1
|
Reguzova A, Müller M, Pagallies F, Burri D, Salomon F, Rziha HJ, Bittner-Schrader Z, Verstrepen BE, Böszörményi KP, Verschoor EJ, Gerhauser I, Elbers K, Esen M, Manenti A, Monti M, Rammensee HG, Derouazi M, Löffler MW, Amann R. A multiantigenic Orf virus-based vaccine efficiently protects hamsters and nonhuman primates against SARS-CoV-2. NPJ Vaccines 2024; 9:191. [PMID: 39414789 PMCID: PMC11484955 DOI: 10.1038/s41541-024-00981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Among the common strategies to design next-generation COVID-19 vaccines is broadening the antigenic repertoire thereby aiming to increase efficacy against emerging variants of concern (VoC). This study describes a new Orf virus-based vector (ORFV) platform to design a multiantigenic vaccine targeting SARS-CoV-2 spike and nucleocapsid antigens. Vaccine candidates were engineered, either expressing spike protein (ORFV-S) alone or co-expressing nucleocapsid protein (ORFV-S/N). Mono- and multiantigenic vaccines elicited comparable levels of spike-specific antibodies and virus neutralization in mice. Results from a SARS-CoV-2 challenge model in hamsters suggest cross-protective properties of the multiantigenic vaccine against VoC, indicating improved viral clearance with ORFV-S/N, as compared to equal doses of ORFV-S. In a nonhuman primate challenge model, vaccination with the ORFV-S/N vaccine resulted in long-term protection against SARS-CoV-2 infection. These results demonstrate the potential of the ORFV platform for prophylactic vaccination and represent a preclinical development program supporting first-in-man studies with the multiantigenic ORFV vaccine.
Collapse
Affiliation(s)
- Alena Reguzova
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Melanie Müller
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Felix Pagallies
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Dominique Burri
- Speransa Therapeutics, Bethmannstrasse 8, 60311, Frankfurt am Main, Germany
| | - Ferdinand Salomon
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Hanns-Joachim Rziha
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Zsofia Bittner-Schrader
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Babs E Verstrepen
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Kinga P Böszörményi
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Knut Elbers
- Boehringer Ingelheim International GmbH, Binger Strasse 173, 55216, Ingelheim am Rhein, Germany
- ViraTherapeutics GmbH, Bundesstraße 27, 6063, Rum, Austria
| | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen; Cluster of Excellence (EXC2124) "Controlling Microbes to Fight Infection", Tübingen, Germany
| | - Alessandro Manenti
- VisMederi Srl., Strada del Petriccio e Belriguardo 35, 53100, Siena, Italy
| | - Martina Monti
- VisMederi Srl., Strada del Petriccio e Belriguardo 35, 53100, Siena, Italy
| | - Hans-Georg Rammensee
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Madiha Derouazi
- Speransa Therapeutics, Bethmannstrasse 8, 60311, Frankfurt am Main, Germany
| | - Markus W Löffler
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen, Otfried-Müller-Str. 4/1, 72076, Tübingen, Germany.
- Centre for Clinical Transfusion Medicine, Otfried-Müller-Str. 4/1, 72076, Tübingen, Germany.
| | - Ralf Amann
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
| |
Collapse
|
2
|
Mendoza-Ramírez NJ, García-Cordero J, Shrivastava G, Cedillo-Barrón L. The Key to Increase Immunogenicity of Next-Generation COVID-19 Vaccines Lies in the Inclusion of the SARS-CoV-2 Nucleocapsid Protein. J Immunol Res 2024; 2024:9313267. [PMID: 38939745 PMCID: PMC11208798 DOI: 10.1155/2024/9313267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Vaccination is one of the most effective prophylactic public health interventions for the prevention of infectious diseases such as coronavirus disease (COVID-19). Considering the ongoing need for new COVID-19 vaccines, it is crucial to modify our approach and incorporate more conserved regions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to effectively address emerging viral variants. The nucleocapsid protein is a structural protein of SARS-CoV-2 that is involved in replication and immune responses. Furthermore, this protein offers significant advantages owing to the minimal accumulation of mutations over time and the inclusion of key T-cell epitopes critical for SARS-CoV-2 immunity. A novel strategy that may be suitable for the new generation of vaccines against COVID-19 is to use a combination of antigens, including the spike and nucleocapsid proteins, to elicit robust humoral and potent cellular immune responses, along with long-lasting immunity. The strategic use of multiple antigens aims to enhance vaccine efficacy and broaden protection against viruses, including their variants. The immune response against the nucleocapsid protein from other coronavirus is long-lasting, and it can persist up to 11 years post-infection. Thus, the incorporation of nucleocapsids (N) into vaccine design adds an important dimension to vaccination efforts and holds promise for bolstering the ability to combat COVID-19 effectively. In this review, we summarize the preclinical studies that evaluated the use of the nucleocapsid protein as antigen. This study discusses the use of nucleocapsid alone and its combination with spike protein or other proteins of SARS-CoV-2.
Collapse
Affiliation(s)
- Noe Juvenal Mendoza-Ramírez
- Departamento de Biomedicina MolecularCINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Julio García-Cordero
- Departamento de Biomedicina MolecularCINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Gaurav Shrivastava
- Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious DiseasesNational Institutes of Health, Rockville, MD, USA
| | - Leticia Cedillo-Barrón
- Departamento de Biomedicina MolecularCINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, Mexico City 07360, Mexico
| |
Collapse
|
3
|
Huang Y, Chen J, Chen S, Huang C, Li B, Li J, Jin Z, Zhang Q, Pan P, Du W, Liu L, Liu Z. Molecular characterization of SARS-CoV-2 nucleocapsid protein. Front Cell Infect Microbiol 2024; 14:1415885. [PMID: 38846351 PMCID: PMC11153676 DOI: 10.3389/fcimb.2024.1415885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
Corona Virus Disease 2019 (COVID-19) is a highly prevalent and potent infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Until now, the world is still endeavoring to develop new ways to diagnose and treat COVID-19. At present, the clinical prevention and treatment of COVID-19 mainly targets the spike protein on the surface of SRAS-CoV-2. However, with the continuous emergence of SARS-CoV-2 Variants of concern (VOC), targeting the spike protein therapy shows a high degree of limitation. The Nucleocapsid Protein (N protein) of SARS-CoV-2 is highly conserved in virus evolution and is involved in the key process of viral infection and assembly. It is the most expressed viral structural protein after SARS-CoV-2 infection in humans and has high immunogenicity. Therefore, N protein as the key factor of virus infection and replication in basic research and clinical application has great potential research value. This article reviews the research progress on the structure and biological function of SARS-CoV-2 N protein, the diagnosis and drug research of targeting N protein, in order to promote researchers' further understanding of SARS-CoV-2 N protein, and lay a theoretical foundation for the possible outbreak of new and sudden coronavirus infectious diseases in the future.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Junkai Chen
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Siwei Chen
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Congcong Huang
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Bei Li
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Jian Li
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Zhixiong Jin
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Qiwei Zhang
- Central Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pan Pan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Weixing Du
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Long Liu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Zhixin Liu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
4
|
Bykonia EN, Kleymenov DA, Gushchin VA, Siniavin AE, Mazunina EP, Kozlova SR, Zolotar AN, Usachev EV, Kuznetsova NA, Shidlovskaya EV, Pochtovyi AA, Kustova DD, Ivanov IA, Dmitriev SE, Ivanov RA, Logunov DY, Gintsburg AL. Major Role of S-Glycoprotein in Providing Immunogenicity and Protective Immunity in mRNA Lipid Nanoparticle Vaccines Based on SARS-CoV-2 Structural Proteins. Vaccines (Basel) 2024; 12:379. [PMID: 38675761 PMCID: PMC11053793 DOI: 10.3390/vaccines12040379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
SARS-CoV-2 variants have evolved over time in recent years, demonstrating immune evasion of vaccine-induced neutralizing antibodies directed against the original S protein. Updated S-targeted vaccines provide a high level of protection against circulating variants of SARS-CoV-2, but this protection declines over time due to ongoing virus evolution. To achieve a broader protection, novel vaccine candidates involving additional antigens with low mutation rates are currently needed. Based on our recently studied mRNA lipid nanoparticle (mRNA-LNP) platform, we have generated mRNA-LNP encoding SARS-CoV-2 structural proteins M, N, S from different virus variants and studied their immunogenicity separately or in combination in vivo. As a result, all mRNA-LNP vaccine compositions encoding the S and N proteins induced excellent titers of RBD- and N-specific binding antibodies. The T cell responses were mainly specific CD4+ T cell lymphocytes producing IL-2 and TNF-alpha. mRNA-LNP encoding the M protein did not show a high immunogenicity. High neutralizing activity was detected in the sera of mice vaccinated with mRNA-LNP encoding S protein (alone or in combinations) against closely related strains, but was undetectable or significantly lower against an evolutionarily distant variant. Our data showed that the addition of mRNAs encoding S and M antigens to mRNA-N in the vaccine composition enhanced the immunogenicity of mRNA-N and induced a more robust immune response to the N protein. Based on our results, we suggested that the S protein plays a key role in enhancing the immune response to the N protein when they are both encoded in the mRNA-LNP vaccine.
Collapse
Affiliation(s)
- Evgeniia N. Bykonia
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Denis A. Kleymenov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Vladimir A. Gushchin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
- Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia
- Department of Medical Genetics, Federal State Autonomous Educational Institution of Higher Education I M Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia
| | - Andrei E. Siniavin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Elena P. Mazunina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Sofia R. Kozlova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Anastasia N. Zolotar
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Evgeny V. Usachev
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Nadezhda A. Kuznetsova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Elena V. Shidlovskaya
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Andrei A. Pochtovyi
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
- Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia
- Department of Medical Genetics, Federal State Autonomous Educational Institution of Higher Education I M Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia
| | - Daria D. Kustova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
- Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Igor A. Ivanov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Sergey E. Dmitriev
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Roman A. Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia;
| | - Denis Y. Logunov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Alexander L. Gintsburg
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
- Infectiology Department, I. M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
5
|
Yll-Pico M, Park Y, Martinez J, Iniguez A, Kha M, Kim T, Medrano L, Nguyen VH, Kaltcheva T, Dempsey S, Chiuppesi F, Wussow F, Diamond DJ. Highly stable and immunogenic CMV T cell vaccine candidate developed using a synthetic MVA platform. NPJ Vaccines 2024; 9:68. [PMID: 38555379 PMCID: PMC10981716 DOI: 10.1038/s41541-024-00859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Human cytomegalovirus (CMV) is the most common infectious cause of complications post-transplantation, while a CMV vaccine for transplant recipients has yet to be licensed. Triplex, a multiantigen Modified Vaccinia Ankara (MVA)-vectored CMV vaccine candidate based on the immunodominant antigens phosphoprotein 65 (pp65) and immediate-early 1 and 2 (IE1/2), is in an advanced stage of clinical development. However, its limited genetic and expression stability restricts its potential for large-scale production. Using a recently developed fully synthetic MVA (sMVA) platform, we developed a new generation Triplex vaccine candidate, T10-F10, with different sequence modifications for enhanced vaccine stability. T10-F10 demonstrated genetic and expression stability during extensive virus passaging. In addition, we show that T10-F10 confers comparable immunogenicity to the original Triplex vaccine to elicit antigen-specific T cell responses in HLA-transgenic mice. These results demonstrate improvements in translational vaccine properties of an sMVA-based CMV vaccine candidate designed as a therapeutic treatment for transplant recipients.
Collapse
Affiliation(s)
- Marcal Yll-Pico
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA.
| | - Yoonsuh Park
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Joy Martinez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Angelina Iniguez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Mindy Kha
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Taehyun Kim
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Leonard Medrano
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Vu H Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Teodora Kaltcheva
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Shannon Dempsey
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Flavia Chiuppesi
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Felix Wussow
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Don J Diamond
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
6
|
Clever S, Limpinsel L, Meyer zu Natrup C, Schünemann LM, Beythien G, Rosiak M, Hülskötter K, Gregor KM, Tuchel T, Kalodimou G, Freudenstein A, Kumar S, Baumgärtner W, Sutter G, Tscherne A, Volz A. Single MVA-SARS-2-ST/N Vaccination Rapidly Protects K18-hACE2 Mice against a Lethal SARS-CoV-2 Challenge Infection. Viruses 2024; 16:417. [PMID: 38543782 PMCID: PMC10974247 DOI: 10.3390/v16030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
The sudden emergence of SARS-CoV-2 demonstrates the need for new vaccines that rapidly protect in the case of an emergency. In this study, we developed a recombinant MVA vaccine co-expressing SARS-CoV-2 prefusion-stabilized spike protein (ST) and SARS-CoV-2 nucleoprotein (N, MVA-SARS-2-ST/N) as an approach to further improve vaccine-induced immunogenicity and efficacy. Single MVA-SARS-2-ST/N vaccination in K18-hACE2 mice induced robust protection against lethal respiratory SARS-CoV-2 challenge infection 28 days later. The protective outcome of MVA-SARS-2-ST/N vaccination correlated with the activation of SARS-CoV-2-neutralizing antibodies (nABs) and substantial amounts of SARS-CoV-2-specific T cells especially in the lung of MVA-SARS-2-ST/N-vaccinated mice. Emergency vaccination with MVA-SARS-2-ST/N just 2 days before lethal SARS-CoV-2 challenge infection resulted in a delayed onset of clinical disease outcome in these mice and increased titers of nAB or SARS-CoV-2-specific T cells in the spleen and lung. These data highlight the potential of a multivalent COVID-19 vaccine co-expressing S- and N-protein, which further contributes to the development of rapidly protective vaccination strategies against emerging pathogens.
Collapse
Affiliation(s)
- Sabrina Clever
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Christian Meyer zu Natrup
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Lisa-Marie Schünemann
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Malgorzata Rosiak
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Katharina Manuela Gregor
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Tamara Tuchel
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Satendra Kumar
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| |
Collapse
|
7
|
Chiuppesi F, Zaia JA, Gutierrez-Franco MA, Ortega-Francisco S, Ly M, Kha M, Kim T, Dempsey S, Kar S, Grifoni A, Sette A, Wussow F, Diamond DJ. Synthetic modified vaccinia Ankara vaccines confer cross-reactive and protective immunity against mpox virus. COMMUNICATIONS MEDICINE 2024; 4:19. [PMID: 38366141 PMCID: PMC10873322 DOI: 10.1038/s43856-024-00443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Although the mpox global health emergency caused by mpox virus (MPXV) clade IIb.1 has ended, mpox cases are still reported due to low vaccination coverage and waning immunity. COH04S1 is a clinically evaluated, multiantigen COVID-19 vaccine candidate built on a fully synthetic platform of the highly attenuated modified vaccinia Ankara (MVA) vector, representing the only FDA-approved smallpox/mpox vaccine JYNNEOS. Given the potential threat of MPXV resurgence and need for vaccine alternatives, we aimed to assess the capacity COH04S1 and its synthetic MVA (sMVA) backbone to confer MPXV-specific immunity. METHODS We evaluated orthopoxvirus-specific and MPXV cross-reactive immune responses in samples collected during a Phase 1 clinical trial of COH04S1 and in non-human primates (NHP) vaccinated with COH04S1 or its sMVA backbone. MPXV cross-reactive immune responses in COH04S1-vaccinated healthy adults were compared to responses measured in healthy subjects vaccinated with JYNNEOS. Additionally, we evaluated the protective efficacy of COH04S1 and sMVA against mpox in mpox-susceptible CAST/EiJ mice. RESULTS COH04S1-vaccinated individuals develop robust orthopoxvirus-specific humoral and cellular responses, including cross-reactive antibodies to MPXV-specific virion proteins as well as MPXV cross-neutralizing antibodies in 45% of the subjects. In addition, NHP vaccinated with COH04S1 or sMVA show similar MPXV cross-reactive antibody responses. Moreover, MPXV cross-reactive humoral responses elicited by COH04S1 are comparable to those measured in JYNNEOS-vaccinated subjects. Finally, we show that mice vaccinated with COH04S1 or sMVA are protected from lung infection following challenge with MPXV clade IIb.1. CONCLUSIONS These results demonstrate the capacity of sMVA vaccines to elicit cross-reactive and protective orthopox-specific immunity against MPXV, suggesting that COH04S1 and sMVA could be developed as bivalent or monovalent mpox vaccine alternatives against MPXV.
Collapse
Affiliation(s)
- Flavia Chiuppesi
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
| | - John A Zaia
- Center for Gene Therapy, City of Hope National Medical Center, Duarte, CA, USA
| | - Miguel-Angel Gutierrez-Franco
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Sandra Ortega-Francisco
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Minh Ly
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Mindy Kha
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Taehyun Kim
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Shannon Dempsey
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Felix Wussow
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Don J Diamond
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
8
|
Zhang D, Kukkar D, Kim KH, Bhatt P. A comprehensive review on immunogen and immune-response proteins of SARS-CoV-2 and their applications in prevention, diagnosis, and treatment of COVID-19. Int J Biol Macromol 2024; 259:129284. [PMID: 38211928 DOI: 10.1016/j.ijbiomac.2024.129284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Exposure to severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2) prompts humoral immune responses in the human body. As the auxiliary diagnosis of a current infection, the existence of viral proteins can be checked from specific antibodies (Abs) induced by immunogenic viral proteins. For people with a weakened immune system, Ab treatment can help neutralize viral antigens to resist and treat the disease. On the other hand, highly immunogenic viral proteins can serve as effective markers for detecting prior infections. Additionally, the identification of viral particles or the presence of antibodies may help establish an immune defense against the virus. These immunogenic proteins rather than SARS-CoV-2 can be given to uninfected people as a vaccination to improve their coping ability against COVID-19 through the generation of memory plasma cells. In this work, we review immunogenic and immune-response proteins derived from SARS-CoV-2 with regard to their classification, origin, and diverse applications (e.g., prevention (vaccine development), diagnostic testing, and treatment (via neutralizing Abs)). Finally, advanced immunization strategies against COVID-19 are discussed along with the contemporary circumstances and future challenges.
Collapse
Affiliation(s)
- Daohong Zhang
- College of Food Engineering, Ludong University, Yantai 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai 264025, Shandong, China
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Poornima Bhatt
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| |
Collapse
|
9
|
Li M, Yang L, Wang C, Cui M, Wen Z, Liao Z, Han Z, Zhao Y, Lang B, Chen H, Qian J, Shu Y, Zeng X, Sun C. Rapid Induction of Long-Lasting Systemic and Mucosal Immunity via Thermostable Microneedle-Mediated Chitosan Oligosaccharide-Encapsulated DNA Nanoparticles. ACS NANO 2023; 17:24200-24217. [PMID: 37991848 DOI: 10.1021/acsnano.3c09521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Most existing vaccines, delivered by intramuscular injection (IM), are typically associated with stringent storage requirements under cold-chain distribution and professional administration by medical personnel and often result in the induction of weak mucosal immunity. In this context, we reported a microneedle (MN) patch to deliver chitosan oligosaccharide (COS)-encapsulated DNA vaccines (DNA@COS) encoding spike and nucleocapsid proteins of SARS-CoV-2 as a vaccination technology. Compared with IM immunization, intradermal administration via the MN-mediated DNA vaccine effectively induces a comparable level of neutralizing antibody against SARS-CoV-2 variants. Surprisingly, we found that MN-mediated intradermal immunization elicited superior systemic and mucosal T cell immunity with enhanced magnitude, polyfunctionality, and persistence. Importantly, the DNA@COS nanoparticle vaccine loaded in an MN patch can be stored at room temperature for at least 1 month without a significant decrease of its immunogenicity. Mechanically, our strategy enhanced dendritic cell maturation and antiviral immunity by activating the cGAS-STING-mediated IFN signaling pathway. In conclusion, this work provides valuable insights for the rapid development of an easy-to-administer and thermostable technology for mucosal vaccines.
Collapse
Affiliation(s)
- Minchao Li
- School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Congcong Wang
- School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
| | - Mingting Cui
- School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
| | - Ziyu Wen
- School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
| | - Zhiheng Liao
- School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
| | - Zirong Han
- School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
| | - Yangguo Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
| | - Bing Lang
- School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Qian
- School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, P.R. China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou 514400, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University; Guangdong 518107, China
| |
Collapse
|
10
|
Yu H, Guan F, Miller H, Lei J, Liu C. The role of SARS-CoV-2 nucleocapsid protein in antiviral immunity and vaccine development. Emerg Microbes Infect 2023; 12:e2164219. [PMID: 36583642 PMCID: PMC9980416 DOI: 10.1080/22221751.2022.2164219] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACTThe coronavirus disease 2019 (COVID-19) has caused enormous health risks and global economic disruption. This disease is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 nucleocapsid protein is a structural protein involved in viral replication and assembly. There is accumulating evidence indicating that the nucleocapsid protein is multi-functional, playing a key role in the pathogenesis of COVID-19 and antiviral immunity against SARS-CoV-2. Here, we summarize its potential application in the prevention of COVID-19, which is based on its role in inflammation, cell death, antiviral innate immunity, and antiviral adaptive immunity.
Collapse
Affiliation(s)
- Haiyun Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Heather Miller
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China, Chaohong Liu
| |
Collapse
|
11
|
Awasthi M, Macaluso A, Myscofski D, Prigge J, Koide F, Noyce RS, Fogarty S, Stillwell H, Goebel SJ, Daugherty B, Nasar F, Bavari S, Lederman S. Immunogenicity and Efficacy of TNX-1800, A Live Virus Recombinant Poxvirus Vaccine Candidate, against SARS-CoV-2 Challenge in Nonhuman Primates. Vaccines (Basel) 2023; 11:1682. [PMID: 38006014 PMCID: PMC10674175 DOI: 10.3390/vaccines11111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
TNX-1800 is a synthetically derived live recombinant chimeric horsepox virus (rcHPXV) vaccine candidate expressing Wuhan SARS-CoV-2 spike (S) protein. The primary objective of this study was to evaluate the immunogenicity and efficacy of TNX-1800 in two nonhuman primate species challenged with USA-WA1/2020 SARS-CoV-2. TNX-1800 vaccination was well tolerated with no serious adverse events or significant changes in clinical parameters. A single dose of TNX-1800 generated humoral responses in African Green Monkeys and Cynomolgus Macaques, as measured by the total binding of anti-SARS-CoV-2 S IgG and neutralizing antibody titers against the USA-WA1/2020 strain. In addition, a single dose of TNX-1800 induced an interferon-gamma (IFN-γ)-mediated T-cell response in Cynomolgus Macaques. Following challenge with SARS-CoV-2, African Green and Cynomolgus Macaques exhibited rapid clearance of virus in the upper and lower respiratory tract. Future studies will assess the efficacy of TNX-1800 against newly emerging variants and demonstrate its safety in humans.
Collapse
Affiliation(s)
- Mayanka Awasthi
- Tonix Pharmaceuticals, Frederick, MD 21701, USA; (M.A.); (A.M.); (D.M.); (S.J.G.); (F.N.); (S.B.)
| | - Anthony Macaluso
- Tonix Pharmaceuticals, Frederick, MD 21701, USA; (M.A.); (A.M.); (D.M.); (S.J.G.); (F.N.); (S.B.)
| | - Dawn Myscofski
- Tonix Pharmaceuticals, Frederick, MD 21701, USA; (M.A.); (A.M.); (D.M.); (S.J.G.); (F.N.); (S.B.)
| | | | | | - Ryan S. Noyce
- Department of Medical Microbiology & Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | | | - Helen Stillwell
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
- Tonix Pharmaceuticals, Chatham, NJ 07928, USA;
| | - Scott J. Goebel
- Tonix Pharmaceuticals, Frederick, MD 21701, USA; (M.A.); (A.M.); (D.M.); (S.J.G.); (F.N.); (S.B.)
| | | | - Farooq Nasar
- Tonix Pharmaceuticals, Frederick, MD 21701, USA; (M.A.); (A.M.); (D.M.); (S.J.G.); (F.N.); (S.B.)
| | - Sina Bavari
- Tonix Pharmaceuticals, Frederick, MD 21701, USA; (M.A.); (A.M.); (D.M.); (S.J.G.); (F.N.); (S.B.)
| | | |
Collapse
|
12
|
Abdelnabi R, Pérez P, Astorgano D, Albericio G, Kerstens W, Thibaut HJ, Coelmont L, Weynand B, Labiod N, Delgado R, Montenegro D, Puentes E, Rodríguez E, Neyts J, Dallmeier K, Esteban M, García-Arriaza J. Optimized vaccine candidate MVA-S(3P) fully protects against SARS-CoV-2 infection in hamsters. Front Immunol 2023; 14:1163159. [PMID: 37920464 PMCID: PMC10619667 DOI: 10.3389/fimmu.2023.1163159] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
The development of novel optimized vaccines against coronavirus disease 2019 (COVID-19) that are capable of controlling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and the appearance of different variants of concern (VoC) is needed to fully prevent the transmission of the virus. In the present study, we describe the enhanced immunogenicity and efficacy elicited in hamsters by a modified vaccinia virus Ankara (MVA) vector expressing a full-length prefusion-stabilized SARS-CoV-2 spike (S) protein [termed MVA-S(3P)]. Hamsters vaccinated with one or two doses of MVA-S(3P) developed high titers of S-binding IgG antibodies and neutralizing antibodies against the ancestral Wuhan SARS-CoV-2 virus and VoC beta, gamma, and delta, as well as against omicron, although with a somewhat lower neutralization activity. After SARS-CoV-2 challenge, vaccinated hamsters did not lose body weight as compared to matched placebo (MVA-WT) controls. Consistently, vaccinated hamsters exhibited significantly reduced viral RNA in the lungs and nasal washes, and no infectious virus was detected in the lungs in comparison to controls. Furthermore, almost no lung histopathology was detected in MVA-S(3P)-vaccinated hamsters, which also showed significantly reduced levels of proinflammatory cytokines in the lungs compared to unvaccinated hamsters. These results reinforce the use of MVA-S(3P) as a vaccine candidate against COVID-19 in clinical trials.
Collapse
Affiliation(s)
- Rana Abdelnabi
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, KU Leuven, Leuven, Belgium
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Winnie Kerstens
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Hendrik Jan Thibaut
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Lotte Coelmont
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, KU Leuven, Leuven, Belgium
| | - Birgit Weynand
- Department of Imaging and Pathology, Translational Cell and Tissue Research, Division of Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Nuria Labiod
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Rafael Delgado
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Microbiology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Medicine, Medical School, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, KU Leuven, Leuven, Belgium
| | - Kai Dallmeier
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, KU Leuven, Leuven, Belgium
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
13
|
Chiuppesi F, Ortega-Francisco S, Gutierrez MA, Li J, Ly M, Faircloth K, Mack-Onyeike J, La Rosa C, Thomas S, Zhou Q, Drake J, Slape C, Fernando P, Rida W, Kaltcheva T, Grifoni A, Sette A, Patterson A, Dempsey S, Ball B, Ali H, Salhotra A, Stein A, Nathwani N, Rosenzweig M, Nikolaenko L, Al Malki MM, Dickter J, Nanayakkara DD, Puing A, Forman SJ, Taplitz RA, Zaia JA, Nakamura R, Wussow F, Diamond DJ, Dadwal SS. Stimulation of Potent Humoral and Cellular Immunity via Synthetic Dual-Antigen MVA-Based COVID-19 Vaccine COH04S1 in Cancer Patients Post Hematopoietic Cell Transplantation and Cellular Therapy. Vaccines (Basel) 2023; 11:1492. [PMID: 37766168 PMCID: PMC10538048 DOI: 10.3390/vaccines11091492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Hematopoietic cell transplantation (HCT) and chimeric antigen receptor (CAR)-T cell patients are immunocompromised, remain at high risk following SARS-CoV-2 infection, and are less likely than immunocompetent individuals to respond to vaccination. As part of the safety lead-in portion of a phase 2 clinical trial in patients post HCT/CAR-T for hematological malignancies (HM), we tested the immunogenicity of the synthetic modified vaccinia Ankara-based COVID-19 vaccine COH04S1 co-expressing spike (S) and nucleocapsid (N) antigens. Thirteen patients were vaccinated 3-12 months post HCT/CAR-T with two to four doses of COH04S1. SARS-CoV-2 antigen-specific humoral and cellular immune responses, including neutralizing antibodies to ancestral virus and variants of concern (VOC), were measured up to six months post vaccination and compared to immune responses in historical cohorts of naïve healthy volunteers (HV) vaccinated with COH04S1 and naïve healthcare workers (HCW) vaccinated with the FDA-approved mRNA vaccine Comirnaty® (Pfizer, New York, NY, USA). After one or two COH04S1 vaccine doses, HCT/CAR-T recipients showed a significant increase in S- and N-specific binding antibody titers and neutralizing antibodies with potent activity against SARS-CoV-2 ancestral virus and VOC, including the highly immune evasive Omicron XBB.1.5 variant. Furthermore, vaccination with COH04S1 resulted in a significant increase in S- and N-specific T cells, predominantly CD4+ T lymphocytes. Elevated S- and N-specific immune responses continued to persist at six months post vaccination. Furthermore, both humoral and cellular immune responses in COH04S1-vaccinated HCT/CAR-T patients were superior or comparable to those measured in COH04S1-vaccinated HV or Comirnaty®-vaccinated HCW. These results demonstrate robust stimulation of SARS-CoV-2 S- and N-specific immune responses including cross-reactive neutralizing antibodies by COH04S1 in HM patients post HCT/CAR-T, supporting further testing of COH04S1 in immunocompromised populations.
Collapse
Affiliation(s)
- Flavia Chiuppesi
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Sandra Ortega-Francisco
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Miguel-Angel Gutierrez
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Jing Li
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Minh Ly
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Katelyn Faircloth
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Jada Mack-Onyeike
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Corinna La Rosa
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Sandra Thomas
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Qiao Zhou
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Jennifer Drake
- Clinical Trials Office, City of Hope National Medical Center, Duarte, CA 91010, USA; (J.D.); (C.S.); (P.F.)
| | - Cynthia Slape
- Clinical Trials Office, City of Hope National Medical Center, Duarte, CA 91010, USA; (J.D.); (C.S.); (P.F.)
| | - Paolo Fernando
- Clinical Trials Office, City of Hope National Medical Center, Duarte, CA 91010, USA; (J.D.); (C.S.); (P.F.)
| | - Wasima Rida
- Independent Researcher, Arlington, VA 22205, USA;
| | - Teodora Kaltcheva
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute of Allergy and Immunology, University of California San Diego, La Jolla, CA 92037, USA; (A.G.); (A.S.)
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute of Allergy and Immunology, University of California San Diego, La Jolla, CA 92037, USA; (A.G.); (A.S.)
| | - Angela Patterson
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Shannon Dempsey
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Brian Ball
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Haris Ali
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Amandeep Salhotra
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Anthony Stein
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Nitya Nathwani
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Michael Rosenzweig
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Liana Nikolaenko
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Monzr M. Al Malki
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Jana Dickter
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Deepa D. Nanayakkara
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Alfredo Puing
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Stephen J. Forman
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Randy A. Taplitz
- Division of Infectious Diseases, City of Hope National Medical Center, Duarte, CA 91010, USA; (R.A.T.); (S.S.D.)
- Department of Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - John A. Zaia
- Center for Gene Therapy, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Ryotaro Nakamura
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Felix Wussow
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Don J. Diamond
- Department of Hematology and HCT, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (F.C.); (S.O.-F.); (M.-A.G.); (J.L.); (K.F.); (J.M.-O.); (C.L.R.); (S.T.); (Q.Z.); (T.K.); (A.P.); (S.D.); (B.B.); (H.A.); (A.S.); (A.S.); (N.N.); (M.R.); (L.N.); (M.M.A.M.); (J.D.); (D.D.N.); (S.J.F.); (R.N.); (F.W.)
| | - Sanjeet S. Dadwal
- Division of Infectious Diseases, City of Hope National Medical Center, Duarte, CA 91010, USA; (R.A.T.); (S.S.D.)
- Department of Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
14
|
Song W, Fang Z, Ma F, Li J, Huang Z, Zhang Y, Li J, Chen K. The role of SARS-CoV-2 N protein in diagnosis and vaccination in the context of emerging variants: present status and prospects. Front Microbiol 2023; 14:1217567. [PMID: 37675423 PMCID: PMC10478715 DOI: 10.3389/fmicb.2023.1217567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Despite many countries rapidly revising their strategies to prevent contagions, the number of people infected with Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to surge. The emergent variants that can evade the immune response significantly affect the effectiveness of mainstream vaccines and diagnostic products based on the original spike protein. Therefore, it is essential to focus on the highly conserved nature of the nucleocapsid protein as a potential target in the field of vaccines and diagnostics. In this regard, our review initially discusses the structure, function, and mechanism of action of N protein. Based on this discussion, we summarize the relevant research on the in-depth development and application of diagnostic methods and vaccines based on N protein, such as serology and nucleic acid detection. Such valuable information can aid in designing more efficient diagnostic and vaccine tools that could help end the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Wanchen Song
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Feike Ma
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiaxuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhiwei Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanjun Zhang
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jianhua Li
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
15
|
Primard C, Monchâtre-Leroy E, Del Campo J, Valsesia S, Nikly E, Chevandier M, Boué F, Servat A, Wasniewski M, Picard-Meyer E, Courant T, Collin N, Salguero FJ, Le Vert A, Guyon-Gellin D, Nicolas F. OVX033, a nucleocapsid-based vaccine candidate, provides broad-spectrum protection against SARS-CoV-2 variants in a hamster challenge model. Front Immunol 2023; 14:1188605. [PMID: 37409116 PMCID: PMC10319154 DOI: 10.3389/fimmu.2023.1188605] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 07/07/2023] Open
Abstract
Spike-based COVID-19 vaccines induce potent neutralizing antibodies but their efficacy against SARS-CoV-2 variants decreases. OVX033 is a recombinant protein composed of the full-length nucleocapsid (N) protein of SARS-CoV-2 genetically fused to oligoDOM®, a self-assembling domain which improves antigen immunogenicity. OVX033 including N as an antigenic target is proposed as new vaccine candidate providing broad-spectrum protection against sarbecoviruses. OVX033 demonstrated its ability to trigger cross-reactive T cell responses and cross-protection against three variants of SARS-CoV-2 (B.1 Europe, Delta B.1.617.2, and Omicron B.1.1.529) in a hamster challenge model, as evidenced by lower weight loss, lower lung viral loads, and reduced lung histopathological lesions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Franck Boué
- ANSES, Laboratory for Rabies and Wildlife, Malzéville, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
LeBlanc K, Lynch J, Layne C, Vendramelli R, Sloan A, Tailor N, Deschambault Y, Zhang F, Kobasa D, Safronetz D, Xiang Y, Cao J. The Nucleocapsid Proteins of SARS-CoV-2 and Its Close Relative Bat Coronavirus RaTG13 Are Capable of Inhibiting PKR- and RNase L-Mediated Antiviral Pathways. Microbiol Spectr 2023; 11:e0099423. [PMID: 37154717 PMCID: PMC10269842 DOI: 10.1128/spectrum.00994-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
Coronaviruses (CoVs), including severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and SARS-CoV-2, produce double-stranded RNA (dsRNA) that activates antiviral pathways such as PKR and OAS/RNase L. To successfully replicate in hosts, viruses must evade such antiviral pathways. Currently, the mechanism of how SARS-CoV-2 antagonizes dsRNA-activated antiviral pathways is unknown. In this study, we demonstrate that the SARS-CoV-2 nucleocapsid (N) protein, the most abundant viral structural protein, is capable of binding to dsRNA and phosphorylated PKR, inhibiting both the PKR and OAS/RNase L pathways. The N protein of the bat coronavirus (bat-CoV) RaTG13, the closest relative of SARS-CoV-2, has a similar ability to inhibit the human PKR and RNase L antiviral pathways. Via mutagenic analysis, we found that the C-terminal domain (CTD) of the N protein is sufficient for binding dsRNA and inhibiting RNase L activity. Interestingly, while the CTD is also sufficient for binding phosphorylated PKR, the inhibition of PKR antiviral activity requires not only the CTD but also the central linker region (LKR). Thus, our findings demonstrate that the SARS-CoV-2 N protein is capable of antagonizing the two critical antiviral pathways activated by viral dsRNA and that its inhibition of PKR activities requires more than dsRNA binding mediated by the CTD. IMPORTANCE The high transmissibility of SARS-CoV-2 is an important viral factor defining the coronavirus disease 2019 (COVID-19) pandemic. To transmit efficiently, SARS-CoV-2 must be capable of disarming the innate immune response of its host efficiently. Here, we describe that the nucleocapsid protein of SARS-CoV-2 is capable of inhibiting two critical innate antiviral pathways, PKR and OAS/RNase L. Moreover, the counterpart of the closest animal coronavirus relative of SARS-CoV-2, bat-CoV RaTG13, can also inhibit human PKR and OAS/RNase L antiviral activities. Thus, the importance of our discovery for understanding the COVID-19 pandemic is 2-fold. First, the ability of SARS-CoV-2 N to inhibit innate antiviral activity is likely a factor contributing to the transmissibility and pathogenicity of the virus. Second, the bat relative of SARS-CoV-2 has the capacity to inhibit human innate immunity, which thus likely contributed to the establishment of infection in humans. The findings described in this study are valuable for developing novel antivirals and vaccines.
Collapse
Affiliation(s)
- Kyle LeBlanc
- Poxviruses and Vaccine Design, Division of Viral Diseases, Directorate of Science Reference and Surveillance, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Jessie Lynch
- Poxviruses and Vaccine Design, Division of Viral Diseases, Directorate of Science Reference and Surveillance, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Christine Layne
- Poxviruses and Vaccine Design, Division of Viral Diseases, Directorate of Science Reference and Surveillance, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Robert Vendramelli
- Special Pathogens, Division of Health Security and Response, Directorate of Scientific Operations and Response, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Angela Sloan
- Special Pathogens, Division of Health Security and Response, Directorate of Scientific Operations and Response, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Nikesh Tailor
- Special Pathogens, Division of Health Security and Response, Directorate of Scientific Operations and Response, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yvon Deschambault
- Special Pathogens, Division of Health Security and Response, Directorate of Scientific Operations and Response, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Fushun Zhang
- Department of Microbiology and Immunology, The University of Texas Health Science Center, San Antonio, Texas, USA
| | - Darwyn Kobasa
- Special Pathogens, Division of Health Security and Response, Directorate of Scientific Operations and Response, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - David Safronetz
- Special Pathogens, Division of Health Security and Response, Directorate of Scientific Operations and Response, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yan Xiang
- Department of Microbiology and Immunology, The University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jingxin Cao
- Poxviruses and Vaccine Design, Division of Viral Diseases, Directorate of Science Reference and Surveillance, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Nowill AE, Caruso M, de Campos-Lima PO. T-cell immunity to SARS-CoV-2: what if the known best is not the optimal course for the long run? Adapting to evolving targets. Front Immunol 2023; 14:1133225. [PMID: 37388738 PMCID: PMC10303130 DOI: 10.3389/fimmu.2023.1133225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
Humanity did surprisingly well so far, considering how unprepared it was to respond to the coronavirus disease 2019 (COVID-19) threat. By blending old and ingenious new technology in the context of the accumulated knowledge on other human coronaviruses, several vaccine candidates were produced and tested in clinical trials in record time. Today, five vaccines account for the bulk of the more than 13 billion doses administered worldwide. The ability to elicit biding and neutralizing antibodies most often against the spike protein is a major component of the protection conferred by immunization but alone it is not enough to limit virus transmission. Thus, the surge in numbers of infected individuals by newer variants of concern (VOCs) was not accompanied by a proportional increase in severe disease and death rate. This is likely due to antiviral T-cell responses, whose evasion is more difficult to achieve. The present review helps navigating the very large literature on T cell immunity induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination. We examine the successes and shortcomings of the vaccinal protection in the light of the emergence of VOCs with breakthrough potential. SARS-CoV-2 and human beings will likely coexist for a long while: it will be necessary to update existing vaccines to improve T-cell responses and attain better protection against COVID-19.
Collapse
Affiliation(s)
- Alexandre E. Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas, SP, Brazil
| | - Manuel Caruso
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Québec, QC, Canada
| | - Pedro O. de Campos-Lima
- Boldrini Children’s Center, Campinas, SP, Brazil
- Molecular and Morphofunctional Biology Graduate Program, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
18
|
Perdiguero B, Pérez P, Marcos-Villar L, Albericio G, Astorgano D, Álvarez E, Sin L, Elena Gómez C, García-Arriaza J, Esteban M. Highly attenuated poxvirus-based vaccines against emerging viral diseases. J Mol Biol 2023:168173. [PMID: 37301278 DOI: 10.1016/j.jmb.2023.168173] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Although one member of the poxvirus family, variola virus, has caused one of the most devastating human infections worldwide, smallpox, the knowledge gained over the last 30 years on the molecular, virological and immunological mechanisms of these viruses has allowed the use of members of this family as vectors for the generation of recombinant vaccines against numerous pathogens. In this review, we cover different aspects of the history and biology of poxviruses with emphasis on their application as vaccines, from first- to fourth-generation, against smallpox, monkeypox, emerging viral diseases highlighted by the World Health Organization (COVID-19, Crimean-Congo haemorrhagic fever, Ebola and Marburg virus diseases, Lassa fever, Middle East respiratory syndrome and severe acute respiratory syndrome, Nipah and other henipaviral diseases, Rift Valley fever and Zika), as well as against one of the most concerning prevalent virus, the Human Immunodeficiency Virus, the causative agent of AcquiredImmunodeficiency Syndrome. We discuss the implications in human health of the 2022 monkeypox epidemic affecting many countries, and the rapid prophylactic and therapeutic measures adopted to control virus dissemination within the human population. We also describe the preclinical and clinical evaluation of the Modified Vaccinia virus Ankara and New York vaccinia virus poxviral strains expressing heterologous antigens from the viral diseases listed above. Finally, we report different approaches to improve the immunogenicity and efficacy of poxvirus-based vaccine candidates, such as deletion of immunomodulatory genes, insertion of host-range genes and enhanced transcription of foreign genes through modified viral promoters. Some future prospects are also highlighted.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Enrique Álvarez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Sin
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
19
|
Barrett EG, Revelli D, Bakshi CS, Kadish A, Amar S. The impact of primary immunization route on the outcome of infection with SARS-CoV-2 in a hamster model of COVID-19. Front Microbiol 2023; 14:1212179. [PMID: 37293233 PMCID: PMC10244709 DOI: 10.3389/fmicb.2023.1212179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has resulted in over 6.7 million deaths worldwide. COVID-19 vaccines administered parenterally via intramuscular or subcutaneous (SC) routes have reduced the severity of respiratory infections, hospitalization rates, and overall mortality. However, there is a growing interest in developing mucosally delivered vaccines to further enhance the ease and durability of vaccination. This study compared the immune response in hamsters immunized with live SARS-CoV-2 virus via SC or intranasal (IN) routes and assessed the outcome of a subsequent IN SARS-CoV-2 challenge. Results showed that SC-immunized hamsters elicited a dose-dependent neutralizing antibody response but of a significantly lower magnitude than that observed in IN-immunized hamsters. The IN challenge with SARS-CoV-2 in SC-immunized hamsters resulted in body weight loss, increased viral load, and lung pathology than that observed in IN-immunized and IN-challenged counterparts. These results demonstrate that while SC immunization renders some degree of protection, IN immunization induces a stronger immune response and better protection against respiratory SARS-CoV-2 infection. Overall, this study provides evidence that the route of primary immunization plays a critical role in determining the severity of a subsequent respiratory infection caused by SARS-CoV-2. Furthermore, the findings suggest that IN route of immunization may be a more effective option for COVID-19 vaccines than the currently used parenteral routes. Understanding the immune response to SARS-CoV-2 elicited via different immunization routes may help guide more effective and long-lasting vaccination strategies.
Collapse
Affiliation(s)
- Edward G. Barrett
- Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - David Revelli
- Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Chandra Shekhar Bakshi
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Alan Kadish
- Touro University, New York City, NY, United States
| | - Salomon Amar
- Touro University, New York City, NY, United States
- New York Medical College, Valhalla, NY, United States
| |
Collapse
|
20
|
Bonam SR, Hu H. Next-Generation Vaccines Against COVID-19 Variants: Beyond the Spike Protein. ZOONOSES (BURLINGTON, MASS.) 2023; 3:10.15212/zoonoses-2023-0003. [PMID: 38031548 PMCID: PMC10686570 DOI: 10.15212/zoonoses-2023-0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Vaccines are among the most effective medical countermeasures against infectious diseases. The current Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spurred the scientific strategies to fight against the disease. Since 2020, a great number of vaccines based on different platforms have been in development in response to the pandemic, among which mRNA, adenoviral vector, and subunit vaccines have been clinically approved for use in humans. These first-generation COVID-19 vaccines largely target the viral spike (S) protein and aim for eliciting potent neutralizing antibodies. With the emergence of SARS-CoV-2 variants, especially the highly transmissible Omicron strains, the S-based vaccine strategies have been faced constant challenges due to strong immune escape by the variants. The coronavirus nucleocapsid (N) is one of the viral proteins that induces strong T-cell immunity and is more conserved across different SARS-CoV-2 variants. Inclusion of N in the development of COVID-19 vaccines has been reported. Here, we briefly reviewed and discussed COVID-19 disease, current S-based vaccine strategies, and focused on the immunobiology of N protein in SARS-CoV-2 host immunity, as well as the next-generation vaccine strategies involving N protein, to combat current and emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA 77555
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA 77555
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA 77555
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA 77555
| |
Collapse
|
21
|
Mendoza-Ramírez NJ, García-Cordero J, Martínez-Frías SP, Roa-Velázquez D, Luria-Pérez R, Bustos-Arriaga J, Hernández-Lopez J, Cabello-Gutiérrez C, Zúñiga-Ramos JA, Morales-Ríos E, Pérez-Tapia SM, Espinosa-Cantellano M, Cedillo-Barrón L. Combination of Recombinant Proteins S1/N and RBD/N as Potential Vaccine Candidates. Vaccines (Basel) 2023; 11:vaccines11040864. [PMID: 37112776 PMCID: PMC10142685 DOI: 10.3390/vaccines11040864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Despite all successful efforts to develop a COVID-19 vaccine, the need to evaluate alternative antigens to produce next-generation vaccines is imperative to target emerging variants. Thus, the second generation of COVID-19 vaccines employ more than one antigen from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce an effective and lasting immune response. Here, we analyzed the combination of two SARS-CoV-2 viral antigens that could elicit a more durable immune response in both T- and B-cells. The nucleocapsid (N) protein, Spike protein S1 domain, and receptor binding domain (RBD) of the SARS-CoV-2 spike surface glycoproteins were expressed and purified in a mammalian expression system, taking into consideration the posttranscriptional modifications and structural characteristics. The immunogenicity of these combined proteins was evaluated in a murine model. Immunization combining S1 or RBD with the N protein induced higher levels of IgG antibodies, increased the percentage of neutralization, and elevated the production of cytokines TNF-α, IFN-γ, and IL-2 compared to the administration of a single antigen. Furthermore, sera from immunized mice recognized alpha and beta variants of SARS-CoV-2, which supports ongoing clinical results on partial protection in vaccinated populations, despite mutations. This study identifies potential antigens for second-generation COVID-19 vaccines.
Collapse
Affiliation(s)
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, Cinvestav, Av. IPN # 2508 Col, Mexico City 07360, Mexico
| | | | - Daniela Roa-Velázquez
- Departamento de Bioquímica, Cinvestav, Av. IPN # 2508 Col, Mexico City 07360, Mexico
| | - Rosendo Luria-Pérez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - José Bustos-Arriaga
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios # 1, Col. Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Jesús Hernández-Lopez
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A. C (CIAD) Carretera a la Victoria km 0.6, Hermosillo Sonora 83304, Mexico
| | - Carlos Cabello-Gutiérrez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Departamento de Investigación en Virología y Micología, Calzada de Tlalpan 4502, Belisario Domínguez, Tlalpan 14080, Mexico
| | - Joaquín Alejandro Zúñiga-Ramos
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas y Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico
| | - Edgar Morales-Ríos
- Departamento de Bioquímica, Cinvestav, Av. IPN # 2508 Col, Mexico City 07360, Mexico
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City 11340, Mexico
| | - Martha Espinosa-Cantellano
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav, Av. IPN # 2508 Col, San Pedro Zacatenco, México City 07360, Mexico
| | - Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular, Cinvestav, Av. IPN # 2508 Col, Mexico City 07360, Mexico
| |
Collapse
|
22
|
Wussow F, Kha M, Kim T, Ly M, Yll-Pico M, Kar S, Lewis MG, Chiuppesi F, Diamond DJ. Synthetic multiantigen MVA vaccine COH04S1 and variant-specific derivatives protect Syrian hamsters from SARS-CoV-2 Omicron subvariants. NPJ Vaccines 2023; 8:41. [PMID: 36928589 PMCID: PMC10018591 DOI: 10.1038/s41541-023-00640-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Emerging SARS-CoV-2 Omicron subvariants continue to disrupt COVID-19 vaccine efficacy through multiple immune mechanisms including neutralizing antibody evasion. We developed COH04S1, a synthetic modified vaccinia Ankara vector that co-expresses Wuhan-Hu-1-based spike and nucleocapsid antigens. COH04S1 demonstrated efficacy against ancestral virus and Beta and Delta variants in animal models and was safe and immunogenic in a Phase 1 clinical trial. Here, we report efficacy of COH04S1 and analogous Omicron BA.1- and Beta-specific vaccines to protect Syrian hamsters from Omicron subvariants. Despite eliciting strain-specific antibody responses, all three vaccines protect hamsters from weight loss, lower respiratory tract infection, and lung pathology following challenge with Omicron BA.1 or BA.2.12.1. While the BA.1-specifc vaccine affords consistently improved efficacy compared to COH04S1 to protect against homologous challenge with BA.1, all three vaccines confer similar protection against heterologous challenge with BA.2.12.1. These results demonstrate efficacy of COH04S1 and variant-specific derivatives to confer cross-protective immunity against SARS-CoV-2 Omicron subvariants.
Collapse
Affiliation(s)
- Felix Wussow
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| | - Mindy Kha
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Taehyun Kim
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Minh Ly
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Marcal Yll-Pico
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | | | | | - Flavia Chiuppesi
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Don J Diamond
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
23
|
Miao G, Chen Z, Cao H, Wu W, Chu X, Liu H, Zhang L, Zhu H, Cai H, Lu X, Shi J, Liu Y, Feng T. From Immunogen to COVID-19 vaccines: Prospects for the post-pandemic era. Biomed Pharmacother 2023; 158:114208. [PMID: 36800265 PMCID: PMC9805901 DOI: 10.1016/j.biopha.2022.114208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
The COVID-19 pandemic has affected millions of people and posed an unprecedented burden on healthcare systems and economies worldwide since the outbreak of the COVID-19. A considerable number of nations have investigated COVID-19 and proposed a series of prevention and treatment strategies thus far. The pandemic prevention strategies implemented in China have suggested that the spread of COVID-19 can be effectively reduced by restricting large-scale gathering, developing community-scale nucleic acid testing, and conducting epidemiological investigations, whereas sporadic cases have always been identified in numerous places. Currently, there is still no decisive therapy for COVID-19 or related complications. The development of COVID-19 vaccines has raised the hope for mitigating this pandemic based on the intercross immunity induced by COVID-19. Thus far, several types of COVID-19 vaccines have been developed and released to into financial markets. From the perspective of vaccine use in globe, COVID-19 vaccines are beneficial to mitigate the pandemic, whereas the relative adverse events have been reported progressively. This is a review about the development, challenges and prospects of COVID-19 vaccines, and it can provide more insights into all aspects of the vaccines.
Collapse
Affiliation(s)
- Ganggang Miao
- Department of General Surgery, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China,Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiqiang Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Suzhou University, Suzhou, China
| | - Hengsong Cao
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
| | - Wenhao Wu
- Department of Clinical Medicine, Nanjing Medical University The First School of Clinical Medicine, Nanjing, China
| | - Xi Chu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, China
| | - Hanyuan Liu
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
| | - Leyao Zhang
- Department of Clinical Medicine, Nanjing Medical University The First School of Clinical Medicine, Nanjing, China
| | - Hongfei Zhu
- Department of Clinical Medicine, Nanjing Medical University The First School of Clinical Medicine, Nanjing, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital &The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Xiaolan Lu
- Department of Clinical laboratory, Canglang Hospital of Suzhou, Suzhou, China.
| | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Department of Molecular and Celluar Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| | - Yuan Liu
- Department of Infectious Disease,The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
24
|
Hajnik RL, Plante JA, Liang Y, Alameh MG, Tang J, Bonam SR, Zhong C, Adam A, Scharton D, Rafael GH, Liu Y, Hazell NC, Sun J, Soong L, Shi PY, Wang T, Walker DH, Sun J, Weissman D, Weaver SC, Plante KS, Hu H. Dual spike and nucleocapsid mRNA vaccination confer protection against SARS-CoV-2 Omicron and Delta variants in preclinical models. Sci Transl Med 2022; 14:eabq1945. [PMID: 36103514 PMCID: PMC9926941 DOI: 10.1126/scitranslmed.abq1945] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Emergence of SARS-CoV-2 variants of concern (VOCs), including the highly transmissible Omicron and Delta strains, has posed constant challenges to the current COVID-19 vaccines that principally target the viral spike protein (S). Here, we report a nucleoside-modified messenger RNA (mRNA) vaccine that expresses the more conserved viral nucleoprotein (mRNA-N) and show that mRNA-N vaccination alone can induce modest control of SARS-CoV-2. Critically, combining mRNA-N with the clinically proven S-expressing mRNA vaccine (mRNA-S+N) induced robust protection against both Delta and Omicron variants. In the hamster models of SARS-CoV-2 VOC challenge, we demonstrated that, compared to mRNA-S alone, combination mRNA-S+N vaccination not only induced more robust control of the Delta and Omicron variants in the lungs but also provided enhanced protection in the upper respiratory tract. In vivo CD8+ T cell depletion suggested a potential role for CD8+ T cells in protection conferred by mRNA-S+N vaccination. Antigen-specific immune analyses indicated that N-specific immunity, as well as augmented S-specific immunity, was associated with enhanced protection elicited by the combination mRNA vaccination. Our findings suggest that combined mRNA-S+N vaccination is an effective approach for promoting broad protection against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Renee L. Hajnik
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jessica A. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jinyi Tang
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chaojie Zhong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Awadalkareem Adam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dionna Scharton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Grace H. Rafael
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nicholas C. Hazell
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pei-Yong Shi
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA. Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jie Sun
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kenneth S. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
25
|
Pérez P, Astorgano D, Albericio G, Flores S, Sánchez-Cordón PJ, Luczkowiak J, Delgado R, Casasnovas JM, Esteban M, García-Arriaza J. Intranasal administration of a single dose of MVA-based vaccine candidates against COVID-19 induced local and systemic immune responses and protects mice from a lethal SARS-CoV-2 infection. Front Immunol 2022; 13:995235. [PMID: 36172368 PMCID: PMC9510595 DOI: 10.3389/fimmu.2022.995235] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Current coronavirus disease-19 (COVID-19) vaccines are administered by the intramuscular route, but this vaccine administration failed to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infection in the upper respiratory tract, mainly due to the absence of virus-specific mucosal immune responses. It is hypothesized that intranasal (IN) vaccination could induce both mucosal and systemic immune responses that blocked SARS-CoV-2 transmission and COVID-19 progression. Here, we evaluated in mice IN administration of three modified vaccinia virus Ankara (MVA)-based vaccine candidates expressing the SARS-CoV-2 spike (S) protein, either the full-length native S or a prefusion-stabilized [S(3P)] protein; SARS-CoV-2-specific immune responses and efficacy were determined after a single IN vaccine application. Results showed that in C57BL/6 mice, MVA-based vaccine candidates elicited S-specific IgG and IgA antibodies in serum and bronchoalveolar lavages, respectively, and neutralizing antibodies against parental and SARS-CoV-2 variants of concern (VoC), with MVA-S(3P) being the most immunogenic vaccine candidate. IN vaccine administration also induced polyfunctional S-specific Th1-skewed CD4+ and cytotoxic CD8+ T-cell immune responses locally (in lungs and bronchoalveolar lymph nodes) or systemically (in spleen). Remarkably, a single IN vaccine dose protected susceptible K18-hACE2 transgenic mice from morbidity and mortality caused by SARS-CoV-2 infection, with MVA-S(3P) being the most effective candidate. Infectious SARS-CoV-2 viruses were undetectable in lungs and nasal washes, correlating with high titers of S-specific IgGs and neutralizing antibodies against parental SARS-CoV-2 and several VoC. Moreover, low histopathological lung lesions and low levels of pro-inflammatory cytokines in lungs and nasal washes were detected in vaccinated animals. These results demonstrated that a single IN inoculation of our MVA-based vaccine candidates induced potent immune responses, either locally or systemically, and protected animal models from COVID-19. These results also identified an effective vaccine administration route to induce mucosal immunity that should prevent SARS-CoV-2 host-to-host transmission.
Collapse
Affiliation(s)
- Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sara Flores
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pedro J. Sánchez-Cordón
- Pathology Department, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Joanna Luczkowiak
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Microbiology, Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| | - Rafael Delgado
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Microbiology, Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - José M. Casasnovas
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- *Correspondence: Mariano Esteban, ; Juan García-Arriaza,
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- *Correspondence: Mariano Esteban, ; Juan García-Arriaza,
| |
Collapse
|
26
|
Chiuppesi F, Zaia JA, Faircloth K, Johnson D, Ly M, Karpinski V, La Rosa C, Drake J, Marcia J, Acosta AM, Dempsey S, Taplitz RA, Zhou Q, Park Y, Ortega Francisco S, Kaltcheva T, Frankel PH, Rosen S, Wussow F, Dadwal S, Diamond DJ. Vaccine-induced spike- and nucleocapsid-specific cellular responses maintain potent cross-reactivity to SARS-CoV-2 Delta and Omicron variants. iScience 2022; 25:104745. [PMID: 35846380 PMCID: PMC9272674 DOI: 10.1016/j.isci.2022.104745] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 01/06/2023] Open
Abstract
Cell-mediated immunity may contribute to providing protection against SARS-CoV-2 and its variants of concern (VOC). We developed COH04S1, a synthetic multiantigen modified vaccinia Ankara (MVA)-based COVID-19 vaccine that stimulated potent spike (S) and nucleocapsid (N) antigen-specific humoral and cellular immunity in a phase 1 clinical trial in healthy adults. Here, we show that individuals vaccinated with COH04S1 or mRNA vaccine BNT162b2 maintain robust cross-reactive cellular immunity for six or more months post-vaccination. Although neutralizing antibodies induced in COH04S1- and BNT162b2-vaccinees showed reduced activity against Delta and Omicron variants compared to ancestral SARS-CoV-2, S-specific T cells elicited in both COH04S1- and BNT162b2-vaccinees and N-specific T cells elicited in COH04S1-vaccinees demonstrated potent and equivalent cross-reactivity against ancestral SARS-CoV-2 and the major VOC. These results suggest that vaccine-induced T cells to S and N antigens may constitute a critical second line of defense to provide long-term protection against SARS-CoV-2 VOC.
Collapse
Affiliation(s)
- Flavia Chiuppesi
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - John A. Zaia
- Center for Gene Therapy, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Katelyn Faircloth
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Daisy Johnson
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Minh Ly
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Veronica Karpinski
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Corinna La Rosa
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jennifer Drake
- Clinical Trials Office, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Joan Marcia
- Clinical Trials Office, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Ann Marie Acosta
- Clinical Trials Office, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Shannon Dempsey
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Randy A. Taplitz
- Division of Infectious Diseases, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Department of Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Qiao Zhou
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Yoonsuh Park
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Sandra Ortega Francisco
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Teodora Kaltcheva
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Paul H. Frankel
- Department of Biostatistics, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Steven Rosen
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Felix Wussow
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Sanjeet Dadwal
- Division of Infectious Diseases, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Department of Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Don J. Diamond
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Corresponding author
| |
Collapse
|
27
|
Boutin L, Mosca E, Iseni F. Efficient Method for Generating Point Mutations in the Vaccinia Virus Genome Using CRISPR/Cas9. Viruses 2022; 14:v14071559. [PMID: 35891539 PMCID: PMC9321979 DOI: 10.3390/v14071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
The vaccinia virus (VACV) was previously used as a vaccine for smallpox eradication. Nowadays, recombinant VACVs are developed as vaccine platforms for infectious disease prevention and cancer treatment. The conventional method for genome editing of the VACV is based on homologous recombination, which is poorly efficient. Recently, the use of CRISPR/Cas9 technology was shown to greatly improve the speed and efficiency of the production of recombinant VACV expressing a heterologous gene. However, the ability to rapidly recover viruses bearing single nucleotide substitutions is still challenging. Notwithstanding, ongoing studies on the VACV and its interaction with the host cell could benefit from viral gene targeted mutagenesis. Here, we present a modified version of the CRISPR/Cas9 system for the rapid selection of mutant VACV carrying point mutations. For this purpose, we introduced a silent mutation into the donor gene (which will replace the wildtype gene) that serves a double function: it is located in the PAM (NGG) sequence, which is essential for Cas9 cleavage, and it alters a restriction site. This silent mutation, once introduced into the VACV genome, allows for rapid selection and screening of mutant viruses carrying a mutation of interest in the targeted gene. As a proof of concept, we produced several recombinant VACVs, with mutations in the E9L gene, upon which, phenotypic analysis was performed.
Collapse
|
28
|
Deng S, Liang H, Chen P, Li Y, Li Z, Fan S, Wu K, Li X, Chen W, Qin Y, Yi L, Chen J. Viral Vector Vaccine Development and Application during the COVID-19 Pandemic. Microorganisms 2022; 10:microorganisms10071450. [PMID: 35889169 PMCID: PMC9317404 DOI: 10.3390/microorganisms10071450] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 12/14/2022] Open
Abstract
With the accumulation of mutations in SARS-CoV-2 and the continuous emergence of new variants, the importance of developing safer and effective vaccines has become more prominent in combating the COVID-19 pandemic. Both traditional and genetically engineered vaccines have contributed to the prevention and control of the pandemic. However, in recent years, the trend of vaccination research has gradually transitioned from traditional to genetically engineered vaccines, with the development of viral vector vaccines attracting increasing attention. Viral vector vaccines have several unique advantages compared to other vaccine platforms. The spread of Omicron has also made the development of intranasal viral vector vaccines more urgent, as the infection site of Omicron is more prominent in the upper respiratory tract. Therefore, the present review focuses on the development of viral vector vaccines and their application during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Shaofeng Deng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hui Liang
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
| | - Pin Chen
- Oriental Fortune Capital Post-Doctoral Innovation Center, Shenzhen 518055, China;
- Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (L.Y.); (J.C.)
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (L.Y.); (J.C.)
| |
Collapse
|
29
|
Wussow F, Kha M, Faircloth K, Nguyen VH, Iniguez A, Martinez J, Park Y, Nguyen J, Kar S, Andersen H, Lewis MG, Chiuppesi F, Diamond DJ. COH04S1 and beta sequence-modified vaccine protect hamsters from SARS-CoV-2 variants. iScience 2022; 25:104457. [PMID: 35634578 PMCID: PMC9126022 DOI: 10.1016/j.isci.2022.104457] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
COVID-19 vaccine efficacy is threatened by emerging SARS-CoV-2 variants of concern (VOC) with the capacity to evade protective neutralizing antibody responses. We recently developed clinical vaccine candidate COH04S1, a synthetic modified vaccinia Ankara vector (sMVA) co-expressing spike and nucleocapsid antigens based on the Wuhan-Hu-1 reference strain that showed potent efficacy to protect against ancestral SARS-CoV-2 in Syrian hamsters and non-human primates and was safe and immunogenic in healthy volunteers. Here, we demonstrate that intramuscular immunization of Syrian hamsters with COH04S1 and an analogous Beta variant-adapted vaccine candidate (COH04S351) elicits potent cross-reactive antibody responses and protects against weight loss, lower respiratory tract infection, and lung pathology following challenge with major SARS-CoV-2 VOC, including Beta and the highly contagious Delta variant. These results demonstrate efficacy of COH04S1 and a variant-adapted vaccine analog to confer cross-protective immunity against SARS-CoV-2 and its emerging VOC, supporting clinical investigation of these sMVA-based COVID-19 vaccine candidates.
Collapse
Affiliation(s)
- Felix Wussow
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mindy Kha
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Katelyn Faircloth
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Vu H. Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Angelina Iniguez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Joy Martinez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yoonsuh Park
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jenny Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | - Flavia Chiuppesi
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Don J. Diamond
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
30
|
Single Immunization with Recombinant ACAM2000 Vaccinia Viruses Expressing the Spike and the Nucleocapsid Proteins Protects Hamsters against SARS-CoV-2-Caused Clinical Disease. J Virol 2022; 96:e0038922. [PMID: 35412347 PMCID: PMC9093096 DOI: 10.1128/jvi.00389-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increasing cases of SARS-CoV-2 breakthrough infections from immunization with current spike protein-based COVID-19 vaccines highlight the need to develop alternative vaccines using different platforms and/or antigens. In this study, we expressed SARS-CoV-2 spike and nucleocapsid proteins based on a novel vaccinia virus (VACV) ACAM2000 platform (rACAM2000). In this platform, the vaccinia virus host range and immunoregulatory gene E3L was deleted to make the virus attenuated and to enhance innate immune responses, and another host range gene, K3L, was replaced with a poxvirus ortholog gene, taterapox virus 037 (TATV037), to make virus replication competent in both hamster and human cells. Following a single intramuscular immunization, the rACAM2000 coexpressing the spike and nucleocapsid proteins induced significantly improved protection against SARS-CoV-2 challenge in comparison to rACAM2000 expressing the individual proteins in a hamster model, as shown by reduced weight loss and shorter recovery time. The protection was associated with reduced viral loads, increased neutralizing antibody titer, and reduced neutrophil-to-lymphocyte ratio. Thus, our study demonstrates that rACAM2000 expressing a combination of the spike and nucleocapsid antigens is a promising COVID-19 vaccine candidate, and further studies will investigate if the rACAM2000 vaccine candidate can induce a long-lasting immunity against infection by SARS-CoV-2 variants of concern. IMPORTANCE Continuous emergence of SARS-CoV-2 variants which cause breakthrough infection from the immunity induced by current spike protein-based COVID-19 vaccines highlights the need for new generations of vaccines that will induce long-lasting immunity against a wide range of the variants. To this end, we investigated the protective efficacy of the recombinant COVID-19 vaccine candidates based on a novel VACV ACAM2000 platform, in which an immunoregulatory gene, E3L, was deleted and both the SARS-CoV-2 spike (S) and nucleocapsid (N) antigens were expressed. Thus, it is expected that the vaccine candidate we constructed should be more immunogenic and safer. In the initial study described in this work, we demonstrated that the vaccine candidate expressing both the S and N proteins is superior to the constructs expressing an individual protein (S or N) in protecting hamsters against SARS-CoV-2 challenge after a single-dose immunization, and further investigation against different SARS-CoV-2 variants will warrant future clinical evaluations.
Collapse
|
31
|
Boudewijns R, Pérez P, Lázaro-Frías A, Van Looveren D, Vercruysse T, Thibaut HJ, Weynand B, Coelmont L, Neyts J, Astorgano D, Montenegro D, Puentes E, Rodríguez E, Dallmeier K, Esteban M, García-Arriaza J. MVA-CoV2-S Vaccine Candidate Neutralizes Distinct Variants of Concern and Protects Against SARS-CoV-2 Infection in Hamsters. Front Immunol 2022; 13:845969. [PMID: 35371064 PMCID: PMC8966703 DOI: 10.3389/fimmu.2022.845969] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 12/31/2022] Open
Abstract
To control the coronavirus disease 2019 (COVID-19) pandemic and the emergence of different variants of concern (VoCs), novel vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed. In this study, we report the potent immunogenicity and efficacy induced in hamsters by a vaccine candidate based on a modified vaccinia virus Ankara (MVA) vector expressing a human codon optimized full-length SARS-CoV-2 spike (S) protein (MVA-S). Immunization with one or two doses of MVA-S elicited high titers of S- and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against parental SARS-CoV-2 and VoC alpha, beta, gamma, delta, and omicron. After SARS-CoV-2 challenge, MVA-S-vaccinated hamsters showed a significantly strong reduction of viral RNA and infectious virus in the lungs compared to the MVA-WT control group. Moreover, a marked reduction in lung histopathology was also observed in MVA-S-vaccinated hamsters. These results favor the use of MVA-S as a potential vaccine candidate for SARS-CoV-2 in clinical trials.
Collapse
Affiliation(s)
- Robbert Boudewijns
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Adrián Lázaro-Frías
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Dominique Van Looveren
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
| | - Thomas Vercruysse
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Translational Cell and Tissue Research, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
32
|
Safety and immunogenicity of a synthetic multiantigen modified vaccinia virus Ankara-based COVID-19 vaccine (COH04S1): an open-label and randomised, phase 1 trial. THE LANCET. MICROBE 2022; 3:e252-e264. [PMID: 35287430 PMCID: PMC8906816 DOI: 10.1016/s2666-5247(22)00027-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background COH04S1, a synthetic attenuated modified vaccinia virus Ankara vector co-expressing SARS-CoV-2 spike and nucleocapsid antigens, was tested for safety and immunogenicity in healthy adults. Methods This combined open-label and randomised, phase 1 trial was done at the City of Hope Comprehensive Cancer Center (Duarte, CA, USA). We included participants aged 18-54 years with a negative SARS-CoV-2 antibody and PCR test, normal haematology and chemistry panels, a normal electrocardiogram and troponin concentration, negative pregnancy test if female, body-mass index of 30 kg/m2 or less, and no modified vaccinia virus Ankara or poxvirus vaccine in the past 12 months. In the open-label cohort, 1·0 × 107 plaque-forming units (PFU; low dose), 1·0 × 108 PFU (medium dose), and 2·5 × 108 PFU (high dose) of COH04S1 were administered by intramuscular injection on day 0 and 28 to sentinel participants using a queue-based statistical design to limit risk. In a randomised dose expansion cohort, additional participants were randomly assigned (3:3:1), using block size of seven, to receive two placebo vaccines (placebo group), one low-dose COH04S1 and one placebo vaccine (low-dose COH04S1 plus placebo group), or two low-dose COH04S1 vaccines (low-dose COH04S1 group). The primary outcome was safety and tolerability, with secondary objectives assessing vaccine-specific immunogenicity. The primary immunological outcome was a four times increase (seroconversion) from baseline in spike-specific or nucleocapsid-specific IgG titres within 28 days of the last injection, and seroconversion rates were compared with participants who received placebo using Fisher's exact test. Additional secondary outcomes included assessment of viral neutralisation and cellular responses. This trial is registered with ClinicalTrials.gov, NCT046339466. Findings Between Dec 13, 2020, and May 24, 2021, 56 participants initiated vaccination. On day 0 and 28, 17 participants received low-dose COH04S1, eight received medium-dose COH04S1, nine received high-dose COH04S1, five received placebo, 13 received low-dose COH04S1 followed by placebo, and four discontinued early. Grade 3 fever was observed in one participant who received low-dose COH04S1 and placebo, and grade 2 anxiety or fatigue was seen in one participant who received medium-dose COH04S1. No severe adverse events were reported. Seroconversion was observed in all 34 participants for spike protein and 32 (94%) for nucleocapsid protein (p<0·0001 vs placebo for each comparison). Four times or more increase in SARS-CoV-2 neutralising antibodies within 56 days was measured in nine of 17 participants in the low-dose COH04S1 group, all eight participants in the medium-dose COH04S1 group, and eight of nine participants in the high-dose COH04S1 group (p=0·0035 combined dose levels vs placebo). Post-prime and post-boost four times increase in spike-specific or nucleocapsid-specific T cells secreting interferon-γ was measured in 48 (98%; 95% CI 89-100) of 49 participants who received at least one dose of COH04S1 and provided a sample for immunological analysis. Interpretation COH04S1 was well tolerated and induced spike-specific and nucleocapsid-specific antibody and T-cell responses. Future evaluation of this COVID-19 vaccine candidate as a primary or boost vaccination is warranted. Funding The Carol Moss Foundation and City of Hope Integrated Drug Development Venture programme.
Collapse
|
33
|
Pursell T, Spencer Clinton JL, Tan J, Peng R, Ling PD. Modified vaccinia Ankara expressing EEHV1A glycoprotein B elicits humoral and cell-mediated immune responses in mice. PLoS One 2022; 17:e0265424. [PMID: 35312707 PMCID: PMC8936464 DOI: 10.1371/journal.pone.0265424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Elephant endotheliotropic herpesvirus (EEHV) can cause lethal hemorrhagic disease (EEHV-HD) in Asian elephants and is the largest cause of death in captive juvenile Asian elephants in North America and Europe. EEHV-HD also has been documented in captive and wild elephants in their natural range countries. A safe and effective vaccine to prevent lethal EEHV infection would significantly improve conservation efforts for this endangered species. Recent studies from our laboratory suggest that EEHV morbidity and mortality are often associated with primary infection. Therefore, we aim to generate a vaccine, particularly for EEHV1 naïve animals, with the goal of preventing lethal EEHV-HD. To address this goal, we generated a Modified Vaccinia Ankara (MVA) recombinant virus expressing a truncated form of glycoprotein B (gBΔfur731) from EEHV1A, the strain associated with the majority of lethal EEHV cases. Vaccination of CD-1 mice with this recombinant virus induced robust antibody and polyfunctional T cell responses significantly above mice inoculated with wild-type MVA. Although the vaccine-induced T cell response was mainly observed in CD8+ T cell populations, the CD4+ T cell response was also polyfunctional. No adverse responses to vaccination were observed. Overall, our data demonstrates that MVA-gBΔfur731 stimulates robust humoral and cell-mediated responses, supporting its potential translation for use in elephants.
Collapse
Affiliation(s)
- Taylor Pursell
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer L. Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Tan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rongsheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul D. Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|