1
|
Li H, Yang C, Yin L, Liu W, Zhang Z, Liu B, Sun X, Liu W, Lin Z, Liu Z, He P, Feng Y, Wang C, Wang W, Guan S, Wang Q, Chen L, Li P. Comparative immunogenicity of monovalent and bivalent adenovirus vaccines carrying spikes of early and late SARS-CoV-2 variants. Emerg Microbes Infect 2024; 13:2387447. [PMID: 39082740 PMCID: PMC11334748 DOI: 10.1080/22221751.2024.2387447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
The continuous emergence of highly immune-evasive SARS-CoV-2 variants has challenged vaccine efficacy. A vaccine that can provide broad protection is desirable. We evaluated the immunogenicity of a series of monovalent and bivalent adenovirus-vectored vaccines containing the spikes of Wildtype (WT), Beta, Delta, Omicron subvariants BA.1, BA.2, BA.2.12.1, BA.2.13, BA.3, BA.5, BQ.1.1, and XBB. Vaccination in mice using monovalent vaccines elicited the highest neutralizing titers against each self-matched strain, but against other variants were reduced 2- to 73-fold. A bivalent vaccine consisting of WT and BA.5 broadened the neutralizing breadth against pre-Omicron and Omicron subvariants except XBB. Among bivalent vaccines based on the strains before the emergence of XBB, a bivalent vaccine consisting of BA.2 and BA.5 elicited the most potent neutralizing antibodies against Omicron subvariants, including XBB. In mice primed with injected WT vaccine, intranasal booster with a bivalent vaccine containing XBB and BA.5 could elicit broad serum and respiratory mucosal neutralizing antibodies against all late Omicron subvariants, including XBB. In mice that had been sequentially vaccinated with WT and BA.5, intranasal booster with a monovalent XBB vaccine elicited greater serum and mucosal XBB neutralizing antibodies than bivalent vaccines containing XBB. Both monovalent and bivalent XBB vaccines induced neutralizing antibodies against EG.5. Unlike the antibody response, which is highly variant-specific, mice receiving either monovalent or bivalent vaccines elicited comparable T-cell responses against all variants. Furthermore, intranasal but not intramuscular booster induced antigen-specific lung resident T cells. This study provides insights into the design of the COVID-19 vaccine and vaccination strategies.
Collapse
Affiliation(s)
- Hengchun Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Chenchen Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Li Yin
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Wenming Liu
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Zhengyuan Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bo Liu
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Xinxin Sun
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Wenhao Liu
- School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Zihan Lin
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zijian Liu
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ping He
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Ying Feng
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Chunhua Wang
- Guangzhou nBiomed Ltd., Guangzhou, People’s Republic of China
| | - Wei Wang
- Guangzhou Bio-island Laboratory, Guangzhou, People’s Republic of China
| | - Suhua Guan
- Guangzhou nBiomed Ltd., Guangzhou, People’s Republic of China
| | - Qian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Reindl-Schwaighofer R, Heinzel A, Raab L, Strassl R, Herz CT, Regele F, Doberer K, Helk O, Spechtl P, Aschauer C, Hu K, Jagoditsch R, Reiskopf B, Böhmig GA, Benka B, Mahr B, Stiasny K, Weseslindtner L, Kammer M, Wekerle T, Oberbauer R. Cilgavimab and tixagevimab as pre-exposure prophylaxis in vaccine non-responder kidney transplant recipients during a period of prevalent SARS-CoV-2 BA.2 and BA.4/5 variants-a prospective cohort study (RESCUE-TX). EBioMedicine 2024; 109:105417. [PMID: 39442367 DOI: 10.1016/j.ebiom.2024.105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The response to severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) vaccination is severely impaired in patients on maintenance immunosuppression after kidney transplantation. METHODS We conducted a prospective cohort study of 194 kidney transplant recipients (KTR) who exhibited no response to SARS-CoV-2 vaccinations (i.e., SARS-CoV-2 spike protein antibodies ≤264 U/mL) and had no prior documented infection. Patients received 300 mg of cilgavimab/tixagevimab as SARS-CoV-2 pre-exposure prophylaxis (PrEP) between March 4, 2022, and May 3, 2022 and were contrasted to a matched cohort of 186 KTRs also without immunization again defined as SARS-CoV-2 spike protein antibodies ≤264 U/mL and no documented prior infection. The primary outcome was the serum kinetics of cilgavimab/tixagevimab, the secondary endpoints were time to SARS-CoV-2 breakthrough infection, severity of disease and variant specific live viral in vitro neutralization tests of patient sera. FINDINGS Longitudinal serum level monitoring showed a half-life of 91 days for both antibodies (95% CI 86-95 days for cilgavimab and 85-96 days for tixagevimab) in KTRs. In vitro neutralization tests showed effectiveness against the BA.2 omicron subvariant but not BA.5. The cumulative incidence of SARS-CoV-2 infections until May 15, 2022, (BA.2 dominance) was 15/194 vs 36/186 in the PrEP and control group respectively (OR = 0.35, 95% CI 0.18-0.66) but was not different thereafter (BA.4/5 dominance). The number of severe infections during the BA.2 period was lower in the prophylaxis than in the control group (OR = 0.37, 95% CI 0.17-0.79). INTERPRETATION This study showed that SARS-CoV-2 PrEP with cilgavimab/tixagevimab demonstrated clinical effectiveness against variants that are neutralised (BA.2) but not against BA.4/5. FUNDING This study was funded by the Medical University of Vienna and an unrestricted grant from AstraZeneca (ESR-21-21585).
Collapse
Affiliation(s)
- Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Heinzel
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lukas Raab
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Robert Strassl
- Department of Laboratory Medicine, Division of Clinical Virology, Medical University of Vienna, Vienna, Austria
| | - Carsten T Herz
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Florina Regele
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Konstantin Doberer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Oliver Helk
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Paul Spechtl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Constantin Aschauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Karin Hu
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rahel Jagoditsch
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bianca Reiskopf
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bernhard Benka
- Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | | | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Michael Kammer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Center for Medical Data Science, Institute for Clinical Biometrics, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Fryer HA, Geers D, Gommers L, Zaeck LM, Tan NH, Jones-Freeman B, Goorhuis A, Postma DF, Visser LG, Hogarth PM, Koopmans MPG, GeurtsvanKessel CH, O'Hehir RE, van der Kuy PHM, de Vries RD, van Zelm MC. Fourth dose bivalent COVID-19 vaccines outperform monovalent boosters in eliciting cross-reactive memory B cells to Omicron subvariants. J Infect 2024; 89:106246. [PMID: 39127451 DOI: 10.1016/j.jinf.2024.106246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Bivalent COVID-19 vaccines comprising ancestral Wuhan-Hu-1 (WH1) and the Omicron BA.1 or BA.5 subvariant elicit enhanced serum antibody responses to emerging Omicron subvariants. Here, we characterized the RBD-specific memory B cell (Bmem) response following a fourth dose with a BA.1 or BA.5 bivalent vaccine, in direct comparison with a WH1 monovalent fourth dose. Healthcare workers previously immunized with mRNA or adenoviral vector monovalent vaccines were sampled before and one month after a fourth dose with a monovalent or a BA.1 or BA.5 bivalent vaccine. Serum neutralizing antibodies (NAb) were quantified, as well as RBD-specific Bmem with an in-depth spectral flow cytometry panel including recombinant RBD proteins of the WH1, BA.1, BA.5, BQ.1.1, and XBB.1.5 variants. Both bivalent vaccines elicited higher NAb titers against Omicron subvariants compared to the monovalent vaccine. Following either vaccine type, recipients had slightly increased WH1 RBD-specific Bmem numbers. Both bivalent vaccines significantly increased WH1 RBD-specific Bmem binding of all Omicron subvariants tested by flow cytometry, while recognition of Omicron subvariants was not enhanced following monovalent vaccination. IgG1+ Bmem dominated the response, with substantial IgG4+ Bmem only detected in recipients of an mRNA vaccine for their primary dose. Thus, Omicron-based bivalent vaccines can significantly boost NAb and Bmem specific for ancestral WH1 and Omicron variants and improve recognition of descendent subvariants by pre-existing, WH1-specific Bmem beyond that of a monovalent vaccine. This provides new insights into the capacity of variant-based mRNA booster vaccines to improve immune memory against emerging SARS-CoV-2 variants and potentially protect against severe disease. ONE-SENTENCE SUMMARY: Omicron BA.1 and BA.5 bivalent COVID-19 boosters, used as a fourth dose, increase RBD-specific Bmem cross-recognition of Omicron subvariants, both those encoded by the vaccines and antigenically distinct subvariants, further than a monovalent booster.
Collapse
Affiliation(s)
- Holly A Fryer
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Daryl Geers
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Lennert Gommers
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Luca M Zaeck
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Ngoc H Tan
- Dept. Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Bernadette Jones-Freeman
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Abraham Goorhuis
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Infection and Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Douwe F Postma
- Department of Internal Medicine and Infectious Diseases, University Medical Center Groningen, Groningen, the Netherlands
| | - Leo G Visser
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - P Mark Hogarth
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
| | - Marion P G Koopmans
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | - Robyn E O'Hehir
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - P Hugo M van der Kuy
- Dept. Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Rory D de Vries
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Menno C van Zelm
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Victoria, Australia; Dept. Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Wimalawansa SJ. Unlocking insights: Navigating COVID-19 challenges and Emulating future pandemic Resilience strategies with strengthening natural immunity. Heliyon 2024; 10:e34691. [PMID: 39166024 PMCID: PMC11334859 DOI: 10.1016/j.heliyon.2024.e34691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
The original COVID-19 vaccines, developed against SARS-CoV-2, initially mitigated hospitalizations. Bivalent vaccine boosters were used widely during 2022-23, but the outbreaks persisted. Despite this, hospitalizations, mortality, and outbreaks involving dominant mutants like Alpha and Delta increased during winters when the population's vitamin D levels were at their lowest. Notably, 75 % of human immune cell/system functions, including post-vaccination adaptive immunity, rely on adequate circulatory vitamin D levels. Consequently, hypovitaminosis compromises innate and adaptive immune responses, heightening susceptibility to infections and complications. COVID-19 vaccines primarily target SARS-CoV-2 Spike proteins, thus offering only a limited protection through antibodies. mRNA vaccines, such as those for COVID-19, fail to generate secretory/mucosal immunity-like IgG responses, rendering them ineffective in halting viral spread. Additionally, mutations in the SARS-CoV-2 binding domain reduce immune recognition by vaccine-derived antibodies, leading to immune evasion by mutant viruses like Omicron variants. Meanwhile, the repeated administration of bivalent boosters intended to enhance efficacy resulted in the immunoparesis of recipients. As a result, relying solely on vaccines for outbreak prevention, it became less effective. Dominant variants exhibit increased affinity to angiotensin-converting enzyme receptor-2, enhancing infectivity but reducing virulence. Meanwhile, spike protein-related viral mutations do not impact the potency of widely available, repurposed early therapies, like vitamin D and ivermectin. With the re-emergence of COVID-19 and impending coronaviral pandemics, regulators and health organizations should proactively consider approval and strategic use of cost-effective adjunct therapies mentioned above to counter the loss of vaccine efficacy against emerging variants and novel coronaviruses and eliminate vaccine- and anti-viral agents-related serious adverse effects. Timely implementation of these strategies could reduce morbidity, mortality, and healthcare costs and provide a rational approach to address future epidemics and pandemics. This perspective critically reviews relevant literature, providing insights, justifications, and viewpoints into how the scientific community and health authorities can leverage this knowledge cost-effectively.
Collapse
Affiliation(s)
- Sunil J. Wimalawansa
- Medicine, Endocrinology, and Nutrition, B14 G2, De Soyza Flats, Moratuwa, Sri Lanka
| |
Collapse
|
5
|
Gong X, Peng L, Wang F, Liu J, Tang Y, Peng Y, Niu S, Yin J, Guo L, Lu H, Liu Y, Yang Y. Repeated Omicron infection dampens immune imprinting from previous vaccination and induces broad neutralizing antibodies against Omicron sub-variants. J Infect 2024; 89:106208. [PMID: 38908522 DOI: 10.1016/j.jinf.2024.106208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE Similar with influenza virus, antigenic drift is highly relevant to SARS-CoV-2 evolution, and immune imprinting has been found to limit the performance of updated vaccines based on the emerging variants of SARS-CoV-2. We aimed to investigate whether repeated exposure to Omicron variant could reduce the immune imprinting from previous vaccination. METHODS A total of 194 participants with different status of vaccination (unvaccinated, regular vaccination and booster vaccination) confirmed for first infection and re-infection with BA.5, BF.7 and XBB variants were enrolled, and the neutralizing profiles against wild type (WT) SARS-CoV-2 and Omicron sub-variants were analyzed. RESULTS Neutralizing potency against the corresponding infected variant is significantly hampered along with the doses of vaccination during first infection. However, for the participants with first infection of BA.5/BF.7 variants and re-infection of XBB variant, immune imprinting was obviously alleviated, indicated as significantly increased ratio of the corresponding infected variant/WT ID50 titers and higher percentage of samples with high neutralizing activities (ID50 > 500) against BA.5, BF.7 and XBB variants. Moreover, repeated Omicron infection could induce strong neutralizing potency with broad neutralizing profiles against a series of other Omicron sub-variants, both in the vaccine naive and vaccine experienced individuals. CONCLUSIONS Our results demonstrate that repeated Omicron infection dampens immune imprinting from vaccination with WT SARS-CoV-2 and induces broad neutralizing profiles against Omicron sub-variants.
Collapse
Affiliation(s)
- Xiaohua Gong
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Ling Peng
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Fuxiang Wang
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Jiexiang Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Shenzhen Clinical School of Medicine, Guangzhou University of Chinese Medicine, China
| | - Yimin Tang
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Yun Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Shiyu Niu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China
| | - Juzhen Yin
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China
| | - Liping Guo
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Hongzhou Lu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China.
| |
Collapse
|
6
|
Richardson SI, Mzindle N, Motlou T, Manamela NP, van der Mescht MA, Lambson BE, Everatt J, Amoako DG, Balla S, von Gottberg A, Wolter N, de Beer Z, de Villiers TR, Bodenstein A, van den Berg G, Abdullah F, Rossouw TM, Boswell MT, Ueckermann V, Bhiman JN, Moore PL. SARS-CoV-2 BA.4/5 infection triggers more cross-reactive FcγRIIIa signaling and neutralization than BA.1, in the context of hybrid immunity. J Virol 2024; 98:e0067824. [PMID: 38953380 PMCID: PMC11265454 DOI: 10.1128/jvi.00678-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
SARS-CoV-2 variants of concern (VOCs) differentially trigger neutralizing and antibody-dependent cellular cytotoxic (ADCC) antibodies with variable cross-reactivity. Omicron BA.4/5 was approved for inclusion in bivalent vaccination boosters, and therefore the antigenic profile of antibodies elicited by this variant is critical to understand. Here, we investigate the ability of BA.4/5-elicited antibodies following the first documented (primary) infection (n = 13) or breakthrough infection after vaccination (n = 9) to mediate neutralization and FcγRIIIa signaling across multiple SARS-CoV-2 variants including XBB.1.5 and BQ.1. Using a pseudovirus neutralization assay and a FcγRIIIa crosslinking assay to measure ADCC potential, we show that unlike SARS-CoV-2 Omicron BA.1, BA.4/5 infection triggers highly cross-reactive functional antibodies. Cross-reactivity was observed both in the absence of prior vaccination and in breakthrough infections following vaccination. However, BQ.1 and XBB.1.5 neutralization and FcγRIIIa signaling were significantly compromised compared to other VOCs, regardless of prior vaccination status. BA.4/5 triggered FcγRIIIa signaling was significantly more resilient against VOCs (<10-fold decrease in magnitude) compared to neutralization (10- to 100-fold decrease). Overall, this study shows that BA.4/5 triggered antibodies are highly cross-reactive compared to those triggered by other variants. Although this is consistent with enhanced neutralization and FcγRIIIa signaling breadth of BA.4/5 vaccine boosters, the reduced activity against XBB.1.5 supports the need to update vaccines with XBB sublineage immunogens to provide adequate coverage of these highly antibody evasive variants. IMPORTANCE The continued evolution of SARS-CoV-2 has resulted in a number of variants of concern. Of these, the Omicron sublineage is the most immune evasive. Within Omicron, the BA.4/5 sublineage drove the fifth wave of infection in South Africa prior to becoming the dominant variant globally. As a result this spike sequence was approved as part of a bivalent vaccine booster, and rolled out worldwide. We aimed to understand the cross-reactivity of neutralizing and Fc mediated cytotoxic functions elicited by BA.4/5 infection following infection or breakthrough infection. We find that, in contrast to BA.1 which triggered fairly strain-specific antibodies, BA.4/5 triggered antibodies that are highly cross-reactive for neutralization and antibody-dependent cellular cytotoxicity potential. Despite this cross-reactivity, these antibodies are compromised against highly resistant variants such as XBB.1.5 and BQ.1. This suggests that next-generation vaccines will require XBB sublineage immunogens in order to protect against these evasive variants.
Collapse
Affiliation(s)
- Simone I. Richardson
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nonkululeko Mzindle
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Thopisang Motlou
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nelia P. Manamela
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Mieke A. van der Mescht
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Bronwen E. Lambson
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Josie Everatt
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Gyamfi Amoako
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Sashkia Balla
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Anne von Gottberg
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicole Wolter
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | | - Fareed Abdullah
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Theresa M. Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Michael T. Boswell
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Jinal N. Bhiman
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Penny L. Moore
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| |
Collapse
|
7
|
Springer DN, Camp JV, Aberle SW, Deutsch J, Lammel O, Weseslindtner L, Stiasny K, Aberle JH. Neutralization of SARS-CoV-2 Omicron XBB.1.5 and JN.1 variants after COVID-19 booster-vaccination and infection. J Med Virol 2024; 96:e29801. [PMID: 38988204 DOI: 10.1002/jmv.29801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/04/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
SARS-CoV-2 Omicron lineages continue to emerge and evolve into new sublineages, causing infection waves throughout 2022 and 2023, which has been attributed to immune escape. We examined neutralizing antibody responses to the recently emerged SARS-CoV-2 JN.1 variant in comparison to ancestral D614G and Omicron BA.1, BA.2, BA.5, and XBB.1.5 variants. We tested 79 human sera from cohorts with different combinations of vaccinations and infections, including 23 individuals who had been repeatedly exposed to Omicron. Individuals with a monovalent XBB.1.5 vaccine booster or XBB.1.5 breakthrough infection had robust antibody levels against all variants tested; however, JN.1 evaded antibodies in individuals after single Omicron BA.1, BA.2 or BA.5 breakthrough infections. Moreover, in the non-vaccinated cohort, serum antibodies demonstrated almost no cross-neutralization activities against D614G, XBB.1.5 and JN.1. after infections with earlier Omicron variants. These findings show that SARS-CoV-2-immunity is heterogeneous, depending on different combinations of vaccinations and infections, and emphasize the importance of considering different immune-backgrounds when evaluating novel variants.
Collapse
Affiliation(s)
- David N Springer
- Center for Virology, Medical University of Vienna, Wien, Austria
| | - Jeremy V Camp
- Center for Virology, Medical University of Vienna, Wien, Austria
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Wien, Austria
| | | | - Oliver Lammel
- Independent Researcher, Ramsau am Dachstein, Austria
| | | | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Wien, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Wien, Austria
| |
Collapse
|
8
|
Ameratunga R, Jordan A, Lehnert K, Leung E, Mears ER, Snell R, Steele R, Woon ST. SARS-CoV-2 evolution has increased resistance to monoclonal antibodies and first-generation COVID-19 vaccines: Is there a future therapeutic role for soluble ACE2 receptors for COVID-19? Antiviral Res 2024; 227:105894. [PMID: 38677595 DOI: 10.1016/j.antiviral.2024.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
COVID-19 has caused calamitous health, economic and societal consequences. Although several COVID-19 vaccines have received full authorization for use, global deployment has faced political, financial and logistical challenges. The efficacy of first-generation COVID-19 vaccines is waning and breakthrough infections are allowing ongoing transmission and evolution of SARS-CoV-2. Furthermore, COVID-19 vaccine efficacy relies on a functional immune system. Despite receiving three primary doses and three or more heterologous boosters, some immunocompromised patients may not be adequately protected by COVID-19 vaccines and remain vulnerable to severe disease. The evolution of new SARS-CoV-2 variants has also resulted in the rapid obsolescence of monoclonal antibodies. Convalescent plasma from COVID-19 survivors has produced inconsistent results. New drugs such as Paxlovid (nirmatrelvir/ritonavir) are beyond the reach of low- and middle-income countries. With widespread use of Paxlovid, it is likely nirmatrelvir-resistant clades of SARS-CoV-2 will emerge in the future. There is thus an urgent need for new effective anti-SARS-CoV-2 treatments. The in vitro efficacy of soluble ACE2 against multiple SARS-CoV-2 variants including omicron (B.1.1.529), was recently described using a competitive ELISA assay as a surrogate marker for virus neutralization. This indicates soluble wild-type ACE2 receptors are likely to be resistant to viral evolution. Nasal and inhaled treatment with soluble ACE2 receptors has abrogated severe disease in animal models of COVID-19. There is an urgent need for clinical trials of this new class of antiviral therapeutics, which could complement vaccines and Paxlovid.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Anthony Jordan
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Emily R Mears
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Russell Snell
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Lee B, Bae GE, Jeong IH, Kim JH, Kwon MJ, Kim J, Kim B, Lee JW, Nam JH, Huh HJ, Kang ES. Age-Related Differences in Neutralizing Antibody Responses against SARS-CoV-2 Delta and Omicron Variants in 151 SARS-CoV-2-Naïve Metropolitan Residents Boosted with BNT162b2. J Appl Lab Med 2024; 9:741-751. [PMID: 38531067 DOI: 10.1093/jalm/jfae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/09/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Although age negatively correlates with vaccine-induced immune responses, whether the vaccine-induced neutralizing effect against variants of concern (VOCs) substantially differs across age remains relatively poorly explored. In addition, the utility of commercial binding assays developed with the wild-type SARS-CoV-2 for predicting the neutralizing effect against VOCs should be revalidated. METHODS We analyzed 151 triple-vaccinated SARS-CoV-2-naïve individuals boosted with BNT162b2 (Pfizer-BioNTech). The study population was divided into young adults (age < 30), middle-aged adults (30 ≤ age < 60), and older adults (age ≥ 60). The plaque reduction neutralization test (PRNT) titers against Delta (B.1.617.2) and Omicron (B.1.1.529) variants were compared across age. Antibody titers measured with commercial binding assays were compared with PRNT titers. RESULTS Age-related decline in neutralizing titers was observed for both Delta and Omicron variants. Neutralizing titers for Omicron were lower than those against Delta in all ages. The multiple linear regression model demonstrated that duration from third dose to sample collection and vaccine types were also significant factors affecting vaccine-induced immunity along with age. The correlation between commercial binding assays and PRNT was acceptable for all age groups with the Delta variant, but relatively poor for middle-aged and older adults with the Omicron variant due to low titers. CONCLUSIONS This study provides insights into the age-related dynamics of vaccine-induced immunity against SARS-CoV-2 VOCs, corroborating the need for age-specific vaccination strategies in the endemic era where new variants continue to evolve. Moreover, commercial binding assays should be used cautiously when estimating neutralizing titers against VOCs, particularly Omicron.
Collapse
Affiliation(s)
- Beomki Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Go Eun Bae
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - In Hwa Jeong
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Dong-A University Hospital, Busan, Republic of Korea
| | - Jong-Hun Kim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Min-Jung Kwon
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jayoung Kim
- Department of Laboratory Medicine, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Byoungguk Kim
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - June-Woo Lee
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jeong-Hyun Nam
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Hee Jin Huh
- Department of Laboratory Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Song S, Madewell ZJ, Liu M, Miao Y, Xiang S, Huo Y, Sarkar S, Chowdhury A, Longini IM, Yang Y. A systematic review and meta-analysis on the effectiveness of bivalent mRNA booster vaccines against Omicron variants. Vaccine 2024; 42:3389-3396. [PMID: 38653679 DOI: 10.1016/j.vaccine.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND A global shift to bivalent mRNA vaccines is ongoing to counterbalance the diminishing effectiveness of the original monovalent vaccines due to the evolution of SARS-CoV-2 variants, yet substantial variation in the bivalent vaccine effectiveness (VE) exists across studies and a complete picture is lacking. METHODS We searched papers evaluating absolute or relative effectiveness of SARS-CoV-2 BA.1 type or BA.4/5 type bivalent mRNA vaccines on eight publication databases published from September 1st, 2022, to November 8th, 2023. Pooled VE against Omicron-associated infection and severe events (hospitalization and/or death) was estimated in reference to unvaccinated, ≥2 original monovalent doses, and ≥ 3 original monovalent doses. RESULTS From 630 citations identified, 28 studies were included, involving 55,393,303 individuals. Bivalent boosters demonstrated higher effectiveness against symptomatic or any infection for all ages combined, with an absolute VE of 53.5 % (95 % CI: -22.2-82.3 %) when compared to unvaccinated and relative VE of 30.8 % (95 % CI: 22.5-38.2 %) and 28.4 % (95 % CI: 10.2-42.9 %) when compared to ≥ 2 and ≥ 3 original monovalent doses, respectively. The corresponding VE estimates for adults ≥ 60 years old were 22.5 % (95 % CI: 16.8-39.8 %), 31.4 % (95 % CI: 27.7-35.0 %), and 30.6 % (95 % CI: -13.2-57.5 %). Pooled bivalent VE estimates against severe events were higher, 72.9 % (95 % CI: 60.5-82.4 %), 57.6 % (95 % CI: 42.4-68.8 %), and 62.1 % (95 % CI: 54.6-68.3 %) for all ages, and 72.0 % (95 % CI: 51.4-83.9 %), 63.4 % (95 % CI: 41.0-77.3 %), and 60.7 % (95 % CI: 52.4-67.6 %) for adults ≥ 60 years old, compared to unvaccinated, ≥2 original monovalent doses, and ≥ 3 original monovalent doses, respectively. CONCLUSIONS The bivalent boosters demonstrated superior protection against severe outcomes than the original monovalent boosters across age groups, highlighting the critical need for improving vaccine coverage, especially among the vulnerable older subpopulation.
Collapse
Affiliation(s)
- Shangchen Song
- Department of Biostatistics, College of Public Health and health Professions, University of Florida, Gainesville, FL, USA
| | - Zachary J Madewell
- Department of Biostatistics, College of Public Health and health Professions, University of Florida, Gainesville, FL, USA
| | - Mingjin Liu
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Yu Miao
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Shaolin Xiang
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Yanan Huo
- Gilead Sciences, Inc, Foster City, CA, USA
| | - Shoumi Sarkar
- Department of Biostatistics, College of Public Health and health Professions, University of Florida, Gainesville, FL, USA
| | - Amily Chowdhury
- Department of Computer Science, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Ira M Longini
- Department of Biostatistics, College of Public Health and health Professions, University of Florida, Gainesville, FL, USA
| | - Yang Yang
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
11
|
Titball RW, Bernstein DI, Fanget NVJ, Hall RA, Longet S, MacAry PA, Rupp RE, van Gils M, von Messling V, Walker DH, Barrett ADT. Progress with COVID vaccine development and implementation. NPJ Vaccines 2024; 9:69. [PMID: 38561358 PMCID: PMC10985065 DOI: 10.1038/s41541-024-00867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
| | - David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Stephanie Longet
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Paul A MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Richard E Rupp
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Marit van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan D T Barrett
- Sealy Institute for Vaccine Sciences and Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
12
|
Rössler A, Knabl L, Netzl A, Bante D, Borena W, von Laer D, Smith DJ, Kimpel J. Durability of Cross-Neutralizing Antibodies 5.5 Months After Bivalent Coronavirus Disease 2019 Vaccine Booster. J Infect Dis 2024; 229:644-647. [PMID: 38016020 PMCID: PMC10938204 DOI: 10.1093/infdis/jiad472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
We analyzed neutralizing antibodies in samples from ancestral + BA.1 and ancestral + BA.4/5 boosted individuals, collected around 5.5 months after booster. Titers of neutralizing antibodies generally decreased compared to a time point early after the bivalent booster immunization. This was more pronounced for individuals without infection history and for recently emerged Omicron variants.
Collapse
Affiliation(s)
- Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Austria
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Antonia Netzl
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, United Kingdom
| | - David Bante
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Austria
| | - Wegene Borena
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Austria
| | - Dorothee von Laer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Austria
| | - Derek J Smith
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, United Kingdom
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Austria
| |
Collapse
|
13
|
Alleva DG, Feitsma EA, Janssen YF, Boersma HH, Lancaster TM, Sathiyaseelan T, Murikipudi S, Delpero AR, Scully MM, Ragupathy R, Kotha S, Haworth JR, Shah NJ, Rao V, Nagre S, Ronca SE, Green FM, Shaw SA, Aminetzah A, Kruijff S, Brom M, van Dam GM, Zion TC. Immunogenicity phase II study evaluating booster capacity of nonadjuvanted AKS-452 SARS-Cov-2 RBD Fc vaccine. NPJ Vaccines 2024; 9:40. [PMID: 38383578 PMCID: PMC10881471 DOI: 10.1038/s41541-024-00830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
AKS-452, a subunit vaccine comprising an Fc fusion of the ancestral wild-type (WT) SARS-CoV-2 virus spike protein receptor binding domain (SP/RBD), was evaluated without adjuvant in a single cohort, non-randomized, open-labelled phase II study (NCT05124483) at a single site in The Netherlands for safety and immunogenicity. A single 90 µg subcutaneous booster dose of AKS-452 was administered to 71 adults previously primed with a registered mRNA- or adenovirus-based vaccine and evaluated for 273 days. All AEs were mild and no SAEs were attributable to AKS-452. While all subjects showed pre-existing SP/RBD binding and ACE2-inhibitory IgG titers, 60-68% responded to AKS-452 via ≥2-fold increase from days 28 to 90 and progressively decreased back to baseline by day 180 (days 28 and 90 mean fold-increases, 14.7 ± 6.3 and 8.0 ± 2.2). Similar response kinetics against RBD mutant proteins (including omicrons) were observed but with slightly reduced titers relative to WT. There was an expected strong inverse correlation between day-0 titers and the fold-increase in titers at day 28. AKS-452 enhanced neutralization potency against live virus, consistent with IgG titers. Nucleocapsid protein (Np) titers suggested infection occurred in 66% (46 of 70) of subjects, in which only 20 reported mild symptomatic COVID-19. These favorable safety and immunogenicity profiles support booster evaluation in a planned phase III universal booster study of this room-temperature stable vaccine that can be rapidly and inexpensively manufactured to serve vaccination at a global scale without the need of a complex distribution or cold chain.
Collapse
Affiliation(s)
- David G Alleva
- Akston Biosciences Corporation, 100 Cummings Center, Suite 454C, Beverly, MA, 01915, USA
| | - Eline A Feitsma
- Department of Surgery, University Medical Center Groningen (UMCG), Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Yester F Janssen
- Department of Nuclear Medicine and Molecular Imaging, UMCG, Groningen, The Netherlands
| | - Hendrikus H Boersma
- Department of Nuclear Medicine and Molecular Imaging, UMCG, Groningen, The Netherlands
- Department of Clinical Pharmacy and Pharmacology, UMCG, Groningen, The Netherlands
| | - Thomas M Lancaster
- Akston Biosciences Corporation, 100 Cummings Center, Suite 454C, Beverly, MA, 01915, USA
| | | | - Sylaja Murikipudi
- Akston Biosciences Corporation, 100 Cummings Center, Suite 454C, Beverly, MA, 01915, USA
| | - Andrea R Delpero
- Akston Biosciences Corporation, 100 Cummings Center, Suite 454C, Beverly, MA, 01915, USA
| | - Melanie M Scully
- Akston Biosciences Corporation, 100 Cummings Center, Suite 454C, Beverly, MA, 01915, USA
| | - Ramya Ragupathy
- Akston Biosciences Corporation, 100 Cummings Center, Suite 454C, Beverly, MA, 01915, USA
| | - Sravya Kotha
- Akston Biosciences Corporation, 100 Cummings Center, Suite 454C, Beverly, MA, 01915, USA
| | - Jeffrey R Haworth
- Akston Biosciences Corporation, 100 Cummings Center, Suite 454C, Beverly, MA, 01915, USA
| | - Nishit J Shah
- Akston Biosciences Corporation, 100 Cummings Center, Suite 454C, Beverly, MA, 01915, USA
| | - Vidhya Rao
- Akston Biosciences Corporation, 100 Cummings Center, Suite 454C, Beverly, MA, 01915, USA
| | - Shashikant Nagre
- Akston Biosciences Corporation, 100 Cummings Center, Suite 454C, Beverly, MA, 01915, USA
| | - Shannon E Ronca
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Baylor, College of Medicine, 1102 Bates Ave, 300.15, Houston, TX, 77030, USA
| | - Freedom M Green
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Baylor, College of Medicine, 1102 Bates Ave, 300.15, Houston, TX, 77030, USA
| | - Stephen A Shaw
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Baylor, College of Medicine, 1102 Bates Ave, 300.15, Houston, TX, 77030, USA
| | - Ari Aminetzah
- TRACER BV, Aarhusweg 2-1/2-2, 9723 JJ, Groningen, The Netherlands
| | - Schelto Kruijff
- Department of Surgery, University Medical Center Groningen (UMCG), Hanzeplein 1, 9700 RB, Groningen, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, UMCG, Groningen, The Netherlands
| | - Maarten Brom
- TRACER BV, Aarhusweg 2-1/2-2, 9723 JJ, Groningen, The Netherlands
| | - Gooitzen M van Dam
- Department of Nuclear Medicine and Molecular Imaging, UMCG, Groningen, The Netherlands
- TRACER BV, Aarhusweg 2-1/2-2, 9723 JJ, Groningen, The Netherlands
| | - Todd C Zion
- Akston Biosciences Corporation, 100 Cummings Center, Suite 454C, Beverly, MA, 01915, USA.
| |
Collapse
|
14
|
Fischer C, Willscher E, Paschold L, Gottschick C, Klee B, Diexer S, Bosurgi L, Dutzmann J, Sedding D, Frese T, Girndt M, Hoell JI, Gekle M, Addo MM, Schulze Zur Wiesch J, Mikolajczyk R, Binder M, Schultheiß C. SARS-CoV-2 vaccination may mitigate dysregulation of IL-1/IL-18 and gastrointestinal symptoms of the post-COVID-19 condition. NPJ Vaccines 2024; 9:23. [PMID: 38316833 PMCID: PMC10844289 DOI: 10.1038/s41541-024-00815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
The rapid development of safe and effective vaccines helped to prevent severe disease courses after SARS-CoV-2 infection and to mitigate the progression of the COVID-19 pandemic. While there is evidence that vaccination may reduce the risk of developing post-COVID-19 conditions (PCC), this effect may depend on the viral variant. Therapeutic effects of post-infection vaccination have been discussed but the data for individuals with PCC remains inconclusive. In addition, extremely rare side effects after SARS-CoV-2 vaccination may resemble the heterogeneous PCC phenotype. Here, we analyze the plasma levels of 25 cytokines and SARS-CoV-2 directed antibodies in 540 individuals with or without PCC relative to one or two mRNA-based COVID-19 vaccinations as well as in 20 uninfected individuals one month after their initial mRNA-based COVID-19 vaccination. While none of the SARS-CoV-2 naïve individuals reported any persisting sequelae or exhibited PCC-like dysregulation of plasma cytokines, we detected lower levels of IL-1β and IL-18 in patients with ongoing PCC who received one or two vaccinations at a median of six months after infection as compared to unvaccinated PCC patients. This reduction correlated with less frequent reporting of persisting gastrointestinal symptoms. These data suggest that post-infection vaccination in patients with PCC might be beneficial in a subgroup of individuals displaying gastrointestinal symptoms.
Collapse
Affiliation(s)
- Claudia Fischer
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University, and University Hospital Basel, Basel, Switzerland
| | - Edith Willscher
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Lisa Paschold
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Cornelia Gottschick
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Bianca Klee
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Sophie Diexer
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Lidia Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jochen Dutzmann
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Daniel Sedding
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Thomas Frese
- Institute of General Practice and Family Medicine, Martin-Luther-University Halle-Wittenberg, Halle, (Saale), Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Jessica I Hoell
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Michael Gekle
- Julius Bernstein-Institute of Physiology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Marylyn M Addo
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
| | | | - Rafael Mikolajczyk
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University, and University Hospital Basel, Basel, Switzerland
| | - Christoph Schultheiß
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland.
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University, and University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
15
|
Souza MS, Farias JP, Andreata-Santos R, Silva MP, Brito RDDS, Duarte Barbosa da Silva M, Peter CM, Cirilo MVDF, Luiz WB, Birbrair A, Vidal PO, de Castro-Amarante MF, Candido ED, Munhoz AS, de Mello Malta F, Dorlass EG, Machado RRG, Pinho JRR, Oliveira DBL, Durigon EL, Maricato JT, Braconi CT, Ferreira LCDS, Janini LMR, Amorim JH. Neutralizing antibody response after immunization with a COVID-19 bivalent vaccine: Insights to the future. J Med Virol 2024; 96:e29416. [PMID: 38285457 DOI: 10.1002/jmv.29416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
The raising of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants led to the use of COVID-19 bivalent vaccines, which include antigens of the wild-type (WT) virus, and of the Omicron strain. In this study, we aimed to evaluate the impact of bivalent vaccination on the neutralizing antibody (NAb) response. We enrolled 93 volunteers who had received three or four doses of monovalent vaccines based on the original virus (n = 61), or a booster shot with the bivalent vaccine (n = 32). Serum samples collected from volunteers were subjected to neutralization assays using the WT SARS-CoV-2, and Omicron subvariants. In addition, immunoinformatics to quantify and localize highly conserved NAb epitopes were performed. As main result, we observed that the neutralization titers of samples from individuals vaccinated with the bivalent vaccine were higher for the original virus, in comparison to their capacity of neutralizing the Omicron variant and its subvariants. NAb that recognize epitopes mostly conserved in the WT SARS-CoV-2 were boosted, while those that recognize epitopes mostly present in the Omicron variant, and subvariants were primed. These results indicate that formulation of future vaccines shall consider to target present viruses, and not viruses that no longer circulate.
Collapse
Affiliation(s)
- Milena Silva Souza
- Center of Biological Sciences and Health, Western Bahia Virology Institute, Federal University of Western Bahia, Barreiras, Bahia, Brazil
- Department of Biological Sciences, Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Jéssica Pires Farias
- Center of Biological Sciences and Health, Western Bahia Virology Institute, Federal University of Western Bahia, Barreiras, Bahia, Brazil
- Department of Microbiology, Vaccine Development Laboratory, Biomedical Sciences Institute, University of São Paulo, São Paulo, State of Sao Paulo, Brazil
| | - Robert Andreata-Santos
- Department of Microbiology, Vaccine Development Laboratory, Biomedical Sciences Institute, University of São Paulo, São Paulo, State of Sao Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), Sao Paulo, State of Sao Paulo, Brazil
| | - Marianne Pereira Silva
- Center of Biological Sciences and Health, Western Bahia Virology Institute, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Ruth Dálety da Silva Brito
- Center of Biological Sciences and Health, Western Bahia Virology Institute, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Marcia Duarte Barbosa da Silva
- Department of Microbiology, Immunology and Parasitology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), Sao Paulo, State of Sao Paulo, Brazil
| | - Cristina Mendes Peter
- Department of Microbiology, Immunology and Parasitology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), Sao Paulo, State of Sao Paulo, Brazil
| | - Marcus Vinícius de França Cirilo
- Center of Biological Sciences and Health, Western Bahia Virology Institute, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Wilson Barros Luiz
- Department of Biological Sciences, Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Radiology, Columbia University Medical Center, New York City, New York, USA
| | - Paloma Oliveira Vidal
- Center of Biological Sciences and Health, Western Bahia Virology Institute, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Maria Fernanda de Castro-Amarante
- Department of Microbiology, Vaccine Development Laboratory, Biomedical Sciences Institute, University of São Paulo, São Paulo, State of Sao Paulo, Brazil
| | - Erika Donizetti Candido
- Department of Microbiology, Laboratory of Clinical and Molecular Virology, Institute of Biomedical science, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | - Rafael Rahal Guaragna Machado
- Department of Microbiology, Laboratory of Clinical and Molecular Virology, Institute of Biomedical science, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Danielle Bruna Leal Oliveira
- Department of Microbiology, Laboratory of Clinical and Molecular Virology, Institute of Biomedical science, University of Sao Paulo, Sao Paulo, Brazil
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Edison Luiz Durigon
- Department of Microbiology, Laboratory of Clinical and Molecular Virology, Institute of Biomedical science, University of Sao Paulo, Sao Paulo, Brazil
| | - Juliana Terzi Maricato
- Department of Microbiology, Immunology and Parasitology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), Sao Paulo, State of Sao Paulo, Brazil
| | - Carla Torres Braconi
- Department of Microbiology, Immunology and Parasitology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), Sao Paulo, State of Sao Paulo, Brazil
| | - Luís Carlos de Souza Ferreira
- Department of Microbiology, Vaccine Development Laboratory, Biomedical Sciences Institute, University of São Paulo, São Paulo, State of Sao Paulo, Brazil
- Scientific Platform Pasteur USP, University of Sao Paulo, Sao Paulo, State of Sao Paulo, Brazil
| | - Luiz Mário Ramos Janini
- Department of Microbiology, Immunology and Parasitology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), Sao Paulo, State of Sao Paulo, Brazil
- Department of Medicine, Division of Infectology, Federal University of Sao Paulo, Sao Paulo, State of Sao Paulo, Brazil
| | - Jaime Henrique Amorim
- Center of Biological Sciences and Health, Western Bahia Virology Institute, Federal University of Western Bahia, Barreiras, Bahia, Brazil
- Department of Biological Sciences, Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Department of Microbiology, Vaccine Development Laboratory, Biomedical Sciences Institute, University of São Paulo, São Paulo, State of Sao Paulo, Brazil
| |
Collapse
|
16
|
Erabi G, Faridzadeh A, Parvin A, Deravi N, Rahmanian M, Fathi M, Aleebrahim‐Dehkordi E, Rezaei N. SARS-CoV-2 Omicron (BA.4, BA.5) variant: Lessons learned from a new variant during the COVID-19 pandemic. Health Sci Rep 2024; 7:e1873. [PMID: 38332930 PMCID: PMC10851086 DOI: 10.1002/hsr2.1873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024] Open
Abstract
Background and Aim In late 2021, the world faced the rapid spread of the SARS-CoV-2 Omicron variant, which quickly became the variant of concern. In April 2022, two new lineages of Omicron (BA.4/BA.5) emerged from Africa, where they caused the fifth wave of infection. Method We searched PubMed, Google Scholar, and Scopus online databases up to December 2023 for founding relevant studies. Results BA.4 and BA.5 subgroups, with changes in the spike protein, have a greater ability to escape from the immune system, which was possible with the help of L452R and F486V mutations. Epidemiologically, these evolving subtypes show similarities to seasonal influenza but with higher mortality rates. The symptoms of these subgroups are different from the previous types in the form of upper respiratory symptoms. Antiviral treatments, the use of antibodies such as bebtelovimab, and the development of vaccines are promising. Conclusion Consequently, we must continue to be vigilant in our joint surveillance efforts against COVID-19 in diagnosis and treatment.
Collapse
Affiliation(s)
- Gisou Erabi
- Student Research CommitteeUrmia University of Medical SciencesUrmiaIran
| | - Arezoo Faridzadeh
- Department of Immunology and AllergyMashhad University of Medical SciencesMashhadIran
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Ali Parvin
- Student Research CommitteeUrmia University of Medical SciencesUrmiaIran
| | - Niloofar Deravi
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Systematic Review and Meta‐Analysis Expert Group (SRMEG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Mohammad Rahmanian
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Systematic Review and Meta‐Analysis Expert Group (SRMEG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Mobina Fathi
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Systematic Review and Meta‐Analysis Expert Group (SRMEG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Elahe Aleebrahim‐Dehkordi
- Medical Plants Research Center, Basic Health Sciences instituteShahrekord University of Medical SciencesShahrekordIran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical CenterTehran University of Medical SciencesTehranIran
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| |
Collapse
|
17
|
Springer DN, Höltl E, Prüger K, Puchhammer-Stöckl E, Aberle JH, Stiasny K, Weseslindtner L. Measuring Variant-Specific Neutralizing Antibody Profiles after Bivalent SARS-CoV-2 Vaccinations Using a Multivariant Surrogate Virus Neutralization Microarray. Vaccines (Basel) 2024; 12:94. [PMID: 38250907 PMCID: PMC10818493 DOI: 10.3390/vaccines12010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
The capability of antibodies to neutralize different SARS-CoV-2 variants varies among individuals depending on the previous exposure to wild-type or Omicron-specific immunogens by mono- or bivalent vaccinations or infections. Such profiles of neutralizing antibodies (nAbs) usually have to be assessed via laborious live-virus neutralization tests (NTs). We therefore analyzed whether a novel multivariant surrogate-virus neutralization test (sVNT) (adapted from a commercial microarray) that quantifies the antibody-mediated inhibition between the receptor angiotensin-converting enzyme 2 (ACE2) and variant-specific receptor-binding domains (RBDs) can assess the neutralizing activity against the SARS-CoV-2 wild-type, and Delta Omicron BA.1, BA.2, and BA.5 subvariants after a booster with Omicron-adapted bivalent vaccines in a manner similar to live-virus NTs. Indeed, by using the live-virus NTs as a reference, we found a significant correlation between the variant-specific NT titers and levels of ACE2-RBD binding inhibition (p < 0.0001, r ≤ 0.78 respectively). Furthermore, the sVNTs identified higher inhibition values against BA.5 and BA.1 in individuals vaccinated with Omicron-adapted vaccines than in those with monovalent wild-type vaccines. Our data thus demonstrate the ability of sVNTs to detect variant-specific nAbs following a booster with bivalent vaccines.
Collapse
Affiliation(s)
- David Niklas Springer
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | - Eva Höltl
- Center for Public Health, Medical University of Vienna, A-1090 Vienna, Austria;
| | - Katja Prüger
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | | | - Judith Helene Aberle
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | - Lukas Weseslindtner
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| |
Collapse
|
18
|
Springer DN, Medits I, Weseslindtner L, Stiasny K, Aberle JH. SARS-CoV-2 neutralising antibody response to bivalent booster after omicron infection. THE LANCET. MICROBE 2024; 5:e8. [PMID: 37918419 DOI: 10.1016/s2666-5247(23)00293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 11/04/2023]
Affiliation(s)
- David N Springer
- Center for Virology, Medical University of Vienna, Vienna 1090, Austria
| | - Iris Medits
- Center for Virology, Medical University of Vienna, Vienna 1090, Austria
| | | | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna 1090, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
19
|
Walmsley S, Nabipoor M, Lovblom LE, Ravindran R, Colwill K, McGeer A, Dayam RM, Manase D, Gingras AC. Predictors of Breakthrough SARS-CoV-2 Infection after Vaccination. Vaccines (Basel) 2023; 12:36. [PMID: 38250849 PMCID: PMC10820583 DOI: 10.3390/vaccines12010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
The initial two-dose vaccine series and subsequent booster vaccine doses have been effective in modulating SARS-CoV-2 disease severity and death but do not completely prevent infection. The correlates of infection despite vaccination continue to be under investigation. In this prospective decentralized study (n = 1286) comparing antibody responses in an older- (≥70 years) to a younger-aged cohort (aged 30-50 years), we explored the correlates of breakthrough infection in 983 eligible subjects. Participants self-reported data on initial vaccine series, subsequent booster doses and COVID-19 infections in an online portal and provided self-collected dried blood spots for antibody testing by ELISA. Multivariable survival analysis explored the correlates of breakthrough infection. An association between higher antibody levels and protection from breakthrough infection observed during the Delta and Omicron BA.1/2 waves of infection no longer existed during the Omicron BA.4/5 wave. The older-aged cohort was less likely to have a breakthrough infection at all time-points. Receipt of an original/Omicron vaccine and the presence of hybrid immunity were associated with protection of infection during the later Omicron BA.4/5 and XBB waves. We were unable to determine a threshold antibody to define protection from infection or to guide vaccine booster schedules.
Collapse
Affiliation(s)
- Sharon Walmsley
- Division of Infectious Diseases, Department of Medicine, University Health Network, Toronto, ON M5G1L7, Canada;
- Department of Medicine, University of Toronto, Toronto, ON M5S1A1, Canada
| | - Majid Nabipoor
- Biostatistics Department, University Health Network, Toronto, ON M5G1L7, Canada; (M.N.); (L.E.L.)
| | - Leif Erik Lovblom
- Biostatistics Department, University Health Network, Toronto, ON M5G1L7, Canada; (M.N.); (L.E.L.)
| | - Rizani Ravindran
- Division of Infectious Diseases, Department of Medicine, University Health Network, Toronto, ON M5G1L7, Canada;
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada; (K.C.); (R.M.D.); (A.-C.G.)
| | - Alison McGeer
- Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada;
| | - Roya Monica Dayam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada; (K.C.); (R.M.D.); (A.-C.G.)
| | - Dorin Manase
- DATA Team, University Health Network, Toronto, ON M5G1L7, Canada;
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada; (K.C.); (R.M.D.); (A.-C.G.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A1, Canada
| | | |
Collapse
|
20
|
Plans-Rubió P. Effectiveness of Adapted COVID-19 Vaccines and Ability to Establish Herd Immunity against Omicron BA.1 and BA4-5 Variants of SARS-CoV-2. Vaccines (Basel) 2023; 11:1836. [PMID: 38140240 PMCID: PMC10747774 DOI: 10.3390/vaccines11121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of novel SARS-CoV-2 variants has raised concerns about the ability of COVID-19 vaccination programs to establish adequate herd immunity levels in the population. This study assessed the effectiveness of adapted vaccines in preventing SARS-CoV-2 infection and the ability of the adapted vaccines to establish herd immunity against emerging Omicron variants. A systematic literature review was conducted to estimate the absolute vaccine effectiveness (aVE) in preventing SARS-CoV-2 infection using adapted vaccines targeting Omicron variants. The ability of the adapted vaccines to establish herd immunity was assessed by taking into account the following factors: aVE, Ro values of SARS-CoV-2 and the use of non-pharmacological interventions (NPIs). This study found meta-analysis-based aVEs in preventing severe disease and SARS-CoV-2 infection of 56-60% and 36-39%, respectively. Adapted vaccines could not establish herd immunity against the Omicron BA.1 and BA.4-5 variants without using non-pharmacological interventions (NPIs). The adapted vaccines could establish herd immunity only by achieving >80% vaccination coverage, using NPIs with greater effectiveness and when 20-30% of individuals were already protected against SARS-CoV-2 in the population. New adapted COVID-19 vaccines with greater effectiveness in preventing SARS-CoV-2 infection must be developed to increase herd immunity levels against emerging SARS-CoV-2 variants in the population.
Collapse
Affiliation(s)
- Pedro Plans-Rubió
- Public Health Agency of Catalonia, Department of Health of Catalonia, 08005 Barcelona, Spain;
- Ciber of Epidemiology and Public Health (CIBERESP), 28028 Madrid, Spain
| |
Collapse
|
21
|
Abstract
Current vaccines should be tailored to combat future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|