1
|
Hendrix EK, Sha J, Kilgore PB, Neil BH, Chopra AK. Combination of live attenuated and adenovirus-based vaccines completely protects interferon gamma (IFNγ) knockout mice against pneumonic plague. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627261. [PMID: 39713400 PMCID: PMC11661069 DOI: 10.1101/2024.12.06.627261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Two live attenuated vaccines (LAVs), LMA and LMP, were evaluated alone or in combination with a trivalent adenoviral vector-based vaccine (Ad5-YFV) for their efficacy and immune responses in wild type (WT) and interferon gamma (IFNγ) knockout (KO) mice in a C57BL/6 background. While LMA and LMP are triple deletion mutants of Yersinia pestis CO92 strain, Ad5-YFV incorporates three protective plague immunogens. An impressive 80-100% protection was observed in all vaccinated animals against highly lethal intranasal challenge doses of parental Y. pestis CO92. All vaccinated mice generated robust humoral and cellular immune responses. The immunized WT mice showed overall better antibody responses in both serum and bronchoalveolar lavage fluid with much higher percentages of polyfunctional T cell populations. On the other hand, vaccinated IFNγ KO mice displayed better B cell activity in germinal centers with higher percentages of activated antigen specific T cells and memory T cells. In addition, depletion of IFNγ and tumor necrosis factor alpha (TNFα) from immunized WT mice prior to and during infection did not reduce protection against pulmonary Y. pestis CO92 challenge. These data demonstrated a dispensable nature of IFNγ in mediating protection by the aforementioned vaccines. This is the first detailed immunogenicity study of two plague LAVs administered either alone or in combination with an Ad5-YFV vaccine in a prime-boost immunization strategy in IFNγ KO mice. Further, by combining advantages of live-attenuated and adenovirus-based vaccines, augmentation of generalized immune responses were observed which could be beneficial in providing long-lasting immunity in the host.
Collapse
|
2
|
Zhang Y, Fang L, Wang Z, Zhang C, Zhao J, Daemi HB, Zhang M, Yuan L, Han X, Li L, Fu ZF, Zhou M, Zhao L. A modified recombinant adenovirus vector containing dual rabies virus G expression cassettes confers robust and long-lasting humoral immunity in mice, cats, and dogs. Emerg Microbes Infect 2024; 13:2300461. [PMID: 38164714 PMCID: PMC10810672 DOI: 10.1080/22221751.2023.2300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
During the COVID-19 epidemic, the incidence of rabies has increased in several countries, especially in remote and disadvantaged areas, due to inadequate surveillance and declining immunization coverage. Multiple vaccinations with inactivated rabies virus vaccines for pre- or post-exposure prophylaxis are considered inefficient, expensive and impractical in developing countries. Herein, three modified human recombinant adenoviruses type 5 designated Adv-RVG, Adv-E1-RVG, and Adv-RVDG, carrying rabies virus G (RVG) expression cassettes in various combinations within E1 or E3 genomic regions, were constructed to serve as rabies vaccine candidates. Adv-RVDG mediated greater RVG expression both in vitro and in vivo and induced a more robust and durable humoral immune response than the rabies vaccine strain SAD-L16, Adv-RVG, and Adv-E1-RVG by more effectively activating the dendritic cells (DCs) - follicular helper T (Tfh) cells - germinal centre (GC) / memory B cells (MBCs) - long-lived plasma cells (LLPCs) axis with 100% survival after a lethal RABV challenge in mice during the 24-week study period. Similarly, dogs and cats immunized with Adv-RVDG showed stronger and longer-lasting antibody responses than those vaccinated with a commercial inactivated rabies vaccine and showed good tolerance to Adv-RVDG. In conclusion, our study demonstrated that simultaneous insertion of protective antigens into the E1 and E3 genomic regions of adenovirus vector can significantly enhance the immunogenicity of adenoviral-vectored vaccines, providing a theoretical and practical basis for the subsequent development of multivalent and multi-conjugated vaccines using recombinant adenovirus platform. Meanwhile, our data suggest Adv-RVDG is a safe, efficient, and economical vaccine for mass-coverage immunization.
Collapse
Affiliation(s)
- Yuan Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Lingying Fang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Zongmei Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Chengguang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jianqing Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Hakimeh Baghaei Daemi
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Mai Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Liwen Yuan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Xiaohu Han
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Linfeng Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Zhen F. Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ming Zhou
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
3
|
Williamson ED, Kilgore PB, Hendrix EK, Neil BH, Sha J, Chopra AK. Progress on the research and development of plague vaccines with a call to action. NPJ Vaccines 2024; 9:162. [PMID: 39242587 PMCID: PMC11379892 DOI: 10.1038/s41541-024-00958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
There is a compelling demand for approved plague vaccines due to the endemicity of Yersinia pestis and its potential for pandemic spread. Whilst substantial progress has been made, we recommend that the global funding and health security systems should work urgently to translate some of the efficacious vaccines reviewed herein to expedite clinical development and to prevent future disastrous plague outbreaks, particularly caused by antimicrobial resistant Y. pestis strains.Content includes material subject to Crown Copyright © 2024.This is an open access article under the Open Government License ( http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/ ).
Collapse
Affiliation(s)
- E Diane Williamson
- Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK.
| | - Paul B Kilgore
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Emily K Hendrix
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Blake H Neil
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Jian Sha
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA.
- Sealy Institute for Vaccine Sciences, UTMB, Galveston, TX, 77555, USA.
- Institute for Human Infections and Immunity, UTMB, Galveston, TX, 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, UTMB, Galveston, TX, 77555, USA.
- Galveston National Laboratory, UTMB, Galveston, TX, 77555, USA.
| |
Collapse
|
4
|
Majumder S, Das S, Li P, Yang N, Dellario H, Sui H, Guan Z, Sun W. Pneumonic Plague Protection Induced by a Monophosphoryl Lipid A Decorated Yersinia Outer-Membrane-Vesicle Vaccine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307066. [PMID: 38009518 PMCID: PMC11009084 DOI: 10.1002/smll.202307066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Indexed: 11/29/2023]
Abstract
A new Yersinia pseudotuberculosis mutant strain, YptbS46, carrying the lpxE insertion and pmrF-J deletion is constructed and shown to exclusively produce monophosphoryl lipid A (MPLA) having adjuvant properties. Outer membrane vesicles (OMVs) isolated from YptbS46 harboring an lcrV expression plasmid, pSMV13, are designated OMV46-LcrV, which contained MPLA and high amounts of LcrV (Low Calcium response V) and displayed low activation of Toll-like receptor 4 (TLR4). Intramuscular prime-boost immunization with 30 µg of of OMV46-LcrV exhibited substantially reduced reactogenicity than the parent OMV44-LcrV and conferred complete protection to mice against a high-dose of respiratory Y. pestis challenge. OMV46-LcrV immunization induced robust adaptive responses in both lung mucosal and systemic compartments and orchestrated innate immunity in the lung, which are correlated with rapid bacterial clearance and unremarkable lung damage during Y. pestis challenge. Additionally, OMV46-LcrV immunization conferred long-term protection. Moreover, immunization with reduced doses of OMV46-LcrV exhibited further lower reactogenicity and still provided great protection against pneumonic plague. The studies strongly demonstrate the feasibility of OMV46-LcrV as a new type of plague vaccine candidate.
Collapse
Affiliation(s)
- Saugata Majumder
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Shreya Das
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Peng Li
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Nicole Yang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Hazel Dellario
- Wadsworth Center, New York State Department of Health, Albany, NY, 12237, USA
| | - Haixin Sui
- Wadsworth Center, New York State Department of Health, Albany, NY, 12237, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| |
Collapse
|
5
|
Majumder S, Das S, Li P, Yang N, Dellario H, Sui H, Guan Z, Sun W. Pneumonic plague protection induced by a monophosphoryl lipid A decorated Yersinia outer-membrane-vesicle vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553697. [PMID: 37645871 PMCID: PMC10462118 DOI: 10.1101/2023.08.17.553697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A newly constructed Yersinia pseudotuberculosis mutant (YptbS46) carrying the lpxE insertion and pmrF-J deletion exclusively synthesized an adjuvant form of lipid A, monophosphoryl lipid A (MPLA). Outer membrane vesicles (OMVs) isolated from YptbS46 harboring an lcrV expression plasmid, pSMV13, were designated OMV 46 -LcrV, which contained MPLA and high amounts of LcrV and displayed low activation of Toll-like receptor 4 (TLR4). Similar to the previous OMV 44 -LcrV, intramuscular prime-boost immunization with 30 µg of OMV 46 -LcrV exhibited substantially reduced reactogenicity and conferred complete protection to mice against a high-dose of respiratory Y. pestis challenge. OMV 46 -LcrV immunization induced robust adaptive responses in both lung mucosal and systemic compartments and orchestrated innate immunity in the lung, which were correlated with rapid bacterial clearance and unremarkable lung damage during Y. pestis challenge. Additionally, OMV 46 -LcrV immunization conferred long-term protection. Moreover, immunization with reduced doses of OMV 46 -LcrV exhibited further lower reactogenicity and still provided great protection against pneumonic plague. Our studies strongly demonstrate the feasibility of OMV 46 -LcrV as a new type of plague vaccine candidate.
Collapse
|
6
|
Yang R, Atkinson S, Chen Z, Cui Y, Du Z, Han Y, Sebbane F, Slavin P, Song Y, Yan Y, Wu Y, Xu L, Zhang C, Zhang Y, Hinnebusch BJ, Stenseth NC, Motin VL. Yersinia pestis and Plague: some knowns and unknowns. ZOONOSES (BURLINGTON, MASS.) 2023; 3:5. [PMID: 37602146 PMCID: PMC10438918 DOI: 10.15212/zoonoses-2022-0040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Since its first identification in 1894 during the third pandemic in Hong Kong, there has been significant progress of understanding the lifestyle of Yersinia pestis, the pathogen that is responsible for plague. Although we now have some understanding of the pathogen's physiology, genetics, genomics, evolution, gene regulation, pathogenesis and immunity, there are many unknown aspects of the pathogen and its disease development. Here, we focus on some of the knowns and unknowns relating to Y. pestis and plague. We notably focus on some key Y. pestis physiological and virulence traits that are important for its mammal-flea-mammal life cycle but also its emergence from the enteropathogen Yersinia pseudotuberculosis. Some aspects of the genetic diversity of Y. pestis, the distribution and ecology of plague as well as the medical countermeasures to protect our population are also provided. Lastly, we present some biosafety and biosecurity information related to Y. pestis and plague.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Steve Atkinson
- School of Life Sciences, Centre for Biomolecular Science, University of Nottingham, Nottingham, United Kingdom
| | - Ziqi Chen
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yujun Cui
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zongmin Du
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yanping Han
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Florent Sebbane
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Philip Slavin
- Division of History and Politics, University of Stirling, Stirling FK9 4LJ, UK
| | - Yajun Song
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yanfeng Yan
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yarong Wu
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lei Xu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Chutian Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yun Zhang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Vladimir L. Motin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
7
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
8
|
Zhu J, Jain S, Sha J, Batra H, Ananthaswamy N, Kilgore PB, Hendrix EK, Hosakote YM, Wu X, Olano JP, Kayode A, Galindo CL, Banga S, Drelich A, Tat V, Tseng CTK, Chopra AK, Rao VB. A Bacteriophage-Based, Highly Efficacious, Needle- and Adjuvant-Free, Mucosal COVID-19 Vaccine. mBio 2022; 13:e0182222. [PMID: 35900097 PMCID: PMC9426593 DOI: 10.1128/mbio.01822-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/17/2022] Open
Abstract
The U.S. Food and Drug Administration-authorized mRNA- and adenovirus-based SARS-CoV-2 vaccines are intramuscularly injected in two doses and effective in preventing COVID-19, but they do not induce efficient mucosal immunity or prevent viral transmission. Here, we report the first noninfectious, bacteriophage T4-based, multicomponent, needle- and adjuvant-free, mucosal vaccine harboring engineered Spike trimers on capsid exterior and nucleocapsid protein in the interior. Intranasal administration of two doses of this T4 SARS-CoV-2 vaccine 21 days apart induced robust mucosal immunity, in addition to strong systemic humoral and cellular immune responses. The intranasal vaccine induced broad virus neutralization antibody titers against multiple variants, Th1-biased cytokine responses, strong CD4+ and CD8+ T cell immunity, and high secretory IgA titers in sera and bronchoalveolar lavage specimens from vaccinated mice. All of these responses were much stronger in intranasally vaccinated mice than those induced by the injected vaccine. Furthermore, the nasal vaccine provided complete protection and sterilizing immunity against the mouse-adapted SARS-CoV-2 MA10 strain, the ancestral WA-1/2020 strain, and the most lethal Delta variant in both BALB/c and human angiotensin converting enzyme (hACE2) knock-in transgenic mouse models. In addition, the vaccine elicited virus-neutralizing antibodies against SARS-CoV-2 variants in bronchoalveolar lavage specimens, did not affect the gut microbiota, exhibited minimal lung lesions in vaccinated and challenged mice, and is completely stable at ambient temperature. This modular, needle-free, phage T4 mucosal vaccine delivery platform is therefore an excellent candidate for designing efficacious mucosal vaccines against other respiratory infections and for emergency preparedness against emerging epidemic and pandemic pathogens. IMPORTANCE According to the World Health Organization, COVID-19 may have caused ~15-million deaths across the globe and is still ravaging the world. Another wave of ~100 million infections is predicted in the United States due to the emergence of highly transmissible immune-escaped Omicron variants. The authorized vaccines would not prevent these transmissions since they do not trigger mucosal immunity. We circumvented this limitation by developing a needle-free, bacteriophage T4-based, mucosal vaccine. This intranasally administered vaccine generates superior mucosal immunity in mice, in addition to inducing robust humoral and cell-mediated immune responses, and provides complete protection and sterilizing immunity against SARS-CoV-2 variants. The vaccine is stable, adjuvant-free, and cost-effectively manufactured and distributed, making it a strategically important next-generation COVID vaccine for ending this pandemic.
Collapse
Affiliation(s)
- Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Swati Jain
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Himanshu Batra
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Neeti Ananthaswamy
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Paul B. Kilgore
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Emily K. Hendrix
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yashoda M. Hosakote
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xiaorong Wu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Juan P. Olano
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Adeyemi Kayode
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, USA
| | - Cristi L. Galindo
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, USA
| | - Simran Banga
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, USA
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Vivian Tat
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chien-Te K. Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ashok K. Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Venigalla B. Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| |
Collapse
|
9
|
Recent Trends in Protective Textiles against Biological Threats: A Focus on Biological Warfare Agents. Polymers (Basel) 2022; 14:polym14081599. [PMID: 35458353 PMCID: PMC9026340 DOI: 10.3390/polym14081599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
The rising threats to worldwide security (affecting the military, first responders, and civilians) urge us to develop efficient and versatile technological solutions to protect human beings. Soldiers, medical personnel, firefighters, and law enforcement officers should be adequately protected, so that their exposure to biological warfare agents (BWAs) is minimized, and infectious microorganisms cannot be spread so easily. Current bioprotective military garments include multilayered fabrics integrating activated carbon as a sorptive agent and a separate filtrating layer for passive protection. However, secondary contaminants emerge following their accumulation within the carbon filler. The clothing becomes too heavy and warm to wear, not breathable even, preventing the wearer from working for extended hours. Hence, a strong need exists to select and/or create selectively permeable layered fibrous structures with bioactive agents that offer an efficient filtering capability and biocidal skills, ensuring lightweightness, comfort, and multifunctionality. This review aims to showcase the main possibilities and trends of bioprotective textiles, focusing on metal-organic frameworks (MOFs), inorganic nanoparticles (e.g., ZnO-based), and organic players such as chitosan (CS)-based small-scale particles and plant-derived compounds as bioactive agents. The textile itself should be further evaluated as the foundation for the barrier effect and in terms of comfort. The outputs of a thorough, standardized characterization should dictate the best elements for each approach.
Collapse
|
10
|
Combinatorial Viral Vector-Based and Live Attenuated Vaccines without an Adjuvant to Generate Broader Immune Responses to Effectively Combat Pneumonic Plague. mBio 2021; 12:e0322321. [PMID: 34872353 PMCID: PMC8649767 DOI: 10.1128/mbio.03223-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mice immunized with a combination of an adenovirus vector (Ad5-YFV) and live-attenuated (LMA)-based vaccines were evaluated for protective efficacy against pneumonic plague. While the Ad5-YFV vaccine harbors a fusion cassette of three genes encoding YscF, F1, and LcrV, LMA represents a mutant of parental Yersinia pestis CO92 deleted for genes encoding Lpp, MsbB, and Ail. Ad5-YFV and LMA were either administered simultaneously (1-dose regimen) or 21 days apart in various orders and route of administration combinations (2-dose regimen). The 2-dose regimen induced robust immune responses to provide full protection to animals against parental CO92 and its isogenic F1 deletion mutant (CAF−) challenges during both short- and long-term studies. Mice intranasally (i.n.) immunized with Ad5-YFV first followed by LMA (i.n. or intramuscularly [i.m.]) had higher T- and B-cell proliferative responses and LcrV antibody titers than those in mice vaccinated with LMA (i.n. or i.m.) first ahead of Ad5-YFV (i.n.) during the long-term study. Specifically, the needle- and adjuvant-free vaccine combination (i.n.) is ideal for use in plague regions of endemicity. Conversely, with a 1-dose regimen, mice vaccinated with Ad5-YFV i.n. and LMA by the i.m. route provided complete protection to animals against CO92 and its CAF− mutant challenges and elicited Th1/Th2, as well as Th17 responses, making it suitable for emergency vaccination during a plague outbreak or bioterrorist attack. This is a first study in which a viral vector-based and live-attenuated vaccines were effectively used in combination, representing adjuvant- and/or needle-free immunization, with each vaccine triggering a distinct cellular immune response.
Collapse
|
11
|
Rosario-Acevedo R, Biryukov SS, Bozue JA, Cote CK. Plague Prevention and Therapy: Perspectives on Current and Future Strategies. Biomedicines 2021; 9:1421. [PMID: 34680537 PMCID: PMC8533540 DOI: 10.3390/biomedicines9101421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023] Open
Abstract
Plague, caused by the bacterial pathogen Yersinia pestis, is a vector-borne disease that has caused millions of human deaths over several centuries. Presently, human plague infections continue throughout the world. Transmission from one host to another relies mainly on infected flea bites, which can cause enlarged lymph nodes called buboes, followed by septicemic dissemination of the pathogen. Additionally, droplet inhalation after close contact with infected mammals can result in primary pneumonic plague. Here, we review research advances in the areas of vaccines and therapeutics for plague in context of Y. pestis virulence factors and disease pathogenesis. Plague continues to be both a public health threat and a biodefense concern and we highlight research that is important for infection mitigation and disease treatment.
Collapse
Affiliation(s)
| | | | | | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD 21702, USA; (R.R.-A.); (S.S.B.); (J.A.B.)
| |
Collapse
|
12
|
Optimised Heterologous Expression and Functional Analysis of the Yersinia pestis F1-Capsular Antigen Regulator Caf1R. Int J Mol Sci 2021; 22:ijms22189805. [PMID: 34575967 PMCID: PMC8470410 DOI: 10.3390/ijms22189805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
The bacterial pathogen, Yersinia pestis, has caused three historic pandemics and continues to cause small outbreaks worldwide. During infection, Y. pestis assembles a capsule-like protective coat of thin fibres of Caf1 subunits. This F1 capsular antigen has attracted much attention due to its clinical value in plague diagnostics and anti-plague vaccine development. Expression of F1 is tightly regulated by a transcriptional activator, Caf1R, of the AraC/XylS family, proteins notoriously prone to aggregation. Here, we have optimised the recombinant expression of soluble Caf1R. Expression from the native and synthetic codon-optimised caf1R cloned in three different expression plasmids was examined in a library of E. coli host strains. The functionality of His-tagged Caf1R was demonstrated in vivo, but insolubility was a problem with overproduction. High levels of soluble MBP-Caf1R were produced from codon optimised caf1R. Transcriptional-lacZ reporter fusions defined the PM promoter and Caf1R binding site responsible for transcription of the cafMA1 operon. Use of the identified Caf1R binding caf DNA sequence in an electrophoretic mobility shift assay (EMSA) confirmed correct folding and functionality of the Caf1R DNA-binding domain in recombinant MBP-Caf1R. Availability of functional recombinant Caf1R will be a valuable tool to elucidate control of expression of F1 and Caf1R-regulated pathophysiology of Y. pestis.
Collapse
|
13
|
Long CM, Marzi A. Biodefence research two decades on: worth the investment? THE LANCET. INFECTIOUS DISEASES 2021; 21:e222-e233. [PMID: 34331891 DOI: 10.1016/s1473-3099(21)00382-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
For the past 20 years, the notion of bioterror has been a source of considerable fear and panic worldwide. In response to the terror attacks of 2001 in the USA, extensive research funding was awarded to investigate bioterror-related pathogens. The global scientific legacy of this funding has extended into the present day, highlighted by the ongoing COVID-19 pandemic. Unsurprisingly, the surge in biodefence-related research and preparedness has been met with considerable apprehension and opposition. Here, we briefly outline the history of modern bioterror threats and biodefence research, describe the scientific legacy of biodefence research by highlighting advances pertaining to specific bacterial and viral pathogens, and summarise the future of biodefence research and its relevance today. We sought to address the sizeable question: have the past 20 years of investment into biodefence research and preparedness been worth it? The legacy of modern biodefence funding includes advancements in biosecurity, biosurveillence, diagnostics, medical countermeasures, and vaccines. In summary, we feel that these advances justify the substantial biodefence funding trend of the past two decades and set a precedent for future funding.
Collapse
Affiliation(s)
- Carrie M Long
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|