1
|
Wei Y, Wang J. X-ray/γ-ray/Ultrasound-Activated Persistent Luminescence Phosphors for Deep Tissue Bioimaging and Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56519-56544. [PMID: 39401275 DOI: 10.1021/acsami.4c11585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Persistent luminescence phosphors (PLPs) can remain luminescent after excitation ceases and have been widely explored in bioimaging and therapy since 2007. In bioimaging, PLPs can efficiently avoid tissue autofluorescence and light scattering interference by collecting persistent luminescence signals after the end of excitation. Outstanding signal-to-background ratios, high sensitivity, and resolution have been achieved in bioimaging with PLPs. In therapy, PLPs can continuously produce therapeutic molecules such as reactive oxygen species after removing excitation sources, which realizes sustained therapeutic activity after a single dose of light stimulation. However, most PLPs are activated by ultraviolet or visible light, which makes it difficult to reactivate the PLPs in vivo, particularly in deep tissues. In recent years, excitation sources with deep tissue penetration have been explored to activate PLPs, including X-ray, γ-ray, and ultrasound. Researchers found that various inorganic and organic PLPs can be activated by X-ray, γ-ray, and ultrasound, making these PLPs valuable in the imaging and therapy of deep-seated tumors. These X-ray/γ-ray/ultrasound-activated PLPs have not been systematically introduced in previous reviews. In this review, we summarize the recently developed inorganic and organic PLPs that can be activated by X-ray, γ-ray, and ultrasound to produce persistent luminescence. The biomedical applications of these PLPs in deep-tissue bioimaging and therapy are also discussed. This review can provide instructions for the design of PLPs with deep-tissue-renewable persistent luminescence and further promote the applications of PLPs in phototheranostics, noninvasive biosensing devices, and energy harvesting.
Collapse
Affiliation(s)
- Yurong Wei
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Jie Wang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Xu Y, Abulipizi G, Wang Y, Fang Y, Yu Z, Zhou J, Li Z. Near-Infrared Persistent Luminescence of CaTiO 3:Cr,Y for Imaging of Bone Implants Using Red-Light Illumination Instead of X-ray. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39368104 DOI: 10.1021/acsami.4c13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Near-infrared (NIR) persistent luminescence (PersL) materials have unique optical properties with promising applications in bioimaging and anticounterfeiting. However, their development is currently hindered by poor red-light-exciting ability. In this study, CaTiO3:Cr0.001,Y0.02 (CTCY) was synthesized with 650 nm-excited 772 nm NIR PersL. The Y3+ doping in the Ca2+ lattice plays a key role in the PersL property. A charge compensation mechanism was proposed, in which Cr3+ in the Ti4+ lattice was stabilized by Y3+-doping while oxygen vacancies were generated to store the excitation energy at the same time. A thermal ionization mechanism might elucidate the red-light-excited NIR PersL of CTCY, which benefits from the perovskite structure of CaTiO3. CTCY has 120 times more intense red-light-excited PersL than Zn3Ga2Ge2O10:Cr. Its potential applications in luminescence anticounterfeiting and bioimaging were demonstrated using a visible/NIR dual-channel PersL flower painting and a CTCY-labeled bone screw for in situ reactivable PersL imaging using red light illumination instead of X-ray, respectively. This study not only provides a new NIR PersL material but also will add to our understanding in developing other potential red-light- or even NIR-activable PersL materials with perovskite-like structures.
Collapse
Affiliation(s)
- Yicheng Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Gulizhabaier Abulipizi
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Yuxin Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Yanlun Fang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Zimin Yu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Juanjuan Zhou
- School of Health, Guangzhou Vocational University of Science and Technology, Guangzhou, Guangdong 510080, PR China
| | - Zhanjun Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| |
Collapse
|
3
|
Chen M, Jiang Y, Zhang Y, Chen X, Xie L, Xie L, Zeng T, Liu Y, Liu H, Wang M, Chen X, Zhang Z, He Y, Qin X, Lu C, Chen Q, Yang H. Visualization of Biomolecular Radiation Damage at the Single-Particle Level Using Lanthanide-Sensitized DNA Origami. NANO LETTERS 2024; 24:11690-11696. [PMID: 39225657 DOI: 10.1021/acs.nanolett.4c03307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Precise monitoring of biomolecular radiation damage is crucial for understanding X-ray-induced cell injury and improving the accuracy of clinical radiotherapy. We present the design and performance of lanthanide-DNA-origami nanodosimeters for directly visualizing radiation damage at the single-particle level. Lanthanide ions (Tb3+ or Eu3+) coordinated with DNA origami nanosensors enhance the sensitivity of X-ray irradiation. Atomic force microscopy (AFM) revealed morphological changes in Eu3+-sensitized DNA origami upon X-ray irradiation, indicating damage caused by ionization-generated electrons and free radicals. We further demonstrated the practical applicability of Eu3+-DNA-origami integrated chips in precisely monitoring radiation-mediated cancer radiotherapy. Quantitative results showed consistent trends with flow cytometry and histological examination under comparable X-ray irradiation doses, providing an affordable and user-friendly visualization tool for preclinical applications. These findings provide new insights into the impact of heavy metals on radiation-induced biomolecular damage and pave the way for future research in developing nanoscale radiation sensors for precise clinical radiography.
Collapse
Affiliation(s)
- Minle Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yijuan Jiang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yongjie Zhang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xiaoling Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Lei Xie
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Lili Xie
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Tao Zeng
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yana Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Hao Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Min Wang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xiaofeng Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zhenzhen Zhang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yu He
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xian Qin
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China
| | - Chunhua Lu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Qiushui Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
4
|
Luo A, Zhang J, Xiao D, Xie G, Xu X, Zhao Q, Sun C, Li Y, Zhang Z, Li P, Luo S, Xie X, Peng Q, Li H, Chen R, Chen Q, Tao Y, Huang W. Efficient metal free organic radical scintillators. Nat Commun 2024; 15:8181. [PMID: 39294138 PMCID: PMC11410979 DOI: 10.1038/s41467-024-51482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/07/2024] [Indexed: 09/20/2024] Open
Abstract
The development of high-performance metal-free organic X-ray scintillators (OXSTs), characterized by a synergistic combination of robust X-ray absorption, efficient exciton utilization, and short luminescence lifetimes, poses a considerable challenge. Here we present an effective strategy for achieving augmented X-ray scintillation through the utilization of halogenated open-shell organic radical scintillators. Our experimental results demonstrate that the synthesized scintillators exhibit strong X-ray absorption derived from halogen atoms, display efficacious X-ray stability, and theoretically achieve 100% exciton utilization efficiency with a short lifetime (∼18 ns) due to spin-allowed doublet transitions. The superior X-ray scintillation performance exhibited by these organic radicals is not only exploitable in X-ray radiography for contrast imaging of various objects but also applicable in a medical high-resolution micro-computer-tomography system for the clear visualization of fibrous veins within a bamboo stick. Our study substantiates the promise of organic radicals as prospective candidates for OXSTs, offering valuable insights and a roadmap for the development of advanced organic radical scintillators geared towards achieving high-quality X-ray radiography.
Collapse
Affiliation(s)
- Ansheng Luo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Jingru Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Dongjie Xiao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China.
| | - Xinqi Xu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Qingxian Zhao
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Chengxi Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Yanzhang Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Zehua Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Ping Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Shouhua Luo
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Xiaoji Xie
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu, China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu, China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China.
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China.
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China.
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu, China.
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, Shanxi, China.
| |
Collapse
|
5
|
Yang S, Qi B, Sun M, Dai W, Miao Z, Zheng W, Huang B, Wang J. Broadband Near-Infrared Light Excitation Generates Long-Lived Near-Infrared Luminescence in Gallates. ACS NANO 2024; 18:22465-22473. [PMID: 39106491 DOI: 10.1021/acsnano.4c07471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Persistent luminescence describes the phenomenon whereby luminescence remains after the stoppage of excitation. Recently, upconversion persistent luminescence (UCPL) phosphors that can be directly charged by near-infrared (NIR) light have gained considerable attention due to their promising applications ranging from photonics to biomedicine. However, current lanthanide-based UCPL phosphors show small absorption cross sections and low upconversion charging efficiency. The development of UCPL phosphors faces challenges due to the lack of flexible upconversion charging pathways and poor design flexibility. Herein, we discovered a lattice defect-mediated broadband photon upconversion process and the accompanying NIR-to-NIR UCPL in Cr-doped zinc gallate nanoparticles. The zinc gallate nanoparticles can be directly activated by broadband NIR light in the 700-1000 nm range to produce persistent luminescence at about 700 nm, which is also readily enhanced by rationally tailoring the lattice defects in the phosphors. This proposed UCPL phosphor achieved a signal-to-background ratio of over 200 in bioimaging by efficiently avoiding interference from autofluorescence and light scattering. Our work reported a lattice defect-mediated photon upconversion phenomenon, which significantly expands the horizons for the flexible design of UCPL phosphors toward broad applications ranging from bioimaging to photocatalysis.
Collapse
Affiliation(s)
- Shuting Yang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Bing Qi
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Wenjing Dai
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Ziyun Miao
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Jie Wang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Wang C, Liu D, Wei G, Huang J, An Z, Xu X, Zhou B. Enabling Multimodal Luminescence in a Single Nanoparticle for X-ray Imaging Encryption and Anticounterfeiting. NANO LETTERS 2024; 24:9691-9699. [PMID: 39052908 DOI: 10.1021/acs.nanolett.4c02468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Multimodal luminescent materials hold great promise in a diversity of frontier applications. However, achieving the multimodal responsive luminescence at the single nanoparticle level, especially besides light stimuli, has remained a challenge. Here, we report a conceptual model to realize multimodal luminescence by constructing both mechanoluminescence and photoluminescence in a single nanoparticle. We show that the lanthanide-doped fluoride nanoparticles are able to produce excellent mechanoluminescence through X-ray irradiation, and color-tunable mechanoluminescence becomes available by selecting suitable lanthanide emitters in a core-shell-shell structure. Furthermore, the design of a multilayer core-shell nanostructure enables multimodal emissions including radioluminescence, persistent luminescence, mechanoluminescence, upconversion, downshifting, and thermal-stimulated luminescence simultaneously in a single nanoparticle under multichannel excitation and stimuli. These results provide new insights into the mechanism of X-ray induced mechanoluminescence in nanocrystals and contribute to the development of smart luminescent materials toward X-ray imaging encryption, stress sensing, and anticounterfeiting.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 51064, China
| | - Daiyuan Liu
- Faculty of Materials Science and Engineering, Yunnan Joint International Laboratory of Optoelectronic Materials and Devices, Kunming University of Science and Technology, Kunming 650093, China
| | - Guohui Wei
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 51064, China
| | - Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 51064, China
| | - Zhengce An
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 51064, China
| | - Xuhui Xu
- Faculty of Materials Science and Engineering, Yunnan Joint International Laboratory of Optoelectronic Materials and Devices, Kunming University of Science and Technology, Kunming 650093, China
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 51064, China
| |
Collapse
|
7
|
Xu J, Wang C, Zhang L, Zhao C, Zhao X, Wu J. In Situ Aggregated Nanomanganese Enhances Radiation-Induced Antitumor Immunity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34450-34466. [PMID: 38941284 DOI: 10.1021/acsami.4c03838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Radiosensitizers play a pivotal role in enhancing radiotherapy (RT). One of the challenges in RT is the limited accumulation of nanoradiosensitizers and the difficulty in activating antitumor immunity. Herein, a smart strategy was used to achieve in situ aggregation of nanomanganese adjuvants (MnAuNP-C&B) to enhance RT-induced antitumor immunity. The aggregated MnAuNP-C&B system overcomes the shortcomings of small-sized nanoparticles that easily flow back into blood vessels and diffuse into surrounding tissues, and it also prolongs the retention time of nanomanganese within cancer cells and tumors. The MnAuNP-C&B system significantly enhances the radiosensitization effect in RT. Additionally, the pH-responsive disassembly of MnAuNP-C&B triggers the release of Mn2+, further promoting RT-induced activation of the STING pathway and eliciting robust antitumor immunity. Overall, our study presents a smart strategy wherein in situ aggregation of nanomanganese effectively inhibits tumor growth through radiosensitization and the activation of antitumor immunity.
Collapse
Affiliation(s)
- Jialong Xu
- Medical School of Nanjing University, Nanjing 210093, China
| | - Chao Wang
- Medical School of Nanjing University, Nanjing 210093, China
| | - Li Zhang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Chuan Zhao
- Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210023, China
| | - Jinhui Wu
- Medical School of Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Centre, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Ye H, Li Y, Chen X, Du W, Song L, Chen Y, Zhan Q, Wei W. Current Developments in Emerging Lanthanide-Doped Persistent Luminescent Scintillators and Their Applications. Chemistry 2024; 30:e202303661. [PMID: 38630080 DOI: 10.1002/chem.202303661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Indexed: 05/25/2024]
Abstract
Lanthanide-doped scintillators have the ability to convert the absorbed X-ray irradiation into ultraviolet (UV), visible (Vis), or near-infrared (NIR) light. Lanthanide-doped scintillators with excellent persistent luminescence (PersL) are emerging as a new class of PersL materials recently. They have attracted great attention due to their unique "self-luminescence" characteristic and potential applications. In this review, we comb through and focus on current developments of lanthanide-doped persistent luminescent scintillators (PersLSs), including their PersL mechanism, synthetic methods, tuning of PersL properties (e. g. emission wavelength, intensity, and duration time), as well as their promising applications (e. g. information storage, encryption, anti-counterfeiting, bio-imaging, and photodynamic therapy). We hope this review will provide valuable guidance for the future development of PersLSs.
Collapse
Affiliation(s)
- Huiru Ye
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yantao Li
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xukai Chen
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Weidong Du
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Longfei Song
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yu Chen
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Wei Wei
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
9
|
Arefin MS, Rahman MM, Hasan MT, Mahmud M. A Topical Review on Enabling Technologies for the Internet of Medical Things: Sensors, Devices, Platforms, and Applications. MICROMACHINES 2024; 15:479. [PMID: 38675290 PMCID: PMC11051832 DOI: 10.3390/mi15040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
The Internet of Things (IoT) is still a relatively new field of research, and its potential to be used in the healthcare and medical sectors is enormous. In the last five years, IoT has been a go-to option for various applications such as using sensors for different features, machine-to-machine communication, etc., but precisely in the medical sector, it is still lagging far behind compared to other sectors. Hence, this study emphasises IoT applications in medical fields, Medical IoT sensors and devices, IoT platforms for data visualisation, and artificial intelligence in medical applications. A systematic review considering PRISMA guidelines on research articles as well as the websites on IoMT sensors and devices has been carried out. After the year 2001, an integrated outcome of 986 articles was initially selected, and by applying the inclusion-exclusion criterion, a total of 597 articles were identified. 23 new studies have been finally found, including records from websites and citations. This review then analyses different sensor monitoring circuits in detail, considering an Intensive Care Unit (ICU) scenario, device applications, and the data management system, including IoT platforms for the patients. Lastly, detailed discussion and challenges have been outlined, and possible prospects have been presented.
Collapse
Affiliation(s)
- Md. Shamsul Arefin
- Department of Electrical and Electronic Engineering (EEE), Bangladesh University of Business & Technology, Dhaka 1216, Bangladesh;
| | | | - Md. Tanvir Hasan
- Department of Electrical and Electronic Engineering (EEE), Jashore University of Science & Technology, Jashore 7408, Bangladesh;
- Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Mufti Mahmud
- Department of Computer Science, Nottingham Trent University, Nottingham NG11 8NS, UK
- Computing and Informatics Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
10
|
Stine JM, Ruland KL, Beardslee LA, Levy JA, Abianeh H, Botasini S, Pasricha PJ, Ghodssi R. Miniaturized Capsule System Toward Real-Time Electrochemical Detection of H 2 S in the Gastrointestinal Tract. Adv Healthc Mater 2024; 13:e2302897. [PMID: 38035728 PMCID: PMC11468942 DOI: 10.1002/adhm.202302897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Hydrogen sulfide (H2 S) is a gaseous inflammatory mediator and important signaling molecule for maintaining gastrointestinal (GI) homeostasis. Excess intraluminal H2 S in the GI tract has been implicated in inflammatory bowel disease and neurodegenerative disorders; however, the role of H2 S in disease pathogenesis and progression is unclear. Herein, an electrochemical gas-sensing ingestible capsule is developed to enable real-time, wireless amperometric measurement of H2 S in GI conditions. A gold (Au) three-electrode sensor is modified with a Nafion solid-polymer electrolyte (Nafion-Au) to enhance selectivity toward H2 S in humid environments. The Nafion-Au sensor-integrated capsule shows a linear current response in H2 S concentration ranging from 0.21 to 4.5 ppm (R2 = 0.954) with a normalized sensitivity of 12.4% ppm-1 when evaluated in a benchtop setting. The sensor proves highly selective toward H2 S in the presence of known interferent gases, such as hydrogen (H2 ), with a selectivity ratio of H2 S:H2 = 1340, as well as toward methane (CH4 ) and carbon dioxide (CO2 ). The packaged capsule demonstrates reliable wireless communication through abdominal tissue analogues, comparable to GI dielectric properties. Also, an assessment of sensor drift and threshold-based notification is investigated, showing potential for in vivo application. Thus, the developed H2 S capsule platform provides an analytical tool to uncover the complex biology-modulating effects of intraluminal H2 S.
Collapse
Affiliation(s)
- Justin M. Stine
- Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkMD20742USA
- Institute for Systems ResearchUniversity of MarylandCollege ParkMD20742USA
- Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMD20742USA
| | - Katie L. Ruland
- Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkMD20742USA
- Institute for Systems ResearchUniversity of MarylandCollege ParkMD20742USA
- Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMD20742USA
| | - Luke A. Beardslee
- Institute for Systems ResearchUniversity of MarylandCollege ParkMD20742USA
| | - Joshua A. Levy
- Institute for Systems ResearchUniversity of MarylandCollege ParkMD20742USA
- Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMD20742USA
- Department of Materials Science and EngineeringUniversity of MarylandCollege ParkMD20742USA
| | - Hossein Abianeh
- Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkMD20742USA
| | - Santiago Botasini
- Institute for Systems ResearchUniversity of MarylandCollege ParkMD20742USA
| | | | - Reza Ghodssi
- Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkMD20742USA
- Institute for Systems ResearchUniversity of MarylandCollege ParkMD20742USA
- Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMD20742USA
- Department of Materials Science and EngineeringUniversity of MarylandCollege ParkMD20742USA
| |
Collapse
|
11
|
Behrsing T, Blair VL, Jaroschik F, Deacon GB, Junk PC. Rare Earths-The Answer to Everything. Molecules 2024; 29:688. [PMID: 38338432 PMCID: PMC10856286 DOI: 10.3390/molecules29030688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Rare earths, scandium, yttrium, and the fifteen lanthanoids from lanthanum to lutetium, are classified as critical metals because of their ubiquity in daily life. They are present in magnets in cars, especially electric cars; green electricity generating systems and computers; in steel manufacturing; in glass and light emission materials especially for safety lighting and lasers; in exhaust emission catalysts and supports; catalysts in artificial rubber production; in agriculture and animal husbandry; in health and especially cancer diagnosis and treatment; and in a variety of materials and electronic products essential to modern living. They have the potential to replace toxic chromates for corrosion inhibition, in magnetic refrigeration, a variety of new materials, and their role in agriculture may expand. This review examines their role in sustainability, the environment, recycling, corrosion inhibition, crop production, animal feedstocks, catalysis, health, and materials, as well as considering future uses.
Collapse
Affiliation(s)
- Thomas Behrsing
- School of Chemistry, Monash University, Melbourne, VIC 3800, Australia; (T.B.); (V.L.B.); (G.B.D.)
| | - Victoria L. Blair
- School of Chemistry, Monash University, Melbourne, VIC 3800, Australia; (T.B.); (V.L.B.); (G.B.D.)
| | | | - Glen B. Deacon
- School of Chemistry, Monash University, Melbourne, VIC 3800, Australia; (T.B.); (V.L.B.); (G.B.D.)
| | - Peter C. Junk
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
12
|
Li D, Zhou J, Zhao Z, Huang X, Li H, Qu Q, Zhou C, Yao K, Liu Y, Wu M, Su J, Shi R, Huang Y, Wang J, Zhang Z, Liu Y, Gao Z, Park W, Jia H, Guo X, Zhang J, Chirarattananon P, Chang L, Xie Z, Yu X. Battery-free, wireless, and electricity-driven soft swimmer for water quality and virus monitoring. SCIENCE ADVANCES 2024; 10:eadk6301. [PMID: 38198552 PMCID: PMC10780888 DOI: 10.1126/sciadv.adk6301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Miniaturized mobile electronic system is an effective candidate for in situ exploration of confined spaces. However, realizing such system still faces challenges in powering issue, untethered mobility, wireless data acquisition, sensing versatility, and integration in small scales. Here, we report a battery-free, wireless, and miniaturized soft electromagnetic swimmer (SES) electronic system that achieves multiple monitoring capability in confined water environments. Through radio frequency powering, the battery-free SES system demonstrates untethered motions in confined spaces with considerable moving speed under resonance. This system adopts soft electronic technologies to integrate thin multifunctional bio/chemical sensors and wireless data acquisition module, and performs real-time water quality and virus contamination detection with demonstrated promising limits of detection and high sensitivity. All sensing data are transmitted synchronously and displayed on a smartphone graphical user interface via near-field communication. Overall, this wireless smart system demonstrates broad potential for confined space exploration, ranging from pathogen detection to pollution investigation.
Collapse
Affiliation(s)
- Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Zichen Zhao
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qing’ao Qu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Changfei Zhou
- School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yanting Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Mengge Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Jingyou Su
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Rui Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Jingjing Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Zongwen Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhan Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Wooyoung Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Huiling Jia
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Xu Guo
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jiachen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Pakpong Chirarattananon
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
13
|
Lei L, Yang F, Meng X, Xu L, Liang P, Ma Y, Dong Z, Wang Y, Zhang XB, Song G. Noninvasive Imaging of Tumor Glycolysis and Chemotherapeutic Resistance via De Novo Design of Molecular Afterglow Scaffold. J Am Chem Soc 2023; 145:24386-24400. [PMID: 37883689 DOI: 10.1021/jacs.3c09473] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Chemotherapeutic resistance poses a significant challenge in cancer treatment, resulting in the reduced efficacy of standard chemotherapeutic agents. Abnormal metabolism, particularly increased anaerobic glycolysis, has been identified as a major contributing factor to chemotherapeutic resistance. To address this issue, noninvasive imaging techniques capable of visualizing tumor glycolysis are crucial. However, the currently available methods (such as PET, MRI, and fluorescence) possess limitations in terms of sensitivity, safety, dynamic imaging capability, and autofluorescence. Here, we present the de novo design of a unique afterglow molecular scaffold based on hemicyanine and rhodamine dyes, which holds promise for low-background optical imaging. In contrast to previous designs, this scaffold exhibits responsive "OFF-ON" afterglow signals through spirocyclization, thus enabling simultaneous control of photodynamic effects and luminescence efficacy. This leads to a larger dynamic range, broader detection range, higher signal enhancement ratio, and higher sensitivity. Furthermore, the integration of multiple functionalities simplifies probe design, eliminates the need for spectral overlap, and enhances reliability. Moreover, we have expanded the applications of this afterglow molecular scaffold by developing various probes for different molecular targets. Notably, we developed a water-soluble pH-responsive afterglow nanoprobe for visualizing glycolysis in living mice. This nanoprobe monitors the effects of glycolytic inhibitors or oxidative phosphorylation inhibitors on tumor glycolysis, providing a valuable tool for evaluating the tumor cell sensitivity to these inhibitors. Therefore, the new afterglow molecular scaffold presents a promising approach for understanding tumor metabolism, monitoring chemotherapeutic resistance, and guiding precision medicine in the future.
Collapse
Affiliation(s)
- Lingling Lei
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Fengrui Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xin Meng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Li Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Peng Liang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yuan Ma
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zhe Dong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Youjuan Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Guosheng Song
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
14
|
Yi L, Hou B, Liu X. Optical Integration in Wearable, Implantable and Swallowable Healthcare Devices. ACS NANO 2023; 17:19491-19501. [PMID: 37807286 DOI: 10.1021/acsnano.3c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Recent advances in materials and semiconductor technologies have led to extensive research on optical integration in wearable, implantable, and swallowable health devices. These optical systems utilize the properties of light─intensity, wavelength, polarization, and phase─to monitor and potentially intervene in various biological events. The potential of these devices is greatly enhanced through the use of multifunctional optical materials, adaptable integration processes, advanced optical sensing principles, and optimized artificial intelligence algorithms. This synergy creates many possibilities for clinical applications. This Perspective discusses key opportunities, challenges, and future directions, particularly with respect to sensing modalities, multifunctionality, and the integration of miniaturized optoelectronic devices. We present fundamental insights and illustrative examples of such devices in wearable, implantable, and swallowable forms. The constant pursuit of innovation and the dedicated approach to critical challenges are poised to influence diverse fields.
Collapse
Affiliation(s)
- Luying Yi
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Bo Hou
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| |
Collapse
|
15
|
Archambault L. A swallowable X-ray dosimeter. Nat Biomed Eng 2023; 7:1212-1214. [PMID: 37848557 DOI: 10.1038/s41551-023-01100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Affiliation(s)
- Louis Archambault
- Department of Physics, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
16
|
Lu L, Peng S, Zhao L, Zhang M, Xiao J, Wen H, Zhang P, Yakovlev AN, Qiu J, Yu X, Wang T, Xu X. Visualized X-ray Dosimetry for Multienvironment Applications. NANO LETTERS 2023; 23:8753-8760. [PMID: 37712849 DOI: 10.1021/acs.nanolett.3c02826] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
X-ray dose detection plays a critical role in various scientific fields, including chemistry, materials, and medicine. However, the current materials used for this purpose face challenges in both immediate and delayed radiation detections. Here, we present a visual X-ray dosimetry method for multienvironment applications, utilizing NaLuF4 nanocrystals (NCs) that undergo a color change from green to red upon X-ray irradiation. By adjustment of the concentrations of Ho3+, the emission color of the NCs can be tuned thanks to the cross-relaxation effects. Furthermore, X-ray irradiation induces generation of trapping centers in NaLuF4:Ho3+ NCs, endowing the generation of mechanoluminescence (ML) behavior upon mechanical stimulation after X-ray irradiation ceases. The ML intensity shows a linear correlation with the X-ray dose, facilitating the detection of delayed radiation. This breakthrough facilitates X-ray dose inspection in flaw detection, nuclear medicine, customs, and civil protection, thereby enhancing opportunities for radiation monitoring and control.
Collapse
Affiliation(s)
- Lan Lu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, People's Republic of China
| | - Songcheng Peng
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, People's Republic of China
| | - Lei Zhao
- College of Physics and Optoelectronic Technology, Collaborative Innovation Center of Rare-Earth Functional Materials and Devices Development, Baoji University of Arts and Sciences, Baoji 721016, People's Republic of China
| | - Meiguang Zhang
- College of Physics and Optoelectronic Technology, Collaborative Innovation Center of Rare-Earth Functional Materials and Devices Development, Baoji University of Arts and Sciences, Baoji 721016, People's Republic of China
| | - Jianqiang Xiao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, People's Republic of China
| | - Hongyu Wen
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, People's Republic of China
| | - Peng Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, People's Republic of China
| | | | - Jianbei Qiu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, People's Republic of China
| | - Xue Yu
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, People's Republic of China
| | - Ting Wang
- School of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, People's Republic of China
| | - Xuhui Xu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, People's Republic of China
| |
Collapse
|
17
|
Xu X, Cao J, Peng D, Chen B. A tailor-made double-tapered fibre array enables the state-of-the-art scintillators. Sci Bull (Beijing) 2023:S2095-9273(23)00374-2. [PMID: 37336687 DOI: 10.1016/j.scib.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Affiliation(s)
- Xiuwen Xu
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jie Cao
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Bing Chen
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
18
|
An easy-to-swallow pill monitors X-ray dosage. Nature 2023; 616:632. [PMID: 37085703 DOI: 10.1038/d41586-023-01284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
|