1
|
Osborn LE, Venkatasubramanian R, Himmtann M, Moran CW, Pierce JM, Gajendiran P, Wormley JM, Ung RJ, Nguyen HH, Crego ACG, Fifer MS, Armiger RS. Evoking natural thermal perceptions using a thin-film thermoelectric device with high cooling power density and speed. Nat Biomed Eng 2024; 8:1004-1017. [PMID: 37500749 DOI: 10.1038/s41551-023-01070-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Multimodal sensory feedback from upper-limb prostheses can increase their function and usability. Here we show that intuitive thermal perceptions during cold-object grasping with a prosthesis can be restored in a phantom hand through targeted nerve stimulation via a wearable thin-film thermoelectric device with high cooling power density and speed. We found that specific regions of the residual limb, when thermally stimulated, elicited thermal sensations in the phantom hand that remained stable beyond 48 weeks. We also found stimulation sites that selectively elicited sensations of temperature, touch or both, depending on whether the stimulation was thermal or mechanical. In closed-loop functional tasks involving the identification of cold objects by amputees and by non-amputee participants, and compared with traditional bulk thermoelectric devices, the wearable thin-film device reliably elicited cooling sensations that were up to 8 times faster and up to 3 times greater in intensity while using half the energy and 1/600th the mass of active thermoelectric material. Wearable thin-film thermoelectric devices may allow for the non-invasive restoration of thermal perceptions during touch.
Collapse
Affiliation(s)
- Luke E Osborn
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA.
| | | | - Meiyong Himmtann
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Courtney W Moran
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Jonathan M Pierce
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Priya Gajendiran
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Jared M Wormley
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Richard J Ung
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Harrison H Nguyen
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Adam C G Crego
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Matthew S Fifer
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Robert S Armiger
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| |
Collapse
|
2
|
Festin C, Ortmayr J, Maierhofer U, Tereshenko V, Blumer R, Schmoll M, Carrero-Rojas G, Luft M, Laengle G, Farina D, Bergmeister KD, Aszmann OC. Creation of a biological sensorimotor interface for bionic reconstruction. Nat Commun 2024; 15:5337. [PMID: 38914540 PMCID: PMC11196281 DOI: 10.1038/s41467-024-49580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
Neuromuscular control of bionic arms has constantly improved over the past years, however, restoration of sensation remains elusive. Previous approaches to reestablish sensory feedback include tactile, electrical, and peripheral nerve stimulation, however, they cannot recreate natural, intuitive sensations. Here, we establish an experimental biological sensorimotor interface and demonstrate its potential use in neuroprosthetics. We transfer a mixed nerve to a skeletal muscle combined with glabrous dermal skin transplantation, thus forming a bi-directional communication unit in a rat model. Morphological analyses indicate reinnervation of the skin, mechanoreceptors, NMJs, and muscle spindles. Furthermore, sequential retrograde labeling reveals specific sensory reinnervation at the level of the dorsal root ganglia. Electrophysiological recordings show reproducible afferent signals upon tactile stimulation and tendon manipulation. The results demonstrate the possibility of surgically creating an interface for both decoding efferent motor control, as well as encoding afferent tactile and proprioceptive feedback, and may indicate the way forward regarding clinical translation of biological communication pathways for neuroprosthetic applications.
Collapse
Affiliation(s)
- Christopher Festin
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Joachim Ortmayr
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Udo Maierhofer
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Vlad Tereshenko
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roland Blumer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Martin Schmoll
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Génova Carrero-Rojas
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Matthias Luft
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
- Department of Plastic, Aesthetic and Reconstructive Surgery, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Gregor Laengle
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Konstantin D Bergmeister
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Plastic, Aesthetic and Reconstructive Surgery, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Oskar C Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Herrera-Arcos G, Song H, Yeon SH, Ghenand O, Gutierrez-Arango S, Sinha S, Herr H. Closed-loop optogenetic neuromodulation enables high-fidelity fatigue-resistant muscle control. Sci Robot 2024; 9:eadi8995. [PMID: 38776378 DOI: 10.1126/scirobotics.adi8995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Closed-loop neuroprostheses show promise in restoring motion in individuals with neurological conditions. However, conventional activation strategies based on functional electrical stimulation (FES) fail to accurately modulate muscle force and exhibit rapid fatigue because of their unphysiological recruitment mechanism. Here, we present a closed-loop control framework that leverages physiological force modulation under functional optogenetic stimulation (FOS) to enable high-fidelity muscle control for extended periods of time (>60 minutes) in vivo. We first uncovered the force modulation characteristic of FOS, showing more physiological recruitment and significantly higher modulation ranges (>320%) compared with FES. Second, we developed a neuromuscular model that accurately describes the highly nonlinear dynamics of optogenetically stimulated muscle. Third, on the basis of the optogenetic model, we demonstrated real-time control of muscle force with improved performance and fatigue resistance compared with FES. This work lays the foundation for fatigue-resistant neuroprostheses and optogenetically controlled biohybrid robots with high-fidelity force modulation.
Collapse
Affiliation(s)
- Guillermo Herrera-Arcos
- K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA
- Program in Media Arts and Sciences, MIT Media Lab, Cambridge, MA, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Hyungeun Song
- K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology (HST), MIT, Cambridge, MA, USA
| | - Seong Ho Yeon
- K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA
- Program in Media Arts and Sciences, MIT Media Lab, Cambridge, MA, USA
| | - Omkar Ghenand
- K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Samantha Gutierrez-Arango
- K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA
- Program in Media Arts and Sciences, MIT Media Lab, Cambridge, MA, USA
| | - Sapna Sinha
- K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Hugh Herr
- K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| |
Collapse
|
4
|
Cho Y, Jeong HH, Shin H, Pak CJ, Cho J, Kim Y, Kim D, Kim T, Kim H, Kim S, Kwon S, Hong JP, Suh HP, Lee S. Hybrid Bionic Nerve Interface for Application in Bionic Limbs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303728. [PMID: 37840396 PMCID: PMC10724394 DOI: 10.1002/advs.202303728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Intuitive and perceptual neuroprosthetic systems require a high degree of neural control and a variety of sensory feedback, but reliable neural interfaces for long-term use that maintain their functionality are limited. Here, a novel hybrid bionic interface is presented, fabricated by integrating a biological interface (regenerative peripheral nerve interface (RPNI)) and a peripheral neural interface to enhance the neural interface performance between a nerve and bionic limbs. This interface utilizes a shape memory polymer buckle that can be easily implanted on a severed nerve and make contact with both the nerve and the muscle graft after RPNI formation. It is demonstrated that this interface can simultaneously record different signal information via the RPNI and the nerve, as well as stimulate them separately, inducing different responses. Furthermore, it is shown that this interface can record naturally evoked signals from a walking rabbit and use them to control a robotic leg. The long-term functionality and biocompatibility of this interface in rabbits are evaluated for up to 29 weeks, confirming its promising potential for enhancing prosthetic control.
Collapse
Affiliation(s)
- Youngjun Cho
- Department of Robotics and Mechatronics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42899South Korea
| | - Hyung Hwa Jeong
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Heejae Shin
- Department of Robotics and Mechatronics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42899South Korea
| | - Changsik John Pak
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Jeongmok Cho
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Yongwoo Kim
- Department of Robotics and Mechatronics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42899South Korea
| | - Donggeon Kim
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Taehyeon Kim
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Hoijun Kim
- Graduate School of Smart ConvergenceKwangwoon UniversitySeoul01897South Korea
| | - Sohee Kim
- Department of Robotics and Mechatronics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42899South Korea
| | - Soonchul Kwon
- Graduate School of Smart ConvergenceKwangwoon UniversitySeoul01897South Korea
| | - Joon Pio Hong
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Hyunsuk Peter Suh
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Sanghoon Lee
- Department of Robotics and Mechatronics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42899South Korea
| |
Collapse
|
5
|
Yang S, Cheng J, Shang J, Hang C, Qi J, Zhong L, Rao Q, He L, Liu C, Ding L, Zhang M, Chakrabarty S, Jiang X. Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention. Nat Commun 2023; 14:6494. [PMID: 37838683 PMCID: PMC10576757 DOI: 10.1038/s41467-023-42149-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/29/2023] [Indexed: 10/16/2023] Open
Abstract
Surface electromyography (sEMG) can provide multiplexed information about muscle performance. If current sEMG electrodes are stretchable, arrayed, and able to be used multiple times, they would offer adequate high-quality data for continuous monitoring. The lack of these properties delays the widespread use of sEMG in clinics and in everyday life. Here, we address these constraints by design of an adhesive dry electrode using tannic acid, polyvinyl alcohol, and PEDOT:PSS (TPP). The TPP electrode offers superior stretchability (~200%) and adhesiveness (0.58 N/cm) compared to current electrodes, ensuring stable and long-term contact with the skin for recording (>20 dB; >5 days). In addition, we developed a metal-polymer electrode array patch (MEAP) comprising liquid metal (LM) circuits and TPP electrodes. The MEAP demonstrated better conformability than commercial arrays, resulting in higher signal-to-noise ratio and more stable recordings during muscle movements. Manufactured using scalable screen-printing, these MEAPs feature a completely stretchable material and array architecture, enabling real-time monitoring of muscle stress, fatigue, and tendon displacement. Their potential to reduce muscle and tendon injuries and enhance performance in daily exercise and professional sports holds great promise.
Collapse
Grants
- We thank the National Key R&D Program of China (2021YFF1200800, 2021YFF1200100, 2022YFB3804700, and 2018YFA0902600), the National Natural Science Foundation of China (22234004), Shenzhen Science and Technology Program (JCYJ20200109141231365 and KQTD 20190929172743294), Shenzhen Key Laboratory of Smart Healthcare Engineering (ZDSYS20200811144003009), Guangdong Innovative and Entrepreneurial Research Team Program (2019ZT08Y191), Guangdong Provincial Key Laboratory of Advanced Biomaterials (2022B1212010003), Tencent Foundation through the XPLORER PRIZE, Guangdong Major Talent Introduction Project (2019CX01Y196). We also acknowledge the assistance of SUSTech Core Research Facilities.
Collapse
Affiliation(s)
- Shuaijian Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jinhao Cheng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Jin Shang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Chen Hang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Jie Qi
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Leni Zhong
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Qingyan Rao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Lei He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Chenqi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Li Ding
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Mingming Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Samit Chakrabarty
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China.
| |
Collapse
|
6
|
Vural M, Mohammadi M, Seufert L, Han S, Crispin X, Fridberger A, Berggren M, Tybrandt K. Soft Electromagnetic Vibrotactile Actuators with Integrated Vibration Amplitude Sensing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37327497 DOI: 10.1021/acsami.3c05045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Soft vibrotactile devices have the potential to expand the functionality of emerging electronic skin technologies. However, those devices often lack the necessary overall performance, sensing-actuation feedback and control, and mechanical compliance for seamless integration on the skin. Here, we present soft haptic electromagnetic actuators that consist of intrinsically stretchable conductors, pressure-sensitive conductive foams, and soft magnetic composites. To minimize joule heating, high-performance stretchable composite conductors are developed based on in situ-grown silver nanoparticles formed within the silver flake framework. The conductors are laser-patterned to form soft and densely packed coils to further minimize heating. Soft pressure-sensitive conducting polymer-cellulose foams are developed and integrated to tune the resonance frequency and to provide internal resonator amplitude sensing in the resonators. The above components together with a soft magnet are assembled into soft vibrotactile devices providing high-performance actuation combined with amplitude sensing. We believe that soft haptic devices will be an essential component in future developments of multifunctional electronic skin for future human-computer and human-robotic interfaces.
Collapse
Affiliation(s)
- Mert Vural
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden
- Wallenberg Wood Science Center, ITN, Linköping University, 602 21 Norrköping, Sweden
| | - Mohsen Mohammadi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden
- Wallenberg Wood Science Center, ITN, Linköping University, 602 21 Norrköping, Sweden
| | - Laura Seufert
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden
| | - Shaobo Han
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden
| | - Xavier Crispin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden
- Wallenberg Wood Science Center, ITN, Linköping University, 602 21 Norrköping, Sweden
| | - Anders Fridberger
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden
- Wallenberg Wood Science Center, ITN, Linköping University, 602 21 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden
- Wallenberg Wood Science Center, ITN, Linköping University, 602 21 Norrköping, Sweden
| |
Collapse
|
7
|
Farina D, Vujaklija I, Brånemark R, Bull AMJ, Dietl H, Graimann B, Hargrove LJ, Hoffmann KP, Huang HH, Ingvarsson T, Janusson HB, Kristjánsson K, Kuiken T, Micera S, Stieglitz T, Sturma A, Tyler D, Weir RFF, Aszmann OC. Toward higher-performance bionic limbs for wider clinical use. Nat Biomed Eng 2023; 7:473-485. [PMID: 34059810 DOI: 10.1038/s41551-021-00732-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Most prosthetic limbs can autonomously move with dexterity, yet they are not perceived by the user as belonging to their own body. Robotic limbs can convey information about the environment with higher precision than biological limbs, but their actual performance is substantially limited by current technologies for the interfacing of the robotic devices with the body and for transferring motor and sensory information bidirectionally between the prosthesis and the user. In this Perspective, we argue that direct skeletal attachment of bionic devices via osseointegration, the amplification of neural signals by targeted muscle innervation, improved prosthesis control via implanted muscle sensors and advanced algorithms, and the provision of sensory feedback by means of electrodes implanted in peripheral nerves, should all be leveraged towards the creation of a new generation of high-performance bionic limbs. These technologies have been clinically tested in humans, and alongside mechanical redesigns and adequate rehabilitation training should facilitate the wider clinical use of bionic limbs.
Collapse
Affiliation(s)
- Dario Farina
- Department of Bioengineering, Imperial College London, London, UK.
| | - Ivan Vujaklija
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Rickard Brånemark
- Center for Extreme Bionics, Biomechatronics Group, MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, London, UK
| | - Hans Dietl
- Ottobock Products SE & Co. KGaA, Vienna, Austria
| | | | - Levi J Hargrove
- Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Klaus-Peter Hoffmann
- Department of Medical Engineering & Neuroprosthetics, Fraunhofer-Institut für Biomedizinische Technik, Sulzbach, Germany
| | - He Helen Huang
- NCSU/UNC Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thorvaldur Ingvarsson
- Department of Research and Development, Össur Iceland, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Hilmar Bragi Janusson
- School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | | | - Todd Kuiken
- Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Silvestro Micera
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy
- Bertarelli Foundation Chair in Translational NeuroEngineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, BrainLinks-BrainTools Center and Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Agnes Sturma
- Department of Bioengineering, Imperial College London, London, UK
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Dustin Tyler
- Case School of Engineering, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Veterans Affairs Medical Centre, Cleveland, OH, USA
| | - Richard F Ff Weir
- Biomechatronics Development Laboratory, Bioengineering Department, University of Colorado Denver and VA Eastern Colorado Healthcare System, Aurora, CO, USA
| | - Oskar C Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Recent trends in bioartificial muscle engineering and their applications in cultured meat, biorobotic systems and biohybrid implants. Commun Biol 2022; 5:737. [PMID: 35869250 PMCID: PMC9307618 DOI: 10.1038/s42003-022-03593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRecent advances in tissue engineering and biofabrication technology have yielded a plethora of biological tissues. Among these, engineering of bioartificial muscle stands out for its exceptional versatility and its wide range of applications. From the food industry to the technology sector and medicine, the development of this tissue has the potential to affect many different industries at once. However, to date, the biofabrication of cultured meat, biorobotic systems, and bioartificial muscle implants are still considered in isolation by individual peer groups. To establish common ground and share advances, this review outlines application-specific requirements for muscle tissue generation and provides a comprehensive overview of commonly used biofabrication strategies and current application trends. By solving the individual challenges and merging various expertise, synergetic leaps of innovation that inspire each other can be expected in all three industries in the future.
Collapse
|
9
|
Abd MA, Ingicco J, Hutchinson DT, Tognoli E, Engeberg ED. Multichannel haptic feedback unlocks prosthetic hand dexterity. Sci Rep 2022; 12:2323. [PMID: 35149695 PMCID: PMC8837642 DOI: 10.1038/s41598-022-04953-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/20/2021] [Indexed: 01/13/2023] Open
Abstract
Loss of tactile sensations is a major roadblock preventing upper limb-absent people from multitasking or using the full dexterity of their prosthetic hands. With current myoelectric prosthetic hands, limb-absent people can only control one grasp function at a time even though modern artificial hands are mechanically capable of individual control of all five digits. In this paper, we investigated whether people could precisely control the grip forces applied to two different objects grasped simultaneously with a dexterous artificial hand. Toward that end, we developed a novel multichannel wearable soft robotic armband to convey artificial sensations of touch to the robotic hand users. Multiple channels of haptic feedback enabled subjects to successfully grasp and transport two objects simultaneously with the dexterous artificial hand without breaking or dropping them, even when their vision of both objects was obstructed. Simultaneous transport of the objects provided a significant time savings to perform the deliveries in comparison to a one-at-a-time approach. This paper demonstrated that subjects were able to integrate multiple channels of haptic feedback into their motor control strategies to perform a complex simultaneous object grasp control task with an artificial limb, which could serve as a paradigm shift in the way prosthetic hands are operated.
Collapse
Affiliation(s)
- Moaed A Abd
- Ocean and Mechanical Engineering Department, Florida Atlantic University, Boca Raton, FL, USA
| | - Joseph Ingicco
- Ocean and Mechanical Engineering Department, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Emmanuelle Tognoli
- The Center for Complex Systems & Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Erik D Engeberg
- Ocean and Mechanical Engineering Department, Florida Atlantic University, Boca Raton, FL, USA. .,The Center for Complex Systems & Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
10
|
Pasluosta C, Kiele P, Čvančara P, Micera S, Aszmann OC, Stieglitz T. Bidirectional bionic limbs: a perspective bridging technology and physiology. J Neural Eng 2022; 19. [PMID: 35132954 DOI: 10.1088/1741-2552/ac4bff] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/17/2022] [Indexed: 11/11/2022]
Abstract
Precise control of bionic limbs relies on robust decoding of motor commands from nerves or muscles signals and sensory feedback from artificial limbs to the nervous system by interfacing the afferent nerve pathways. Implantable devices for bidirectional communication with bionic limbs have been developed in parallel with research on physiological alterations caused by an amputation. In this perspective article, we question whether increasing our effort on bridging these technologies with a deeper understanding of amputation pathophysiology and human motor control may help to overcome pressing stalls in the next generation of bionic limbs.
Collapse
Affiliation(s)
- C Pasluosta
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - P Kiele
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - P Čvančara
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - S Micera
- School of Engineering, École Polytechnique Fédérale de Lausanne, Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, Lausanne, Switzerland.,The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy
| | - O C Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Medical University of Vienna; Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - T Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Abstract
Scientist and technologist have long sought to advance limb prostheses that connect directly to the peripheral nervous system, enabling a person with amputation to volitionally control synthetic actuators that move, stiffen and power the prosthesis, as well as to experience natural afferent sensations from the prosthesis. Recently, the agonist-antagonist myoneural interface (AMI) was developed, a mechanoneural transduction architecture and neural interface system designed to provide persons with amputation improved muscle-tendon proprioception and neuroprosthetic control. In this paper, we provide an overview of the AMI, including its conceptual framing and preclinical science, surgical techniques for its construction, and clinical efficacy related to pain mitigation, phantom limb range of motion, fascicle dynamics, central brain proprioceptive sensorimotor preservation, and prosthetic controllability. Following this broad overview, we end with a discussion of current limitations of the AMI and potential resolutions to such challenges.
Collapse
|
12
|
Neural interfacing architecture enables enhanced motor control and residual limb functionality postamputation. Proc Natl Acad Sci U S A 2021; 118:2019555118. [PMID: 33593940 PMCID: PMC7936324 DOI: 10.1073/pnas.2019555118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite advancements in prosthetic technologies, persons with amputation today suffer great diminution in mobility and quality of life. This is largely due to an outdated amputation paradigm that precludes efficacious communication between the residual limb and prosthesis. An amputation method utilizing agonist–antagonist myoneural interfaces (AMIs) constructs neuromuscular substrates in the residual limb to avail enhanced sensorimotor signaling. In our study, subjects with AMI amputation demonstrate improved motor control, phantom sensations, range of motion, and decreased pain when compared to patients with traditional amputation. With the demonstrated increases in motor coordination and position differentiation, our results suggest that patients with AMI amputation will be able to more efficaciously control bionic prostheses. Despite advancements in prosthetic technologies, patients with amputation today suffer great diminution in mobility and quality of life. We have developed a modified below-knee amputation (BKA) procedure that incorporates agonist–antagonist myoneural interfaces (AMIs), which surgically preserve and couple agonist–antagonist muscle pairs for the subtalar and ankle joints. AMIs are designed to restore physiological neuromuscular dynamics, enable bidirectional neural signaling, and offer greater neuroprosthetic controllability compared to traditional amputation techniques. In this prospective, nonrandomized, unmasked study design, 15 subjects with AMI below-knee amputation (AB) were matched with 7 subjects who underwent a traditional below-knee amputation (TB). AB subjects demonstrated significantly greater control of their residual limb musculature, production of more differentiable efferent control signals, and greater precision of movement compared to TB subjects (P < 0.008). This may be due to the presence of greater proprioceptive inputs facilitated by the significantly higher fascicle strains resulting from coordinated muscle excursion in AB subjects (P < 0.05). AB subjects reported significantly greater phantom range of motion postamputation (AB: 12.47 ± 2.41, TB: 10.14 ± 1.45 degrees) when compared to TB subjects (P < 0.05). Furthermore, AB subjects also reported less pain (12.25 ± 5.37) than TB subjects (17.29 ± 10.22) and a significant reduction when compared to their preoperative baseline (P < 0.05). Compared with traditional amputation, the construction of AMIs during amputation confers the benefits of enhanced physiological neuromuscular dynamics, proprioception, and phantom limb perception. Subjects’ activation of the AMIs produces more differentiable electromyography (EMG) for myoelectric prosthesis control and demonstrates more positive clinical outcomes.
Collapse
|
13
|
Zhou X, Du J, Qing L, Mee T, Xu X, Wang Z, Xu C, Jia X. Identification of sensory and motor nerve fascicles by immunofluorescence staining after peripheral nerve injury. J Transl Med 2021; 19:207. [PMID: 33985539 PMCID: PMC8117274 DOI: 10.1186/s12967-021-02871-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/03/2021] [Indexed: 11/25/2022] Open
Abstract
Background Inappropriate matching of motor and sensory fibers after nerve repair or nerve grafting can lead to failure of nerve recovery. Identification of motor and sensory fibers is important for the development of new approaches that facilitate neural regeneration and the next generation of nerve signal-controlled neuro-prosthetic limbs with sensory feedback technology. Only a few methods have been reported to differentiate sensory and motor nerve fascicles, and the reliability of these techniques is unknown. Immunofluorescence staining is one of the most commonly used methods to distinguish sensory and motor nerve fibers, however, its accuracy remains unknown. Methods In this study, we aim to determine the efficacy of popular immunofluorescence markers for motor and sensory nerve fibers. We harvested the facial (primarily motor fascicles) and sural (primarily sensory fascicles) nerves in rats, and examined the immunofluorescent staining expressions of motor markers (choline acetyltransferase (ChAT), tyrosine kinase (TrkA)), and sensory markers [neurofilament protein 200 kDa (NF-200), calcitonin gene-related peptide (CGRP) and Transient receptor potential vanillic acid subtype 1 (TRPV1)]. Three methods, including the average area percentage, the mean gray value, and the axon count, were used to quantify the positive expression of nerve markers in the immunofluorescence images. Results Our results suggest the mean gray value method is the most reliable method. The mean gray value of immunofluorescence in ChAT (63.0 ± 0.76%) and TRKA (47.6 ± 0.43%) on the motor fascicles was significantly higher than that on the sensory fascicles (ChAT: 49.2 ± 0.72%, P < 0.001; and TRKA: 29.1 ± 0.85%, P < 0.001). Additionally, the mean gray values of TRPV1 (51.5 ± 0.83%), NF-200 (61.5 ± 0.62%) and CGRP (37.7 ± 1.22%) on the motor fascicles were significantly lower than that on the sensory fascicles respectively (71.9 ± 2.32%, 69.3 ± 0.46%, and 54.3 ± 1.04%) (P < 0.001). The most accurate cutpoint occurred using CHAT/CRCP ratio, where a value of 0.855 had 100% sensitivity and 100% specificity to identify motor and sensory nerve with an area under the ROC curve of 1.000 (P < 0.001). Conclusions A combination of ChAT and CGRP is suggested to distinguish motor and sensory nerve fibers.
Collapse
Affiliation(s)
- Xijie Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children'S Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Liming Qing
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Thomas Mee
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiang Xu
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Zhuoran Wang
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Cynthia Xu
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA. .,Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|