a demand for persistent efforts in vaccine development. SARS-CoV-2 Spike protein has been the primary target for COVID-19 vaccine development, but it is also the hotspot of mutations directly involved in host susceptibility and virus immune evasion. Our ability to predict emerging mutants and select conserved epitopes is critical for the development of a broadly neutralizing therapy or a universal vaccine. In this article, we review the general paradigm of immune responses to COVID-19 vaccines, highlighting the immunological epitopes of Spike protein that are likely associated with eliciting protective immunity resulting from vaccination in humans. Specifically, we analyze the structural and evolutionary characteristics of the SARS-CoV-2 Spike protein related to immune activation and function via the TLRs, B cells, and T cells. We aim to provide a comprehensive analysis of immune epitopes of Spike protein, thereby contributing to the development of new strategies for broad neutralization or universal vaccination.
Collapse
Affiliation(s)
- Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Anang D. Bungwon
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Michael C. McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Yingying Wu
- Department of Mathematics, University of Houston, Houston, TX
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, LA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
3
|
Zan F, Zhou Y, Chen T, Chen Y, Mu Z, Qian Z, Ou X. Stabilization of the Metastable Pre-Fusion Conformation of the SARS-CoV-2 Spike Glycoprotein through N-Linked Glycosylation of the S2 Subunit. Viruses 2024; 16:223. [PMID: 38399999 PMCID: PMC10891965 DOI: 10.3390/v16020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus responsible for the coronavirus disease 2019 (COVID-19) pandemic, represents a serious threat to public health. The spike (S) glycoprotein of SARS-CoV-2 mediates viral entry into host cells and is heavily glycosylated. In this study, we systemically analyzed the roles of 22 putative N-linked glycans in SARS-CoV-2 S protein expression, membrane fusion, viral entry, and stability. Using the α-glycosidase inhibitors castanospermine and NB-DNJ, we confirmed that disruption of N-linked glycosylation blocked the maturation of the S protein, leading to the impairment of S protein-mediated membrane fusion. Single-amino-acid substitution of each of the 22 N-linked glycosylation sites with glutamine revealed that 9 out of the 22 N-linked glycosylation sites were critical for S protein folding and maturation. Thus, substitution at these sites resulted in reduced S protein-mediated cell-cell fusion and viral entry. Notably, the N1074Q mutation markedly affected S protein stability and induced significant receptor-independent syncytium (RIS) formation in HEK293T/hACE2-KO cells. Additionally, the removal of the furin cleavage site partially compensated for the instability induced by the N1074Q mutation. Although the corresponding mutation in the SARS-CoV S protein (N1056Q) did not induce RIS in HEK293T cells, the N669Q and N1080Q mutants exhibited increased fusogenic activity and did induce syncytium formation in HEK293T cells. Therefore, N-glycans on the SARS-CoV and SARS-CoV-2 S2 subunits are highly important for maintaining the pre-fusion state of the S protein. This study revealed the critical roles of N-glycans in S protein maturation and stability, information that has implications for the design of vaccines and antiviral strategies.
Collapse
Affiliation(s)
- Fuwen Zan
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Yao Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Ting Chen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Yahan Chen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Zhixia Mu
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Xiuyuan Ou
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| |
Collapse
|
4
|
Farriol-Duran R, López-Aladid R, Porta-Pardo E, Torres A, Fernández-Barat L. Brewpitopes: a pipeline to refine B-cell epitope predictions during public health emergencies. Front Immunol 2023; 14:1278534. [PMID: 38124749 PMCID: PMC10730938 DOI: 10.3389/fimmu.2023.1278534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
The application of B-cell epitope identification to develop therapeutic antibodies and vaccine candidates is well established. However, the validation of epitopes is time-consuming and resource-intensive. To alleviate this, in recent years, multiple computational predictors have been developed in the immunoinformatics community. Brewpitopes is a pipeline that curates bioinformatic B-cell epitope predictions obtained by integrating different state-of-the-art tools. We used additional computational predictors to account for subcellular location, glycosylation status, and surface accessibility of the predicted epitopes. The implementation of these sets of rational filters optimizes in vivo antibody recognition properties of the candidate epitopes. To validate Brewpitopes, we performed a proteome-wide analysis of SARS-CoV-2 with a particular focus on S protein and its variants of concern. In the S protein, we obtained a fivefold enrichment in terms of predicted neutralization versus the epitopes identified by individual tools. We analyzed epitope landscape changes caused by mutations in the S protein of new viral variants that were linked to observed immune escape evidence in specific strains. In addition, we identified a set of epitopes with neutralizing potential in four SARS-CoV-2 proteins (R1AB, R1A, AP3A, and ORF9C). These epitopes and antigenic proteins are conserved targets for viral neutralization studies. In summary, Brewpitopes is a powerful pipeline that refines B-cell epitope bioinformatic predictions during public health emergencies in a high-throughput capacity to facilitate the optimization of experimental validation of therapeutic antibodies and candidate vaccines.
Collapse
Affiliation(s)
| | - Ruben López-Aladid
- CELLEX Research Laboratories, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Eduard Porta-Pardo
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Antoni Torres
- CELLEX Research Laboratories, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Laia Fernández-Barat
- CELLEX Research Laboratories, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Pneumology Department, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
5
|
Magazine N, Zhang T, Bungwon AD, McGee MC, Wu Y, Veggiani G, Huang W. Immune Epitopes of SARS-CoV-2 Spike Protein and Considerations for Universal Vaccine Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564184. [PMID: 37961687 PMCID: PMC10634854 DOI: 10.1101/2023.10.26.564184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Despite the success of global vaccination programs in slowing the spread of COVID-19, these efforts have been hindered by the emergence of new SARS-CoV-2 strains capable of evading prior immunity. The mutation and evolution of SARS-CoV-2 have created a demand for persistent efforts in vaccine development. SARS-CoV-2 Spike protein has been the primary target for COVID-19 vaccine development, but it is also the hotspot of mutations directly involved in host susceptibility and immune evasion. Our ability to predict emerging mutants and select conserved epitopes is critical for the development of a broadly neutralizing therapy or a universal vaccine. In this article, we review the general paradigm of immune responses to COVID-19 vaccines, highlighting the immunological epitopes of Spike protein that are likely associated with eliciting protective immunity resulting from vaccination. Specifically, we analyze the structural and evolutionary characteristics of the SARS-CoV-2 Spike protein related to immune activation and function via the toll-like receptors (TLRs), B cells, and T cells. We aim to provide a comprehensive analysis of immune epitopes of Spike protein, thereby contributing to the development of new strategies for broad neutralization or universal vaccination.
Collapse
Affiliation(s)
- Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Anang D. Bungwon
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael C. McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yingying Wu
- Department of Mathematics, University of Houston, Houston, TX 77204, USA
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
7
|
Cia G, Pucci F, Rooman M. Critical review of conformational B-cell epitope prediction methods. Brief Bioinform 2023; 24:6972295. [PMID: 36611255 DOI: 10.1093/bib/bbac567] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 01/09/2023] Open
Abstract
Accurate in silico prediction of conformational B-cell epitopes would lead to major improvements in disease diagnostics, drug design and vaccine development. A variety of computational methods, mainly based on machine learning approaches, have been developed in the last decades to tackle this challenging problem. Here, we rigorously benchmarked nine state-of-the-art conformational B-cell epitope prediction webservers, including generic and antibody-specific methods, on a dataset of over 250 antibody-antigen structures. The results of our assessment and statistical analyses show that all the methods achieve very low performances, and some do not perform better than randomly generated patches of surface residues. In addition, we also found that commonly used consensus strategies that combine the results from multiple webservers are at best only marginally better than random. Finally, we applied all the predictors to the SARS-CoV-2 spike protein as an independent case study, and showed that they perform poorly in general, which largely recapitulates our benchmarking conclusions. We hope that these results will lead to greater caution when using these tools until the biases and issues that limit current methods have been addressed, promote the use of state-of-the-art evaluation methodologies in future publications and suggest new strategies to improve the performance of conformational B-cell epitope prediction methods.
Collapse
Affiliation(s)
- Gabriel Cia
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, F. Roosevelt Avenue, 1050, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Triumph Boulevard, 1050, Brussels, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, F. Roosevelt Avenue, 1050, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Triumph Boulevard, 1050, Brussels, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, F. Roosevelt Avenue, 1050, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Triumph Boulevard, 1050, Brussels, Belgium
| |
Collapse
|
8
|
Wang X, Chen X, Tan J, Yue S, Zhou R, Xu Y, Lin Y, Yang Y, Zhou Y, Deng K, Chen Z, Ye L, Zhu Y. 35B5 antibody potently neutralizes SARS-CoV-2 Omicron by disrupting the N-glycan switch via a conserved spike epitope. Cell Host Microbe 2022; 30:887-895.e4. [PMID: 35436443 PMCID: PMC8960183 DOI: 10.1016/j.chom.2022.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 11/11/2022]
Abstract
The SARS-CoV-2 Omicron variant harbors more than 30 mutations in the spike protein, leading to immune evasion from many therapeutic neutralizing antibodies. We reveal that a receptor-binding domain (RBD)-targeting monoclonal antibody, 35B5, exhibits potent neutralizing efficacy to Omicron. Cryo-electron microscopy structures of the extracellular domain trimer of Omicron spike with 35B5 Fab reveal that Omicron spike exhibits tight trimeric packing and high thermostability, as well as significant antigenic shifts and structural changes, within the RBD, N-terminal domain (NTD), and subdomains 1 and 2. However, these changes do not affect targeting of the invariant 35B5 epitope. 35B5 potently neutralizes SARS-CoV-2 Omicron and other variants by causing significant conformational changes within a conserved N-glycan switch that controls the transition of RBD from the “down” state to the “up” state, which allows recognition of the host entry receptor ACE2. This mode of action and potent neutralizing capacity of 35B5 indicate its potential therapeutic application for SARS-CoV-2.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; MOE Laboratory for Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangyu Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jiaxing Tan
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; MOE Laboratory for Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuai Yue
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China
| | - Runhong Zhou
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yan Xu
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; MOE Laboratory for Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yao Lin
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China
| | - Yang Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yan Zhou
- Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Lilin Ye
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China.
| | - Yongqun Zhu
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; MOE Laboratory for Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
9
|
Gan SKE, Phua SX, Yeo JY. Sagacious epitope selection for vaccines, and both antibody-based therapeutics and diagnostics: tips from virology and oncology. Antib Ther 2022; 5:63-72. [PMID: 35372784 PMCID: PMC8972324 DOI: 10.1093/abt/tbac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The target of an antibody plays a significant role in the success of antibody-based therapeutics and diagnostics, and vaccine development. This importance is focused on the target binding site—epitope, where epitope selection as a part of design thinking beyond traditional antigen selection using whole cell or whole protein immunization can positively impact success. With purified recombinant protein production and peptide synthesis to display limited/selected epitopes, intrinsic factors that can affect the functioning of resulting antibodies can be more easily selected for. Many of these factors stem from the location of the epitope that can impact accessibility of the antibody to the epitope at a cellular or molecular level, direct inhibition of target antigen activity, conservation of function despite escape mutations, and even non-competitive inhibition sites. By incorporating novel computational methods for predicting antigen changes to model-informed drug discovery and development, superior vaccines and antibody-based therapeutics or diagnostics can be easily designed to mitigate failures. With detailed examples, this review highlights the new opportunities, factors and methods of predicting antigenic changes for consideration in sagacious epitope selection.
Collapse
Affiliation(s)
- Samuel Ken-En Gan
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
- APD SKEG Pte Ltd, Singapore 439444, Singapore
| | - Ser-Xian Phua
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| |
Collapse
|
10
|
Staufer O, Gupta K, Hernandez Bücher JE, Kohler F, Sigl C, Singh G, Vasileiou K, Yagüe Relimpio A, Macher M, Fabritz S, Dietz H, Cavalcanti Adam EA, Schaffitzel C, Ruggieri A, Platzman I, Berger I, Spatz JP. Synthetic virions reveal fatty acid-coupled adaptive immunogenicity of SARS-CoV-2 spike glycoprotein. Nat Commun 2022; 13:868. [PMID: 35165285 PMCID: PMC8844029 DOI: 10.1038/s41467-022-28446-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 infection is a major global public health concern with incompletely understood pathogenesis. The SARS-CoV-2 spike (S) glycoprotein comprises a highly conserved free fatty acid binding pocket (FABP) with unknown function and evolutionary selection advantage1,2. Deciphering FABP impact on COVID-19 progression is challenged by the heterogenous nature and large molecular variability of live virus. Here we create synthetic minimal virions (MiniVs) of wild-type and mutant SARS-CoV-2 with precise molecular composition and programmable complexity by bottom-up assembly. MiniV-based systematic assessment of S free fatty acid (FFA) binding reveals that FABP functions as an allosteric regulatory site enabling adaptation of SARS-CoV-2 immunogenicity to inflammation states via binding of pro-inflammatory FFAs. This is achieved by regulation of the S open-to-close equilibrium and the exposure of both, the receptor binding domain (RBD) and the SARS-CoV-2 RGD motif that is responsible for integrin co-receptor engagement. We find that the FDA-approved drugs vitamin K and dexamethasone modulate S-based cell binding in an FABP-like manner. In inflammatory FFA environments, neutralizing immunoglobulins from human convalescent COVID-19 donors lose neutralization activity. Empowered by our MiniV technology, we suggest a conserved mechanism by which SARS-CoV-2 dynamically couples its immunogenicity to the host immune response.
Collapse
Affiliation(s)
- Oskar Staufer
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany.
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK.
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany.
| | - Kapil Gupta
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - Jochen Estebano Hernandez Bücher
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Fabian Kohler
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Christian Sigl
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Gunjita Singh
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Kate Vasileiou
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Ana Yagüe Relimpio
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Meline Macher
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Sebastian Fabritz
- Department for Chemical Biology, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Hendrik Dietz
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Elisabetta Ada Cavalcanti Adam
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Christiane Schaffitzel
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol, BS8 1TQ, UK
- Halo Therapeutics Ltd, Science Creates, Albert Road St. Philips Central, Bristol, BS2 0XJ, UK
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrated Infectious Disease Research, University of Heidelberg, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Ilia Platzman
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Imre Berger
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK.
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK.
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol, BS8 1TQ, UK.
- Halo Therapeutics Ltd, Science Creates, Albert Road St. Philips Central, Bristol, BS2 0XJ, UK.
| | - Joachim P Spatz
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany.
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK.
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
Cia G, Pucci F, Rooman M. Analysis of the Neutralizing Activity of Antibodies Targeting Open or Closed SARS-CoV-2 Spike Protein Conformations. Int J Mol Sci 2022; 23:ijms23042078. [PMID: 35216194 PMCID: PMC8876721 DOI: 10.3390/ijms23042078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 infection elicits a polyclonal neutralizing antibody (nAb) response that primarily targets the spike protein, but it is still unclear which nAbs are immunodominant and what distinguishes them from subdominant nAbs. This information would however be crucial to predict the evolutionary trajectory of the virus and design future vaccines. To shed light on this issue, we gathered 83 structures of nAbs in complex with spike protein domains. We analyzed in silico the ability of these nAbs to bind the full spike protein trimer in open and closed conformations, and predicted the change in binding affinity of the most frequently observed spike protein variants in the circulating strains. This led us to define four nAb classes with distinct variant escape fractions. By comparing these fractions with those measured from plasma of infected patients, we showed that the class of nAbs that most contributes to the immune response is able to bind the spike protein in its closed conformation. Although this class of nAbs only partially inhibits the spike protein binding to the host’s angiotensin converting enzyme 2 (ACE2), it has been suggested to lock the closed pre-fusion spike protein conformation and therefore prevent its transition to an open state. Furthermore, comparison of our predictions with mRNA-1273 vaccinated patient plasma measurements suggests that spike proteins contained in vaccines elicit a different nAb class than the one elicited by natural SARS-CoV-2 infection and suggests the design of highly stable closed-form spike proteins as next-generation vaccine immunogens.
Collapse
Affiliation(s)
- Gabriel Cia
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (G.C.); (F.P.)
- Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (G.C.); (F.P.)
- Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (G.C.); (F.P.)
- Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
- Correspondence:
| |
Collapse
|
12
|
The rapid progress in COVID vaccine development and implementation. NPJ Vaccines 2022; 7:20. [PMID: 35145102 PMCID: PMC8831501 DOI: 10.1038/s41541-022-00442-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 11/09/2022] Open
|
13
|
Saini S, Agarwal M, Pradhan A, Pareek S, Singh AK, Dhawan G, Dhawan U, Kumar Y. Exploring the role of framework mutations in enabling breadth of a cross-reactive antibody (CR3022) against the SARS-CoV-2 RBD and its variants of concern. J Biomol Struct Dyn 2022; 41:2341-2354. [PMID: 35098888 DOI: 10.1080/07391102.2022.2030800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cross-reactive and broadly neutralizing antibodies against surface proteins of diverse strains of rapidly evolving viral pathogens like SARS-CoV-2 can prevent infection and therefore are crucial for the development of effective universal vaccines. While antibodies typically incorporate mutations in their complementarity determining regions during affinity maturation, mutations in the framework regions have been reported as players in determining properties of broadly neutralizing antibodies against HIV and the Influenza virus. We propose an increase in the cross-reactive potential of CR3022 against the emerging SARS- CoV-2 variants of concern through enhanced conformational flexibility. In this study, we use molecular dynamics simulations, in silico mutagenesis, structural modeling, and docking to explore the role of light chain FWR mutations in CR3022, a SARS-CoV anti-spike (S)-protein antibody cross-reactive to the S-protein receptor binding domain of SARS-CoV-2. Our study shows that single substitutions in the light chain framework region of CR3022 with conserved epitopes across SARS-CoV strains allow targeting of diverse antibody epitope footprints that align with the epitopes of recently-categorized neutralizing antibody classes while enabling binding to more than one strain of SARS-CoV-2. Our study has implications for rapid and evolution-based engineering of broadly neutralizing antibodies and reaffirms the role of framework mutations in effective change of antibody orientation and conformation via improved flexibility.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samvedna Saini
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| | - Manusmriti Agarwal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India.,Faculty of Technology, University of Delhi, New Delhi, India
| | - Amartya Pradhan
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India.,Faculty of Technology, University of Delhi, New Delhi, India.,Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Savitha Pareek
- High Performance Computing (HPC) & AI Innovation Lab, Dell EMC, Bengaluru, India
| | - Ashish K Singh
- High Performance Computing (HPC) & AI Innovation Lab, Dell EMC, Bengaluru, India
| | - Gagan Dhawan
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Yatender Kumar
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| |
Collapse
|
14
|
Devaux CA, Pinault L, Delerce J, Raoult D, Levasseur A, Frutos R. Spread of Mink SARS-CoV-2 Variants in Humans: A Model of Sarbecovirus Interspecies Evolution. Front Microbiol 2021; 12:675528. [PMID: 34616371 PMCID: PMC8488371 DOI: 10.3389/fmicb.2021.675528] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023] Open
Abstract
The rapid spread of SARS-CoV-2 variants has quickly spanned doubts and the fear about their ability escape vaccine protection. Some of these variants initially identified in caged were also found in humans. The claim that these variants exhibited lower susceptibility to antibody neutralization led to the slaughter of 17 million minks in Denmark. SARS-CoV-2 prevalence tests led to the discovery of infected farmed minks worldwide. In this study, we revisit the issue of the circulation of SARS-CoV-2 variants in minks as a model of sarbecovirus interspecies evolution by: (1) comparing human and mink angiotensin I converting enzyme 2 (ACE2) and neuropilin 1 (NRP-1) receptors; (2) comparing SARS-CoV-2 sequences from humans and minks; (3) analyzing the impact of mutations on the 3D structure of the spike protein; and (4) predicting linear epitope targets for immune response. Mink-selected SARS-CoV-2 variants carrying the Y453F/D614G mutations display an increased affinity for human ACE2 and can escape neutralization by one monoclonal antibody. However, they are unlikely to lose most of the major epitopes predicted to be targets for neutralizing antibodies. We discuss the consequences of these results for the rational use of SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
- Fondation IHU–Méditerranée Infection, Marseille, France
| | - Lucile Pinault
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
| | - Jérémy Delerce
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
| | - Anthony Levasseur
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
| | | |
Collapse
|
15
|
Maharjan PM, Choe S. Plant-Based COVID-19 Vaccines: Current Status, Design, and Development Strategies of Candidate Vaccines. Vaccines (Basel) 2021; 9:992. [PMID: 34579229 PMCID: PMC8473425 DOI: 10.3390/vaccines9090992] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
The prevalence of the coronavirus disease 2019 (COVID-19) pandemic in its second year has led to massive global human and economic losses. The high transmission rate and the emergence of diverse SARS-CoV-2 variants demand rapid and effective approaches to preventing the spread, diagnosing on time, and treating affected people. Several COVID-19 vaccines are being developed using different production systems, including plants, which promises the production of cheap, safe, stable, and effective vaccines. The potential of a plant-based system for rapid production at a commercial scale and for a quick response to an infectious disease outbreak has been demonstrated by the marketing of carrot-cell-produced taliglucerase alfa (Elelyso) for Gaucher disease and tobacco-produced monoclonal antibodies (ZMapp) for the 2014 Ebola outbreak. Currently, two plant-based COVID-19 vaccine candidates, coronavirus virus-like particle (CoVLP) and Kentucky Bioprocessing (KBP)-201, are in clinical trials, and many more are in the preclinical stage. Interim phase 2 clinical trial results have revealed the high safety and efficacy of the CoVLP vaccine, with 10 times more neutralizing antibody responses compared to those present in a convalescent patient's plasma. The clinical trial of the CoVLP vaccine could be concluded by the end of 2021, and the vaccine could be available for public immunization thereafter. This review encapsulates the efforts made in plant-based COVID-19 vaccine development, the strategies and technologies implemented, and the progress accomplished in clinical trials and preclinical studies so far.
Collapse
Affiliation(s)
- Puna Maya Maharjan
- G+FLAS Life Sciences, 123 Uiryodanji-gil, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Korea;
| | - Sunghwa Choe
- G+FLAS Life Sciences, 38 Nakseongdae-ro, Gwanak-gu, Seoul 08790, Korea
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
16
|
Maharjan PM, Cheon J, Jung J, Kim H, Lee J, Song M, Jeong GU, Kwon Y, Shim B, Choe S. Plant-Expressed Receptor Binding Domain of the SARS-CoV-2 Spike Protein Elicits Humoral Immunity in Mice. Vaccines (Basel) 2021; 9:978. [PMID: 34579215 PMCID: PMC8472882 DOI: 10.3390/vaccines9090978] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022] Open
Abstract
The current 15-month coronavirus disease-19 (COVID-19) pandemic caused by SARS-CoV-2 has accounted for 3.77 million deaths and enormous worldwide social and economic losses. A high volume of vaccine production is urgently required to eliminate COVID-19. Inexpensive and robust production platforms will improve the distribution of vaccines to resource-limited countries. Plant species offer such platforms, particularly through the production of recombinant proteins to serve as immunogens. To achieve this goal, here we expressed the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein in the glycoengineered-tobacco plant Nicotiana benthamiana to provide a candidate subunit vaccine. This recombinant RBD elicited humoral immunity in mice via induction of highly neutralizing antibodies. These findings provide a strong foundation to further advance the development of plant-expressed RBD antigens for use as an effective, safe, and inexpensive SARS-CoV-2 vaccine. Moreover, our study further highlights the utility of plant species for vaccine development.
Collapse
Affiliation(s)
- Puna Maya Maharjan
- G+FLAS Life Sciences, 123 Uiryodanji-gil, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Korea; (P.M.M.); (J.L.); (M.S.)
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| | - Jinyeong Cheon
- G+FLAS Life Sciences, 38 Nakseongdae-ro, Gwanak-gu, Seoul 08790, Korea; (J.C.); (J.J.); (H.K.)
| | - Jiyun Jung
- G+FLAS Life Sciences, 38 Nakseongdae-ro, Gwanak-gu, Seoul 08790, Korea; (J.C.); (J.J.); (H.K.)
| | - Haerim Kim
- G+FLAS Life Sciences, 38 Nakseongdae-ro, Gwanak-gu, Seoul 08790, Korea; (J.C.); (J.J.); (H.K.)
| | - Jaewon Lee
- G+FLAS Life Sciences, 123 Uiryodanji-gil, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Korea; (P.M.M.); (J.L.); (M.S.)
| | - Minjeong Song
- G+FLAS Life Sciences, 123 Uiryodanji-gil, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Korea; (P.M.M.); (J.L.); (M.S.)
| | - Gi Uk Jeong
- Center for Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (G.U.J.); (Y.K.)
| | - Youngchan Kwon
- Center for Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (G.U.J.); (Y.K.)
| | - Byoungshik Shim
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea;
| | - Sunghwa Choe
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Korea
- G+FLAS Life Sciences, 38 Nakseongdae-ro, Gwanak-gu, Seoul 08790, Korea; (J.C.); (J.J.); (H.K.)
| |
Collapse
|
17
|
Mueller S. Rarely Recognized Antibody Diversification in Covid-19 Evolution to Counteract Advanced SARS-CoV-2 Evasion Strategies, and Implications for Prophylactic Treatment. Front Physiol 2021; 12:624675. [PMID: 34413782 PMCID: PMC8369989 DOI: 10.3389/fphys.2021.624675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
The ongoing Covid-19 pandemic underscores the importance of finding effective and safe ways to combat the virus, and to optimally understand the immune response elicited upon natural infection. This likely involves all components of the immune system, both innate and adaptive. The impetus for the rapid development of prophylactic treatment options has led to an intense focus on neutralizing antibodies (Abs), and many novel and specialized platforms have been designed to achieve that goal. B-cell immunity relies on the generation of a diverse repertoire of Abs. Their structural variation is defined in terms of amino acid composition that is encoded in the genome or acquired through somatic mutations. Yet, key examples of frequently neglected antibody diversification mechanisms involving post-translational modifications such as N- or O-linked glycosylation are present in significant portions of the population. During the last few years, these and other beyond gene sequence determined humoral immune response mechanisms have in some specific cases revealed their potent immunomodulatory effects. Nonetheless, such more unusual mechanisms have not received much attention in the context of SARS-CoV-2. Thus, with specific focus on the latter, this paper presents, (1) the rationale for considering beyond sequence determined strategies, (2) evidence for their possible involvement in Covid-19 disease evolution, (3) consequences for vaccine design exemplified by one of the vaccine candidates that is currently undergoing trial, and (4) more general implications. Based on a critical interpretation of published literature, the hypotheses developed in this study point to a crucial role of non-genetic antibody diversification mechanisms in disease evolution to counteract unique immunogenicity determinants of SARS-CoV-2 infection. The involvement of post translational mechanisms may also help explain the widely varied immune response observed, not only among different patient groups, but also in terms of their observed incompatibility with SARS-CoV-2 infection in several human cell types. The article highlights potentials and challenges of these refined humoral immune response mechanisms to most optimally target non-genetic viral evasion strategies.
Collapse
|
18
|
Praissman JL, Wells L. Proteomics-Based Insights Into the SARS-CoV-2-Mediated COVID-19 Pandemic: A Review of the First Year of Research. Mol Cell Proteomics 2021; 20:100103. [PMID: 34089862 PMCID: PMC8176883 DOI: 10.1016/j.mcpro.2021.100103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023] Open
Abstract
In late 2019, a virus subsequently named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China and led to a worldwide pandemic of the disease termed coronavirus disease 2019. The global health threat posed by this pandemic led to an extremely rapid and robust mobilization of the scientific and medical communities as evidenced by the publication of more than 10,000 peer-reviewed articles and thousands of preprints in the first year of the pandemic alone. With the publication of the initial genome sequence of SARS-CoV-2, the proteomics community immediately joined this effort publishing, to date, more than 100 peer-reviewed proteomics studies and submitting many more preprints to preprint servers. In this review, we focus on peer-reviewed articles published on the proteome, glycoproteome, and glycome of SARS-CoV-2. At a basic level, proteomic studies provide valuable information on quantitative aspects of viral infection course; information on the identities, sites, and microheterogeneity of post-translational modifications; and, information on protein-protein interactions. At a biological systems level, these studies elucidate host cell and tissue responses, characterize antibodies and other immune system factors in infection, suggest biomarkers that may be useful for diagnosis and disease-course monitoring, and help in the development or repurposing of potential therapeutics. Here, we summarize results from selected early studies to provide a perspective on the current rapidly evolving literature.
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
19
|
Dykema AG, Zhang B, Woldemeskel BA, Garliss CC, Cheung LS, Choudhury D, Zhang J, Aparicio L, Bom S, Rashid R, Caushi JX, Hsiue EHC, Cascino K, Thompson EA, Kwaa AK, Singh D, Thapa S, Ordonez AA, Pekosz A, D'Alessio FR, Powell JD, Yegnasubramanian S, Zhou S, Pardoll DM, Ji H, Cox AL, Blankson JN, Smith KN. Functional characterization of CD4+ T cell receptors crossreactive for SARS-CoV-2 and endemic coronaviruses. J Clin Invest 2021; 131:146922. [PMID: 33830946 DOI: 10.1172/jci146922] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDRecent studies have reported T cell immunity to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in unexposed donors, possibly due to crossrecognition by T cells specific for common cold coronaviruses (CCCs). True T cell crossreactivity, defined as the recognition by a single TCR of more than one distinct peptide-MHC ligand, has never been shown in the context of SARS-CoV-2.METHODSWe used the viral functional expansion of specific T cells (ViraFEST) platform to identify T cell responses crossreactive for the spike (S) glycoproteins of SARS-CoV-2 and CCCs at the T cell receptor (TCR) clonotype level in convalescent COVID-19 patients (CCPs) and SARS-CoV-2-unexposed donors. Confirmation of SARS-CoV-2/CCC crossreactivity and assessments of functional avidity were performed using a TCR cloning and transfection system.RESULTSMemory CD4+ T cell clonotypes that crossrecognized the S proteins of SARS-CoV-2 and at least one other CCC were detected in 65% of CCPs and unexposed donors. Several of these TCRs were shared among multiple donors. Crossreactive T cells demonstrated significantly impaired SARS-CoV-2-specific proliferation in vitro relative to monospecific CD4+ T cells, which was consistent with lower functional avidity of their TCRs for SARS-CoV-2 relative to CCC.CONCLUSIONSOur data confirm, for what we believe is the first time, the existence of unique memory CD4+ T cell clonotypes crossrecognizing SARS-CoV-2 and CCCs. The lower avidity of crossreactive TCRs for SARS-CoV-2 may be the result of antigenic imprinting, such that preexisting CCC-specific memory T cells have reduced expansive capacity upon SARS-CoV-2 infection. Further studies are needed to determine how these crossreactive T cell responses affect clinical outcomes in COVID-19 patients.FUNDINGNIH funding (U54CA260492, P30CA006973, P41EB028239, R01AI153349, R01AI145435-A1, R21AI149760, and U19A1088791) was provided by the National Institute of Allergy and Infectious Diseases, the National Cancer Institute, and the National Institute of Biomedical Imaging and Bioengineering. The Bloomberg~Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University Provost, and The Bill and Melinda Gates Foundation provided funding for this study.
Collapse
Affiliation(s)
- Arbor G Dykema
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Boyang Zhang
- Department of Biostatistics, School of Public Health
| | | | | | - Laurene S Cheung
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Dilshad Choudhury
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Jiajia Zhang
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Luis Aparicio
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Sadhana Bom
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Rufiaat Rashid
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Justina X Caushi
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Emily Han-Chung Hsiue
- Sidney Kimmel Comprehensive Cancer Center.,Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center
| | | | - Elizabeth A Thompson
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | | | - Dipika Singh
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Sampriti Thapa
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | | | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Jonathan D Powell
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | | | - Shibin Zhou
- Sidney Kimmel Comprehensive Cancer Center.,Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center
| | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Hongkai Ji
- Department of Biostatistics, School of Public Health
| | - Andrea L Cox
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Department of Medicine, School of Medicine, and
| | | | - Kellie N Smith
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| |
Collapse
|
20
|
Abstract
Excessive complement activation contributes to lung disease and adverse patient outcomes in COVID-19 (see the related Research Articles by Yan et al and Ma et al).
Collapse
Affiliation(s)
- Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, 02118, MA, USA.
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, 55131 Mainz, Germany
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
- Research Center for Immunotherapy (FZI), University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
21
|
Bioinformatics Tools for Gene and Genome Annotation Analysis of Microbes for Synthetic Biology and Cancer Biology Applications. Adv Bioinformatics 2021. [DOI: 10.1007/978-981-33-6191-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|