1
|
Tishchenko A, Romero N, Van Waesberghe C, Delva JL, Vickman O, Smith GA, Mettenleiter TC, Fuchs W, Klupp BG, Favoreel HW. Pseudorabies virus infection triggers pUL46-mediated phosphorylation of connexin-43 and closure of gap junctions to promote intercellular virus spread. PLoS Pathog 2025; 21:e1012895. [PMID: 39836710 PMCID: PMC11774492 DOI: 10.1371/journal.ppat.1012895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/28/2025] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Gap junctions (GJs) play a pivotal role in intercellular communication between eukaryotic cells, including transfer of biomolecules that contribute to the innate and adaptive immune response. However, if, how and why viruses affect gap junction intercellular communication (GJIC) remains largely unexplored. Here, we describe how the alphaherpesvirus pseudorabies virus (PRV) triggers ERK1/2-mediated phosphorylation of the main gap junction component connexin 43 (Cx43) and closure of GJIC, which depends on the viral protein pUL46. Consequently, a UL46null PRV mutant is unable to phosphorylate Cx43 or inhibit GJIC and displays reduced intercellular spread, which is effectively rescued by pharmacological inhibition of GJIC. Intercellular spread of UL46null PRV is also rescued by inhibition of the stimulator of interferon genes (STING), suggesting that pUL46-mediated suppression of GJIC contributes to intercellular virus spread by hindering intercellular communication that activates STING. The current study identifies key viral and cellular proteins involved in alphaherpesvirus-mediated suppression of GJIC and reveals that GJIC inhibition enhances virus intercellular spread, thereby opening new avenues for the design of targeted antiviral therapies.
Collapse
Affiliation(s)
- Alexander Tishchenko
- Department of Translational Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nicolás Romero
- Department of Translational Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cliff Van Waesberghe
- Department of Translational Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jonas L. Delva
- Department of Translational Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Oliver Vickman
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gregory A. Smith
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Insel Riems, Germany
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Insel Riems, Germany
| | - Herman W. Favoreel
- Department of Translational Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
2
|
Hu Y, Zhang SY, Sun WC, Feng YR, Gong HR, Ran DL, Zhang BZ, Liu JH. Breaking Latent Infection: How ORF37/38-Deletion Mutants Offer New Hope against EHV-1 Neuropathogenicity. Viruses 2024; 16:1472. [PMID: 39339948 PMCID: PMC11437417 DOI: 10.3390/v16091472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Equid alphaherpesvirus 1 (EHV-1) has been linked to the emergence of neurological disorders, with the horse racing industry experiencing significant impacts from outbreaks of equine herpesvirus myeloencephalopathy (EHM). Building robust immune memory before pathogen exposure enables rapid recognition and elimination, preventing infection. This is crucial for effectively managing EHV-1. Removing neuropathogenic factors and immune evasion genes to develop live attenuated vaccines appears to be a successful strategy for EHV-1 vaccines. We created mutant viruses without ORF38 and ORF37/38 and validated their neuropathogenicity and immunogenicity in hamsters. The ∆ORF38 strain caused brain tissue damage at high doses, whereas the ∆ORF37/38 strain did not. Dexamethasone was used to confirm latent herpesvirus infection and reactivation. Dexamethasone injection increased viral DNA load in the brains of hamsters infected with the parental and ∆ORF38 strains, but not in those infected with the ∆ORF37/38 strain. Immunizing hamsters intranasally with the ∆ORF37/38 strain as a live vaccine produced a stronger immune response compared to the ∆ORF38 strain at the same dose. The hamsters demonstrated effective protection against a lethal challenge with the parental strain. This suggests that the deletion of ORF37/38 may effectively inhibit latent viral infection, reduce the neuropathogenicity of EHV-1, and induce a protective immune response.
Collapse
Affiliation(s)
- Yue Hu
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Si-Yu Zhang
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
| | - Wen-Cheng Sun
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
| | - Ya-Ru Feng
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
| | - Hua-Rui Gong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Duo-Liang Ran
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jian-Hua Liu
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
| |
Collapse
|
3
|
Hu Y, Wu G, Jia Q, Zhang B, Sun W, Sa R, Zhang S, Cai W, Jarhen, Ran D, Liu J. Development of a live attenuated vaccine candidate for equid alphaherpesvirus 1 control: a step towards efficient protection. Front Immunol 2024; 15:1408510. [PMID: 39021566 PMCID: PMC11252532 DOI: 10.3389/fimmu.2024.1408510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Equid alphaherpesvirus 1 (EqAHV1) is a viral pathogen known to cause respiratory disease, neurologic syndromes, and abortion storms in horses. Currently, there are no vaccines that provide complete protection against EqAHV1. Marker vaccines and the differentiation of infected and vaccinated animals (DIVA) strategy are effective for preventing and controlling outbreaks but have not been used for the prevention of EqAHV1 infection. Glycoprotein 2 (gp2), located on the envelope of viruses (EqAHV1), exhibits high antigenicity and functions as a molecular marker for DIVA. In this study, a series of EqAHV1 mutants with deletion of gp2 along with other virulence genes (TK, UL24/TK, gI/gE) were engineered. The mutant viruses were studied in vitro and then in an in vivo experiment using Golden Syrian hamsters to assess the extent of viral attenuation and the immune response elicited by the mutant viruses in comparison to the wild-type (WT) virus. Compared with the WT strain, the YM2019 Δgp2, ΔTK/gp2, and ΔUL24/TK/gp2 strains exhibited reduced growth in RK-13 cells, while the ΔgI/gE/gp2 strain exhibited significantly impaired proliferation. The YM2019 Δgp2 strain induced clinical signs and mortality in hamsters. In contrast, the YM2019 ΔTK/gp2 and ΔUL24/TK/gp2 variants displayed diminished pathogenicity, causing no observable clinical signs or fatalities. Immunization with nasal vaccines containing YM2019 ΔTK/gp2 and ΔUL24/TK/gp2 elicited a robust immune response in hamsters. In particular, compared with the vaccine containing the ΔTK/gp2 strain, the vaccine containing the ΔUL24/TK/gp2 strain demonstrated enhanced immune protection upon challenge with the WT virus. Furthermore, an ELISA for gp2 was established and refined to accurately differentiate between infected and vaccinated animals. These results confirm that the ΔUL24/TK/gp2 strain is a safe and effective live attenuated vaccine candidate for controlling EqAHV1 infection.
Collapse
Affiliation(s)
- Yue Hu
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Guiling Wu
- Preventive Control Section, Aksu Regional Animal Disease Control and Diagnostic Center, Aksu, Xinjiang Uygur Autonomous Region, China
| | - Qinrui Jia
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Baozhong Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Wencheng Sun
- Food, Agricultural and Health Products Division, Centre Testing International Group Co., Ltd., Qingdao, Shandong, China
| | - Ruixue Sa
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Siyu Zhang
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Weifan Cai
- Product Manufacturing Sector, GemPharmatech Co., Ltd., Shanghai, China
| | - Jarhen
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Duoliang Ran
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jianhua Liu
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
4
|
Bland WA, Mitra D, Owens S, McEvoy K, Hogan CH, Boccuzzi L, Kirillov V, Meyer TJ, Khairallah C, Sheridan BS, Forrest JC, Krug LT. A replication-deficient gammaherpesvirus vaccine protects mice from lytic disease and reduces latency establishment. NPJ Vaccines 2024; 9:116. [PMID: 38914546 PMCID: PMC11196663 DOI: 10.1038/s41541-024-00908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/11/2024] [Indexed: 06/26/2024] Open
Abstract
Gammaherpesviruses are oncogenic viruses that establish lifelong infections and are significant causes of morbidity and mortality. Vaccine strategies to limit gammaherpesvirus infection and disease are in development, but there are no FDA-approved vaccines for Epstein-Barr or Kaposi sarcoma herpesvirus. As a new approach to gammaherpesvirus vaccination, we developed and tested a replication-deficient virus (RDV) platform, using murine gammaherpesvirus 68 (MHV68), a well-established mouse model for gammaherpesvirus pathogenesis studies and preclinical therapeutic evaluations. We employed codon-shuffling-based complementation to generate revertant-free RDV lacking expression of the essential replication and transactivator protein encoded by ORF50 to arrest viral gene expression early after de novo infection. Inoculation with RDV-50.stop exposes the host to intact virion particles and leads to limited lytic gene expression in infected cells yet does not produce additional infectious particles. Prime-boost vaccination of mice with RDV-50.stop elicited virus-specific neutralizing antibody and effector T cell responses in the lung and spleen. In contrast to vaccination with heat-inactivated WT MHV68, vaccination with RDV-50.stop resulted in a near complete abolishment of virus replication in the lung 7 days post-challenge and reduction of latency establishment in the spleen 16 days post-challenge with WT MHV68. Ifnar1-/- mice, which lack the type I interferon receptor, exhibit severe disease and high mortality upon infection with WT MHV68. RDV-50.stop vaccination of Ifnar1-/- mice prevented wasting and mortality upon challenge with WT MHV68. These results demonstrate that prime-boost vaccination with a gammaherpesvirus that is unable to undergo lytic replication offers protection against acute replication, impairs the establishment of latency, and prevents severe disease upon the WT virus challenge. Our study also reveals that the ability of a gammaherpesvirus to persist in vivo despite potent pre-existing immunity is an obstacle to obtaining sterilizing immunity.
Collapse
Affiliation(s)
- Wesley A Bland
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Environment, Health and Safety, University of North Carolina, Chapel Hill, NC, USA
| | - Dipanwita Mitra
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
| | - Shana Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kyle McEvoy
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Chad H Hogan
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, USA
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luciarita Boccuzzi
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
- Doctor of Medicine Program, Rush University Medical Center, 1650, West Harrison Street, Chicago, IL, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Thomas J Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - J Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA.
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
5
|
Allen JC, Natta SS, Nasrin S, Toapanta FR, Tennant SM. Deletion of an immune evasion gene, steD, from a live Salmonella enterica serovar Typhimurium vaccine improves vaccine responses in aged mice. Front Immunol 2024; 15:1376734. [PMID: 38911854 PMCID: PMC11190192 DOI: 10.3389/fimmu.2024.1376734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/07/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Non-typhoidal Salmonella (NTS) generally causes self-limiting gastroenteritis. However, older adults (≥65 years) can experience more severe outcomes from NTS infection. We have previously shown that a live attenuated S. Typhimurium vaccine, CVD 1926 (I77 ΔguaBA ΔclpP ΔpipA ΔhtrA), was immunogenic in adult but not aged mice. Here we describe modification of CVD 1926 through deletion of steD, a Salmonella effector responsible for host immune escape, which we hypothesized would increase immunogenicity in aged mice. Methods Mel Juso and/or mutuDC cells were infected with S. Typhimurium I77, CVD 1926, and their respective steD mutants, and the MHC-II levels were evaluated. Aged (18-month-old) C57BL/6 mice received two doses of PBS, CVD 1926, or CVD 1926 ΔsteD perorally (109 CFU) and the number of FliC-specific CD4+ T cells were determined. Lastly, aged C57BL/6 mice received three doses of PBS, CVD 1926, or CVD 1926 ΔsteD perorally (109 CFU) and then were challenged perorally with wild-type S. Typhimurium SL1344 (108 CFU). These animals were also evaluated for antibody responses. Results MHC-II induction was higher in cells treated with steD mutants, compared to their respective parental strains. Compared to PBS-vaccinated mice, CVD 1926 ΔsteD elicited significantly more FliC-specific CD4+ T cells in the Peyer's Patches. There were no significant differences in FliC-specific CD4+ T cells in the Peyer's patches or spleen of CVD 1926- versus PBS-immunized mice. CVD 1926 and CVD 1926 ΔsteD induced similar serum and fecal anti-core and O polysaccharide antibody titers after three doses. After two immunizations, the proportion of seroconverters for CVD 1926 ΔsteD was 83% (10/12) compared to 42% (5/12) for CVD 1926. Compared to PBS-immunized mice, mice immunized with CVD 1926 ΔsteD had significantly lower S. Typhimurium counts in the spleen, cecum, and small intestine upon challenge. In contrast, there were no differences in bacterial loads in the tissues of PBS-vaccinated and CVD 1926-immunized animals. Conclusion These data suggest that the steD deletion enhanced the immunogenicity of our live attenuated S. Typhimurium vaccine. Deletion of immune evasion genes could be a potential strategy to improve the immunogenicity of live attenuated vaccines in older adults.
Collapse
Affiliation(s)
- Jessica C. Allen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shanaliz S. Natta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shamima Nasrin
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Franklin R. Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Bland WA, Owens S, McEvoy K, Hogan CH, Boccuzzi L, Kirillov V, Khairallah C, Sheridan BS, Forrest JC, Krug LT. Replication-dead gammaherpesvirus vaccine protects against acute replication, reactivation from latency, and lethal challenge in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559621. [PMID: 37808844 PMCID: PMC10557649 DOI: 10.1101/2023.09.26.559621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Gammaherpesviruses (GHVs) are oncogenic viruses that establish lifelong infections and are significant causes of human morbidity and mortality. While several vaccine strategies to limit GHV infection and disease are in development, there are no FDA-approved vaccines for human GHVs. As a new approach to gammaherpesvirus vaccination, we developed and tested a replication-dead virus (RDV) platform, using murine gammaherpesvirus 68 (MHV68), a well-established mouse model for gammaherpesvirus pathogenesis studies and preclinical therapeutic evaluations. We employed codon-shuffling-based complementation to generate revertant-free RDV lacking expression of the essential replication and transactivator protein (RTA) encoded by ORF50 to arrest viral gene expression early after de novo infection. Inoculation with RDV-50.stop exposes the host to intact virion particles and leads to limited lytic gene expression in infected cells. Prime-boost vaccination of mice with RDV-50.stop elicited virus-specific neutralizing antibody and effector T cell responses in the lung and spleen. Vaccination with RDV-50.stop resulted in a near complete abolishment of virus replication in the lung 7 days post-challenge and virus reactivation from spleen 16 days post-challenge with WT MHV68. Ifnar1-/- mice, which lack the type I interferon receptor, exhibit severe disease upon infection with WT MHV68. RDV-50.stop vaccination of Ifnar1-/- mice prevented wasting and mortality upon challenge with WT MHV68. These results demonstrate that prime-boost vaccination with a GHV that is unable to undergo lytic replication offers protection against acute replication, reactivation, and severe disease upon WT virus challenge.
Collapse
Affiliation(s)
- Wesley A Bland
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Shana Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kyle McEvoy
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Chad H Hogan
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Luciarita Boccuzzi
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - J Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laurie T Krug
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Buonaguro L, Cavalluzzo B, Mauriello A, Ragone C, Tornesello AL, Buonaguro FM, Tornesello ML, Tagliamonte M. Microorganisms-derived antigens for preventive anti-cancer vaccines. Mol Aspects Med 2023; 92:101192. [PMID: 37295175 DOI: 10.1016/j.mam.2023.101192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Cancer prevention is one of the aim with the highest priority in order to reduce the burden of cancer diagnosis and treatment on individuals as well as on healthcare systems. To this aim, vaccines represent the most efficient primary cancer prevention strategy. Indeed, anti-cancer immunological memory elicited by preventive vaccines might promptly expand and prevent tumor from progressing. Antigens derived from microorganisms (MoAs), represent the obvious target for developing highly effective preventive vaccines for virus-induced cancers. In this respect, the drastic reduction in cancer incidence following HBV and HPV preventive vaccines are the paradigmatic example of such evidence. More recently, experimental evidences suggest that MoAs may represent a "natural" anti-cancer preventive vaccination or can be exploited for developing vaccines to prevent cancers presenting highly homologous tumor-associated antigens (TAAs) (e.g. molecular mimicry). The present review describes the different preventive anti-cancer vaccines based on antigens derived from pathogens at the different stages of development.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Beatrice Cavalluzzo
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Angela Mauriello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Concetta Ragone
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy.
| |
Collapse
|
8
|
Wang W, Zhang Y, Guo X, Xu W, Qin Q, Huang Y, Huang X. Singapore grouper iridovirus infection counteracts poly I:C induced antiviral immune response in vitro. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108685. [PMID: 36921879 DOI: 10.1016/j.fsi.2023.108685] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Groupers are important mariculture fish in South China and Southeast Asian countries. However, the increasing frequency of infectious disease outbreaks has caused great economic losses in the grouper industry. Among these pathogens, Singapore grouper iridovirus (SGIV) infection causes high mortality in larval and juvenile stages of grouper. However, the mechanism underlying the action of viral manipulation on cellular immune response still remained largely uncertain. Here, using RNA-seq technology, we investigated the regulatory roles of SGIV infection on synthetic RNA duplex poly I:C induced immune response in vitro. Using reporter gene assays, we found that SGIV infection decreased poly I:C induced interferon promoter activation. Transcriptomic analysis showed that the mRNA expression levels of 2238 genes were up-regulated, while 1247 genes were down-regulated in poly I:C transfected grouper spleen (GS) cells. Interestingly, SGIV infection decreased the expression of 1479 up-regulated genes and increased the expression of 297 down-regulated genes in poly I:C transfected cells. The differentially expressed genes (DEGs) down-regulated by SGIV were directly related to immune, inflammation and viral infection, and JUN, STAT1, NFKB1, MAPK14A, TGFB1 and MX were the 6 top hub genes in the down-regulated DEGs' protein-protein interaction (PPI) network. Furthermore, quantitative real-time PCR (qPCR) analysis confirmed that the interferon signaling and inflammatory-related genes, including cGAS, STING, TBK1, MAVS, TNF, IRAK4 and NOD2 were up-regulated by poly I:C stimulation, but all significantly down-regulated after SGIV infection. Thus, we speculated that SGIV infection counteracted poly I:C induced antiviral immune response and this ability helped itself to escape host immune surveillance. Together, our data will contribute greatly to understanding the potential immune evasion mechanism of iridovirus infection in vitro.
Collapse
Affiliation(s)
- Wenji Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ya Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xixi Guo
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weihua Xu
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Youhua Huang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiaohong Huang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Zhang Y, Gao X, Yang X, Wang Y, Wang W, Huang X, Qin Q, Huang Y. Singapore Grouper Iridovirus VP131 Drives Degradation of STING-TBK1 Pathway Proteins and Negatively Regulates Antiviral Innate Immunity. J Virol 2022; 96:e0068222. [PMID: 36190239 PMCID: PMC9599571 DOI: 10.1128/jvi.00682-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/09/2022] [Indexed: 12/29/2022] Open
Abstract
Iridoviruses are large DNA viruses which cause great economic losses to the aquaculture industry and serious threats to ecological diversity worldwide. Singapore grouper iridovirus (SGIV), a novel member of the genus Ranavirus, causes high mortality in grouper aquaculture. Previous work on genome annotation demonstrated that SGIV contained numerous uncharacterized or hypothetical open reading frames (ORFs), whose functions remained largely unknown. Here, we reported that the protein encoded by SGIV ORF131R (VP131) was localized predominantly within the endoplasmic reticulum (ER). Ectopic expression of GFP-VP131 significantly enhanced SGIV replication, while VP131 knockdown decreased viral infection in vitro, suggesting that VP131 functioned as a proviral factor during SGIV infection. Overexpression of GFP-VP131 inhibited the interferon (IFN)-1 promoter activity and mRNA level of IFN-related genes induced by poly(I:C), Epinephelus coioides cyclic GMP/AMP synthase (EccGAS)/stimulator of IFN genes (EcSTING), TANK-binding kinase 1 (EcTBK1), or melanoma differentiation-associated gene 5 (EcMDA5), whereas such activation induced by mitochondrial antiviral signaling protein (EcMAVS) was not affected. Moreover, VP131 interacted with EcSTING and degraded EcSTING through both the autophagy-lysosome pathway and ubiquitin-proteasome pathway, and targeted for the K63-linked ubiquitination. Of note, we also found that EcSTING significantly accelerated the formation of GFP-VP131 aggregates in co-transfected cells. Finally, GFP-VP131 inhibited EcSTING- or EcTBK1-induced antiviral activity upon red-spotted grouper nervous necrosis virus (RGNNV) infection. Together, our results demonstrated that the SGIV VP131 negatively regulated the IFN response by inhibiting EcSTING-EcTBK1 signaling for viral evasion. IMPORTANCE STING has been identified as a critical factor participating in the innate immune response which recruits and phosphorylates TBK1 and IFN regulatory factor 3 (IRF3) to induce IFN production and defend against viral infection. However, viruses also distort the STING-TBK1 pathway to negatively regulate the IFN response and facilitate viral replication. Here, we reported that SGIV VP131 interacted with EcSTING within the ER and degraded EcSTING, leading to the suppression of IFN production and the promotion of SGIV infection. These results for the first time demonstrated that fish iridovirus evaded the host antiviral response via abrogating the STING-TBK1 signaling pathway.
Collapse
Affiliation(s)
- Ya Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaolin Gao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xinmei Yang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yu Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenji Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
10
|
Casper C, Corey L, Cohen JI, Damania B, Gershon AA, Kaslow DC, Krug LT, Martin J, Mbulaiteye SM, Mocarski ES, Moore PS, Ogembo JG, Phipps W, Whitby D, Wood C. KSHV (HHV8) vaccine: promises and potential pitfalls for a new anti-cancer vaccine. NPJ Vaccines 2022; 7:108. [PMID: 36127367 PMCID: PMC9488886 DOI: 10.1038/s41541-022-00535-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023] Open
Abstract
Seven viruses cause at least 15% of the total cancer burden. Viral cancers have been described as the "low-hanging fruit" that can be potentially prevented or treated by new vaccines that would alter the course of global human cancer. Kaposi sarcoma herpesvirus (KSHV or HHV8) is the sole cause of Kaposi sarcoma, which primarily afflicts resource-poor and socially marginalized populations. This review summarizes a recent NIH-sponsored workshop's findings on the epidemiology and biology of KSHV as an overlooked but potentially vaccine-preventable infection. The unique epidemiology of this virus provides opportunities to prevent its cancers if an effective, inexpensive, and well-tolerated vaccine can be developed and delivered.
Collapse
Affiliation(s)
- Corey Casper
- Infectious Disease Research Institute, 1616 Eastlake Ave. East, Suite 400, Seattle, WA, 98102, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institutes of Health, Bldg. 50, Room 6134, 50 South Drive, MSC8007, Bethesda, MD, 20892-8007, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center & Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, US
| | - Anne A Gershon
- Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY10032, US
| | - David C Kaslow
- PATH Essential Medicines, PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, HHS, 9609 Medical Center Dr, Rm. 6E118 MSC 3330, Bethesda, MD, 20892, USA
| | | | - Patrick S Moore
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Javier Gordon Ogembo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Warren Phipps
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center; Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Denise Whitby
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Charles Wood
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
11
|
Lange PT, White MC, Damania B. Activation and Evasion of Innate Immunity by Gammaherpesviruses. J Mol Biol 2022; 434:167214. [PMID: 34437888 PMCID: PMC8863980 DOI: 10.1016/j.jmb.2021.167214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022]
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in the vast majority of adults worldwide. Importantly, these viruses are associated with numerous malignancies and are responsible for significant human cancer burden. These virus-associated cancers are due, in part, to the ability of gammaherpesviruses to successfully evade the innate immune response throughout the course of infection. In this review, we will summarize the current understanding of how gammaherpesviruses are detected by innate immune sensors, how these viruses evade recognition by host cells, and how this knowledge can inform novel therapeutic approaches for these viruses and their associated diseases.
Collapse
Affiliation(s)
- Philip T Lange
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/langept
| | - Maria C White
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/maria_c_white
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Wang Y, Tibbetts SA, Krug LT. Conquering the Host: Determinants of Pathogenesis Learned from Murine Gammaherpesvirus 68. Annu Rev Virol 2021; 8:349-371. [PMID: 34586873 PMCID: PMC9153731 DOI: 10.1146/annurev-virology-011921-082615] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Gammaherpesviruses are an important class of oncogenic pathogens that are exquisitely evolved to their respective hosts. As such, the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi sarcoma herpesvirus (KSHV) do not naturally infect nonhuman primates or rodents. There is a clear need to fully explore mechanisms of gammaherpesvirus pathogenesis, host control, and immune evasion in the host. A gammaherpesvirus pathogen isolated from murid rodents was first reported in 1980; 40 years later, murine gammaherpesvirus 68 (MHV68, MuHV-4, γHV68) infection of laboratory mice is a well-established pathogenesis system recognized for its utility in applying state-of-the-art approaches to investigate virus-host interactions ranging from the whole host to the individual cell. Here, we highlight recent advancements in our understanding of the processes by which MHV68 colonizes the host and drives disease. Lessons that inform KSHV and EBV pathogenesis and provide future avenues for novel interventions against infection and virus-associated cancers are emphasized.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA;
| |
Collapse
|