1
|
Chiarella E. Exploring the contribution of Zfp521/ZNF521 on primary hematopoietic stem/progenitor cells and leukemia progression. Cell Tissue Res 2024; 398:161-173. [PMID: 39436449 PMCID: PMC11614986 DOI: 10.1007/s00441-024-03926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Hematopoietic stem cells (HSCs) drive cellular turnover in the hematopoietic system by balancing self-renewal and differentiation. In the adult bone marrow (BM), these cells are regulated by a complex cellular microenvironment known as "niche," which involves dynamic interactions between diverse cellular and non-cellular elements. During blood cell maturation, lineage branching is guided by clusters of genes that interact or counteract each other, forming complex networks of lineage-specific transcription factors. Disruptions in these networks can lead to obstacles in differentiation, lineage reprogramming, and ultimately malignant transformation, including acute myeloid leukemia (AML). Zinc Finger Protein 521 (Znf521/Zfp521), a conserved transcription factor enriched in HSCs in both human and murine hematopoiesis, plays a pivotal role in regulating HSC self-renewal and differentiation. Its enforced expression preserves progenitor cell activity, while inhibition promotes differentiation toward the lymphoid and myeloid lineages. Transcriptomic analysis of human AML patient samples has revealed upregulation of ZNF521 in AMLs with the t(9;11) fusion gene MLL-AF9. In vitro studies have shown that ZNF521 collaborates with MLL-AF9 to enhance the growth of transformed leukemic cells, increase colony formation, and activate MLL target genes. Conversely, inhibition of ZNF521 using short-hairpin RNA (shRNA) results in decreased leukemia proliferation, reduced colony formation, and induction of cell cycle arrest in MLL-rearranged AML cell lines. In vivo experiments have demonstrated that mZFP521-deficient mice transduced with MLL-AF9 experience a delay in leukemia development. This review provides an overview of the regulatory network involving ZNF521, which plays a crucial role in controlling both HSC self-renewal and differentiation pathways. Furthermore, we examine the impact of ZNF521 on the leukemic phenotype and consider it a potential marker for MLL-AF9+ AML.
Collapse
Affiliation(s)
- Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", 88100, Catanzaro, Italy.
| |
Collapse
|
2
|
Jeong J, Park J, Young Mo G, Shin J, Cho Y. Structural Basis for the Recognition of GPRC5D by Talquetamab, a Bispecific Antibody for Multiple Myeloma. J Mol Biol 2024; 436:168748. [PMID: 39181182 DOI: 10.1016/j.jmb.2024.168748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Multiple myeloma (MM) is a complex hematological malignancy characterized by abnormal antibody production from plasma cells. Despite advances in the treatment, many patients experience disease relapse or become refractory to treatment. G-protein-coupled receptor class C group 5 member D (GPRC5D), an orphan GPCR predominantly expressed in MM cells, is emerging as a promising target for MM immunotherapy. Talquetamab, a Food and Drug Administration-approved T-cell-directing bispecific antibody developed for treatment of MM, targets GPRC5D. Here, we elucidate the structure of GPRC5D complexed with the Fab fragment of talquetamab, using cryo-electron microscopy, providing the basis for recognition of GPRC5D by the bispecific antibody. GPRC5D forms a symmetric homodimer with the interface between transmembrane helix (TM) 4 of one protomer and TM4/5 of the other protomer. A single talquetamab Fab interacts with the GPRC5D dimer with its orientation toward the dimer interface. All six complementarity-determining regions of talquetamab engage with extracellular loops and TM3/5/7. In particular, the side-chain of an arginine residue from the antibody penetrates into a shallow pocket on the extracellular surface of GPRC5D. The structure offers insights for optimizing antibody design against GPRC5D for relapsed or refractory MM therapy.
Collapse
Affiliation(s)
- Jihong Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbook 37673, South Korea
| | - Junhyeon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbook 37673, South Korea
| | - Geun Young Mo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbook 37673, South Korea
| | - Jinwoo Shin
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbook 37673, South Korea
| | - Yunje Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbook 37673, South Korea; Institute of Convergence Science, Yonsei University, Seoul 166-20, South Korea.
| |
Collapse
|
3
|
Man CH, Li C, Xu X, Zhao M. Metabolic regulation in normal and leukemic stem cells. Trends Pharmacol Sci 2024; 45:919-930. [PMID: 39306527 DOI: 10.1016/j.tips.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) are crucial for ensuring hematopoietic homeostasis and driving leukemia progression, respectively. Recent research has revealed that metabolic adaptations significantly regulate the function and survival of these stem cells. In this review, we provide an overview of how metabolic pathways regulate oxidative and proteostatic stresses in HSCs during homeostasis and aging. Furthermore, we highlight targetable metabolic pathways and explore their interactions with epigenetics and the microenvironment in addressing the chemoresistance and immune evasion capacities of LSCs. The metabolic differences between HSCs and LSCs have profound implications for therapeutic strategies.
Collapse
Affiliation(s)
- Cheuk-Him Man
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Changzheng Li
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xi Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510030, China
| | - Meng Zhao
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
4
|
Thompson Z, Anderson GA, Hernandez M, Alfaro Quinde C, Marchione A, Rodriguez M, Gabriel S, Binder V, Taylor AM, Kathrein KL. Ing4-deficiency promotes a quiescent yet transcriptionally poised state in hematopoietic stem cells. iScience 2024; 27:110521. [PMID: 39175773 PMCID: PMC11340613 DOI: 10.1016/j.isci.2024.110521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/14/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024] Open
Abstract
Defining the mechanisms that regulate stem cell maintenance, proliferation, and differentiation is critical for identifying therapies for improving stem cell function under stress. Here, we have identified the tumor suppressor, inhibitor of growth 4 (Ing4), as a critical regulator of hematopoietic stem cell (HSC) homeostasis. Cancer cell line models with Ing4 deficiency have shown that Ing4 functions as a tumor suppressor, in part, due to Ing4-mediated regulation of several major signaling pathways, including c-Myc. In HSCs, we show Ing4 deficiency promotes gene expression signatures associated with activation, yet HSCs are arrested in G0, expressing several markers of quiescence. Functionally, Ing4-deficient HSCs demonstrate robust regenerative capacity following transplantation. Our findings suggest Ing4 deficiency promotes a poised state in HSCs, where they appear transcriptionally primed for activation but remain in a resting state. Our model provides key tools for further identification and characterization of pathways that control quiescence and self-renewal in HSCs.
Collapse
Affiliation(s)
- Zanshé Thompson
- University of South Carolina, Department of Biomedical Engineering, Columbia, SC, USA
| | - Georgina A. Anderson
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Marco Hernandez
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Carlos Alfaro Quinde
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Alissa Marchione
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Melanie Rodriguez
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Seth Gabriel
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Vera Binder
- Department of Hematology and Oncology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians University, 80539 Munich, Germany
| | - Alison M. Taylor
- Columbia University Medical Center, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
| | - Katie L. Kathrein
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| |
Collapse
|
5
|
Johnson CS, Williams M, Sham K, Belluschi S, Ma W, Wang X, Lau WWY, Kaufmann KB, Krivdova G, Calderbank EF, Mende N, McLeod J, Mantica G, Li J, Grey-Wilson C, Drakopoulos M, Basheer S, Sinha S, Diamanti E, Basford C, Wilson NK, Howe SJ, Dick JE, Göttgens B, Green AR, Francis N, Laurenti E. Adaptation to ex vivo culture reduces human hematopoietic stem cell activity independently of the cell cycle. Blood 2024; 144:729-741. [PMID: 38805639 PMCID: PMC7616366 DOI: 10.1182/blood.2023021426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
ABSTRACT Loss of long-term hematopoietic stem cell (LT-HSC) function ex vivo hampers the success of clinical protocols that rely on culture. However, the kinetics and mechanisms through which this occurs remain incompletely characterized. In this study, through time-resolved single-cell RNA sequencing, matched in vivo functional analysis, and the use of a reversible in vitro system of early G1 arrest, we defined the sequence of transcriptional and functional events that occur during the first ex vivo division of human LT-HSCs. We demonstrated that the sharpest loss in LT-HSC repopulation capacity happens early on, between 6 and 24 hours of culture, before LT-HSCs commit to cell cycle progression. During this time window, LT-HSCs adapt to the culture environment, limit the global variability in gene expression, and transiently upregulate gene networks involved in signaling and stress responses. From 24 hours, LT-HSC progression past early G1 contributes to the establishment of differentiation programs in culture. However, contrary to the current assumptions, we demonstrated that the loss of HSC function ex vivo is independent of cell cycle progression. Finally, we showed that targeting LT-HSC adaptation to culture by inhibiting the early activation of JAK/STAT signaling improves HSC long-term repopulating function ex vivo. Collectively, our study demonstrated that controlling early LT-HSC adaptation to ex vivo culture, for example, via JAK inhibition, is critically important to improve HSC gene therapy and expansion protocols.
Collapse
Affiliation(s)
- Carys S. Johnson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - Matthew Williams
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Kendig Sham
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Serena Belluschi
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Wenjuan Ma
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Xiaonan Wang
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Winnie W. Y. Lau
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | - Gabriela Krivdova
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Emily F. Calderbank
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Nicole Mende
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Jessica McLeod
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Giovanna Mantica
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Juan Li
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte Grey-Wilson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Michael Drakopoulos
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Shaaezmeen Basheer
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Shubhankar Sinha
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Evangelia Diamanti
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Christina Basford
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - Nicola K. Wilson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Steven J. Howe
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - John E. Dick
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Berthold Göttgens
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Anthony R. Green
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Natalie Francis
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
- Department of Gene Therapy and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Elisa Laurenti
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Jakobsen NA, Turkalj S, Zeng AGX, Stoilova B, Metzner M, Rahmig S, Nagree MS, Shah S, Moore R, Usukhbayar B, Angulo Salazar M, Gafencu GA, Kennedy A, Newman S, Kendrick BJL, Taylor AH, Afinowi-Luitz R, Gundle R, Watkins B, Wheway K, Beazley D, Murison A, Aguilar-Navarro AG, Flores-Figueroa E, Dakin SG, Carr AJ, Nerlov C, Dick JE, Xie SZ, Vyas P. Selective advantage of mutant stem cells in human clonal hematopoiesis is associated with attenuated response to inflammation and aging. Cell Stem Cell 2024; 31:1127-1144.e17. [PMID: 38917807 PMCID: PMC11512683 DOI: 10.1016/j.stem.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/29/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Clonal hematopoiesis (CH) arises when hematopoietic stem cells (HSCs) acquire mutations, most frequently in the DNMT3A and TET2 genes, conferring a competitive advantage through mechanisms that remain unclear. To gain insight into how CH mutations enable gradual clonal expansion, we used single-cell multi-omics with high-fidelity genotyping on human CH bone marrow (BM) samples. Most of the selective advantage of mutant cells occurs within HSCs. DNMT3A- and TET2-mutant clones expand further in early progenitors, while TET2 mutations accelerate myeloid maturation in a dose-dependent manner. Unexpectedly, both mutant and non-mutant HSCs from CH samples are enriched for inflammatory and aging transcriptomic signatures, compared with HSCs from non-CH samples, revealing a non-cell-autonomous effect. However, DNMT3A- and TET2-mutant HSCs have an attenuated inflammatory response relative to wild-type HSCs within the same sample. Our data support a model whereby CH clones are gradually selected because they are resistant to the deleterious impact of inflammation and aging.
Collapse
Affiliation(s)
- Niels Asger Jakobsen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Sven Turkalj
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andy G X Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Bilyana Stoilova
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Marlen Metzner
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Susann Rahmig
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Murtaza S Nagree
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sayyam Shah
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rachel Moore
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Batchimeg Usukhbayar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mirian Angulo Salazar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Grigore-Aristide Gafencu
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Alison Kennedy
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Simon Newman
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Benjamin J L Kendrick
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Adrian H Taylor
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rasheed Afinowi-Luitz
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Roger Gundle
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bridget Watkins
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Kim Wheway
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Debra Beazley
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Alicia G Aguilar-Navarro
- Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eugenia Flores-Figueroa
- Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Stephanie G Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stephanie Z Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
7
|
Li J, Wu H, Yu Z, Wang Q, Zeng X, Qian W, Lu S, Jiang L, Li J, Zhu M, Han Y, Gao J, Qian P. Hematopoietic stem and progenitor cell membrane-coated vesicles for bone marrow-targeted leukaemia drug delivery. Nat Commun 2024; 15:5689. [PMID: 38971796 PMCID: PMC11227508 DOI: 10.1038/s41467-024-50021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
Leukemia is a kind of hematological malignancy originating from bone marrow, which provides essential signals for initiation, progression, and recurrence of leukemia. However, how to specifically deliver drugs to the bone marrow remains elusive. Here, we develop biomimetic vesicles by infusing hematopoietic stem and progenitor cell (HSPC) membrane with liposomes (HSPC liposomes), which migrate to the bone marrow of leukemic mice via hyaluronic acid-CD44 axis. Moreover, the biomimetic vesicles exhibit superior binding affinity to leukemia cells through intercellular cell adhesion molecule-1 (ICAM-1)/integrin β2 (ITGB2) interaction. Further experiments validate that the vesicles carrying chemotherapy drug cytarabine (Ara-C@HSPC-Lipo) markedly inhibit proliferation, induce apoptosis and differentiation of leukemia cells, and decrease number of leukemia stem cells. Mechanically, RNA-seq reveals that Ara-C@HSPC-Lipo treatment induces apoptosis and differentiation and inhibits the oncogenic pathways. Finally, we verify that HSPC liposomes are safe in mice. This study provides a method for targeting bone marrow and treating leukemia.
Collapse
Grants
- This work was supported by grants from the National Key Research and Development Program of China (2022YFA1103500 to P.Q.), the National Natural Science Foundation of China (82222003, 92268117, 82161138028 to P.Q.), the Key R&D Program of Zhejiang (2024SSYS0024 to P.Q.), the Zhejiang Provincial Natural Science Foundation of China (Z24H080001 to P.Q.), the Department of Science and Technology of Zhejiang Province (2023R01012 to P.Q.), and the Fundamental Research Funds for the Central Universities (226-2024-00007 to P.Q.).
- Zhejiang Province Postdoctoral Research Excellence Funding Project (ZJ2023151 to H.W.).
- The China Postdoctoral Science Foundation (2021M702853 to Q.W.) and the National Natural Science Foundation of China 82370105, 82000149 to Q.W., the Zhejiang Provincial Natural Science Foundation of China LQ21H180006 to Q.W..
- The National Natural Science Foundation of China U22A20383 to J.G., the Zhejiang Provincial Natural Science Foundation of China LD22H300002 to J.G.
Collapse
Affiliation(s)
- Jinxin Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Honghui Wu
- State Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
- Jinhua Institute of Zhejiang University, Jinhua, 321002, Zhejiang, PR China
| | - Zebin Yu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Qiwei Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Xin Zeng
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Wenchang Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Siqi Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Lingli Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Jingyi Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Meng Zhu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Jianqing Gao
- State Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
- Jinhua Institute of Zhejiang University, Jinhua, 321002, Zhejiang, PR China.
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China.
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310058, PR China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Savransky S, White AD, Vilardaga JP. Deciphering the role of glycosaminoglycans in GPCR signaling. Cell Signal 2024; 118:111149. [PMID: 38522808 PMCID: PMC10999332 DOI: 10.1016/j.cellsig.2024.111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
G protein-coupled receptors (GPCR) and glycosaminoglycans (GAGs) are two essential components of the cell surface that regulate physiological processes in the body. GPCRs are the most extensive family of transmembrane receptors that control cellular responses to extracellular stimuli, while GAGs are polysaccharides that contribute to the function of the extracellular matrix (ECM). Due to their proximity to the plasma membrane, GAGs participate in signal transduction by interacting with various extracellular molecules and cell surface receptors. GAGs can directly interact with certain GPCRs or their ligands (chemokines, peptide hormones and neuropeptides, structural proteins, and enzymes) from the glutamate receptor family, the rhodopsin receptor family, the adhesion receptor family, and the secretin receptor family. These interactions have recently become an emerging topic, providing a new avenue for understanding how GPCR signaling is regulated. This review discusses our current state of knowledge about the role of GAGs in GPCR signaling and function.
Collapse
Affiliation(s)
- Sofya Savransky
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Graduate Program in Molecular Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Alex D White
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Graduate Program in Molecular Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jean-Pierre Vilardaga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
9
|
Wang T, Shao J, Kumar S, Alnouri MW, Carvalho J, Günther S, Krasel C, Murphy KT, Bünemann M, Offermanns S, Wettschureck N. Orphan GPCR GPRC5C Facilitates Angiotensin II-Induced Smooth Muscle Contraction. Circ Res 2024; 134:1259-1275. [PMID: 38597112 DOI: 10.1161/circresaha.123.323752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND GPCRs (G-protein-coupled receptors) play a central role in the regulation of smooth muscle cell (SMC) contractility, but the function of SMC-expressed orphan GPCR class C group 5 member C (GPRC5C) is unclear. The aim of this project is to define the role of GPRC5C in SMC in vitro and in vivo. METHODS We studied the role of GPRC5C in the regulation of SMC contractility and differentiation in human and murine SMC in vitro, as well as in tamoxifen-inducible, SMC-specific GPRC5C knockout mice under basal conditions and in vascular disease in vivo. RESULTS Mesenteric arteries from tamoxifen-inducible, SMC-specific GPRC5C knockout mice showed ex vivo significantly reduced angiotensin II (Ang II)-dependent calcium mobilization and contraction, whereas responses to other relaxant or contractile factors were normal. In vitro, the knockdown of GPRC5C in human aortic SMC resulted in diminished Ang II-dependent inositol phosphate production and lower myosin light chain phosphorylation. In line with this, tamoxifen-inducible, SMC-specific GPRC5C knockout mice showed reduced Ang II-induced arterial hypertension, and acute inactivation of GPRC5C was able to ameliorate established arterial hypertension. Mechanistically, we show that GPRC5C and the Ang II receptor AT1 dimerize, and knockdown of GPRC5C resulted in reduced binding of Ang II to AT1 receptors in HEK293 cells, human and murine SMC, and arteries from tamoxifen-inducible, SMC-specific GPRC5C knockout mice. CONCLUSIONS Our data show that GPRC5C regulates Ang II-dependent vascular contraction by facilitating AT1 receptor-ligand binding and signaling.
Collapse
Affiliation(s)
- Tianpeng Wang
- Department of Pharmacology (T.W., J.S., S.K., M.W.A., J.C., S.O., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jingchen Shao
- Department of Pharmacology (T.W., J.S., S.K., M.W.A., J.C., S.O., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Shamit Kumar
- Department of Pharmacology (T.W., J.S., S.K., M.W.A., J.C., S.O., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mohammad Wessam Alnouri
- Department of Pharmacology (T.W., J.S., S.K., M.W.A., J.C., S.O., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jorge Carvalho
- Department of Pharmacology (T.W., J.S., S.K., M.W.A., J.C., S.O., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform (S.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Cornelius Krasel
- Department of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Germany (C.K., M.B.)
| | - Kate T Murphy
- Department of Anatomy and Physiology, The University of Melbourne, VIC, Australia (K.T.M.)
| | - Moritz Bünemann
- Department of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Germany (C.K., M.B.)
| | - Stefan Offermanns
- Department of Pharmacology (T.W., J.S., S.K., M.W.A., J.C., S.O., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Medical Faculty, Goethe University Frankfurt, Germany (S.O., N.W.)
- German Center for Cardiovascular Research (DZHK), Frankfurt/Bad Nauheim, Germany (S.O., N.W.)
- Cardiopulmonary Institute, Frankfurt/Bad Nauheim, Germany (S.O., N.W.)
| | - Nina Wettschureck
- Department of Pharmacology (T.W., J.S., S.K., M.W.A., J.C., S.O., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Medical Faculty, Goethe University Frankfurt, Germany (S.O., N.W.)
- German Center for Cardiovascular Research (DZHK), Frankfurt/Bad Nauheim, Germany (S.O., N.W.)
- Cardiopulmonary Institute, Frankfurt/Bad Nauheim, Germany (S.O., N.W.)
| |
Collapse
|
10
|
Quaranta P, Basso-Ricci L, Jofra Hernandez R, Pacini G, Naldini MM, Barcella M, Seffin L, Pais G, Spinozzi G, Benedicenti F, Pietrasanta C, Cheong JG, Ronchi A, Pugni L, Dionisio F, Monti I, Giannelli S, Darin S, Fraschetta F, Barera G, Ferrua F, Calbi V, Ometti M, Di Micco R, Mosca F, Josefowicz SZ, Montini E, Calabria A, Bernardo ME, Cicalese MP, Gentner B, Merelli I, Aiuti A, Scala S. Circulating hematopoietic stem/progenitor cell subsets contribute to human hematopoietic homeostasis. Blood 2024; 143:1937-1952. [PMID: 38446574 PMCID: PMC11106755 DOI: 10.1182/blood.2023022666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT In physiological conditions, few circulating hematopoietic stem/progenitor cells (cHSPCs) are present in the peripheral blood, but their contribution to human hematopoiesis remain unsolved. By integrating advanced immunophenotyping, single-cell transcriptional and functional profiling, and integration site (IS) clonal tracking, we unveiled the biological properties and the transcriptional features of human cHSPC subpopulations in relationship to their bone marrow (BM) counterpart. We found that cHSPCs reduced in cell count over aging and are enriched for primitive, lymphoid, and erythroid subpopulations, showing preactivated transcriptional and functional state. Moreover, cHSPCs have low expression of multiple BM-retention molecules but maintain their homing potential after xenotransplantation. By generating a comprehensive human organ-resident HSPC data set based on single-cell RNA sequencing data, we detected organ-specific seeding properties of the distinct trafficking HSPC subpopulations. Notably, circulating multi-lymphoid progenitors are primed for seeding the thymus and actively contribute to T-cell production. Human clonal tracking data from patients receiving gene therapy (GT) also showed that cHSPCs connect distant BM niches and participate in steady-state hematopoietic production, with primitive cHSPCs having the highest recirculation capability to travel in and out of the BM. Finally, in case of hematopoietic impairment, cHSPCs composition reflects the BM-HSPC content and might represent a biomarker of the BM state for clinical and research purposes. Overall, our comprehensive work unveiled fundamental insights into the in vivo dynamics of human HSPC trafficking and its role in sustaining hematopoietic homeostasis. GT patients' clinical trials were registered at ClinicalTrials.gov (NCT01515462 and NCT03837483) and EudraCT (2009-017346-32 and 2018-003842-18).
Collapse
Affiliation(s)
- Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raisa Jofra Hernandez
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Guido Pacini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Maria Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Seffin
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Giulia Pais
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Spinozzi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Pietrasanta
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Jin Gyu Cheong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Andrea Ronchi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenza Pugni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Monti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Darin
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Fraschetta
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Graziano Barera
- Pediatric Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Calbi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Ometti
- Department of Orthopedics and Traumatology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Steven Zvi Josefowicz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
11
|
Bush SJ, Nikola R, Han S, Suzuki S, Yoshida S, Simons BD, Goriely A. Adult Human, but Not Rodent, Spermatogonial Stem Cells Retain States with a Foetal-like Signature. Cells 2024; 13:742. [PMID: 38727278 PMCID: PMC11083513 DOI: 10.3390/cells13090742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Spermatogenesis involves a complex process of cellular differentiation maintained by spermatogonial stem cells (SSCs). Being critical to male reproduction, it is generally assumed that spermatogenesis starts and ends in equivalent transcriptional states in related species. Based on single-cell gene expression profiling, it has been proposed that undifferentiated human spermatogonia can be subclassified into four heterogenous subtypes, termed states 0, 0A, 0B, and 1. To increase the resolution of the undifferentiated compartment and trace the origin of the spermatogenic trajectory, we re-analysed the single-cell (sc) RNA-sequencing libraries of 34 post-pubescent human testes to generate an integrated atlas of germ cell differentiation. We then used this atlas to perform comparative analyses of the putative SSC transcriptome both across human development (using 28 foetal and pre-pubertal scRNA-seq libraries) and across species (including data from sheep, pig, buffalo, rhesus and cynomolgus macaque, rat, and mouse). Alongside its detailed characterisation, we show that the transcriptional heterogeneity of the undifferentiated spermatogonial cell compartment varies not only between species but across development. Our findings associate 'state 0B' with a suppressive transcriptomic programme that, in adult humans, acts to functionally oppose proliferation and maintain cells in a ready-to-react state. Consistent with this conclusion, we show that human foetal germ cells-which are mitotically arrested-can be characterised solely as state 0B. While germ cells with a state 0B signature are also present in foetal mice (and are likely conserved at this stage throughout mammals), they are not maintained into adulthood. We conjecture that in rodents, the foetal-like state 0B differentiates at birth into the renewing SSC population, whereas in humans it is maintained as a reserve population, supporting testicular homeostasis over a longer reproductive lifespan while reducing mutagenic load. Together, these results suggest that SSCs adopt differing evolutionary strategies across species to ensure fertility and genome integrity over vastly differing life histories and reproductive timeframes.
Collapse
Affiliation(s)
- Stephen J. Bush
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Rafail Nikola
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Seungmin Han
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Shinnosuke Suzuki
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Benjamin D. Simons
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Wellcome—MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Science, University of Cambridge, Cambridge CB3 0WA, UK
| | - Anne Goriely
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- NIHR Biomedical Research Centre, Oxford OX3 7JX, UK
| |
Collapse
|
12
|
Chen X, Liu C, Wang J, Du C. Hematopoietic Stem Cells as an Integrative Hub Linking Lifestyle to Cardiovascular Health. Cells 2024; 13:712. [PMID: 38667327 PMCID: PMC11049205 DOI: 10.3390/cells13080712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Despite breakthroughs in modern medical care, the incidence of cardiovascular disease (CVD) is even more prevalent globally. Increasing epidemiologic evidence indicates that emerging cardiovascular risk factors arising from the modern lifestyle, including psychosocial stress, sleep problems, unhealthy diet patterns, physical inactivity/sedentary behavior, alcohol consumption, and tobacco smoking, contribute significantly to this worldwide epidemic, while its underpinning mechanisms are enigmatic. Hematological and immune systems were recently demonstrated to play integrative roles in linking lifestyle to cardiovascular health. In particular, alterations in hematopoietic stem cell (HSC) homeostasis, which is usually characterized by proliferation, expansion, mobilization, megakaryocyte/myeloid-biased differentiation, and/or the pro-inflammatory priming of HSCs, have been shown to be involved in the persistent overproduction of pro-inflammatory myeloid leukocytes and platelets, the cellular protagonists of cardiovascular inflammation and thrombosis, respectively. Furthermore, certain lifestyle factors, such as a healthy diet pattern and physical exercise, have been documented to exert cardiovascular protective effects through promoting quiescence, bone marrow retention, balanced differentiation, and/or the anti-inflammatory priming of HSCs. Here, we review the current understanding of and progression in research on the mechanistic interrelationships among lifestyle, HSC homeostasis, and cardiovascular health. Given that adhering to a healthy lifestyle has become a mainstream primary preventative approach to lowering the cardiovascular burden, unmasking the causal links between lifestyle and cardiovascular health from the perspective of hematopoiesis would open new opportunities to prevent and treat CVD in the present age.
Collapse
Affiliation(s)
| | | | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| | - Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| |
Collapse
|
13
|
Chagraoui J, Girard S, Mallinger L, Mayotte N, Tellechea MF, Sauvageau G. KBTBD4-mediated reduction of MYC is critical for hematopoietic stem cell expansion upon UM171 treatment. Blood 2024; 143:882-894. [PMID: 38207291 DOI: 10.1182/blood.2023021342] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
ABSTRACT Ex vivo expansion of hematopoietic stem cells (HSCs) is gaining importance for cell and gene therapy, and requires a shift from dormancy state to activation and cycling. However, abnormal or excessive HSC activation results in reduced self-renewal ability and increased propensity for myeloid-biased differentiation. We now report that activation of the E3 ligase complex CRL3KBTBD4 by UM171 not only induces epigenetic changes through CoREST1 degradation but also controls chromatin-bound master regulator of cell cycle entry and proliferative metabolism (MYC) levels to prevent excessive activation and maintain lympho-myeloid potential of expanded populations. Furthermore, reconstitution activity and multipotency of UM171-treated HSCs are specifically compromised when MYC levels are experimentally increased despite degradation of CoREST1.
Collapse
Affiliation(s)
- Jalila Chagraoui
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Simon Girard
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Laure Mallinger
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Nadine Mayotte
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Maria Florencia Tellechea
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Guy Sauvageau
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
- Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
14
|
Scharf MM, Humphrys LJ, Berndt S, Di Pizio A, Lehmann J, Liebscher I, Nicoli A, Niv MY, Peri L, Schihada H, Schulte G. The dark sides of the GPCR tree - research progress on understudied GPCRs. Br J Pharmacol 2024. [PMID: 38339984 DOI: 10.1111/bph.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms. This review gives an overview of the current state of knowledge for each of the diverse subfamilies of understudied receptors regarding their physiological relevance, molecular mechanisms, endogenous ligands and pharmacological tools. Furthermore, it identifies some of the largest knowledge gaps that should be addressed in the foreseeable future and lists some general strategies that might be helpful in this process.
Collapse
Affiliation(s)
- Magdalena M Scharf
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Juliane Lehmann
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hannes Schihada
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gunnar Schulte
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| |
Collapse
|
15
|
Ibneeva L, Singh SP, Sinha A, Eski SE, Wehner R, Rupp L, Kovtun I, Pérez-Valencia JA, Gerbaulet A, Reinhardt S, Wobus M, von Bonin M, Sancho J, Lund F, Dahl A, Schmitz M, Bornhäuser M, Chavakis T, Wielockx B, Grinenko T. CD38 promotes hematopoietic stem cell dormancy. PLoS Biol 2024; 22:e3002517. [PMID: 38422172 DOI: 10.1371/journal.pbio.3002517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/12/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
A subpopulation of deeply quiescent, so-called dormant hematopoietic stem cells (dHSCs) resides at the top of the hematopoietic hierarchy and serves as a reserve pool for HSCs. The state of dormancy protects the HSC pool from exhaustion throughout life; however, excessive dormancy may prevent an efficient response to hematological stresses. Despite the significance of dHSCs, the mechanisms maintaining their dormancy remain elusive. Here, we identify CD38 as a novel and broadly applicable surface marker for the enrichment of murine dHSCs. We demonstrate that cyclic adenosine diphosphate ribose (cADPR), the product of CD38 cyclase activity, regulates the expression of the transcription factor c-Fos by increasing the release of Ca2+ from the endoplasmic reticulum (ER). Subsequently, we uncover that c-Fos induces the expression of the cell cycle inhibitor p57Kip2 to drive HSC dormancy. Moreover, we found that CD38 ecto-enzymatic activity at the neighboring CD38-positive cells can promote human HSC quiescence. Together, CD38/cADPR/Ca2+/c-Fos/p57Kip2 axis maintains HSC dormancy. Pharmacological manipulations of this pathway can provide new strategies to improve the success of stem cell transplantation and blood regeneration after injury or disease.
Collapse
Affiliation(s)
- Liliia Ibneeva
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | | | - Anupam Sinha
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sema Elif Eski
- IRIBHM, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rebekka Wehner
- Institute for Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Luise Rupp
- Institute for Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Iryna Kovtun
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Juan Alberto Pérez-Valencia
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Alexander Gerbaulet
- Institute for Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Manja Wobus
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Malte von Bonin
- Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jaime Sancho
- Instituto de Parasitología y Biomedicina "López-Neyra" CSIC, Granada, Spain
| | - Frances Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Marc Schmitz
- Institute for Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Bornhäuser
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Experimental Center, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Tatyana Grinenko
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Wang J, Su M, Wei N, Yan H, Zhang J, Gong Y, Wu L, Suolitiken D, Pi Y, Song D, Chen L, Liu H, Yang S, Wang X, Wang Z. Chronic active Epstein-Barr virus disease originates from infected hematopoietic stem cells. Blood 2024; 143:32-41. [PMID: 37824804 DOI: 10.1182/blood.2023021074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
ABSTRACT Chronic active Epstein-Barr virus (EBV) disease (CAEBV) is a lethal syndrome because of persistent EBV infection. When diagnosed as CAEBV, EBV infection was observed in multiple hematopoietic lineages, but the etiology of CAEBV is still elusive. Bone marrow and peripheral cells derived from 5 patients with CAEBV, 1 patient with EBV-associated hemophagocytic lymphohistiocytosis, and 2 healthy controls were analyzed. Multiple assays were applied to identify and characterize EBV-infected cells, including quantitative polymerase chain reaction, PrimeFlow, and single-cell RNA-sequencing (scRNA-seq). Based on scRNA-seq data, alterations in gene expression of particular cell types were analyzed between patients with CAEBV and controls, and between infected and uninfected cells. One patient with CAEBV was treated with allogeneic hematopoietic stem cell transplantation (HSCT), and the samples derived from this patient were analyzed again 6 months after HSCT. EBV infected the full spectrum of the hematopoietic system including both lymphoid and myeloid lineages, as well as the hematopoietic stem cells (HSCs) of the patients with CAEBV. EBV-infected HSCs exhibited a higher differentiation rate toward downstream lineages, and the EBV infection had an impact on both the innate and adaptive immunity, resulting in inflammatory symptoms. EBV-infected cells were thoroughly removed from the hematopoietic system after HSCT. Taken together, multiple lines of evidence presented in this study suggest that CAEBV disease originates from the infected HSCs, which might potentially lead to innovative therapy strategies for CAEBV.
Collapse
Affiliation(s)
- Jingshi Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Min Su
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Prenatal Diagnosis Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Na Wei
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huanyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Prenatal Diagnosis Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jia Zhang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi Gong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Lin Wu
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dina Suolitiken
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yubo Pi
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Deli Song
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Leilei Chen
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huan Liu
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuo Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Prenatal Diagnosis Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhao Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Fregona V, Bayet M, Bouttier M, Largeaud L, Hamelle C, Jamrog LA, Prade N, Lagarde S, Hebrard S, Luquet I, Mansat-De Mas V, Nolla M, Pasquet M, Didier C, Khamlichi AA, Broccardo C, Delabesse É, Mancini SJ, Gerby B. Stem cell-like reprogramming is required for leukemia-initiating activity in B-ALL. J Exp Med 2024; 221:e20230279. [PMID: 37930337 PMCID: PMC10626194 DOI: 10.1084/jem.20230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
B cell acute lymphoblastic leukemia (B-ALL) is a multistep disease characterized by the hierarchical acquisition of genetic alterations. However, the question of how a primary oncogene reprograms stem cell-like properties in committed B cells and leads to a preneoplastic population remains unclear. Here, we used the PAX5::ELN oncogenic model to demonstrate a causal link between the differentiation blockade, the self-renewal, and the emergence of preleukemic stem cells (pre-LSCs). We show that PAX5::ELN disrupts the differentiation of preleukemic cells by enforcing the IL7r/JAK-STAT pathway. This disruption is associated with the induction of rare and quiescent pre-LSCs that sustain the leukemia-initiating activity, as assessed using the H2B-GFP model. Integration of transcriptomic and chromatin accessibility data reveals that those quiescent pre-LSCs lose B cell identity and reactivate an immature molecular program, reminiscent of human B-ALL chemo-resistant cells. Finally, our transcriptional regulatory network reveals the transcription factor EGR1 as a strong candidate to control quiescence/resistance of PAX5::ELN pre-LSCs as well as of blasts from human B-ALL.
Collapse
Affiliation(s)
- Vincent Fregona
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Manon Bayet
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Mathieu Bouttier
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Laetitia Largeaud
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Camille Hamelle
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Laura A. Jamrog
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Naïs Prade
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Stéphanie Lagarde
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Sylvie Hebrard
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Isabelle Luquet
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Véronique Mansat-De Mas
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Marie Nolla
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Marlène Pasquet
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Christine Didier
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre Nationale de la Recherche Scientifique, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Cyril Broccardo
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Éric Delabesse
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Stéphane J.C. Mancini
- Université de Rennes, Etablissement Français du Sang, Inserm, MOBIDIC—UMR_S 1236, Rennes, France
| | - Bastien Gerby
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| |
Collapse
|
18
|
Zhang YW, Velasco-Hernandez T, Mess J, Lalioti ME, Romero-Mulero MC, Obier N, Karantzelis N, Rettkowski J, Schönberger K, Karabacz N, Jäcklein K, Morishima T, Trincado JL, Romecin P, Martinez A, Takizawa H, Shoumariyeh K, Renders S, Zeiser R, Pahl HL, Béliveau F, Hébert J, Lehnertz B, Sauvageau G, Menendez P, Cabezas-Wallscheid N. GPRC5C drives branched-chain amino acid metabolism in leukemogenesis. Blood Adv 2023; 7:7525-7538. [PMID: 37639313 PMCID: PMC10761356 DOI: 10.1182/bloodadvances.2023010460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023] Open
Abstract
Leukemia stem cells (LSCs) share numerous features with healthy hematopoietic stem cells (HSCs). G-protein coupled receptor family C group 5 member C (GPRC5C) is a regulator of HSC dormancy. However, GPRC5C functionality in acute myeloid leukemia (AML) is yet to be determined. Within patient AML cohorts, high GPRC5C levels correlated with poorer survival. Ectopic Gprc5c expression increased AML aggression through the activation of NF-κB, which resulted in an altered metabolic state with increased levels of intracellular branched-chain amino acids (BCAAs). This onco-metabolic profile was reversed upon loss of Gprc5c, which also abrogated the leukemia-initiating potential. Targeting the BCAA transporter SLC7A5 with JPH203 inhibited oxidative phosphorylation and elicited strong antileukemia effects, specifically in mouse and patient AML samples while sparing healthy bone marrow cells. This antileukemia effect was strengthened in the presence of venetoclax and azacitidine. Our results indicate that the GPRC5C-NF-κB-SLC7A5-BCAAs axis is a therapeutic target that can compromise leukemia stem cell function in AML.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Talia Velasco-Hernandez
- Department of Biomedicine, Josep Carreras Leukaemia Research Institute, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Julian Mess
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | | | - Mari Carmen Romero-Mulero
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nadine Obier
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Nikolaos Karantzelis
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, Freiburg, Germany
| | - Jasmin Rettkowski
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | | | - Noémie Karabacz
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Karin Jäcklein
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Tatsuya Morishima
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Juan Luis Trincado
- Department of Biomedicine, Josep Carreras Leukaemia Research Institute, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Paola Romecin
- Department of Biomedicine, Josep Carreras Leukaemia Research Institute, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Alba Martinez
- Department of Biomedicine, Josep Carreras Leukaemia Research Institute, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium, Partner Site Freiburg, and German Cancer Research Center, Heidelberg, Germany
| | - Simon Renders
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heike L. Pahl
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, Freiburg, Germany
| | - François Béliveau
- Quebec leukemia cell bank, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Josée Hébert
- Quebec leukemia cell bank, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Bernhard Lehnertz
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Canada
| | - Pablo Menendez
- Department of Biomedicine, Josep Carreras Leukaemia Research Institute, School of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, ISIII, Barcelona, Spain
- RICORS-TERAV Network, ISCIII, Madrid, Spain
- Instituciò Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Nina Cabezas-Wallscheid
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Bhat S, Dietz A, Senf K, Nietzsche S, Hirabayashi Y, Westermann M, Neuhaus EM. GPRC5C regulates the composition of cilia in the olfactory system. BMC Biol 2023; 21:292. [PMID: 38110903 PMCID: PMC10729543 DOI: 10.1186/s12915-023-01790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Olfactory sensory neurons detect odourants via multiple long cilia that protrude from their dendritic endings. The G protein-coupled receptor GPRC5C was identified as part of the olfactory ciliary membrane proteome, but its function and localization is unknown. RESULTS High-resolution confocal and electron microscopy revealed that GPRC5C is located at the base of sensory cilia in olfactory neurons, but not in primary cilia of immature neurons or stem cells. Additionally, GPRC5C localization in sensory cilia parallels cilia formation and follows the formation of the basal body. In closer examination, GPRC5C was found in the ciliary transition zone. GPRC5C deficiency altered the structure of sensory cilia and increased ciliary layer thickness. However, primary cilia were unaffected. Olfactory sensory neurons from Gprc5c-deficient mice exhibited altered localization of olfactory signalling cascade proteins, and of ciliary phosphatidylinositol-4,5-bisphosphat. Sensory neurons also exhibited increased neuronal activity as well as altered mitochondrial morphology, and knockout mice had an improved ability to detect food pellets based on smell. CONCLUSIONS Our study shows that GPRC5C regulates olfactory cilia composition and length, thereby controlling odour perception.
Collapse
Affiliation(s)
- Sneha Bhat
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - André Dietz
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Katja Senf
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Sandor Nietzsche
- Centre for Electron Microscopy, Jena University Hospital, Friedrich Schiller University Jena, Ziegelmühlenweg 1, 07743, Jena, Germany
| | - Yoshio Hirabayashi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, 279-0021, Japan
- RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Martin Westermann
- Centre for Electron Microscopy, Jena University Hospital, Friedrich Schiller University Jena, Ziegelmühlenweg 1, 07743, Jena, Germany
| | - Eva Maria Neuhaus
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany.
| |
Collapse
|
20
|
Zhang YW, Schönberger K, Cabezas‐Wallscheid N. Bidirectional interplay between metabolism and epigenetics in hematopoietic stem cells and leukemia. EMBO J 2023; 42:e112348. [PMID: 38010205 PMCID: PMC10711668 DOI: 10.15252/embj.2022112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 11/29/2023] Open
Abstract
During the last decades, remarkable progress has been made in further understanding the complex molecular regulatory networks that maintain hematopoietic stem cell (HSC) function. Cellular and organismal metabolisms have been shown to directly instruct epigenetic alterations, and thereby dictate stem cell fate, in the bone marrow. Epigenetic regulatory enzymes are dependent on the availability of metabolites to facilitate DNA- and histone-modifying reactions. The metabolic and epigenetic features of HSCs and their downstream progenitors can be significantly altered by environmental perturbations, dietary habits, and hematological diseases. Therefore, understanding metabolic and epigenetic mechanisms that regulate healthy HSCs can contribute to the discovery of novel metabolic therapeutic targets that specifically eliminate leukemia stem cells while sparing healthy HSCs. Here, we provide an in-depth review of the metabolic and epigenetic interplay regulating hematopoietic stem cell fate. We discuss the influence of metabolic stress stimuli, as well as alterations occurring during leukemic development. Additionally, we highlight recent therapeutic advancements toward eradicating acute myeloid leukemia cells by intervening in metabolic and epigenetic pathways.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | | | | |
Collapse
|
21
|
Iglesias González PA, Valdivieso ÁG, Santa-Coloma TA. The G protein-coupled receptor GPRC5A-a phorbol ester and retinoic acid-induced orphan receptor with roles in cancer, inflammation, and immunity. Biochem Cell Biol 2023; 101:465-480. [PMID: 37467514 DOI: 10.1139/bcb-2022-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
GPRC5A is the first member of a new class of orphan receptors coupled to G proteins, which also includes GPRC5B, GPRC5C, and GPRC5D. Since its cloning and identification in the 1990s, substantial progress has been made in understanding the possible functions of this receptor. GPRC5A has been implicated in a variety of cellular events, such as cytoskeleton reorganization, cell proliferation, cell cycle regulation, migration, and survival. It appears to be a central player in different pathological processes, including tumorigenesis, inflammation, immune response, and tissue damage. The levels of GPRC5A expression differ depending on the type of cancer, with increased expression in colon, pancreas, and prostate cancers; decreased expression in lung cancer; and varied results in breast cancer. In this review, we discuss the early discovery of GPRC5A as a phorbol ester-induced gene and later as a retinoic acid-induced gene, its regulation, and its participation in important canonical pathways related to numerous types of tumors and inflammatory processes. GPRC5A represents a potential new target for cancer, inflammation, and immunity therapies.
Collapse
Affiliation(s)
- Pablo A Iglesias González
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| | - Ángel G Valdivieso
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| |
Collapse
|
22
|
Ussishkin N, Nachmani D. A Bloody Feast-Nutritional Regulation of Hematopoiesis. Exp Hematol 2023; 127:1-7. [PMID: 37582454 DOI: 10.1016/j.exphem.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Hematopoietic stem cells provide us with a lifelong supply of blood cells. Hence, their proper function is absolutely essential for life, and their dysfunction can lead to infectious and malignant diseases. These cells have specific metabolic requirements to enable their lifelong function and blood-producing capacity. With the words of the Roman poet Juvenal "a healthy mind in a healthy body" in mind, it is intriguing to understand the connection between our daily diet and the quality of our blood, with the hope that through specific dietary adjustments we can improve our hematopoietic stem cell function and prevent disease. Nowadays, dietary supplements are an expanding market filled with potential and promises for better health. However, the link between many of those supplements and human physiology is obscure. Several groups have begun to shed light on this by investigating the metabolic regulation of hematopoiesis by specific nutrients. Beyond the link to dietary supplementation, these studies have also significantly improved our understanding of basic hematopoietic stem cell biology. Herein we summarize recent knowledge on the effect of specific vitamins and amino acids, which might be considered as dietary supplements, on normal hematopoiesis and hematopoietic stem cell function. We propose that improving our understanding of the link between nutrition in general and blood physiology can ultimately lead to the optimization of health-care policies, protocols, and standards of care.
Collapse
Affiliation(s)
- Noga Ussishkin
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Daphna Nachmani
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| |
Collapse
|
23
|
Dashti P, Thaler R, Hawse JR, Galvan ML, van der Eerden BJ, van Wijnen AJ, Dudakovic A. G-protein coupled receptor 5C (GPRC5C) is required for osteoblast differentiation and responds to EZH2 inhibition and multiple osteogenic signals. Bone 2023; 176:116866. [PMID: 37558192 PMCID: PMC10962865 DOI: 10.1016/j.bone.2023.116866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Osteoblast differentiation is epigenetically suppressed by the H3K27 methyltransferase EZH2, and induced by the morphogen BMP2 and transcription factor RUNX2. These factors also regulate distinct G protein coupled receptors (GPRCs; e.g., PTH1R, GPR30/GPER1). Because GPRCs transduce many physiological stimuli, we examined whether BMP2 or EZH2 inhibition (i.e., GSK126) regulates other GPRC genes in osteoblasts. RNA-seq screening of >400 mouse GPRC-related genes showed that many GPRCs are downregulated during osteogenic differentiation. The orphan receptor GPRC5C, along with a small subset of other GPRCs, is induced by BMP2 or GSK126 during Vitamin C dependent osteoblast differentiation, but not by all-trans retinoic acid. ChIP-seq analysis revealed that GSK126 reduces H3K27me3 levels at the GPRC5C gene locus in differentiating MC3T3-E1 osteoblasts, consistent with enhanced GPRC5C mRNA expression. Loss of function analyses revealed that shRNA-mediated depletion of GPRC5C decreases expression of bone markers (e.g., BGLAP and IBSP) and mineral deposition in response to BMP2 or GSK126. GPRC5C mRNA was found to be reduced in the osteopenic bones of KLF10 null mice which have compromised BMP2 signaling. GPRC5C mRNA is induced by the bone-anabolic activity of 17β-estradiol in trabecular but not cortical bone following ovariectomy. Collectively, these findings suggest that GPRC5C protein is a key node in a pro-osteogenic axis that is normally suppressed by EZH2-mediated H3K27me3 marks and induced during osteoblast differentiation by GSK126, BMP2, and/or 17β-estradiol. Because GPRC5C protein is an understudied orphan receptor required for osteoblast differentiation, identification of ligands that induce GPRC5C signaling may support therapeutic strategies to mitigate bone-related disorders.
Collapse
Affiliation(s)
- Parisa Dashti
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - John R Hawse
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Bram J van der Eerden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andre J van Wijnen
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Biochemistry, University of Vermont, Burlington, VT, USA.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
24
|
Rubio-Lara JA, Igarashi KJ, Sood S, Johansson A, Sommerkamp P, Yamashita M, Lin DS. Expanding hematopoietic stem cell ex vivo: recent advances and technical considerations. Exp Hematol 2023; 125-126:6-15. [PMID: 37543237 DOI: 10.1016/j.exphem.2023.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic hierarchy, which are responsible for sustaining the lifelong production of mature blood and immune cells. Due to their superior long-term regenerative capacity, HSC therapies such as stem cell transplantation have been used in a broad range of hematologic disorders. However, the rarity of this population in vivo considerably limits its clinical applications and large-scale analyses such as screening and safety studies. Therefore, ex vivo culture methods that allow long-term expansion and maintenance of functional HSCs are instrumental in overcoming the difficulties in studying HSC biology and improving HSC therapies. In this perspective, we discuss recent advances and technical considerations for three ex vivo HSC expansion methods including 1) polyvinyl alcohol-based HSC expansion, 2) mesenchymal stromal cell-HSC co-culture, and 3) two-/three-dimensional hydrogel HSC culture. This review summarizes the presentations and discussions from the 2022 International Society for Experimental Hematology (ISEH) Annual Meeting New Investigator Technology Session.
Collapse
Affiliation(s)
| | - Kyomi J Igarashi
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Shubhankar Sood
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Inflammatory Stress in Stem Cells, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alban Johansson
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Pia Sommerkamp
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Masayuki Yamashita
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Dawn S Lin
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
25
|
Liang KL, Laurenti E, Taghon T. Circulating IRF8-expressing CD123 +CD127 + lymphoid progenitors: key players in human hematopoiesis. Trends Immunol 2023; 44:678-692. [PMID: 37591714 PMCID: PMC7614993 DOI: 10.1016/j.it.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
Lymphopoiesis is the process in which B and T cells, and innate lymphoid cells (ILCs) develop from hematopoietic progenitors that exhibit early lymphoid priming. The branching points where lymphoid-primed human progenitors are further specified to B/T/ILC differentiation trajectories remain unclear. Here, we discuss the emerging role of interferon regulatory factor (IRF)8 as a key factor to bridge human lymphoid and dendritic cell (DC) differentiation, and the current evidence for the existence of circulating and tissue-resident CD123+CD127+ lymphoid progenitors. We propose a model whereby DC/B/T/ILC lineage programs in circulating CD123+CD127+ lymphoid progenitors are expressed in balance. Upon tissue seeding, the tissue microenvironment tilts this molecular balance towards a specific lineage, thereby determining in vivo lineage fates. Finally, we discuss the translational implication of these lymphoid precursors.
Collapse
Affiliation(s)
- Kai Ling Liang
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Elisa Laurenti
- Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
26
|
Anjos-Afonso F, Bonnet D. Human CD34+ hematopoietic stem cell hierarchy: how far are we with its delineation at the most primitive level? Blood 2023; 142:509-518. [PMID: 37018661 PMCID: PMC10644061 DOI: 10.1182/blood.2022018071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/07/2023] Open
Abstract
The ability to isolate and characterize different hematopoietic stem cell (HSC) or progenitor cell populations opens avenues to understand how hematopoiesis is regulated during development, homeostasis, and regeneration as well as in age-related conditions such as clonal hematopoiesis and leukemogenesis. Significant progress has been made in the past few decades in determining the composition of the cell types that exist in this system, but the most significant advances have come from mouse studies. However, recent breakthroughs have made significant strides that have enhanced the resolution of the human primitive hematopoietic compartment. Therefore, we aim to review this subject not only from a historical perspective but also to discuss the progress made in the characterization of the human postnatal CD34+ HSC-enriched populations. This approach will enable us to shed light on the potential future translational applicability of human HSCs.
Collapse
Affiliation(s)
- Fernando Anjos-Afonso
- Haematopoietic Signalling Group, European Cancer Stem Cell Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
27
|
Kawabata Y, Takai S, Sanematsu K, Iwata S, Kawabata F, Kanematsu T, Jimi E, Shigemura N. The G protein-coupled receptor GPRC5C is a saccharide sensor with a novel 'off' response. FEBS Lett 2023; 597:2006-2016. [PMID: 37418589 DOI: 10.1002/1873-3468.14695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023]
Abstract
GPRC5C is an orphan G protein-coupled receptor (GPCR) that belongs to the class C GPCR family. Although GPRC5C is expressed in various organs, its function and ligand are still undetermined. We found that GPRC5C is expressed in mouse taste cells, enterocytes, and pancreatic α-cells. In functional imaging assays, HEK293 cells heterologously expressing GPRC5C and the chimeric G protein α subunit Gα16-gust44 showed robust intracellular Ca2+ increases in response to monosaccharides, disaccharides, and a sugar alcohol, but not an artificial sweetener or sweet-tasting amino acid. Notably, Ca2+ increases occurred after washout, not during stimulation. Our findings suggest that GPRC5C has receptor properties which lead to novel 'off' responses to saccharide detachment and may work as an internal or external chemosensor specifically tuned to natural sugars.
Collapse
Affiliation(s)
- Yuko Kawabata
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shingo Takai
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
- Dent-Craniofacial Development and Regeneration Center, Kyushu University, Fukuoka, Japan
| | - Keisuke Sanematsu
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
- Oral Health/Brain Health/Total Health Research Center, Kyushu University, Fukuoka, Japan
- Research and Development Center for Five-Sense Devices Taste and Odor Sensing, Kyushu University, Fukuoka, Japan
| | - Shusuke Iwata
- Department of Oral Physiology, Asahi University School of Dentistry, Mizuho, Japan
| | - Fuminori Kawabata
- Physiology of Domestic Animals, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Takashi Kanematsu
- Division of Oral Biological Sciences, Department of Cell Biology, Aging Science, and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Eijiro Jimi
- Oral Health/Brain Health/Total Health Research Center, Kyushu University, Fukuoka, Japan
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
- Research and Development Center for Five-Sense Devices Taste and Odor Sensing, Kyushu University, Fukuoka, Japan
| |
Collapse
|
28
|
Kim HM, Park JH, Choi YJ, Oh JM, Park J. Hyaluronic acid-coated gold nanoparticles as a controlled drug delivery system for poorly water-soluble drugs. RSC Adv 2023; 13:5529-5537. [PMID: 36798609 PMCID: PMC9926166 DOI: 10.1039/d2ra07276a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Hyaluronic acid (HA) is a natural linear polysaccharide which has been widely used in cosmetics and pharmaceuticals including drug delivery systems because of its excellent biocompatibility. In this study, we investigated the one-pot synthesis of HA-coated gold nanoparticles (AuNP-HA) as a drug delivery carrier. The HAs with different molecular weights were produced by e-beam irradiation and employed as coating materials for AuNPs. Sulfasalazine (SSZ), a poorly water-soluble drug, was used to demonstrate the efficiency of drug delivery and the controlled release behaviour of the AuNP-HA. As the molecular weight of the HA decreased, the drug encapsulation efficiency of the SSZ increased up to 94%, while drug loading capacity of the SSZ was maintained at the level of about 70%. The prepared AuNP-HA-SSZ exhibited slow release of the SSZ over a short time and excellent sensitivity to different pHs and physiological conditions. The SSZ release rate was the lowest in simulated gastric conditions and the highest in simulated intestinal conditions. In this case, the AuNP-HA protects the SSZ from release under the acidic pH conditions in the stomach; on the other hand, the drug release was facilitated in the basic environment of the small intestine and colon. The SSZ was released under simulated intestinal conditions through anomalous drug transport and followed the Korsmeyer-Peppas model. Therefore, this study suggests that AuNP-HA is a promising orally-administered and intestine-targeted drug delivery system with controlled release characteristics.
Collapse
Affiliation(s)
- Hyoung-Mi Kim
- Biomedical Manufacturing Technology Center (BMTC), Korea Institute of Industrial Technology (KITECH) Yeongcheon-si Gyeongsangbuk-do 38822 Republic of Korea
| | - Jae Hong Park
- Biomedical Manufacturing Technology Center (BMTC), Korea Institute of Industrial Technology (KITECH) Yeongcheon-si Gyeongsangbuk-do 38822 Republic of Korea
| | - You Jin Choi
- Biomedical Manufacturing Technology Center (BMTC), Korea Institute of Industrial Technology (KITECH) Yeongcheon-si Gyeongsangbuk-do 38822 Republic of Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-SeoulSeoul 04620Republic of Korea
| | - Junghun Park
- Biomedical Manufacturing Technology Center (BMTC), Korea Institute of Industrial Technology (KITECH) Yeongcheon-si Gyeongsangbuk-do 38822 Republic of Korea
| |
Collapse
|
29
|
Rix B, Maduro AH, Bridge KS, Grey W. Markers for human haematopoietic stem cells: The disconnect between an identification marker and its function. Front Physiol 2022; 13:1009160. [PMID: 36246104 PMCID: PMC9564379 DOI: 10.3389/fphys.2022.1009160] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The haematopoietic system is a classical stem cell hierarchy that maintains all the blood cells in the body. Haematopoietic stem cells (HSCs) are rare, highly potent cells that reside at the apex of this hierarchy and are historically some of the most well studied stem cells in humans and laboratory models, with haematopoiesis being the original system to define functional cell types by cell surface markers. Whilst it is possible to isolate HSCs to near purity, we know very little about the functional activity of markers to purify HSCs. This review will focus on the historical efforts to purify HSCs in humans based on cell surface markers, their putative functions and recent advances in finding functional markers on HSCs.
Collapse
Affiliation(s)
| | | | | | - William Grey
- *Correspondence: Katherine S. Bridge, ; William Grey,
| |
Collapse
|
30
|
Skopelja-Gardner S, An J, Elkon KB. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nat Rev Nephrol 2022; 18:558-572. [PMID: 35732833 PMCID: PMC9214686 DOI: 10.1038/s41581-022-00589-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/21/2022]
Abstract
Cells are equipped with numerous sensors that recognize nucleic acids, which probably evolved for defence against viruses. Once triggered, these sensors stimulate the production of type I interferons and other cytokines that activate immune cells and promote an antiviral state. The evolutionary conserved enzyme cyclic GMP-AMP synthase (cGAS) is one of the most recently identified DNA sensors. Upon ligand engagement, cGAS dimerizes and synthesizes the dinucleotide second messenger 2',3'-cyclic GMP-AMP (cGAMP), which binds to the endoplasmic reticulum protein stimulator of interferon genes (STING) with high affinity, thereby unleashing an inflammatory response. cGAS-binding DNA is not restricted by sequence and must only be >45 nucleotides in length; therefore, cGAS can also be stimulated by self genomic or mitochondrial DNA. This broad specificity probably explains why the cGAS-STING pathway has been implicated in a number of autoinflammatory, autoimmune and neurodegenerative diseases; this pathway might also be activated during acute and chronic kidney injury. Therapeutic manipulation of the cGAS-STING pathway, using synthetic cyclic dinucleotides or inhibitors of cGAMP metabolism, promises to enhance immune responses in cancer or viral infections. By contrast, inhibitors of cGAS or STING might be useful in diseases in which this pro-inflammatory pathway is chronically activated.
Collapse
Affiliation(s)
| | - Jie An
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Keith B Elkon
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|