1
|
Stubbins RJ, Cherniawsky H, Karsan A. Cellular and immunotherapies for myelodysplastic syndromes. Semin Hematol 2024:S0037-1963(24)00109-4. [PMID: 39426936 DOI: 10.1053/j.seminhematol.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
In this review article, we outline the current landscape of immune and cell therapy-based approaches for patients with myelodysplastic syndromes (MDS). Given the well characterized graft-versus-leukemia (GVL) effect observed with allogeneic hematopoietic cell transplantation, and the known immune escape mechanisms observed in MDS cells, significant interest exists in developing immune-based approaches to treat MDS. These attempts have included antibody-based drugs that block immune escape molecules, such as inhibitors of the PD-1/PD-L1 and TIM-3/galectin-9 axes that mediate interactions between MDS cells and T-lymphocytes, as well as antibodies that block the CD47/SIRPα interaction, which mediates macrophage phagocytosis. Unfortunately, these approaches have been largely unsuccessful. There is significant potential for T-cell engaging therapies and chimeric antigen receptor T (CAR-T) cells, but there are also several limitations to these approaches that are unique to MDS. However, many of these limitations may be overcome by the next generation of cellular therapies, including those with engineered T-cell receptors or natural killer (NK)-cell based platforms. Regardless of the approach, all these immune cells are subject to the complex bone marrow microenvironment in MDS, which harbours a variable and heterogeneous mix of pro-inflammatory cytokines and immunosuppressive elements. Understanding this interaction will be paramount to ensuring the success of immune and cellular therapies in MDS.
Collapse
Affiliation(s)
- Ryan J Stubbins
- Leukemia/BMT Program of BC, BC Cancer, Vancouver V5Z 1M9, BC, Canada; Division of Hematology, Department of Medicine, University of British Columbia, Vancouver V5Z 1M9, BC, Canada.
| | - Hannah Cherniawsky
- Leukemia/BMT Program of BC, BC Cancer, Vancouver V5Z 1M9, BC, Canada; Division of Hematology, Department of Medicine, University of British Columbia, Vancouver V5Z 1M9, BC, Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
2
|
Fiorenza S, Lim SY, Laszlo GS, Kimble EL, Phi TD, Lunn-Halbert MC, Kirchmeier DR, Huo J, Kiem HP, Turtle CJ, Walter RB. Targeting the membrane-proximal C2-set domain of CD33 for improved CAR T cell therapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200854. [PMID: 39224504 PMCID: PMC11367471 DOI: 10.1016/j.omton.2024.200854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Current CD33-targeted immunotherapies typically recognize the membrane-distal V-set domain of CD33. Here, we show that decreasing the distance between T cell and leukemia cell membrane increases the efficacy of CD33 chimeric antigen receptor (CAR) T cells. We therefore generated and optimized second-generation CAR constructs containing single-chain variable fragments from antibodies raised against the membrane-proximal C2-set domain, which bind CD33 regardless of whether the V-set domain is present (CD33PAN antibodies). CD33PAN CAR T cells resulted in efficient tumor clearance and improved survival of immunodeficient mice bearing human AML cell xenografts and, in an AML model with limited CD33 expression, forced escape of CD33neg leukemia. Compared to CD33V-set CAR T cells, CD33PAN CAR T cells showed greater in vitro and in vivo efficacy against several human AML cell lines with differing levels of CD33 without increased expression of exhaustion markers. CD33PAN moieties were detected at a higher frequency on human leukemic stem cells, and CD33PAN CAR T cells had greater in vitro efficacy against primary human AML cells. Together, our studies demonstrate improved efficacy with CAR T cells binding CD33 close to the cell membrane, providing the rationale to investigate CD33PAN CAR T cells further toward possible clinical application.
Collapse
Affiliation(s)
- Salvatore Fiorenza
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Sheryl Y.T. Lim
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - George S. Laszlo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Erik L. Kimble
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA 98195, USA
| | - Tinh-Doan Phi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Margaret C. Lunn-Halbert
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Delaney R. Kirchmeier
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jenny Huo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hans-Peter Kiem
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Cameron J. Turtle
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Roland B. Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Johnson CS, Williams M, Sham K, Belluschi S, Ma W, Wang X, Lau WWY, Kaufmann KB, Krivdova G, Calderbank EF, Mende N, McLeod J, Mantica G, Li J, Grey-Wilson C, Drakopoulos M, Basheer S, Sinha S, Diamanti E, Basford C, Wilson NK, Howe SJ, Dick JE, Göttgens B, Green AR, Francis N, Laurenti E. Adaptation to ex vivo culture reduces human hematopoietic stem cell activity independently of the cell cycle. Blood 2024; 144:729-741. [PMID: 38805639 PMCID: PMC7616366 DOI: 10.1182/blood.2023021426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
ABSTRACT Loss of long-term hematopoietic stem cell (LT-HSC) function ex vivo hampers the success of clinical protocols that rely on culture. However, the kinetics and mechanisms through which this occurs remain incompletely characterized. In this study, through time-resolved single-cell RNA sequencing, matched in vivo functional analysis, and the use of a reversible in vitro system of early G1 arrest, we defined the sequence of transcriptional and functional events that occur during the first ex vivo division of human LT-HSCs. We demonstrated that the sharpest loss in LT-HSC repopulation capacity happens early on, between 6 and 24 hours of culture, before LT-HSCs commit to cell cycle progression. During this time window, LT-HSCs adapt to the culture environment, limit the global variability in gene expression, and transiently upregulate gene networks involved in signaling and stress responses. From 24 hours, LT-HSC progression past early G1 contributes to the establishment of differentiation programs in culture. However, contrary to the current assumptions, we demonstrated that the loss of HSC function ex vivo is independent of cell cycle progression. Finally, we showed that targeting LT-HSC adaptation to culture by inhibiting the early activation of JAK/STAT signaling improves HSC long-term repopulating function ex vivo. Collectively, our study demonstrated that controlling early LT-HSC adaptation to ex vivo culture, for example, via JAK inhibition, is critically important to improve HSC gene therapy and expansion protocols.
Collapse
Affiliation(s)
- Carys S Johnson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - Matthew Williams
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Kendig Sham
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Serena Belluschi
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Wenjuan Ma
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Xiaonan Wang
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Winnie W Y Lau
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Kerstin B Kaufmann
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Gabriela Krivdova
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Emily F Calderbank
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Nicole Mende
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Jessica McLeod
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Giovanna Mantica
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Juan Li
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte Grey-Wilson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Michael Drakopoulos
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Shaaezmeen Basheer
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Shubhankar Sinha
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Evangelia Diamanti
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Christina Basford
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - Nicola K Wilson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Steven J Howe
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - John E Dick
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Berthold Göttgens
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Anthony R Green
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Natalie Francis
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
- Department of Gene Therapy and Regenerative Medicine, King's College London, London, United Kingdom
| | - Elisa Laurenti
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Cloarec-Ung FM, Beaulieu J, Suthananthan A, Lehnertz B, Sauvageau G, Sheppard HM, Knapp DJHF. Near-perfect precise on-target editing of human hematopoietic stem and progenitor cells. eLife 2024; 12:RP91288. [PMID: 38829685 PMCID: PMC11147503 DOI: 10.7554/elife.91288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Precision gene editing in primary hematopoietic stem and progenitor cells (HSPCs) would facilitate both curative treatments for monogenic disorders as well as disease modelling. Precise efficiencies even with the CRISPR/Cas system, however, remain limited. Through an optimization of guide RNA delivery, donor design, and additives, we have now obtained mean precise editing efficiencies >90% on primary cord blood HSCPs with minimal toxicity and without observed off-target editing. The main protocol modifications needed to achieve such high efficiencies were the addition of the DNA-PK inhibitor AZD7648, and the inclusion of spacer-breaking silent mutations in the donor in addition to mutations disrupting the PAM sequence. Critically, editing was even across the progenitor hierarchy, did not substantially distort the hierarchy or affect lineage outputs in colony-forming cell assays or the frequency of high self-renewal potential long-term culture initiating cells. As modelling of many diseases requires heterozygosity, we also demonstrated that the overall editing and zygosity can be tuned by adding in defined mixtures of mutant and wild-type donors. With these optimizations, editing at near-perfect efficiency can now be accomplished directly in human HSPCs. This will open new avenues in both therapeutic strategies and disease modelling.
Collapse
Affiliation(s)
- Fanny-Mei Cloarec-Ung
- Institut de Recherche en Immunologie et en Cancérologie, Université de MontréalMontéalCanada
| | - Jamie Beaulieu
- Institut de Recherche en Immunologie et en Cancérologie, Université de MontréalMontéalCanada
| | - Arunan Suthananthan
- Institut de Recherche en Immunologie et en Cancérologie, Université de MontréalMontéalCanada
| | - Bernhard Lehnertz
- Institut de Recherche en Immunologie et en Cancérologie, Université de MontréalMontéalCanada
| | - Guy Sauvageau
- Institut de Recherche en Immunologie et en Cancérologie, Université de MontréalMontéalCanada
| | - Hilary M Sheppard
- Institut de Recherche en Immunologie et en Cancérologie, Université de MontréalMontéalCanada
- School of Biological Sciences, Faculty of Science, University of AucklandAucklandNew Zealand
| | - David JHF Knapp
- Institut de Recherche en Immunologie et en Cancérologie, Université de MontréalMontéalCanada
- Département de Pathologie et Biologie Cellulaire, Université de MontréalMontréalCanada
| |
Collapse
|
5
|
Appelbaum J, Price AE, Oda K, Zhang J, Leung WH, Tampella G, Xia D, So PP, Hilton SK, Evandy C, Sarkar S, Martin U, Krostag AR, Leonardi M, Zak DE, Logan R, Lewis P, Franke-Welch S, Ngwenyama N, Fitzgerald M, Tulberg N, Rawlings-Rhea S, Gardner RA, Jones K, Sanabria A, Crago W, Timmer J, Hollands A, Eckelman B, Bilic S, Woodworth J, Lamble A, Gregory PD, Jarjour J, Pogson M, Gustafson JA, Astrakhan A, Jensen MC. Drug-regulated CD33-targeted CAR T cells control AML using clinically optimized rapamycin dosing. J Clin Invest 2024; 134:e162593. [PMID: 38502193 PMCID: PMC11060733 DOI: 10.1172/jci162593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/08/2024] [Indexed: 03/21/2024] Open
Abstract
Chimeric antigen receptor (CAR) designs that incorporate pharmacologic control are desirable; however, designs suitable for clinical translation are needed. We designed a fully human, rapamycin-regulated drug product for targeting CD33+ tumors called dimerizaing agent-regulated immunoreceptor complex (DARIC33). T cell products demonstrated target-specific and rapamycin-dependent cytokine release, transcriptional responses, cytotoxicity, and in vivo antileukemic activity in the presence of as little as 1 nM rapamycin. Rapamycin withdrawal paused DARIC33-stimulated T cell effector functions, which were restored following reexposure to rapamycin, demonstrating reversible effector function control. While rapamycin-regulated DARIC33 T cells were highly sensitive to target antigen, CD34+ stem cell colony-forming capacity was not impacted. We benchmarked DARIC33 potency relative to CD19 CAR T cells to estimate a T cell dose for clinical testing. In addition, we integrated in vitro and preclinical in vivo drug concentration thresholds for off-on state transitions, as well as murine and human rapamycin pharmacokinetics, to estimate a clinically applicable rapamycin dosing schedule. A phase I DARIC33 trial has been initiated (PLAT-08, NCT05105152), with initial evidence of rapamycin-regulated T cell activation and antitumor impact. Our findings provide evidence that the DARIC platform exhibits sensitive regulation and potency needed for clinical application to other important immunotherapy targets.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Immunotherapy, Adoptive
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Receptors, Chimeric Antigen/immunology
- Sialic Acid Binding Ig-like Lectin 3/immunology
- Sialic Acid Binding Ig-like Lectin 3/metabolism
- Sirolimus/pharmacology
- Sirolimus/administration & dosage
- T-Lymphocytes/immunology
- T-Lymphocytes/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jacob Appelbaum
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
- Division of Hematology/Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Seattle Children’s Hospital, Seattle, Washington, USA
| | | | - Kaori Oda
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Joy Zhang
- 2seventy bio, Cambridge, Massachusetts, USA
| | | | - Giacomo Tampella
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Dong Xia
- 2seventy bio, Cambridge, Massachusetts, USA
| | | | | | - Claudya Evandy
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Semanti Sarkar
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | | | - Marissa Leonardi
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | - Rachael Logan
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | | | | | - Michael Fitzgerald
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Niklas Tulberg
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Stephanie Rawlings-Rhea
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Rebecca A. Gardner
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Kyle Jones
- Inhibrx, Torrey Pines Science Park, La Jolla, California, USA
| | | | - William Crago
- Inhibrx, Torrey Pines Science Park, La Jolla, California, USA
| | - John Timmer
- Inhibrx, Torrey Pines Science Park, La Jolla, California, USA
| | - Andrew Hollands
- Inhibrx, Torrey Pines Science Park, La Jolla, California, USA
| | | | | | | | - Adam Lamble
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
- Seattle Children’s Hospital, Seattle, Washington, USA
| | | | | | | | - Joshua A. Gustafson
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | - Michael C. Jensen
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| |
Collapse
|
6
|
Jassinskaja M, Gonka M, Kent DG. Resolving the hematopoietic stem cell state by linking functional and molecular assays. Blood 2023; 142:543-552. [PMID: 36735913 PMCID: PMC10644060 DOI: 10.1182/blood.2022017864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
One of the most challenging aspects of stem cell research is the reliance on retrospective assays for ascribing function. This is especially problematic for hematopoietic stem cell (HSC) research in which the current functional assay that formally establishes its HSC identity involves long-term serial transplantation assays that necessitate the destruction of the initial cell state many months before knowing that it was, in fact, an HSC. In combination with the explosion of equally destructive single-cell molecular assays, the paradox facing researchers is how to determine the molecular state of a functional HSC when you cannot concomitantly assess its functional and molecular properties. In this review, we will give a historical overview of the functional and molecular assays in the field, identify new tools that combine molecular and functional readouts in populations of HSCs, and imagine the next generation of computational and molecular profiling tools that may help us better link cell function with molecular state.
Collapse
Affiliation(s)
- Maria Jassinskaja
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Monika Gonka
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - David G. Kent
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
7
|
Anjos-Afonso F, Bonnet D. Human CD34+ hematopoietic stem cell hierarchy: how far are we with its delineation at the most primitive level? Blood 2023; 142:509-518. [PMID: 37018661 PMCID: PMC10644061 DOI: 10.1182/blood.2022018071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/07/2023] Open
Abstract
The ability to isolate and characterize different hematopoietic stem cell (HSC) or progenitor cell populations opens avenues to understand how hematopoiesis is regulated during development, homeostasis, and regeneration as well as in age-related conditions such as clonal hematopoiesis and leukemogenesis. Significant progress has been made in the past few decades in determining the composition of the cell types that exist in this system, but the most significant advances have come from mouse studies. However, recent breakthroughs have made significant strides that have enhanced the resolution of the human primitive hematopoietic compartment. Therefore, we aim to review this subject not only from a historical perspective but also to discuss the progress made in the characterization of the human postnatal CD34+ HSC-enriched populations. This approach will enable us to shed light on the potential future translational applicability of human HSCs.
Collapse
Affiliation(s)
- Fernando Anjos-Afonso
- Haematopoietic Signalling Group, European Cancer Stem Cell Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
8
|
Shevyrev D, Tereshchenko V, Berezina TN, Rybtsov S. Hematopoietic Stem Cells and the Immune System in Development and Aging. Int J Mol Sci 2023; 24:ijms24065862. [PMID: 36982935 PMCID: PMC10056303 DOI: 10.3390/ijms24065862] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Hematopoietic stem cells (HSCs) support haematopoiesis throughout life and give rise to the whole variety of cells of the immune system. Developing in the early embryo, passing through the precursor stage, and maturing into the first HSCs, they undergo a fairly large number of divisions while maintaining a high regenerative potential due to high repair activity. This potential is greatly reduced in adult HSCs. They go into a state of dormancy and anaerobic metabolism to maintain their stemness throughout life. However, with age, changes occur in the pool of HSCs that negatively affect haematopoiesis and the effectiveness of immunity. Niche aging and accumulation of mutations with age reduces the ability of HSCs to self-renew and changes their differentiation potential. This is accompanied by a decrease in clonal diversity and a disturbance of lymphopoiesis (decrease in the formation of naive T- and B-cells) and the predominance of myeloid haematopoiesis. Aging also affects mature cells, regardless of HSC, therefore, phagocytic activity and the intensity of the oxidative burst decrease, and the efficiency of processing and presentation of antigens by myeloid cells is impaired. Aging cells of innate and adaptive immunity produce factors that form a chronic inflammatory background. All these processes have a serious negative impact on the protective properties of the immune system, increasing inflammation, the risk of developing autoimmune, oncological, and cardiovascular diseases with age. Understanding the mechanisms of reducing the regenerative potential in a comparative analysis of embryonic and aging HSCs, the features of inflammatory aging will allow us to get closer to deciphering the programs for the development, aging, regeneration and rejuvenation of HSCs and the immune system.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
| | - Valeriy Tereshchenko
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
| | - Tatiana N Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia
| | - Stanislav Rybtsov
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
| |
Collapse
|
9
|
Ding J, Li Y, Larochelle A. De Novo Generation of Human Hematopoietic Stem Cells from Pluripotent Stem Cells for Cellular Therapy. Cells 2023; 12:321. [PMID: 36672255 PMCID: PMC9857267 DOI: 10.3390/cells12020321] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The ability to manufacture human hematopoietic stem cells (HSCs) in the laboratory holds enormous promise for cellular therapy of human blood diseases. Several differentiation protocols have been developed to facilitate the emergence of HSCs from human pluripotent stem cells (PSCs). Most approaches employ a stepwise addition of cytokines and morphogens to recapitulate the natural developmental process. However, these protocols globally lack clinical relevance and uniformly induce PSCs to produce hematopoietic progenitors with embryonic features and limited engraftment and differentiation capabilities. This review examines how key intrinsic cues and extrinsic environmental inputs have been integrated within human PSC differentiation protocols to enhance the emergence of definitive hematopoiesis and how advances in genomics set the stage for imminent breakthroughs in this field.
Collapse
Affiliation(s)
| | | | - Andre Larochelle
- Cellular and Molecular Therapeutics Branch, National Heart Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Rix B, Maduro AH, Bridge KS, Grey W. Markers for human haematopoietic stem cells: The disconnect between an identification marker and its function. Front Physiol 2022; 13:1009160. [PMID: 36246104 PMCID: PMC9564379 DOI: 10.3389/fphys.2022.1009160] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The haematopoietic system is a classical stem cell hierarchy that maintains all the blood cells in the body. Haematopoietic stem cells (HSCs) are rare, highly potent cells that reside at the apex of this hierarchy and are historically some of the most well studied stem cells in humans and laboratory models, with haematopoiesis being the original system to define functional cell types by cell surface markers. Whilst it is possible to isolate HSCs to near purity, we know very little about the functional activity of markers to purify HSCs. This review will focus on the historical efforts to purify HSCs in humans based on cell surface markers, their putative functions and recent advances in finding functional markers on HSCs.
Collapse
Affiliation(s)
| | | | | | - William Grey
- *Correspondence: Katherine S. Bridge, ; William Grey,
| |
Collapse
|
11
|
Liver Regeneration by Hematopoietic Stem Cells: Have We Reached the End of the Road? Cells 2022; 11:cells11152312. [PMID: 35954155 PMCID: PMC9367594 DOI: 10.3390/cells11152312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
The liver is the organ with the highest regenerative capacity in the human body. However, various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Despite advances in surgery and pharmacological treatments, liver diseases remain a leading cause of death worldwide. To address the shortage of donor liver organs for orthotopic liver transplantation, cell therapy in liver disease has emerged as a promising regenerative treatment. Sources include primary hepatocytes or functional hepatocytes generated from the reprogramming of induced pluripotent stem cells (iPSC). Different types of stem cells have also been employed for transplantation to trigger regeneration, including hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs) as well as adult and fetal liver progenitor cells. HSCs, usually defined by the expression of CD34 and CD133, and MSCs, defined by the expression of CD105, CD73, and CD90, are attractive sources due to their autologous nature, ease of isolation and cryopreservation. The present review focuses on the use of bone marrow HSCs for liver regeneration, presenting evidence for an ongoing crosstalk between the hematopoietic and the hepatic system. This relationship commences during embryogenesis when the fetal liver emerges as the crossroads between the two systems converging the presence of different origins of cells (mesoderm and endoderm) in the same organ. Ample evidence indicates that the fetal liver supports the maturation and expansion of HSCs during development but also later on in life. Moreover, the fact that the adult liver remains one of the few sites for extramedullary hematopoiesis—albeit pathological—suggests that this relationship between the two systems is ongoing. Can, however, the hematopoietic system offer similar support to the liver? The majority of clinical studies using hematopoietic cell transplantation in patients with liver disease report favourable observations. The underlying mechanism—whether paracrine, fusion or transdifferentiation or a combination of the three—remains to be confirmed.
Collapse
|
12
|
Zhang YW, Mess J, Aizarani N, Mishra P, Johnson C, Romero-Mulero MC, Rettkowski J, Schönberger K, Obier N, Jäcklein K, Woessner NM, Lalioti ME, Velasco-Hernandez T, Sikora K, Wäsch R, Lehnertz B, Sauvageau G, Manke T, Menendez P, Walter SG, Minguet S, Laurenti E, Günther S, Grün D, Cabezas-Wallscheid N. Hyaluronic acid-GPRC5C signalling promotes dormancy in haematopoietic stem cells. Nat Cell Biol 2022; 24:1038-1048. [PMID: 35725769 PMCID: PMC9276531 DOI: 10.1038/s41556-022-00931-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/02/2022] [Indexed: 12/11/2022]
Abstract
Bone marrow haematopoietic stem cells (HSCs) are vital for lifelong maintenance of healthy haematopoiesis. In inbred mice housed in gnotobiotic facilities, the top of the haematopoietic hierarchy is occupied by dormant HSCs, which reversibly exit quiescence during stress. Whether HSC dormancy exists in humans remains debatable. Here, using single-cell RNA sequencing, we show a continuous landscape of highly purified human bone marrow HSCs displaying varying degrees of dormancy. We identify the orphan receptor GPRC5C, which enriches for dormant human HSCs. GPRC5C is also essential for HSC function, as demonstrated by genetic loss- and gain-of-function analyses. Through structural modelling and biochemical assays, we show that hyaluronic acid, a bone marrow extracellular matrix component, preserves dormancy through GPRC5C. We identify the hyaluronic acid-GPRC5C signalling axis controlling the state of dormancy in mouse and human HSCs.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Julian Mess
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School for Biology and Medicine (SGBM), Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany
| | - Nadim Aizarani
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Pankaj Mishra
- Pharmaceutical Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Carys Johnson
- Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Mari Carmen Romero-Mulero
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jasmin Rettkowski
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School for Biology and Medicine (SGBM), Freiburg, Germany
| | - Katharina Schönberger
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Nadine Obier
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Karin Jäcklein
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Nadine M Woessner
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School for Biology and Medicine (SGBM), Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany.,Signalling Research Center BIOSS, Freiburg, Germany
| | | | - Talia Velasco-Hernandez
- Josep Carreras Leukemia Research Institute-Campus Clinic and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Katarzyna Sikora
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ralph Wäsch
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medical, University of Freiburg, Freiburg, Germany
| | - Bernhard Lehnertz
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Canada
| | - Thomas Manke
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Pablo Menendez
- Signalling Research Center BIOSS, Freiburg, Germany.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.,Spanish Network for Cancer Research (CIBER-ONC)-ISCIII, Barcelona, Spain
| | | | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany.,Signalling Research Center BIOSS, Freiburg, Germany
| | - Elisa Laurenti
- Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Stefan Günther
- Pharmaceutical Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Dominic Grün
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany.,Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität, Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Nina Cabezas-Wallscheid
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany. .,Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany.
| |
Collapse
|
13
|
Walter RB. Where do we stand with radioimmunotherapy for acute myeloid leukemia? Expert Opin Biol Ther 2022; 22:555-561. [PMID: 35350938 PMCID: PMC9090441 DOI: 10.1080/14712598.2022.2060735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/29/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite the approval of several new drugs, deaths from acute myeloid leukemia (AML) remain common. Because of well-defined cell surface antigens, easy accessibility, and radiosensitivity of leukemia cells, there is long-standing interest in radiolabeled antibodies (radioimmunotherapy [RIT]) to complement or replace existing treatments and improve outcomes in AML. AREAS COVERED Targeting primarily CD33, CD45, or CD66, early RIT efforts have focused on β-emitters, including iodine-131 (131I) and yttrium-90, mostly to intensify conditioning therapy before allogeneic hematopoietic cell transplantation (HCT). An 131I-labeled CD45 antibody (Iomab-B [apamistamab-I131]) is currently studied in the registration-type phase 3 SIERRA trial (NCT02665065) for this purpose. Of growing interest as therapeutic payloads are α-particle emitting radionuclides such as actinium-225 (225Ac) or astatine-211 (211At) since they deliver substantially higher decay energies over a much shorter distance than β-emitters, rendering them more suitable for precise, potent, and efficient target cell killing while minimizing toxicity to surrounding bystander cells, possibly allowing use outside of HCT. Clinical efforts with 211At-labeled CD45 antibodies and 225Ac-labeled CD33 antibodies (e.g. 225Ac-lintuzumab [Actimab-A]) are ongoing. EXPERT OPINION A first anti-AML RIT may soon become available. This might propel further work to develop RIT-based treatments for AML, with many such efforts already ongoing.
Collapse
Affiliation(s)
- Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Anjos-Afonso F, Buettner F, Mian SA, Rhys H, Perez-Lloret J, Garcia-Albornoz M, Rastogi N, Ariza-McNaughton L, Bonnet D. Single cell analyses identify a highly regenerative and homogenous human CD34+ hematopoietic stem cell population. Nat Commun 2022; 13:2048. [PMID: 35440586 PMCID: PMC9018830 DOI: 10.1038/s41467-022-29675-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 03/18/2022] [Indexed: 01/02/2023] Open
Abstract
The heterogeneous nature of human CD34+ hematopoietic stem cells (HSCs) has hampered our understanding of the cellular and molecular trajectories that HSCs navigate during lineage commitment. Using various platforms including single cell RNA-sequencing and extensive xenotransplantation, we have uncovered an uncharacterized human CD34+ HSC population. These CD34+EPCR+(CD38/CD45RA)- (simply as EPCR+) HSCs have a high repopulating and self-renewal abilities, reaching a stem cell frequency of ~1 in 3 cells, the highest described to date. Their unique transcriptomic wiring in which many gene modules associated with differentiated cell lineages confers their multilineage lineage output both in vivo and in vitro. At the single cell level, EPCR+ HSCs are the most transcriptomically and functionally homogenous human HSC population defined to date and can also be easily identified in post-natal tissues. Therefore, this EPCR+ population not only offers a high human HSC resolution but also a well-structured human hematopoietic hierarchical organization at the most primitive level.
Collapse
Affiliation(s)
- Fernando Anjos-Afonso
- Haematopoietic Signalling Group, European Cancer Stem Cell Institute, School of Biosciences, Cardiff University, Cardiff, UK.
| | - Florian Buettner
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
- Frankfurt University, Frankfurt, Germany
| | - Syed A Mian
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, UK
| | - Hefin Rhys
- Flow Cytometry Facility, The Francis Crick Institute, London, UK
| | | | | | - Namrata Rastogi
- Haematopoietic Signalling Group, European Cancer Stem Cell Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Dominique Bonnet
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, UK.
| |
Collapse
|
15
|
New insights into Human Hematopoietic Stem and Progenitor Cells via Single-Cell Omics. Stem Cell Rev Rep 2022; 18:1322-1336. [PMID: 35318612 PMCID: PMC8939482 DOI: 10.1007/s12015-022-10330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 10/25/2022]
Abstract
Residing at the apex of the hematopoietic hierarchy, hematopoietic stem and progenitor cells (HSPCs) give rise to all mature blood cells. In the last decade, significant progress has been made in single-cell RNA sequencing as well as multi-omics technologies that have facilitated elucidation of the heterogeneity of previously defined human HSPCs. From the embryonic stage through the adult stage to aging, single-cell studies have enabled us to trace the origins of hematopoietic stem cells (HSCs), demonstrating different hematopoietic differentiation during development, as well as identifying novel cell populations. In both hematological benign diseases and malignancies, single-cell omics technologies have begun to reveal tissue heterogeneity and have permitted mapping of microenvironmental ecosystems and tracking of cell subclones, thereby greatly broadening our understanding of disease development. Furthermore, advances have also been made in elucidating the molecular mechanisms for relapse and identifying therapeutic targets of hematological disorders and other non-hematological diseases. Extensive exploration of hematopoiesis at the single-cell level may thus have great potential for broad clinical applications of HSPCs, as well as disease prognosis.
Collapse
|
16
|
Asymmetric organelle inheritance predicts human blood stem cell fate. Blood 2021; 139:2011-2023. [PMID: 34314497 DOI: 10.1182/blood.2020009778] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Understanding human hematopoietic stem cell fate control is important for their improved therapeutic manipulation. Asymmetric cell division, the asymmetric inheritance of factors during division instructing future daughter cell fates, was recently described in mouse blood stem cells. In human blood stem cells, the possible existence of asymmetric cell division remained unclear due to technical challenges in its direct observation. Here, we use long-term quantitative single-cell imaging to show that lysosomes and active mitochondria are asymmetrically inherited in human blood stem cells and that their inheritance is a coordinated, non-random process. Furthermore, multiple additional organelles, including autophagosomes, mitophagosomes, autolysosomes and recycling endosomes show preferential asymmetric co-segregation with lysosomes. Importantly, asymmetric lysosomal inheritance predicts future asymmetric daughter cell cycle length, differentiation and stem cell marker expression, while asymmetric inheritance of active mitochondria correlates with daughter metabolic activity. Hence, human hematopoietic stem cell fates are regulated by asymmetric cell division, with both mechanistic evolutionary conservation and differences to the mouse system.
Collapse
|
17
|
Barreto-Duran E, Mejia-Cruz CC, Jaramillo-Garcia LF, Leal-Garcia E, Barreto-Prieto A, Rodriguez-Pardo VM. 3D Multicellular Spheroid for the Study of Human Hematopoietic Stem Cells: Synergistic Effect Between Oxygen Levels, Mesenchymal Stromal Cells and Endothelial Cells. J Blood Med 2021; 12:517-528. [PMID: 34234608 PMCID: PMC8256312 DOI: 10.2147/jbm.s305319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction The human bone marrow microenvironment is composed of biological, chemical and physical factors that act in a synergistic way to modulate hematopoietic stem cell biology, such as mesenchymal stromal cells (MSCs), endothelial cells (ECs) and low oxygen levels; however, it is difficult to mimic this human microenvironment in vitro. Methods In this work, we developed 3D multicellular spheroid (3D-MS) for the study of human hematopoietic stem cells (HSCs) with some components of perivascular niche. HSCs were isolated from umbilical cord blood, MSCs were isolated from human bone marrow and a microvasculature EC line (CC-2811, Lonza®) was used. For the formation of a 3D structure, a magnetic levitation culture system was used. Cultures were maintained in 21%, 3% and 1% O2 for 15 days. Culture volume, sphericity index and cell viability were determined. Also, human HSC proliferation, phenotype and production of reactive oxygen species were evaluated. Results After 15 days, 3D-MS exhibited viability greater than 80%. Histology results showed structures without necrotic centers, and higher cellular proliferation with 3% O2. An increase in the expression of the CD34 antigen and other hematopoietic antigens were observed to 1% O2 with MSCs plus ECs and low ROS levels. Conclusion These findings suggest that 3D-MS formed by MSCs, ECs and HSCs exposed to low concentrations of oxygen (1–3% O2) modulate human HSC behavior and mimics some features of the perivascular niche, which could reduce the use of animal models and deepen the relationship between the microenvironment of HSC and human hematological diseases development.
Collapse
Affiliation(s)
- Emilia Barreto-Duran
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia (South America)
| | - Claudia Camila Mejia-Cruz
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia (South America)
| | - Luis Fernando Jaramillo-Garcia
- Departamento de Patología, Facultad de Medicina, Pontificia Universidad Javeriana., Hospital Universitario San Ignacio, Bogotá D.C., Colombia (South America)
| | - Efrain Leal-Garcia
- Departamento de Ortopedia y Traumatología, Facultad de Medicina, Pontificia Universidad Javeriana., Hospital Universitario San Ignacio, Bogotá D.C., Colombia (South America)
| | - Alfonso Barreto-Prieto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia (South America)
| | - Viviana Marcela Rodriguez-Pardo
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia (South America)
| |
Collapse
|
18
|
Cytokine combinations for human blood stem cell expansion induce cell type- and cytokine-specific signaling dynamics. Blood 2021; 138:847-857. [PMID: 33988686 DOI: 10.1182/blood.2020008386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/23/2021] [Indexed: 11/20/2022] Open
Abstract
How hematopoietic stem cells (HSCs) integrate signals from their environment to make fate decisions remains incompletely understood. Current knowledge is based on either averages of heterogeneous populations or snapshot analyses, both missing important information about the dynamics of intracellular signaling activity. By combining fluorescent biosensors with time-lapse imaging and microfluidics, we measured the activity of the extracellular signal-regulated kinase (ERK) pathway over time (i.e. dynamics) in live single human umbilical cord blood HSCs and multipotent progenitor cells (MPPs). In single cells, ERK signaling dynamics were highly heterogeneous and depended on the cytokines, their combinations, and cell types. ERK signaling was activated by SCF and FLT3L in HSCs, but by SCF, IL3 and GCSF in MPPs. Different cytokines and their combinations led to distinct ERK signaling dynamics frequencies, and ERK dynamics in HSCs were more transient than those in MPPs. A combination of 5 cytokines recently shown to maintain HSCs in long-term culture, had a more-than-additive effect in eliciting sustained ERK dynamics in HSCs. ERK signaling dynamics also predicted future cell fates. E.g. CD45RA expression increased more in HSC daughters with intermediate than with transient or sustained ERK signaling. We demonstrate heterogeneous, cytokine- and cell type- specific ERK signaling dynamics, illustrating their relevance in regulating HSPC fates.
Collapse
|
19
|
Ranzoni AM, Tangherloni A, Berest I, Riva SG, Myers B, Strzelecka PM, Xu J, Panada E, Mohorianu I, Zaugg JB, Cvejic A. Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Human Developmental Hematopoiesis. Cell Stem Cell 2021; 28:472-487.e7. [PMID: 33352111 PMCID: PMC7939551 DOI: 10.1016/j.stem.2020.11.015] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/18/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023]
Abstract
Regulation of hematopoiesis during human development remains poorly defined. Here we applied single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) to over 8,000 human immunophenotypic blood cells from fetal liver and bone marrow. We inferred their differentiation trajectory and identified three highly proliferative oligopotent progenitor populations downstream of hematopoietic stem cells (HSCs)/multipotent progenitors (MPPs). Along this trajectory, we observed opposing patterns of chromatin accessibility and differentiation that coincided with dynamic changes in the activity of distinct lineage-specific transcription factors. Integrative analysis of chromatin accessibility and gene expression revealed extensive epigenetic but not transcriptional priming of HSCs/MPPs prior to their lineage commitment. Finally, we refined and functionally validated the sorting strategy for the HSCs/MPPs and achieved around 90% enrichment. Our study provides a useful framework for future investigation of human developmental hematopoiesis in the context of blood pathologies and regenerative medicine.
Collapse
Affiliation(s)
- Anna Maria Ranzoni
- University of Cambridge, Department of Haematology, Cambridge CB2 0AW, UK; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Andrea Tangherloni
- University of Cambridge, Department of Haematology, Cambridge CB2 0AW, UK; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Ivan Berest
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69115 Heidelberg, Germany
| | - Simone Giovanni Riva
- University of Cambridge, Department of Haematology, Cambridge CB2 0AW, UK; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Brynelle Myers
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Paulina M Strzelecka
- University of Cambridge, Department of Haematology, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Jiarui Xu
- University of Cambridge, Department of Haematology, Cambridge CB2 0AW, UK; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Elisa Panada
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Irina Mohorianu
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69115 Heidelberg, Germany
| | - Ana Cvejic
- University of Cambridge, Department of Haematology, Cambridge CB2 0AW, UK; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.
| |
Collapse
|
20
|
Vascular adhesion protein-1 defines a unique subpopulation of human hematopoietic stem cells and regulates their proliferation. Cell Mol Life Sci 2021; 78:7851-7872. [PMID: 34719737 PMCID: PMC8629906 DOI: 10.1007/s00018-021-03977-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 10/25/2022]
Abstract
Although the development of hematopoietic stem cells (HSC) has been studied in great detail, their heterogeneity and relationships to different cell lineages remain incompletely understood. Moreover, the role of Vascular Adhesion Protein-1 in bone marrow hematopoiesis has remained unknown. Here we show that VAP-1, an adhesin and a primary amine oxidase producing hydrogen peroxide, is expressed on a subset of human HSC and bone marrow vasculature forming a hematogenic niche. Bulk and single-cell RNAseq analyses reveal that VAP-1+ HSC represent a transcriptionally unique small subset of differentiated and proliferating HSC, while VAP-1- HSC are the most primitive HSC. VAP-1 generated hydrogen peroxide acts via the p53 signaling pathway to regulate HSC proliferation. HSC expansion and differentiation into colony-forming units are enhanced by inhibition of VAP-1. Contribution of VAP-1 to HSC proliferation was confirmed with mice deficient of VAP-1, mice expressing mutated VAP-1 and using an enzyme inhibitor. In conclusion, VAP-1 expression allows the characterization and prospective isolation of a new subset of human HSC. Since VAP-1 serves as a check point-like inhibitor in HSC differentiation, the use of VAP-1 inhibitors enables the expansion of HSC.
Collapse
|
21
|
Kuhikar R, Khan N, Khare SP, Fulzele A, Melinkeri S, Kale V, Limaye L. Neutrophils generated in vitro from hematopoietic stem cells isolated from apheresis samples and umbilical cord blood form neutrophil extracellular traps. Stem Cell Res 2020; 50:102150. [PMID: 33450673 DOI: 10.1016/j.scr.2020.102150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/05/2020] [Accepted: 12/27/2020] [Indexed: 11/22/2022] Open
Abstract
Neutrophils release neutrophil extracellular traps (NET) comprising of decondensed chromatin that immobilizes and kills pathogens. In vitro generation of neutrophils on a large scale from hematopoietic stem cells (HSCs) may be a useful strategy for treating neutropenic patients in future, though it is not in clinical practice yet. Microbial infections lead to major cause of morbidity and mortality in these patients. Despite the importance of NET in preventing infection, efficacy of in vitro-generated neutrophils from HSCs to form NET is not tested. We show that functional neutrophils could be generated in vitro from HSCs/MNCs isolated from umbilical cord blood (UCB) and apheresis-derived peripheral blood (APBL). Neutrophils generated from UCB showed properties comparable to those isolated from peripheral blood. We also show that isolation of HSCs is not absolutely essential for in vitro neutrophil generation. Further, we show that neutrophils generated from HSCs express PADI4 enzyme and their NET-forming ability is comparable to peripheral blood neutrophils. Taken together, our data show that fully functional neutrophils can be generated in vitro from HSCs. NET-forming ability of in vitro-generated neutrophils is an important parameter to determine their functionality and thus, should be studied along with other standard functional assays.
Collapse
Affiliation(s)
- Rutuja Kuhikar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India
| | - Nikhat Khan
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India
| | - Satyajeet P Khare
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Amit Fulzele
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Sameer Melinkeri
- Blood and Marrow Transplant Unit, Deenanath Mangeshkar Hospital, Erandawne, Pune 411004, India
| | - Vaijayanti Kale
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India; Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis Knowledge Village, Lavale, Pune 412115, India
| | - Lalita Limaye
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India.
| |
Collapse
|
22
|
Bulaeva E, Pellacani D, Nakamichi N, Hammond CA, Beer PA, Lorzadeh A, Moksa M, Carles A, Bilenky M, Lefort S, Shu J, Wilhelm BT, Weng AP, Hirst M, Eaves CJ. MYC-induced human acute myeloid leukemia requires a continuing IL-3/GM-CSF costimulus. Blood 2020; 136:2764-2773. [PMID: 33301029 DOI: 10.1182/blood.2020006374] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/10/2020] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic clones with leukemogenic mutations arise in healthy people as they age, but progression to acute myeloid leukemia (AML) is rare. Recent evidence suggests that the microenvironment may play an important role in modulating human AML population dynamics. To investigate this concept further, we examined the combined and separate effects of an oncogene (c-MYC) and exposure to interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and stem cell factor (SCF) on the experimental genesis of a human AML in xenografted immunodeficient mice. Initial experiments showed that normal human CD34+ blood cells transduced with a lentiviral MYC vector and then transplanted into immunodeficient mice produced a hierarchically organized, rapidly fatal, and serially transplantable blast population, phenotypically and transcriptionally similar to human AML cells, but only in mice producing IL-3, GM-CSF, and SCF transgenically or in regular mice in which the cells were exposed to IL-3 or GM-CSF delivered using a cotransduction strategy. In their absence, the MYC+ human cells produced a normal repertoire of lymphoid and myeloid progeny in transplanted mice for many months, but, on transfer to secondary mice producing the human cytokines, the MYC+ cells rapidly generated AML. Indistinguishable diseases were also obtained efficiently from both primitive (CD34+CD38-) and late granulocyte-macrophage progenitor (GMP) cells. These findings underscore the critical role that these cytokines can play in activating a malignant state in normally differentiating human hematopoietic cells in which MYC expression has been deregulated. They also introduce a robust experimental model of human leukemogenesis to further elucidate key mechanisms involved and test strategies to suppress them.
Collapse
Affiliation(s)
- Elizabeth Bulaeva
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Davide Pellacani
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Naoto Nakamichi
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Colin A Hammond
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Philip A Beer
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Alireza Lorzadeh
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Annaïck Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Misha Bilenky
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Sylvain Lefort
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Jeremy Shu
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Brian T Wilhelm
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; and
| | - Andrew P Weng
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Clonal tracking in gene therapy patients reveals a diversity of human hematopoietic differentiation programs. Blood 2020; 135:1219-1231. [PMID: 32040546 DOI: 10.1182/blood.2019002350] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
In gene therapy with human hematopoietic stem and progenitor cells (HSPCs), each gene-corrected cell and its progeny are marked in a unique way by the integrating vector. This feature enables lineages to be tracked by sampling blood cells and using DNA sequencing to identify the vector integration sites. Here, we studied 5 cell lineages (granulocytes, monocytes, T cells, B cells, and natural killer cells) in patients having undergone HSPC gene therapy for Wiskott-Aldrich syndrome or β hemoglobinopathies. We found that the estimated minimum number of active, repopulating HSPCs (which ranged from 2000 to 50 000) was correlated with the number of HSPCs per kilogram infused. We sought to quantify the lineage output and dynamics of gene-modified clones; this is usually challenging because of sparse sampling of the various cell types during the analytical procedure, contamination during cell isolation, and different levels of vector marking in the various lineages. We therefore measured the residual contamination and corrected our statistical models accordingly to provide a rigorous analysis of the HSPC lineage output. A cluster analysis of the HSPC lineage output highlighted the existence of several stable, distinct differentiation programs, including myeloid-dominant, lymphoid-dominant, and balanced cell subsets. Our study evidenced the heterogeneous nature of the cell lineage output from HSPCs and provided methods for analyzing these complex data.
Collapse
|
24
|
Bond DR, Uddipto K, Enjeti AK, Lee HJ. Single-cell epigenomics in cancer: charting a course to clinical impact. Epigenomics 2020; 12:1139-1151. [PMID: 32790506 DOI: 10.2217/epi-2020-0046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer is a disease of global epigenetic dysregulation. Mutations in epigenetic regulators are common events in multiple cancer types and epigenetic therapies are emerging as a treatment option in several malignancies. A major challenge for the clinical management of cancer is the heterogeneous nature of this disease. Cancers are composed of numerous cell types and evolve over time. This heterogeneity confounds decisions regarding treatment and promotes disease relapse. The emergence of single-cell epigenomic technologies has introduced the exciting possibility of linking genetic and transcriptional heterogeneity in the context of cancer biology. The next challenge is to leverage these tools for improved patient outcomes. Here we consider how single-cell epigenomic technologies may address the current challenges faced by cancer clinicians.
Collapse
Affiliation(s)
- Danielle R Bond
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Kumar Uddipto
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Anoop K Enjeti
- Department of Haematology, Calvary Mater Newcastle, Waratah 2298, New South Wales, Australia.,School of Medicine & Public Health, Faculty of Health & Medicine, University of Newcastle, Callaghan 2308, New South Wales, Australia.,NSW Health Pathology - Hunter, New Lambton Heights 2305, New South Wales, Australia
| | - Heather J Lee
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan 2308, New South Wales, Australia
| |
Collapse
|
25
|
Gupta R, Turati V, Brian D, Thrussel C, Wilbourn B, May G, Enver T. Nov/CCN3 Enhances Cord Blood Engraftment by Rapidly Recruiting Latent Human Stem Cell Activity. Cell Stem Cell 2020; 26:527-541.e8. [PMID: 32197066 PMCID: PMC7118368 DOI: 10.1016/j.stem.2020.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 01/04/2020] [Accepted: 02/19/2020] [Indexed: 01/13/2023]
Abstract
Umbilical cord blood (UCB) has had considerable impact in pediatric stem cell transplantation, but its wider use is limited in part by unit size. Long-term ex vivo culture offers one approach to increase engraftment capacity by seeking to expand stem and progenitor cells. Here, we show brief incubation (8 h) of UCB CD34+ cells with the matricellular regulator Nov (CCN3) increases the frequency of serially transplantable hematopoietic stem cells (HSCs) 6-fold. This rapid response suggests recruitment rather than expansion of stem cells; accordingly, in single-cell assays, Nov increases the clonogenicity of phenotypic HSCs without increasing their number through cell division. Recruitment is associated with both metabolic and transcriptional changes, and tracing of cell divisions demonstrates that the increased clonogenic activity resides within the undivided fraction of cells. Harnessing latent stem cell potential through recruitment-based approaches will inform understanding of stem cell state transitions with implications for translation to the clinic. NOV rapidly increases the number of functional HSCs in a single cord blood unit This is by direct recruitment without expansion or self-renewal ex vivo NOV reduces C-MYC and ROS but increases glycolytic enzymes in HSCs Manipulating non-dividing stem cells can alter their state and functional potential
Collapse
Affiliation(s)
- Rajeev Gupta
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK; Manual Blood Sciences, Health Services Laboratories, The Halo Building, 1 Mabledon Place, London WC1H 9AX, UK
| | - Virginia Turati
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Duncan Brian
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Craig Thrussel
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Barry Wilbourn
- Flow Cytometry Core Facility, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Gillian May
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Tariq Enver
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK.
| |
Collapse
|
26
|
Wang K, Yan Z, Zhang S, Bartholdy B, Eaves CJ, Bouhassira EE. Clonal origin in normal adults of all blood lineages and circulating hematopoietic stem cells. Exp Hematol 2020; 83:25-34.e2. [PMID: 32007476 DOI: 10.1016/j.exphem.2020.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/23/2022]
Abstract
Characterization of human cells that sustain blood cell production lifelong has historically been inferred from phenotypically defined subsets of cells assayed in vitro, in transplanted immunodeficient mice, or in patients transplanted with genetically marked cells. These approaches have led to the concept of a persistent complex hierarchical process of differentiation divisions originating from a rare population of CD34+CD38-CD45RA-CD90+CD49f+ cells with an average self-renewal potential of >0.5 and an ability to produce some or all blood cell types for >1 year. However, the role of these "49f" cells in the unperturbed adult has remained poorly understood. To address this gap, somatic single-nucleotide polymorphisms (SNVs) have recently been exploited as lineage tracing markers to enumerate and characterize active hematopoietic clones in normal adults using a capture and recapture approach. We show here that the use of somatic transversions to identify somatically acquired variant alleles enabled their detection in bulk populations at frequencies of approximately 1 in 80,000 cells. We then applied this method to blood cells isolated from two normal adults (aged 31 and 53 years) over a 1- to 3-year period. The results revealed in both donors a continued clonal output of both T- and B-lymphoid cells as well as myeloid cells identified by the same unique transversions found to distinguish single 49f cells isolated from the same donors' initial blood samples. These findings provide the first evidence of a continuing hematopoietic stem cell-derived source of all mature blood cell types in normal (unperturbed) adult humans.
Collapse
Affiliation(s)
- Kai Wang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Zi Yan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Shouping Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer and University of British Columbia, Vancouver, BC, Canada
| | - Eric E Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
27
|
Koschade SE, Brandts CH. Selective Autophagy in Normal and Malignant Hematopoiesis. J Mol Biol 2020; 432:261-282. [DOI: 10.1016/j.jmb.2019.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
|
28
|
Mata MF, Hernandez D, Rologi E, Grandolfo D, Hassan E, Hua P, Kallmeier R, Hirani S, Heuts F, Tittrea V, Choo Y, Baradez MO, Watt SM, Tarunina M. A modified CD34+ hematopoietic stem and progenitor cell isolation strategy from cryopreserved human umbilical cord blood. Transfusion 2019; 59:3560-3569. [PMID: 31769050 DOI: 10.1111/trf.15597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Umbilical cord blood (UCB) is a source of hematopoietic stem cells for transplantation, offering an alternative for patients unable to find a matched adult donor. UCB is also a versatile source of hematopoietic stem and progenitor cells (hCD34 + HSPCs) for research into hematologic diseases, in vitro expansion, ex vivo gene therapy, and adoptive immunotherapy. For these studies, there is a need to isolate hCD34 + HSPCs from cryopreserved units, and protocols developed for isolation from fresh cord blood are unsuitable. STUDY DESIGN This study describes a modified method for isolating hCD34 + HSPCs from cryopreserved UCB. It uses the Plasmatherm system for thawing, followed by CD34 microbead magnetic-activated cell sorting isolation with a cell separation kit (Whole Blood Columns, Miltenyi Biotec). hCD34 + HSPC phenotypes and functionality were assessed in vitro and hematologic reconstitution determined in vivo in immunodeficient mice. RESULTS Total nucleated cell recovery after thawing and washing was 44.7 ± 11.7%. Recovery of hCD34 + HSPCs after application of thawed cells to Whole Blood Columns was 77.5 ± 22.6%. When assessed in two independent laboratories, the hCD34+ cell purities were 71.7 ± 10.7% and 87.8 ± 2.4%. Transplantation of the enriched hCD34 + HSPCs into NSG mice revealed the presence of repopulating hematopoietic stem cells (estimated frequency of 0.07%) and multilineage engraftment. CONCLUSION This provides a simplified protocol for isolating high-purity human CD34 + HSPCs from banked UCB adaptable to current Good Manufacturing Practice. This protocol reduces the number of steps and associated risks and thus total production costs. Importantly, the isolated CD34 + HSPCs possess in vivo repopulating activity in immunodeficient mice, making them a suitable starting population for ex vivo culture and gene editing.
Collapse
Affiliation(s)
- Marcia F Mata
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, London, UK
| | - Diana Hernandez
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, UK.,Anthony Nolan Research Institute, Royal Free Hospital, London, UK; UCL Cancer Institute, Royal Free Campus, London, UK
| | - Evangelia Rologi
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, London, UK
| | - Davide Grandolfo
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, London, UK
| | - Enas Hassan
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, London, UK
| | - Peng Hua
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK.,MRC Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe, Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Robert Kallmeier
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, London, UK
| | - Swatisha Hirani
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK; UCL Cancer Institute, Royal Free Campus, London, UK
| | - Frank Heuts
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, UK
| | - Vickram Tittrea
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK
| | - Yen Choo
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, UK.,Lee Kong Chian School of Medicine, 11 Mandalay Road, 3082322, Singapore
| | - Marc-Olivier Baradez
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, London, UK
| | - Suzanne M Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
29
|
Zhou W, Yui MA, Williams BA, Yun J, Wold BJ, Cai L, Rothenberg EV. Single-Cell Analysis Reveals Regulatory Gene Expression Dynamics Leading to Lineage Commitment in Early T Cell Development. Cell Syst 2019; 9:321-337.e9. [PMID: 31629685 PMCID: PMC6932747 DOI: 10.1016/j.cels.2019.09.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/10/2019] [Accepted: 09/18/2019] [Indexed: 02/04/2023]
Abstract
Intrathymic T cell development converts multipotent precursors to committed pro-T cells, silencing progenitor genes while inducing T cell genes, but the underlying steps have remained obscure. Single-cell profiling was used to define the order of regulatory changes, employing single-cell RNA sequencing (scRNA-seq) for full-transcriptome analysis, plus sequential multiplexed single-molecule fluorescent in situ hybridization (seqFISH) to quantitate functionally important transcripts in intrathymic precursors. Single-cell cloning verified high T cell precursor frequency among the immunophenotypically defined "early T cell precursor" (ETP) population; a discrete committed granulocyte precursor subset was also distinguished. We established regulatory phenotypes of sequential ETP subsets, confirmed initial co-expression of progenitor with T cell specification genes, defined stage-specific relationships between cell cycle and differentiation, and generated a pseudotime model from ETP to T lineage commitment, supported by RNA velocity and transcription factor perturbations. This model was validated by developmental kinetics of ETP subsets at population and clonal levels. The results imply that multilineage priming is integral to T cell specification.
Collapse
Affiliation(s)
- Wen Zhou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mary A Yui
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brian A Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jina Yun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Barbara J Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
30
|
Ranzoni AM, Strzelecka PM, Cvejic A. Application of single-cell RNA sequencing methodologies in understanding haematopoiesis and immunology. Essays Biochem 2019; 63:217-225. [PMID: 31186287 PMCID: PMC6610449 DOI: 10.1042/ebc20180072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
Abstract
The blood and immune system are characterised by utmost diversity in its cellular components. This heterogeneity can solely be resolved with the application of single-cell technologies that enable precise examination of cell-to-cell variation. Single-cell transcriptomics is continuously pushing forward our understanding of processes driving haematopoiesis and immune responses in physiological settings as well as in disease. Remarkably, in the last five years, a number of studies involving single-cell RNA sequencing (scRNA-seq) allowed the discovery of new immune cell types and revealed that haematopoiesis is a continuous rather than a stepwise process, thus challenging the classical haematopoietic lineage tree model. This review summarises the most recent studies which applied scRNA-seq to answer outstanding questions in the fields of haematology and immunology and discusses the present challenges and future directions.
Collapse
Affiliation(s)
- Anna M Ranzoni
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, U.K
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K
- Wellcome Trust - Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, U.K
| | - Paulina M Strzelecka
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, U.K
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K
- Wellcome Trust - Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, U.K
| | - Ana Cvejic
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, U.K.
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K
- Wellcome Trust - Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, U.K
| |
Collapse
|
31
|
Brown G, Ceredig R. Modeling the Hematopoietic Landscape. Front Cell Dev Biol 2019; 7:104. [PMID: 31275935 PMCID: PMC6591273 DOI: 10.3389/fcell.2019.00104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022] Open
Abstract
Some time ago, we proposed a continuum-like view of the lineages open to hematopoietic stem cells (HSCs); each HSC self-renews or chooses from the spectrum of all end-cell options and can then "merely" differentiate. Having selected a cell lineage, an individual HSC may still "step sideways" to an alternative, albeit closely related, fate: HSC and their progeny therefore remain versatile. The hematopoietic cytokines erythropoietin, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, granulocyte/macrophage colony-stimulating factor and ligand for the fms-like tyrosine kinase 3 instruct cell lineage. Sub-populations of HSCs express each of the cytokine receptors that are positively auto-regulated upon cytokine binding. Many years ago, Waddington proposed that the epigenetic landscape played an important role in cell lineage choice. This landscape is dynamic and unstable especially regarding DNA methylation patterns across genomic DNA. This may underlie the receptor diversity of HSC and their decision-making.
Collapse
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences - Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
32
|
Güneş C, Paszkowski-Rogacz M, Rahmig S, Khattak S, Camgöz A, Wermke M, Dahl A, Bornhäuser M, Waskow C, Buchholz F. Comparative RNAi Screens in Isogenic Human Stem Cells Reveal SMARCA4 as a Differential Regulator. Stem Cell Reports 2019; 12:1084-1098. [PMID: 31031192 PMCID: PMC6523874 DOI: 10.1016/j.stemcr.2019.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
Large-scale RNAi screens are a powerful approach to identify functions of genes in a cell-type-specific manner. For model organisms, genetically identical (isogenic) cells from different cell types are readily available, making comparative studies meaningful. However, large-scale screens in isogenic human primary cells remain challenging. Here, we show that RNAi screens are possible in genetically identical human stem cells, using induced pluripotent stem cells as intermediates. The screens revealed SMARCA4 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 4) as a stemness regulator, while balancing differentiation distinctively for each cell type. SMARCA4 knockdown in hematopoietic stem and progenitor cells caused impaired self-renewal in vitro and in vivo with skewed myeloid differentiation; whereas, in neural stem cells, it impaired self-renewal while biasing differentiation toward neural lineage, through combinatorial SWI/SNF subunit assembly. Our findings pose a powerful approach for deciphering human stem cell biology and attribute distinct roles to SMARCA4 in stem cell maintenance. Comparative RNAi screens on isogenic hHSPCs and hNSCs, using iPSCs as bridging cell type SMARCA4 is a differential regulator of self-renewal and differentiation SMARCA4 loss impairs HSPC engraftment in vivo and myeloid differentiation in vitro SMARCA4 loss in NSCs causes exit from self-renewal and biased neural differentiation
Collapse
Affiliation(s)
- Ceren Güneş
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Susann Rahmig
- Regeneration in Hematopoiesis, Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany
| | - Shahryar Khattak
- Stem Cell Engineering Facility, Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| | - Aylin Camgöz
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Martin Wermke
- Department of Medicine I, University Hospital Carl Gustav Carus, 01307 Dresden, Germany; Medical Faculty and University Hospital Carl Gustav Carus, Early Clinical Trial Unit, 01307 Dresden, Germany
| | - Andreas Dahl
- Dresden Genome Center (DGC), TU Dresden, 01307 Dresden, Germany
| | - Martin Bornhäuser
- Department of Medicine I, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Claudia Waskow
- Regeneration in Hematopoiesis, Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany; Department of Medicine III, Faculty of Medicine, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Frank Buchholz
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg and German Research Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| |
Collapse
|
33
|
Zhang Y, Liu F. Multidimensional Single-Cell Analyses in Organ Development and Maintenance. Trends Cell Biol 2019; 29:477-486. [PMID: 30928527 DOI: 10.1016/j.tcb.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 12/15/2022]
Abstract
The revolution of single-cell analysis tools in epigenomics, transcriptomics, lineage tracing, and transcriptome-scale RNA imaging, has boosted our understanding of the underlying molecular mechanisms during organ development and maintenance. Application of these tools enables the multidimensional study of organs, from cell atlas profiling, spatial organization, to cell-cell interaction. Here, we discuss recent progress in employing multidimensional single-cell analyses to address fundamental questions related to the development and maintenance of hematopoietic organs, brain and lung, which will also help provide insights into a better understanding of relevant diseases.
Collapse
Affiliation(s)
- Yifan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
34
|
A topological view of human CD34 + cell state trajectories from integrated single-cell output and proteomic data. Blood 2019; 133:927-939. [PMID: 30622121 DOI: 10.1182/blood-2018-10-878025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/23/2018] [Indexed: 12/11/2022] Open
Abstract
Recent advances in single-cell molecular analytical methods and clonal growth assays are enabling more refined models of human hematopoietic lineage restriction processes to be conceptualized. Here, we report the results of integrating single-cell proteome measurements with clonally determined lymphoid, neutrophilic/monocytic, and/or erythroid progeny outputs from >1000 index-sorted CD34+ human cord blood cells in short-term cultures with and without stromal cells. Surface phenotypes of functionally examined cells were individually mapped onto a molecular landscape of the entire CD34+ compartment constructed from single-cell mass cytometric measurements of 14 cell surface markers, 20 signaling/cell cycle proteins, and 6 transcription factors in ∼300 000 cells. This analysis showed that conventionally defined subsets of CD34+ cord blood cells are heterogeneous in their functional properties, transcription factor content, and signaling activities. Importantly, this molecular heterogeneity was reduced but not eliminated in phenotypes that were found to display highly restricted lineage outputs. Integration of the complete proteomic and functional data sets obtained revealed a continuous probabilistic topology of change that includes a multiplicity of lineage restriction trajectories. Each of these reflects progressive but variable changes in the levels of specific signaling intermediates and transcription factors but shared features of decreasing quiescence. Taken together, our results suggest a model in which increasingly narrowed hematopoietic output capabilities in neonatal CD34+ cord blood cells are determined by a history of external stimulation in combination with innately programmed cell state changes.
Collapse
|
35
|
Belluschi S, Calderbank EF, Ciaurro V, Pijuan-Sala B, Santoro A, Mende N, Diamanti E, Sham KYC, Wang X, Lau WWY, Jawaid W, Göttgens B, Laurenti E. Myelo-lymphoid lineage restriction occurs in the human haematopoietic stem cell compartment before lymphoid-primed multipotent progenitors. Nat Commun 2018; 9:4100. [PMID: 30291229 PMCID: PMC6173731 DOI: 10.1038/s41467-018-06442-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/04/2018] [Indexed: 02/02/2023] Open
Abstract
Capturing where and how multipotency is lost is crucial to understand how blood formation is controlled. Blood lineage specification is currently thought to occur downstream of multipotent haematopoietic stem cells (HSC). Here we show that, in human, the first lineage restriction events occur within the CD19-CD34+CD38-CD45RA-CD49f+CD90+ (49f+) HSC compartment to generate myelo-lymphoid committed cells with no erythroid differentiation capacity. At single-cell resolution, we observe a continuous but polarised organisation of the 49f+ compartment, where transcriptional programmes and lineage potential progressively change along a gradient of opposing cell surface expression of CLEC9A and CD34. CLEC9AhiCD34lo cells contain long-term repopulating multipotent HSCs with slow quiescence exit kinetics, whereas CLEC9AloCD34hi cells are restricted to myelo-lymphoid differentiation and display infrequent but durable repopulation capacity. We thus propose that human HSCs gradually transition to a discrete lymphoid-primed state, distinct from lymphoid-primed multipotent progenitors, representing the earliest entry point into lymphoid commitment.
Collapse
Affiliation(s)
- Serena Belluschi
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Emily F. Calderbank
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Valerio Ciaurro
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Blanca Pijuan-Sala
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Antonella Santoro
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nicole Mende
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Evangelia Diamanti
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Kendig Yen Chi Sham
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Xiaonan Wang
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Winnie W. Y. Lau
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Wajid Jawaid
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Elisa Laurenti
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Ito K, Bonora M, Ito K. Metabolism as master of hematopoietic stem cell fate. Int J Hematol 2018; 109:18-27. [PMID: 30219988 DOI: 10.1007/s12185-018-2534-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
HSCs have a fate choice when they divide; they can self-renew, producing new HSCs, or produce daughter cells that will mature to become committed cells. Technical challenges, however, have long obscured the mechanics of these choices. Advances in flow-sorting have made possible the purification of HSC populations, but available HSC-enriched fractions still include substantial heterogeneity, and single HSCs have proven extremely difficult to track and observe. Advances in single-cell approaches, however, have led to the identification of a highly purified population of hematopoietic stem cells (HSCs) that make a critical contribution to hematopoietic homeostasis through a preference for self-renewing division. Metabolic cues are key regulators of this cell fate choice, and the importance of controlling the population and quality of mitochondria has recently been highlighted to maintain the equilibrium of HSC populations. Leukemic cells also demand tightly regulated metabolism, and shifting the division balance of leukemic cells toward commitment has been considered as a promising therapeutic strategy. A deeper understanding of precisely how specific modes of metabolism control HSC fate is, therefore, of great biological interest, and more importantly will be critical to the development of new therapeutic strategies that target HSC division balance for the treatment of hematological disease.
Collapse
Affiliation(s)
- Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Massimo Bonora
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|