1
|
Wang D, Wang W, Song M, Xie Y, Kuang W, Yang P. Regulation of protein phosphorylation by PTPN2 and its small-molecule inhibitors/degraders as a potential disease treatment strategy. Eur J Med Chem 2024; 277:116774. [PMID: 39178726 DOI: 10.1016/j.ejmech.2024.116774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Protein tyrosine phosphatase nonreceptor type 2 (PTPN2) is an enzyme that dephosphorylates proteins with tyrosine residues, thereby modulating relevant signaling pathways in vivo. PTPN2 acts as tumor suppressor or tumor promoter depending on the context. In some cancers, such as colorectal, and lung cancer, PTPN2 defects could impair the protein tyrosine kinase pathway, which is often over-activated in cancer cells, and inhibit tumor development and progression. However, PTPN2 can also suppress tumor immunity by regulating immune cells and cytokines. The structure, functions, and substrates of PTPN2 in various tumor cells were reviewed in this paper. And we summarized the research status of small molecule inhibitors and degraders of PTPN2. It also highlights the potential opportunities and challenges for developing PTPN2 inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Dawei Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenmu Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mingge Song
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yishi Xie
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Bao Y, Xu R, Guo J. The multiple-action allosteric inhibition of TYK2 by deucravacitinib: Insights from computational simulations. Comput Biol Chem 2024; 113:108224. [PMID: 39353258 DOI: 10.1016/j.compbiolchem.2024.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
Participating in the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, TYK2 emerges as a promising therapy target in controlling various autoimmune diseases, including psoriasis and multiple sclerosis. Deucravacitinib (DEU) is a novel oral TYK2-specific inhibitor approved in 2022 that is clinically effective in moderate to severe psoriasis trials. Upon the AlphaFold2 predicted TYK2 pseudokinase domain (JH2) and kinase domain (JH1), we explored the details of the underlined allosteric inhibition mechanism on TYK2 JH2-JH1 with the aid of molecular dynamics simulation. Our results suggest that the allosteric inhibition of DEU on TYK2 is accomplished by affecting the JH2-JH1 interface and hampering the state transition and ATP binding in JH1. Particularly, DEU binding stabilized the autoinhibitory interface between JH2 and JH1 while disrupting the formation of the activation interface. As a result, the negative regulation of JH2 on JH1 was greatly enhanced. These findings offer additional details on the pseudokinase-dependent autoinhibition of the JAK kinase domain and provide theoretical support for the JH2-targeted drug discovery in JAK members.
Collapse
Affiliation(s)
- Yiqiong Bao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Ran Xu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China.
| | - Jingjing Guo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China; Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Macao Polytechnic University, Macao 999078, China.
| |
Collapse
|
3
|
Weigle AT, Shukla D. The Arabidopsis AtSWEET13 transporter discriminates sugars by selective facial and positional substrate recognition. Commun Biol 2024; 7:764. [PMID: 38914639 PMCID: PMC11196581 DOI: 10.1038/s42003-024-06291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
Transporters are targeted by endogenous metabolites and exogenous molecules to reach cellular destinations, but it is generally not understood how different substrate classes exploit the same transporter's mechanism. Any disclosure of plasticity in transporter mechanism when treated with different substrates becomes critical for developing general selectivity principles in membrane transport catalysis. Using extensive molecular dynamics simulations with an enhanced sampling approach, we select the Arabidopsis sugar transporter AtSWEET13 as a model system to identify the basis for glucose versus sucrose molecular recognition and transport. Here we find that AtSWEET13 chemical selectivity originates from a conserved substrate facial selectivity demonstrated when committing alternate access, despite mono-/di-saccharides experiencing differing degrees of conformational and positional freedom throughout other stages of transport. However, substrate interactions with structural hallmarks associated with known functional annotations can help reinforce selective preferences in molecular transport.
Collapse
Affiliation(s)
- Austin T Weigle
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Diwakar Shukla
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Weigle AT, Shukla D. Interplay between phosphorylation and oligomerization tunes the conformational ensemble of SWEET transporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598708. [PMID: 38915650 PMCID: PMC11195267 DOI: 10.1101/2024.06.12.598708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
SWEET sugar transporters are desirable biotechnological targets for improving plant growth. One engineering strategy includes modulating how SWEET transporters are regulated. Phosphorylation and oligomerization have been shown to positively regulate SWEET function, leading to increased sugar transport activity. However, constitutive phosphorylation may not be beneficial to plant health under basal conditions. Structural and mechanistic understanding of the interplay between phosphorylation and oligomerization in functional regulation of SWEETs remains limited. Using extensive molecular dynamics simulations coupled with Markov state models, we demonstrate the thermodynamic and kinetic effects of SWEET phosphorylation and oligomerization using OsSWEET2b as a model. We report that the beneficial effects of these SWEET regulatory mechanisms bias outward-facing states and improved extracellular gating, which complement published experimental findings. Our results offer molecular insights to SWEET regulation and may guide engineering strategies throughout the SWEET transport family.
Collapse
Affiliation(s)
- Austin T. Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Diwakar Shukla
- Department of Chemical & Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
5
|
Rahman MU, Bano S, Hong X, Gu RX, Chen HF. Early Aggregation Mechanism of SOD1 28-38 Based on Force Field Parameter of 5-Cyano-Tryptophan. J Chem Inf Model 2024; 64:3942-3952. [PMID: 38652017 DOI: 10.1021/acs.jcim.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The aggregation of superoxide dismutase 1 (SOD1) results in amyloid deposition and is involved in familial amyotrophic lateral sclerosis, a fatal motor neuron disease. There have been extensive studies of its aggregation mechanism. Noncanonical amino acid 5-cyano-tryptophan (5-CN-Trp), which has been incorporated into the amyloid segments of SOD1 as infrared probes to increase the structural sensitivity of IR spectroscopy, is found to accelerate the overall aggregation rate and potentially modulate the aggregation process. Despite these observations, the underlying mechanism remains elusive. Here, we optimized the force field parameters of 5-CN-Trp and then used molecular dynamics simulation along with the Markov state model on the SOD128-38 dimer to explore the kinetics of key intermediates in the presence and absence of 5-CN-Trp. Our findings indicate a significantly increased probability of protein aggregate formation in 5CN-Trp-modified ensembles compared to wildtype. Dimeric β-sheets of different natures were observed exclusively in the 5CN-Trp-modified peptides, contrasting with wildtype simulations. Free-energy calculations and detailed analyses of the dimer structure revealed augmented interstrand interactions attributed to 5-CN-Trp, which contributed more to peptide affinity than any other residues. These results explored the key events critical for the early nucleation of amyloid-prone proteins and also shed light on the practice of using noncanonical derivatives to study the aggregation mechanism.
Collapse
Affiliation(s)
- Mueed Ur Rahman
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, National Experimental Teaching Center for Life Sciences and Biotechnology, Department of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Saira Bano
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, National Experimental Teaching Center for Life Sciences and Biotechnology, Department of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaokun Hong
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, National Experimental Teaching Center for Life Sciences and Biotechnology, Department of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruo-Xu Gu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, National Experimental Teaching Center for Life Sciences and Biotechnology, Department of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, National Experimental Teaching Center for Life Sciences and Biotechnology, Department of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Clayton J, Romany A, Matenoglou E, Gavathiotis E, Poulikakos PI, Shen J. Mechanism of Dimer Selectivity and Binding Cooperativity of BRAF Inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.12.571293. [PMID: 38168366 PMCID: PMC10760002 DOI: 10.1101/2023.12.12.571293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Aberrant signaling of BRAFV600E is a major cancer driver. Current FDA-approved RAF inhibitors selectively inhibit the monomeric BRAFV600E and suffer from tumor resistance. Recently, dimer-selective and equipotent RAF inhibitors have been developed; however, the mechanism of dimer selectivity is poorly understood. Here, we report extensive molecular dynamics (MD) simulations of the monomeric and dimeric BRAFV600E in the apo form or in complex with one or two dimer-selective (PHI1) or equipotent (LY3009120) inhibitor(s). The simulations uncovered the unprecedented details of the remarkable allostery in BRAFV600E dimerization and inhibitor binding. Specifically, dimerization retrains and shifts the αC helix inward and increases the flexibility of the DFG motif; dimer compatibility is due to the promotion of the αC-in conformation, which is stabilized by a hydrogen bond formation between the inhibitor and the αC Glu501. A more stable hydrogen bond further restrains and shifts the αC helix inward, which incurs a larger entropic penalty that disfavors monomer binding. This mechanism led us to propose an empirical way based on the co-crystal structure to assess the dimer selectivity of a BRAFV600E inhibitor. Simulations also revealed that the positive cooperativity of PHI1 is due to its ability to preorganize the αC and DFG conformation in the opposite protomer, priming it for binding the second inhibitor. The atomically detailed view of the interplay between BRAF dimerization and inhibitor allostery as well as cooperativity has implications for understanding kinase signaling and contributes to the design of protomer selective RAF inhibitors.
Collapse
Affiliation(s)
- Joseph Clayton
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Aarion Romany
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| | - Evangelia Matenoglou
- Department of Biochemistry, Department of Medicine, Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, New York, NY 10461, United States
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, New York, NY 10461, United States
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
7
|
Meller A, Kelly D, Smith LG, Bowman GR. Toward physics-based precision medicine: Exploiting protein dynamics to design new therapeutics and interpret variants. Protein Sci 2024; 33:e4902. [PMID: 38358129 PMCID: PMC10868452 DOI: 10.1002/pro.4902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
The goal of precision medicine is to utilize our knowledge of the molecular causes of disease to better diagnose and treat patients. However, there is a substantial mismatch between the small number of food and drug administration (FDA)-approved drugs and annotated coding variants compared to the needs of precision medicine. This review introduces the concept of physics-based precision medicine, a scalable framework that promises to improve our understanding of sequence-function relationships and accelerate drug discovery. We show that accounting for the ensemble of structures a protein adopts in solution with computer simulations overcomes many of the limitations imposed by assuming a single protein structure. We highlight studies of protein dynamics and recent methods for the analysis of structural ensembles. These studies demonstrate that differences in conformational distributions predict functional differences within protein families and between variants. Thanks to new computational tools that are providing unprecedented access to protein structural ensembles, this insight may enable accurate predictions of variant pathogenicity for entire libraries of variants. We further show that explicitly accounting for protein ensembles, with methods like alchemical free energy calculations or docking to Markov state models, can uncover novel lead compounds. To conclude, we demonstrate that cryptic pockets, or cavities absent in experimental structures, provide an avenue to target proteins that are currently considered undruggable. Taken together, our review provides a roadmap for the field of protein science to accelerate precision medicine.
Collapse
Affiliation(s)
- Artur Meller
- Department of Biochemistry and Molecular BiophysicsWashington University in St. LouisSt. LouisMissouriUSA
- Medical Scientist Training ProgramWashington University in St. LouisSt. LouisMissouriUSA
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Devin Kelly
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Louis G. Smith
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Gregory R. Bowman
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
8
|
Sk MF, Samanta S, Poddar S, Kar P. Deciphering the molecular choreography of Janus kinase 2 inhibition via Gaussian accelerated molecular dynamics simulations: a dynamic odyssey. J Comput Aided Mol Des 2024; 38:8. [PMID: 38324213 DOI: 10.1007/s10822-023-00548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/24/2023] [Indexed: 02/08/2024]
Abstract
The Janus kinases (JAK) are crucial targets in drug development for several diseases. However, accounting for the impact of possible structural rearrangements on the binding of different kinase inhibitors is complicated by the extensive conformational variability of their catalytic kinase domain (KD). The dynamic KD contains mainly four prominent mobile structural motifs: the phosphate-binding loop (P-loop), the αC-helix within the N-lobe, the Asp-Phe-Gly (DFG) motif, and the activation loop (A-loop) within the C-lobe. These distinct structural orientations imply a complex signal transmission path for regulating the A-loop's flexibility and conformational preference for optimal JAK function. Nevertheless, the precise dynamical features of the JAK induced by different types of inhibitors still remain elusive. We performed comparative, microsecond-long, Gaussian accelerated molecular dynamics simulations in triplicate of three phosphorylated JAK2 systems: the KD alone, type-I ATP-competitive inhibitor (CI) bound KD in the catalytically active DFG-in conformation, and the type-II inhibitor (AI) bound KD in the catalytically inactive DFG-out conformation. Our results indicate significant conformational variations observed in the A-loop and αC helix motions upon inhibitor binding. Our studies also reveal that the DFG-out inactive conformation is characterized by the closed A-loop rearrangement, open catalytic cleft of N and C-lobe, the outward movement of the αC helix, and open P-loop states. Moreover, the outward positioning of the αC helix impacts the hallmark salt bridge formation between Lys882 and Glu898 in an inactive conformation. Finally, we compared their ligand binding poses and free energy by the MM/PBSA approach. The free energy calculations suggested that the AI's binding affinity is higher than CI against JAK2 due to an increased favorable contribution from the total non-polar interactions and the involvement of the αC helix. Overall, our study provides the structural and energetic insights crucial for developing more promising type I/II JAK2 inhibitors for treating JAK-related diseases.
Collapse
Affiliation(s)
- Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India
- Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, NIH Resource for Macromolecular Modeling and Visualization, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India
| | - Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India.
| |
Collapse
|
9
|
Voelz VA, Pande VS, Bowman GR. Folding@home: Achievements from over 20 years of citizen science herald the exascale era. Biophys J 2023; 122:2852-2863. [PMID: 36945779 PMCID: PMC10398258 DOI: 10.1016/j.bpj.2023.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/26/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Simulations of biomolecules have enormous potential to inform our understanding of biology but require extremely demanding calculations. For over 20 years, the Folding@home distributed computing project has pioneered a massively parallel approach to biomolecular simulation, harnessing the resources of citizen scientists across the globe. Here, we summarize the scientific and technical advances this perspective has enabled. As the project's name implies, the early years of Folding@home focused on driving advances in our understanding of protein folding by developing statistical methods for capturing long-timescale processes and facilitating insight into complex dynamical processes. Success laid a foundation for broadening the scope of Folding@home to address other functionally relevant conformational changes, such as receptor signaling, enzyme dynamics, and ligand binding. Continued algorithmic advances, hardware developments such as graphics processing unit (GPU)-based computing, and the growing scale of Folding@home have enabled the project to focus on new areas where massively parallel sampling can be impactful. While previous work sought to expand toward larger proteins with slower conformational changes, new work focuses on large-scale comparative studies of different protein sequences and chemical compounds to better understand biology and inform the development of small-molecule drugs. Progress on these fronts enabled the community to pivot quickly in response to the COVID-19 pandemic, expanding to become the world's first exascale computer and deploying this massive resource to provide insight into the inner workings of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and aid the development of new antivirals. This success provides a glimpse of what is to come as exascale supercomputers come online and as Folding@home continues its work.
Collapse
Affiliation(s)
- Vincent A Voelz
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania
| | | | - Gregory R Bowman
- Departments of Biochemistry & Biophysics and of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
10
|
Mi X, Desormeaux EK, Le TT, van der Donk WA, Shukla D. Sequence controlled secondary structure is important for the site-selectivity of lanthipeptide cyclization. Chem Sci 2023; 14:6904-6914. [PMID: 37389248 PMCID: PMC10306099 DOI: 10.1039/d2sc06546k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/08/2023] [Indexed: 07/01/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified peptides that are generated from precursor peptides through a dehydration and cyclization process. ProcM, a class II lanthipeptide synthetase, demonstrates high substrate tolerance. It is enigmatic that a single enzyme can catalyze the cyclization process of many substrates with high fidelity. Previous studies suggested that the site-selectivity of lanthionine formation is determined by substrate sequence rather than by the enzyme. However, exactly how substrate sequence contributes to site-selective lanthipeptide biosynthesis is not clear. In this study, we performed molecular dynamic simulations for ProcA3.3 variants to explore how the predicted solution structure of the substrate without enzyme correlates to the final product formation. Our simulation results support a model in which the secondary structure of the core peptide is important for the final product's ring pattern for the substrates investigated. We also demonstrate that the dehydration step in the biosynthesis pathway does not influence the site-selectivity of ring formation. In addition, we performed simulation for ProcA1.1 and 2.8, which are well-suited candidates to investigate the connection between order of ring formation and solution structure. Simulation results indicate that in both cases, C-terminal ring formation is more likely which was supported by experimental results. Our findings indicate that the substrate sequence and its solution structure can be used to predict the site-selectivity and order of ring formation, and that secondary structure is a crucial factor influencing the site-selectivity. Taken together, these findings will facilitate our understanding of the lanthipeptide biosynthetic mechanism and accelerate bioengineering efforts for lanthipeptide-derived products.
Collapse
Affiliation(s)
- Xuenan Mi
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emily K Desormeaux
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Tung T Le
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Diwakar Shukla
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
11
|
Liang K, Dong W, Gao J, Liu Z, Zhou R, Shu Z, Duan M. The Conformational Transitions and Dynamics of Burkholderia cepacia Lipase Regulated by Water-Oil Interfaces. J Chem Inf Model 2023. [PMID: 37307245 DOI: 10.1021/acs.jcim.3c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Structural dynamics and conformational transitions are crucial for the activities of enzymes. As one of the most widely used industrial biocatalysts, lipase could be activated by the water-oil interfaces. The interface activations were believed to be dominated by the close-to-open transitions of the lid subdomains. However, the detailed mechanism and the roles of structure transitions are still under debate. In this study, the dynamic structures and conformational transitions of Burkholderia cepacia lipase (LipA) were investigated by combining all-atom molecular dynamics simulations, enhanced sampling simulation, and spectrophotometric assay experiments. The conformational transitions between the lid-open and lid-closed states of LipA in aqueous solution are directly observed by the computational simulation methods. The interactions between the hydrophobic residues on the two lid-subdomains are the driven forces for the LipA closing. Meanwhile, the hydrophobic environment provided by the oil interfaces would separate the interactions between the lid-subdomains and promote the structure opening of LipA. Moreover, our studies demonstrate the opening of the lids structure is insufficient to initiate the interfacial activation, providing explanations for the inability of interfacial activation of many lipases with lid structures.
Collapse
Affiliation(s)
- Kuan Liang
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technoloy, College of Life Sciences, Fujian Normal University (Qishan campus), Fuzhou, 350117 Fujian China
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei China
| | - Wanqian Dong
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technoloy, College of Life Sciences, Fujian Normal University (Qishan campus), Fuzhou, 350117 Fujian China
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei China
| | - Jiamin Gao
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technoloy, College of Life Sciences, Fujian Normal University (Qishan campus), Fuzhou, 350117 Fujian China
| | - Zhenhao Liu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei China
| | - Rui Zhou
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei China
| | - Zhengyu Shu
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technoloy, College of Life Sciences, Fujian Normal University (Qishan campus), Fuzhou, 350117 Fujian China
| | - Mojie Duan
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei China
| |
Collapse
|
12
|
Dutta S, Shukla D. Distinct activation mechanisms regulate subtype selectivity of Cannabinoid receptors. Commun Biol 2023; 6:485. [PMID: 37147497 PMCID: PMC10163236 DOI: 10.1038/s42003-023-04868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
Design of cannabinergic subtype selective ligands is challenging because of high sequence and structural similarities of cannabinoid receptors (CB1 and CB2). We hypothesize that the subtype selectivity of designed selective ligands can be explained by the ligand binding to the conformationally distinct states between cannabinoid receptors. Analysis of ~ 700 μs of unbiased simulations using Markov state models and VAMPnets identifies the similarities and distinctions between the activation mechanism of both receptors. Structural and dynamic comparisons of metastable intermediate states allow us to observe the distinction in the binding pocket volume change during CB1 and CB2 activation. Docking analysis reveals that only a few of the intermediate metastable states of CB1 show high affinity towards CB2 selective agonists. In contrast, all the CB2 metastable states show a similar affinity for these agonists. These results mechanistically explain the subtype selectivity of these agonists by deciphering the activation mechanism of cannabinoid receptors.
Collapse
Affiliation(s)
- Soumajit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
13
|
Hong X, Song K, Rahman MU, Wei T, Zhang Y, Da LT, Chen HF. Phosphorylation Regulation Mechanism of β2 Integrin for the Binding of Filamin Revealed by Markov State Model. J Chem Inf Model 2023; 63:605-618. [PMID: 36607244 DOI: 10.1021/acs.jcim.2c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leukocyte adhesion deficiency-1 (LAD-1) disorder is a severe immunodeficiency syndrome caused by deficiency or mutation of β2 integrin. The phosphorylation on threonine 758 of β2 integrin acts as a molecular switch inhibiting the binding of filamin. However, the switch mechanism of site-specific phosphorylation at the atom level is still poorly understood. To resolve the regulation mechanism, all-atom molecular dynamics simulation and Markov state model were used to study the dynamic regulation pathway of phosphorylation. Wild type system possessed lower binding free energy and fewer number of states than the phosphorylated system. Both systems underwent local disorder-to-order conformation conversion when achieving steady states. To reach steady states, wild type adopted less number of transition paths/shortest path according to the transition path theory than the phosphorylated system. The underlying phosphorylated regulation pathway was from P1 to P0 and then P4 state, and the main driving force should be hydrogen bond and hydrophobic interaction disturbing the secondary structure of phosphorylated states. These studies will shed light on the pathogenesis of LAD-1 disease and lay a foundation for drug development.
Collapse
Affiliation(s)
- Xiaokun Hong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Kaiyuan Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Mueed Ur Rahman
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Ting Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yan Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Lin-Tai Da
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai200240, China
- Shanghai Center for Bioinformation Technology, Shanghai200240, China
| |
Collapse
|
14
|
Naresh GKRS, Guruprasad L. Dynamic conformational states of apo, ATP and cabozantinib bound TAM kinases to differentiate active-inactive kinetic models. J Biomol Struct Dyn 2023; 41:11394-11414. [PMID: 36591700 DOI: 10.1080/07391102.2022.2162128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/18/2022] [Indexed: 01/03/2023]
Abstract
The dynamically active and inactive conformations of kinases play a crucial role in the activation of intracellular downstream signaling pathways. The all-atom molecular dynamics (MD) simulations at microsecond (µs) timescale and longer provide robust insights into the structural details of conformational alterations in kinases that contribute to their cellular metabolic activities and signaling pathways. Tyro3, Axl and Mer (TAM) receptor tyrosine kinases (RTKs) are overexpressed in several types of human cancers. Cabozantinib, a small molecule inhibitor constrains the activity of TAM kinases at nanomolar concentrations. The apo, complexes of ATP (active state) and cabozantinib (active and inactive states) with TAM RTKs were studied by 1 µs MD simulations followed by trajectory analyses. The dynamic mechanistic pathways intrinsic to the kinase activity and protein conformational landscape in the cabozantinib bound TAM kinases are revealed due to the alterations in the P-loop, α-helix and activation loop that result in breaking the regulatory (R) and catalytic (C) spines, while the active states of ATP bound TAM kinases are retained. The co-existence of dynamical states when bound to cabozantinib was observed and the long-lived kinetic transition states of distinct active and inactive structural models were deciphered from MD simulation trajectories that have not been revealed so far.Communicated by Ramaswamy H. Sarma.
Collapse
|
15
|
Sk MF, Kar P. Finding inhibitors and deciphering inhibitor-induced conformational plasticity in the Janus kinase via multiscale simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:833-859. [PMID: 36398489 DOI: 10.1080/1062936x.2022.2145352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The Janus kinase (JAK) is a master regulator of the JAK/STAT pathway. Dysregulation of this signalling cascade causes neuroinflammation and autoimmune disorders. Therefore, JAKs have been characterized as an attractive target for developing anti-inflammatory drugs. Nowadays, designing efficient, effective, and specific targeted therapeutics without being cytotoxic has gained interest. We performed the virtual screening of natural products in combination with pharmacological analyses. Subsequently, we performed molecular dynamics simulations to study the stability of the ligand-bound complexes and ligand-induced inactive conformations. Notably, inactive kinases display remarkable conformational plasticity; however, ligand-induced molecular mechanisms of these conformations are still poorly understood. Herein, we performed a free energy landscape analysis to explore the conformational plasticity of the JAK1 kinase. Leonurine, STOCK1N-68642, STOCK1N-82656, and STOCK1N-85809 bound JAK1 exhibited a smooth transition from an active (αC-in) to a completely inactive conformation (αC-out). Ligand binding induces disorders in the αC-helix. Molecular mechanics Poisson Boltzmann surface area (MM/PBSA) calculation suggested three phytochemicals, namely STOCK1N-68642, Epicatechin, and STOCK1N-98615, have higher binding affinity compared to other ligand molecules. The ligand-induced conformational plasticity revealed by our simulations differs significantly from the available crystal structures, which might help in designing allosteric drugs.
Collapse
Affiliation(s)
- M F Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, India
| | - P Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, India
| |
Collapse
|
16
|
Li Y, Gong H. Identifying a Feasible Transition Pathway between Two Conformational States for a Protein. J Chem Theory Comput 2022; 18:4529-4543. [PMID: 35723447 DOI: 10.1021/acs.jctc.2c00390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins usually need to transit between different conformational states to fulfill their biological functions. In the mechanistic study of such transition processes by molecular dynamics simulations, identification of the minimum free energy path (MFEP) can substantially reduce the sampling space, thus enabling rigorous thermodynamic evaluation of the process. Conventionally, the MFEP is derived by iterative local optimization from an initial path, which is typically generated by simple brute force techniques like the targeted molecular dynamics (tMD). Therefore, the quality of the initial path determines the successfulness of MFEP estimation. In this work, we propose a method to improve derivation of the initial path. Through iterative relaxation-biasing simulations in a bidirectional manner, this method can construct a feasible transition pathway connecting two known states for a protein. Evaluation on small, fast-folding proteins against long equilibrium trajectories supports the good sampling efficiency of our method. When applied to larger proteins including the catalytic domain of human c-Src kinase as well as the converter domain of myosin VI, the paths generated by our method deviate significantly from those computed with the generic tMD approach. More importantly, free energy profiles and intermediate states obtained from our paths exhibit remarkable improvements over those from tMD paths with respect to both physical rationality and consistency with a priori knowledge.
Collapse
Affiliation(s)
- Yao Li
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Zang Y, Wang H, Kang Y, Zhang J, Li X, Zhang L, Yang Z, Zhang S. TAB1 binding induced p38α conformation change: an accelerated molecular dynamics simulation study. Phys Chem Chem Phys 2022; 24:10506-10513. [PMID: 35441632 DOI: 10.1039/d2cp00144f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
p38α mitogen-activated protein kinase (MAPK) undergoes autophosphorylation induced by the binding of TGFβ-activated kinase 1 binding protein 1 (TAB1) in myocardial ischemia. Investigation of the conformational transformations in p38α triggered by TAB1 binding is motivated by the need to find selective p38α activation inhibitors to treat myocardial ischemia. Herein, the conformational transformations of p38α were studied via all-atom accelerated molecular dynamics simulations and principal component analysis. With the binding of TAB1, the conformational changes of p38α auto-activation were characterized by the movement of the activation loop (A-loop) away from the αG helix toward the αF, αE helixes and L16-loop. In addition, a diverse intermediate state with an extensional and phosphorylated A-loop different from the transition intermediate state was explored. The conformational changes, including the A-loop alpha-structure breaking and the stronger hydrogen bond network formation, are accompanied by the extension of the A-loop and more intramolecular interactions in p38α. TAB1 correlates with other regions of p38α that are distal from the TAB1-binding site, including the A-loop, αC helix, and L16-loop, which regulates the intramolecular correlation of p38α. And, the phosphorylation further enhances the correlations between the A-loop and the other regions of p38α. The correlation results imply the regulation process of p38α conformational transformations. These findings will improve our understanding of the autophosphorylation of kinase and facilitate the development of selective inhibitors for the treatment of ischemic injury.
Collapse
Affiliation(s)
- Yongjian Zang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - He Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ying Kang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jianwen Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
18
|
Dutta S, Selvam B, Shukla D. Distinct Binding Mechanisms for Allosteric Sodium Ion in Cannabinoid Receptors. ACS Chem Neurosci 2022; 13:379-389. [PMID: 35019279 DOI: 10.1021/acschemneuro.1c00760] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The therapeutic potential of cannabinoid receptors is not fully explored due to psychoactive side effects and lack of selectivity associated with orthosteric ligands. Allosteric modulators have the potential to become selective therapeutics for cannabinoid receptors. Biochemical experiments have shown the effects of the allosteric Na+ binding on cannabinoid receptor activity. However, the Na+ coordination site and binding pathway are still unknown. Here, we perform molecular dynamic simulations to explore Na+ binding in the cannabinoid receptors, CB1 and CB2. Simulations reveal that Na+ binds to the primary binding site from different extracellular sites for CB1 and CB2. A distinct secondary Na+ coordination site is identified in CB1 that is not present in CB2. Furthermore, simulations also show that intracellular Na+ could bind to the Na+ binding site in CB1. Constructed Markov state models show that the standard free energy of Na+ binding is similar to the previously calculated free energy for other class A GPCRs.
Collapse
Affiliation(s)
- Soumajit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Balaji Selvam
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- National Center for Supercomputing Applications, University of Illinois, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Mechanistic Origin of Partial Agonism of Tetrahydrocannabinol for Cannabinoid Receptors. J Biol Chem 2022; 298:101764. [PMID: 35227761 PMCID: PMC8965160 DOI: 10.1016/j.jbc.2022.101764] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 01/14/2023] Open
Abstract
Cannabinoid receptor 1 (CB1) is a therapeutically relevant drug target for controlling pain, obesity, and other central nervous system disorders. However, full agonists and antagonists of CB1 have been reported to cause serious side effects in patients. Therefore, partial agonists have emerged as a viable alternative as they can mitigate overstimulation and side effects. One of the key bottlenecks in the design of partial agonists, however, is the lack of understanding of the molecular mechanism of partial agonism itself. In this study, we examine two mechanistic hypotheses for the origin of partial agonism in cannabinoid receptors and predict the mechanistic basis of partial agonism exhibited by Δ9-Tetrahydrocannabinol (THC) against CB1. In particular, we inspect whether partial agonism emerges from the ability of THC to bind in both agonist and antagonist-binding poses or from its ability to only partially activate the receptor. We used extensive molecular dynamics simulations and Markov state modeling to capture the THC binding in both antagonist and agonist-binding poses in the CB1 receptor. Furthermore, we predict that binding of THC in the agonist-binding pose leads to rotation of toggle switch residues and causes partial outward movement of intracellular transmembrane helix 6 (TM6). Our simulations also suggest that the alkyl side chain of THC plays a crucial role in determining partial agonism by stabilizing the ligand in the agonist and antagonist-like poses within the pocket. Taken together, this study provides important insights into the mechanistic origin of the partial agonism of THC.
Collapse
|
20
|
Fan J, Liu Y, Kong R, Ni D, Yu Z, Lu S, Zhang J. Harnessing Reversed Allosteric Communication: A Novel Strategy for Allosteric Drug Discovery. J Med Chem 2021; 64:17728-17743. [PMID: 34878270 DOI: 10.1021/acs.jmedchem.1c01695] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allostery is a fundamental and extensive mechanism of intramolecular signal transmission. Allosteric drugs possess several unique pharmacological advantages over traditional orthosteric drugs, including greater selectivity, better physicochemical properties, and lower off-target toxicity. However, owing to the complexity of allosteric regulation, experimental approaches for the development of allosteric modulators are traditionally serendipitous. Recently, the reversed allosteric communication theory has been proposed, providing a feasible tool for the unbiased detection of allosteric sites. Herein, we review the latest research on the reversed allosteric communication effect using the examples of sirtuin 6, epidermal growth factor receptor, 3-phosphoinositide-dependent protein kinase 1, and Related to A and C kinases (RAC) serine/threonine protein kinase B and recapitulate the methodologies of reversed allosteric communication strategy. The novel reversed allosteric communication strategy greatly expands the horizon of allosteric site identification and allosteric mechanism exploration and is expected to accelerate an end-to-end framework for drug discovery.
Collapse
Affiliation(s)
- Jigang Fan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.,State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,Zhiyuan Innovative Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Duan Ni
- The Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | - Shaoyong Lu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.,State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.,State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
21
|
Rehman AU, Lu S, Khan AA, Khurshid B, Rasheed S, Wadood A, Zhang J. Hidden allosteric sites and De-Novo drug design. Expert Opin Drug Discov 2021; 17:283-295. [PMID: 34933653 DOI: 10.1080/17460441.2022.2017876] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Hidden allosteric sites are not visible in apo-crystal structures, but they may be visible in holo-structures when a certain ligand binds and maintains the ligand intended conformation. Several computational and experimental techniques have been used to investigate these hidden sites but identifying them remains a challenge. AREAS COVERED This review provides a summary of the many theoretical approaches for predicting hidden allosteric sites in disease-related proteins. Furthermore, promising cases have been thoroughly examined to reveal the hidden allosteric site and its modulator. EXPERT OPINION In the recent past, with the development in scientific techniques and bioinformatics tools, the number of drug targets for complex human diseases has significantly increased but unfortunately most of these targets are undruggable due to several reasons. Alternative strategies such as finding cryptic (hidden) allosteric sites are an attractive approach for exploitation of the discovery of new targets. These hidden sites are difficult to recognize compared to allosteric sites, mainly due to a lack of visibility in the crystal structure. In our opinion, after many years of development, MD simulations are finally becoming successful for obtaining a detailed molecular description of drug-target interaction.
Collapse
Affiliation(s)
- Ashfaq Ur Rehman
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Abdul Aziz Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Beenish Khurshid
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Salman Rasheed
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Ni D, Chai Z, Wang Y, Li M, Yu Z, Liu Y, Lu S, Zhang J. Along the allostery stream: Recent advances in computational methods for allosteric drug discovery. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1585] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Duan Ni
- College of Pharmacy Ningxia Medical University Yinchuan China
- The Charles Perkins Centre University of Sydney Sydney New South Wales Australia
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital Second Military Medical University Shanghai China
| | - Ying Wang
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Mingyu Li
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
| | | | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Shaoyong Lu
- College of Pharmacy Ningxia Medical University Yinchuan China
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jian Zhang
- College of Pharmacy Ningxia Medical University Yinchuan China
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou China
| |
Collapse
|
23
|
Thomas T, Roux B. TYROSINE KINASES: COMPLEX MOLECULAR SYSTEMS CHALLENGING COMPUTATIONAL METHODOLOGIES. THE EUROPEAN PHYSICAL JOURNAL. B 2021; 94:203. [PMID: 36524055 PMCID: PMC9749240 DOI: 10.1140/epjb/s10051-021-00207-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/14/2021] [Indexed: 05/28/2023]
Abstract
Classical molecular dynamics (MD) simulations based on atomic models play an increasingly important role in a wide range of applications in physics, biology, and chemistry. Nonetheless, generating genuine knowledge about biological systems using MD simulations remains challenging. Protein tyrosine kinases are important cellular signaling enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Due to the large conformational changes and long timescales involved in their function, these kinases present particularly challenging problems to modern computational and theoretical frameworks aimed at elucidating the dynamics of complex biomolecular systems. Markov state models have achieved limited success in tackling the broader conformational ensemble and biased methods are often employed to examine specific long timescale events. Recent advances in machine learning continue to push the limitations of current methodologies and provide notable improvements when integrated with the existing frameworks. A broad perspective is drawn from a critical review of recent studies.
Collapse
|
24
|
Glielmo A, Husic BE, Rodriguez A, Clementi C, Noé F, Laio A. Unsupervised Learning Methods for Molecular Simulation Data. Chem Rev 2021; 121:9722-9758. [PMID: 33945269 PMCID: PMC8391792 DOI: 10.1021/acs.chemrev.0c01195] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Indexed: 12/21/2022]
Abstract
Unsupervised learning is becoming an essential tool to analyze the increasingly large amounts of data produced by atomistic and molecular simulations, in material science, solid state physics, biophysics, and biochemistry. In this Review, we provide a comprehensive overview of the methods of unsupervised learning that have been most commonly used to investigate simulation data and indicate likely directions for further developments in the field. In particular, we discuss feature representation of molecular systems and present state-of-the-art algorithms of dimensionality reduction, density estimation, and clustering, and kinetic models. We divide our discussion into self-contained sections, each discussing a specific method. In each section, we briefly touch upon the mathematical and algorithmic foundations of the method, highlight its strengths and limitations, and describe the specific ways in which it has been used-or can be used-to analyze molecular simulation data.
Collapse
Affiliation(s)
- Aldo Glielmo
- International
School for Advanced Studies (SISSA) 34014 Trieste, Italy
| | - Brooke E. Husic
- Freie
Universität Berlin, Department of Mathematics
and Computer Science, 14195 Berlin, Germany
| | - Alex Rodriguez
- International Centre for Theoretical
Physics (ICTP), Condensed Matter and Statistical
Physics Section, 34100 Trieste, Italy
| | - Cecilia Clementi
- Freie
Universität Berlin, Department for
Physics, 14195 Berlin, Germany
- Rice
University Houston, Department of Chemistry, Houston, Texas 77005, United States
| | - Frank Noé
- Freie
Universität Berlin, Department of Mathematics
and Computer Science, 14195 Berlin, Germany
- Freie
Universität Berlin, Department for
Physics, 14195 Berlin, Germany
- Rice
University Houston, Department of Chemistry, Houston, Texas 77005, United States
| | - Alessandro Laio
- International
School for Advanced Studies (SISSA) 34014 Trieste, Italy
- International Centre for Theoretical
Physics (ICTP), Condensed Matter and Statistical
Physics Section, 34100 Trieste, Italy
| |
Collapse
|
25
|
Hempel T, Del Razo MJ, Lee CT, Taylor BC, Amaro RE, Noé F. Independent Markov decomposition: Toward modeling kinetics of biomolecular complexes. Proc Natl Acad Sci U S A 2021; 118:e2105230118. [PMID: 34321356 PMCID: PMC8346863 DOI: 10.1073/pnas.2105230118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To advance the mission of in silico cell biology, modeling the interactions of large and complex biological systems becomes increasingly relevant. The combination of molecular dynamics (MD) simulations and Markov state models (MSMs) has enabled the construction of simplified models of molecular kinetics on long timescales. Despite its success, this approach is inherently limited by the size of the molecular system. With increasing size of macromolecular complexes, the number of independent or weakly coupled subsystems increases, and the number of global system states increases exponentially, making the sampling of all distinct global states unfeasible. In this work, we present a technique called independent Markov decomposition (IMD) that leverages weak coupling between subsystems to compute a global kinetic model without requiring the sampling of all combinatorial states of subsystems. We give a theoretical basis for IMD and propose an approach for finding and validating such a decomposition. Using empirical few-state MSMs of ion channel models that are well established in electrophysiology, we demonstrate that IMD models can reproduce experimental conductance measurements with a major reduction in sampling compared with a standard MSM approach. We further show how to find the optimal partition of all-atom protein simulations into weakly coupled subunits.
Collapse
Affiliation(s)
- Tim Hempel
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Mauricio J Del Razo
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1090 GD Amsterdam, The Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
- Dutch Institute for Emergent Phenomena, 1090 GL Amsterdam, The Netherlands
| | - Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Bryn C Taylor
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093
| | - Rommie E Amaro
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093;
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany;
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Chemistry, Rice University, Houston, TX 77005
| |
Collapse
|
26
|
Dongre AV, Das S, Bellur A, Kumar S, Chandrashekarmath A, Karmakar T, Balaram P, Balasubramanian S, Balaram H. Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation. Biophys J 2021; 120:3732-3746. [PMID: 34302792 DOI: 10.1016/j.bpj.2021.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022] Open
Abstract
Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl residues with the backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ and can serve as a new route for hyperthermostability. However, such a succinimide is typically prone to hydrolysis, transforming to either an aspartyl or β-isoaspartyl residue. Here, we present the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase and, using enhanced sampling molecular dynamics simulations, address the mechanism of its increased thermostability, up to 100°C, imparted by an unexpectedly stable succinimidyl residue at position 109. The stability of SNN109 to hydrolysis is seen to arise from its electrostatic shielding by the side-chain carboxylate group of its succeeding residue Asp110, as well as through n → π∗ interactions between SNN109 and its preceding residue Glu108, both of which prevent water access to SNN. The stable succinimidyl residue induces the formation of an α-turn structure involving 13-atom hydrogen bonding, which locks the local conformation, reducing protein flexibility. The destabilization of the protein upon replacement of SNN with a Φ-restricted prolyl residue highlights the specificity of the succinimidyl residue in imparting hyperthermostability to the enzyme. The conservation of the succinimide-forming tripeptide sequence (E(N/D)(E/D)) in several archaeal GATases strongly suggests an adaptation of this otherwise detrimental post-translational modification as a harbinger of thermostability.
Collapse
Affiliation(s)
- Aparna Vilas Dongre
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sudip Das
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Asutosh Bellur
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sanjeev Kumar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Anusha Chandrashekarmath
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Tarak Karmakar
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; Department of Chemistry and Applied Biosciences, ETH Zurich, Lugano, Ticino, Switzerland; Facoltà di Informatica, Istituto di Scienze Computationali, Università della Svizzera Italiana, Lugano, Ticino, Switzerland
| | - Padmanabhan Balaram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|
27
|
Reduced efficacy of a Src kinase inhibitor in crowded protein solution. Nat Commun 2021; 12:4099. [PMID: 34215742 PMCID: PMC8253829 DOI: 10.1038/s41467-021-24349-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
The inside of a cell is highly crowded with proteins and other biomolecules. How proteins express their specific functions together with many off-target proteins in crowded cellular environments is largely unknown. Here, we investigate an inhibitor binding with c-Src kinase using atomistic molecular dynamics (MD) simulations in dilute as well as crowded protein solution. The populations of the inhibitor, 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1), in bulk solution and on the surface of c-Src kinase are reduced as the concentration of crowder bovine serum albumins (BSAs) increases. This observation is consistent with the reduced PP1 inhibitor efficacy in experimental c-Src kinase assays in addition with BSAs. The crowded environment changes the major binding pathway of PP1 toward c-Src kinase compared to that in dilute solution. This change is explained based on the population shift mechanism of local conformations near the inhibitor binding site in c-Src kinase.
Collapse
|
28
|
Qiu Y, Yin X, Li X, Wang Y, Fu Q, Huang R, Lu S. Untangling Dual-Targeting Therapeutic Mechanism of Epidermal Growth Factor Receptor (EGFR) Based on Reversed Allosteric Communication. Pharmaceutics 2021; 13:747. [PMID: 34070173 PMCID: PMC8158526 DOI: 10.3390/pharmaceutics13050747] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Dual-targeting therapeutics by coadministration of allosteric and orthosteric drugs is drawing increased attention as a revolutionary strategy for overcoming the drug-resistance problems. It was further observed that the occupation of orthosteric sites by therapeutics agents has the potential to enhance allosteric ligand binding, which leads to improved potency of allosteric drugs. Epidermal growth factor receptor (EGFR), as one of the most critical anti-cancer targets belonging to the receptor tyrosine kinase family, represents a quintessential example. It was revealed that osimertinib, an ATP-competitive covalent EGFR inhibitor, remarkably enhanced the affinity of a recently developed allosteric inhibitor JBJ-04-125-02 for EGFRL858R/T790M. Here, we utilized extensive large-scale molecular dynamics simulations and the reversed allosteric communication to untangle the detailed molecular underpinning, in which occupation of osimertinib at the orthosteric site altered the overall conformational ensemble of EGFR mutant and reshaped the allosteric site via long-distance signaling. A unique intermediate state resembling the active conformation was identified, which was further stabilized by osimertinib loading. Based on the allosteric communication pathway, we predicted a novel allosteric site positioned around K867, E868, H893, and K960 within the intermediate state. Its correlation with the orthosteric site was validated by both structural and energetic analysis, and its low sequence conservation indicated the potential for selective targeting across the human kinome. Together, these findings not only provided a mechanistic basis for future clinical application of the dual-targeting therapeutics, but also explored an innovative perception of allosteric inhibition of tyrosine kinase signaling.
Collapse
Affiliation(s)
- Yuran Qiu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (Y.Q.); (X.L.); (Y.W.)
| | - Xiaolan Yin
- Department of Radiotherapy, Changhai Hospital (Hongkou District), Naval Medical University, Shanghai 200081, China;
| | - Xinyi Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (Y.Q.); (X.L.); (Y.W.)
| | - Yuanhao Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (Y.Q.); (X.L.); (Y.W.)
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Renhua Huang
- Department of Radiation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (Y.Q.); (X.L.); (Y.W.)
| |
Collapse
|
29
|
Kakarala KK, Jamil K. Identification of novel allosteric binding sites and multi-targeted allosteric inhibitors of receptor and non-receptor tyrosine kinases using a computational approach. J Biomol Struct Dyn 2021; 40:6889-6909. [PMID: 33682622 DOI: 10.1080/07391102.2021.1891140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
EGFR1, VEGFR2, Bcr-Abl and Src kinases are key drug targets in non-small cell lung cancer (NSCLC), bladder cancer, pancreatic cancer, CML, ALL, colorectal cancer, etc. The available drugs targeting these kinases have limited therapeutic efficacy due to novel mutations resulting in drug resistance and toxicity, as they target ATP binding site. Allosteric drugs have shown promising results in overcoming drug resistance, but the discovery of allosteric drugs is challenging. The allosteric binding pockets are difficult to predict, as they are generally associated with high energy conformations and regulate protein function in yet unknown mechanisms. In addition, the discovery of drugs using conventional methods takes long time and goes through several challenges, putting the lives of many cancer patients at risk. Therefore, the aim of the present work was to apply the most successful, drug repurposing approach in combination with computational methods to identify kinase inhibitors targeting novel allosteric sites on protein structure and assess their potential multi-kinase binding affinity. Multiple crystal structures belonging to EGFR1, VEGFR2, Bcr-Abl and Src tyrosine kinases were selected, including mutated, inhibitor bound and allosteric conformations to identify potential leads, close to physiological conditions. Interestingly the potential inhibitors identified were peptides. The drugs identified in this study could be used in therapy as a single multi-kinase inhibitor or in a combination of single kinase inhibitors after experimental validation. In addition, we have also identified new hot spots that are likely to be druggable allosteric sites for drug discovery of kinase-specific drugs in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Kaiser Jamil
- Bhagwan Mahavir Medical Research Center, Hyderabad, Telangana, India
| |
Collapse
|
30
|
Raich L, Meier K, Günther J, Christ CD, Noé F, Olsson S. Discovery of a hidden transient state in all bromodomain families. Proc Natl Acad Sci U S A 2021; 118:e2017427118. [PMID: 33468647 PMCID: PMC7848705 DOI: 10.1073/pnas.2017427118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bromodomains (BDs) are small protein modules that interact with acetylated marks in histones. These posttranslational modifications are pivotal to regulate gene expression, making BDs promising targets to treat several diseases. While the general structure of BDs is well known, their dynamical features and their interplay with other macromolecules are poorly understood, hampering the rational design of potent and selective inhibitors. Here, we combine extensive molecular dynamics simulations, Markov state modeling, and available structural data to reveal a transiently formed state that is conserved across all BD families. It involves the breaking of two backbone hydrogen bonds that anchor the ZA-loop with the αA helix, opening a cryptic pocket that partially occludes the one associated to histone binding. By analyzing more than 1,900 experimental structures, we unveil just two adopting the hidden state, explaining why it has been previously unnoticed and providing direct structural evidence for its existence. Our results suggest that this state is an allosteric regulatory switch for BDs, potentially related to a recently unveiled BD-DNA-binding mode.
Collapse
Affiliation(s)
- Lluís Raich
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katharina Meier
- Computational Molecular Design, Pharmaceuticals, R&D, Bayer AG, 42096 Wuppertal, Germany
| | - Judith Günther
- Computational Molecular Design, Pharmaceuticals, R&D, Bayer AG, 13342 Berlin, Germany
| | - Clara D Christ
- Computational Molecular Design, Pharmaceuticals, R&D, Bayer AG, 13342 Berlin, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany;
- Department of Chemistry, Rice University, Houston, TX 77005
| | - Simon Olsson
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany;
| |
Collapse
|
31
|
Wu H, Huang H, Post CB. All-atom adaptively biased path optimization of Src kinase conformational inactivation: Switched electrostatic network in the concerted motion of αC helix and the activation loop. J Chem Phys 2020; 153:175101. [PMID: 33167630 DOI: 10.1063/5.0021603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A method to optimize a conformational pathway through a space of well-chosen reduced variables is employed to advance our understanding of protein conformational equilibrium. The adaptively biased path optimization strategy utilizes unrestricted, enhanced sampling in the region of a path in the reduced-variable space to identify a broad path between two stable end-states. Application to the inactivation transition of the Src tyrosine kinase catalytic domain reveals new insight into this well studied conformational equilibrium. The mechanistic description gained from identifying the motions and structural features along the path includes details of the switched electrostatic network found to underpin the transition. The free energy barrier along the path results from rotation of a helix, αC, that is tightly correlated with motions in the activation loop (A-loop) as well as distal regions in the C-lobe. Path profiles of the reduced variables clearly demonstrate the strongly correlated motions. The exchange of electrostatic interactions among residues in the network is key to these interdependent motions. In addition, the increased resolution from an all-atom model in defining the path shows multiple components for the A-loop motion and that different parts of the A-loop contribute throughout the length of the path.
Collapse
Affiliation(s)
- Heng Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| | - He Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
32
|
Ni D, Wei J, He X, Rehman AU, Li X, Qiu Y, Pu J, Lu S, Zhang J. Discovery of cryptic allosteric sites using reversed allosteric communication by a combined computational and experimental strategy. Chem Sci 2020; 12:464-476. [PMID: 34163609 PMCID: PMC8178949 DOI: 10.1039/d0sc05131d] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Allostery, which is one of the most direct and efficient methods to fine-tune protein functions, has gained increasing recognition in drug discovery. However, there are several challenges associated with the identification of allosteric sites, which is the fundamental cornerstone of drug design. Previous studies on allosteric site predictions have focused on communication signals propagating from the allosteric sites to the orthosteric sites. However, recent biochemical studies have revealed that allosteric coupling is bidirectional and that orthosteric perturbations can modulate allosteric sites through reversed allosteric communication. Here, we proposed a new framework for the prediction of allosteric sites based on reversed allosteric communication using a combination of computational and experimental strategies (molecular dynamics simulations, Markov state models, and site-directed mutagenesis). The desirable performance of our approach was demonstrated by predicting the known allosteric site of the small molecule MDL-801 in nicotinamide dinucleotide (NAD+)-dependent protein lysine deacetylase sirtuin 6 (Sirt6). A potential novel cryptic allosteric site located around the L116, R119, and S120 residues within the dynamic ensemble of Sirt6 was identified. The allosteric effect of the predicted site was further quantified and validated using both computational and experimental approaches. This study proposed a state-of-the-art computational pipeline for detecting allosteric sites based on reversed allosteric communication. This method enabled the identification of a previously uncharacterized potential cryptic allosteric site on Sirt6, which provides a starting point for allosteric drug design that can aid the identification of candidate pockets in other therapeutic targets. Using reversed allosteric communication, we performed MD simulations, MSMs, and mutagenesis experiments, to discover allosteric sites. It reproduced the known allosteric site for MDL-801 on Sirt6 and uncovered a novel cryptic allosteric Pocket X.![]()
Collapse
Affiliation(s)
- Duan Ni
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China .,The Charles Perkins Centre, University of Sydney Sydney NSW 2006 Australia
| | - Jiacheng Wei
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Xinheng He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Ashfaq Ur Rehman
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Xinyi Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Yuran Qiu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200120 China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China .,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China .,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China.,School of Pharmaceutical Sciences, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
33
|
Caffeoyl-Prolyl-Histidine Amide Inhibits Fyn and Alleviates Atopic Dermatitis-Like Phenotypes via Suppression of NF-κB Activation. Int J Mol Sci 2020; 21:ijms21197160. [PMID: 32998341 PMCID: PMC7582254 DOI: 10.3390/ijms21197160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 11/26/2022] Open
Abstract
Caffeic acid (CA) is produced from a variety of plants and has diverse biological functions, including anti-inflammation activity. It has been recently demonstrated that caffeoyl-prolyl-histidine amide (CA-PH), which is CA conjugated with proline-histidine dipeptide, relieves atopic dermatitis (AD)-like phenotypes in mouse. In this study, we investigated the molecular mechanism underlying CA-PH-mediated alleviation of AD-like phenotypes using cell line and AD mouse models. We confirmed that CA-PH suppresses AD-like phenotypes, such as increased epidermal thickening, infiltration of mast cells, and dysregulated gene expression of cytokines. CA-PH suppressed up-regulation of cytokine expression through inhibition of nuclear translocation of NF-κB. Using a CA-PH affinity pull-down assay, we found that CA-PH binds to Fyn. In silico molecular docking and enzyme kinetic studies revealed that CA-PH binds to the ATP binding site and inhibits Fyn competitively with ATP. CA-PH further suppressed spleen tyrosine kinase (SYK)/inhibitor of nuclear factor kappa B kinase (IKK)/inhibitor of nuclear factor kappa B (IκB) signaling, which is required for nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. In addition, chronic application of CA-PH, in contrast with that of glucocorticoids, did not induce up-regulation of regulated in development and DNA damage response 1 (REDD1), reduction of mammalian target of rapamycin (mTOR) signaling, or skin atrophy. Thus, our study suggests that CA-PH treatment may help to reduce skin inflammation via down-regulation of NF-κB activation, and Fyn may be a new therapeutic target of inflammatory skin diseases, such as AD.
Collapse
|
34
|
Du Y, Wang R. Revealing the Unbinding Kinetics and Mechanism of Type I and Type II Protein Kinase Inhibitors by Local-Scaled Molecular Dynamics Simulations. J Chem Theory Comput 2020; 16:6620-6632. [PMID: 32841004 DOI: 10.1021/acs.jctc.0c00342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein kinase inhibitors disrupt phosphorylation of the target kinases, which are an important class of drug for treating cancer and other diseases. Conventional structure-based design methods (such as molecular docking) focus on the static binding mode of the kinase inhibitor with its target. However, dissociation kinetic properties of a drug molecule are found to correlate with its residence time in vivo and thus have drawn the attention of drug designers in recent years. In this study, we have applied the local-scaled molecular dynamics (MD) simulation enabled in GROMACS software to explore the unbinding mechanism of a total of 41 type I and type II kinase inhibitors. Our simulation considered multiple starting configurations as well as possible protonation states of kinase inhibitors. Based on our local-scaled MD results, we discovered that the integrals of the favorable binding energy during dissociation correlated well (R2 = 0.64) with the experimental dissociation rate constants of those kinase inhibitors on the entire data set. Given its accuracy and technical advantage, this method may serve as a practical option for estimating this important property in reality. Our simulation also provided a reasonable explanation of the dynamic properties of kinase and its inhibitor as well as the role of relevant water molecules in dissociation.
Collapse
Affiliation(s)
- Yu Du
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Renxiao Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| |
Collapse
|
35
|
Iverson DB, Xiao Y, Jones DN, Eisenmesser EZ, Ahn NG. Activation Loop Dynamics Are Coupled to Core Motions in Extracellular Signal-Regulated Kinase-2. Biochemistry 2020; 59:2698-2706. [PMID: 32643366 DOI: 10.1021/acs.biochem.0c00485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The activation loop segment in protein kinases is a common site for regulatory phosphorylation. In extracellular signal-regulated kinase 2 (ERK2), dual phosphorylation and conformational rearrangement of the activation loop accompany enzyme activation. X-ray structures show the active conformation to be stabilized by multiple ion pair interactions between phosphorylated threonine and tyrosine residues in the loop and six arginine residues in the kinase core. Despite the extensive salt bridge network, nuclear magnetic resonance Carr-Purcell-Meiboom-Gill relaxation dispersion experiments show that the phosphorylated activation loop is conformationally mobile on a microsecond to millisecond time scale. The dynamics of the loop match those of previously reported global exchange within the kinase core region and surrounding the catalytic site that have been found to facilitate productive nucleotide binding. Mutations in the core region that alter these global motions also alter the dynamics of the activation loop. Conversely, mutations in the activation loop perturb the global exchange within the kinase core. Together, these findings provide evidence for coupling between motions in the activation loop and those surrounding the catalytic site in the active state of the kinase. Thus, the activation loop segment in dual-phosphorylated ERK2 is not held statically in the active X-ray conformation but instead undergoes exchange between conformers separated by a small energetic barrier, serving as part of a dynamic allosteric network controlling nucleotide binding and catalytic function.
Collapse
Affiliation(s)
- Dylan B Iverson
- Department of Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Yao Xiao
- Department of Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | | | | | - Natalie G Ahn
- Department of Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
36
|
Crean RM, Gardner JM, Kamerlin SCL. Harnessing Conformational Plasticity to Generate Designer Enzymes. J Am Chem Soc 2020; 142:11324-11342. [PMID: 32496764 PMCID: PMC7467679 DOI: 10.1021/jacs.0c04924] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 02/08/2023]
Abstract
Recent years have witnessed an explosion of interest in understanding the role of conformational dynamics both in the evolution of new enzymatic activities from existing enzymes and in facilitating the emergence of enzymatic activity de novo on scaffolds that were previously non-catalytic. There are also an increasing number of examples in the literature of targeted engineering of conformational dynamics being successfully used to alter enzyme selectivity and activity. Despite the obvious importance of conformational dynamics to both enzyme function and evolvability, many (although not all) computational design approaches still focus either on pure sequence-based approaches or on using structures with limited flexibility to guide the design. However, there exist a wide variety of computational approaches that can be (re)purposed to introduce conformational dynamics as a key consideration in the design process. Coupled with laboratory evolution and more conventional existing sequence- and structure-based approaches, these techniques provide powerful tools for greatly expanding the protein engineering toolkit. This Perspective provides an overview of evolutionary studies that have dissected the role of conformational dynamics in facilitating the emergence of novel enzymes, as well as advances in computational approaches that allow one to target conformational dynamics as part of enzyme design. Harnessing conformational dynamics in engineering studies is a powerful paradigm with which to engineer the next generation of designer biocatalysts.
Collapse
Affiliation(s)
- Rory M. Crean
- Department of Chemistry -
BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Jasmine M. Gardner
- Department of Chemistry -
BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Shina C. L. Kamerlin
- Department of Chemistry -
BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| |
Collapse
|
37
|
Rahman R, Ung PMU, Schlessinger A. KinaMetrix: a web resource to investigate kinase conformations and inhibitor space. Nucleic Acids Res 2020; 47:D361-D366. [PMID: 30321373 PMCID: PMC6323924 DOI: 10.1093/nar/gky916] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022] Open
Abstract
Protein kinases are among the most explored protein drug targets. Visualization of kinase conformations is critical for understanding structure–function relationship in this family and for developing chemically unique, conformation-specific small molecule drugs. We have developed Kinformation, a random forest classifier that annotates the conformation of over 3500 protein kinase structures in the Protein Data Bank. Kinformation was trained on structural descriptors derived from functionally important motifs to automatically categorize kinases into five major conformations with pharmacological relevance. Here we present KinaMetrix (http://KinaMetrix.com), a web resource enabling researchers to investigate the protein kinase conformational space as well as a subset of kinase inhibitors that exhibit conformational specificity. KinaMetrix allows users to classify uploaded kinase structures, as well as to derive structural descriptors of protein kinases. Uploaded structures can then be compared to atomic structures of other kinases, enabling users to identify kinases that occupy a similar conformational space to their uploaded structure. Finally, KinaMetrix also serves as a repository for both small molecule substructures that are significantly associated with each conformation type, and for homology models of kinases in inactive conformations. We expect KinaMetrix to serve as a resource for researchers studying kinase structural biology or developing conformation-specific kinase inhibitors.
Collapse
Affiliation(s)
- Rayees Rahman
- Department of Pharmacological Sciences, Icahn school of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Man-Un Ung
- Department of Pharmacological Sciences, Icahn school of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn school of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
38
|
Narayan B, Fathizadeh A, Templeton C, He P, Arasteh S, Elber R, Buchete NV, Levy RM. The transition between active and inactive conformations of Abl kinase studied by rock climbing and Milestoning. Biochim Biophys Acta Gen Subj 2020; 1864:129508. [PMID: 31884066 PMCID: PMC7012767 DOI: 10.1016/j.bbagen.2019.129508] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Kinases are a family of enzymes that catalyze the transfer of the ɤ-phosphate group from ATP to a protein's residue. Malfunctioning kinases are involved in many health problems such as cardiovascular diseases, diabetes, and cancer. Kinases transitions between multiple conformations of inactive to active forms attracted considerable interest. METHOD A reaction coordinate is computed for the transition between the active to inactive conformation in Abl kinase with a focus on the DFG-in to DFG-out flip. The method of Rock Climbing is used to construct a path locally, which is subsequently optimized using a functional of the entire path. The discrete coordinate sets along the reaction path are used in a Milestoning calculation of the free energy landscape and the rate of the transition. RESULTS The estimated transition times are between a few milliseconds and seconds, consistent with simulations of the kinetics and with indirect experimental data. The activation requires the transient dissociation of the salt bridge between Lys271 and Glu286. The salt bridge reforms once the DFG motif is stabilized by a locked conformation of Phe382. About ten residues are identified that contribute significantly to the process and are included as part of the reaction space. CONCLUSIONS The transition from DFG-in to DFG-out in Abl kinase was simulated using atomic resolution of a fully solvated protein yielding detailed description of the kinetics and the mechanism of the DFG flip. The results are consistent with other computational methods that simulate the kinetics and with some indirect experimental measurements. GENERAL SIGNIFICANCE The activation of kinases includes a conformational transition of the DFG motif that is important for enzyme activity but is not accessible to conventional Molecular Dynamics. We propose a detailed mechanism for the transition, at a timescale longer than conventional MD, using a combination of reaction path and Milestoning algorithms. The mechanism includes local structural adjustments near the binding site as well as collective interactions with more remote residues.
Collapse
Affiliation(s)
- Brajesh Narayan
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Arman Fathizadeh
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, 201 E. 24(th) Street, 1 University Station (C0200), Austin, TX 78712-1229, USA
| | - Clark Templeton
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keaton St. Stop C0400, Austin, TX 78712-1589, USA
| | - Peng He
- Department of Chemistry, Temple University, 1801 N Broad Street, Philadelphia, PA 19122, USA
| | - Shima Arasteh
- Department of Chemistry, Temple University, 1801 N Broad Street, Philadelphia, PA 19122, USA
| | - Ron Elber
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, 201 E. 24(th) Street, 1 University Station (C0200), Austin, TX 78712-1229, USA; Department of Chemistry, University of Texas at Austin, 2506 Speedway STOP A5300, Austin, TX 78712-1224, USA.
| | | | - Ron M Levy
- Department of Chemistry, Temple University, 1801 N Broad Street, Philadelphia, PA 19122, USA
| |
Collapse
|
39
|
Kuzmanic A, Bowman GR, Juarez-Jimenez J, Michel J, Gervasio FL. Investigating Cryptic Binding Sites by Molecular Dynamics Simulations. Acc Chem Res 2020; 53:654-661. [PMID: 32134250 DOI: 10.1021/acs.accounts.9b00613] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This Account highlights recent advances and discusses major challenges in investigations of cryptic (hidden) binding sites by molecular simulations. Cryptic binding sites are not visible in protein targets crystallized without a ligand and only become visible crystallographically upon binding events. These sites have been shown to be druggable and might provide a rare opportunity to target difficult proteins. However, due to their hidden nature, they are difficult to find through experimental screening. Computational methods based on atomistic molecular simulations remain one of the best approaches to identify and characterize cryptic binding sites. However, not all methods are equally efficient. Some are more apt at quickly probing protein dynamics but do not provide thermodynamic or druggability information, while others that are able to provide such data are demanding in terms of time and resources. Here, we review the recent contributions of mixed-solvent simulations, metadynamics, Markov state models, and other enhanced sampling methods to the field of cryptic site identification and characterization. We discuss how these methods were able to provide precious information on the nature of the site opening mechanisms, to predict previously unknown sites which were used to design new ligands, and to compute the free energy landscapes and kinetics associated with the opening of the sites and the binding of the ligands. We highlight the potential and the importance of such predictions in drug discovery, especially for difficult ("undruggable") targets. We also discuss the major challenges in the field and their possible solutions.
Collapse
Affiliation(s)
- Antonija Kuzmanic
- Department of Chemistry and Institute of Structural and Molecular Biology, University College London, London WC1E 0AJ, United Kingdom
| | - Gregory R. Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Jordi Juarez-Jimenez
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 9FJ, United Kingdom
| | - Julien Michel
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 9FJ, United Kingdom
| | - Francesco L. Gervasio
- Department of Chemistry and Institute of Structural and Molecular Biology, University College London, London WC1E 0AJ, United Kingdom
- Pharmaceutical Sciences, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
40
|
Naresh GKRS, Guruprasad L. Enhanced metastable state models of TAM kinase binding to cabozantinib explains the dynamic nature of receptor tyrosine kinases. J Biomol Struct Dyn 2020; 39:1213-1235. [PMID: 32070235 DOI: 10.1080/07391102.2020.1730968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Receptor tyrosine kinases (RTKs) are essential proteins in the regulation of cell signaling. Tyro3, Axl and Mer are members of TAM RTKs and are overexpressed in several cancer forms. Kinase inhibitors such as cabozantinib, foretinib are reported to inhibit TAM kinases at nanomolar concentrations. The atomistic details of structure and mechanism of functional regulation is required to understand their normal physiological process and when bound to an inhibitor. The docking of cabozantinib into the active state conformations of TAM kinases (crystal structure and computational models) revealed the best binding pose and the complex formation that is mediated through non-bonding interactions involving the hinge region residues. The alterations in the conformations and the regions of flexibility in apo and complexed TAM kinases as a course of time are studied using 250 ns molecular dynamics (MD) simulations. The post-MD trajectory analysis using Python libraries like ProDy, MDTraj and PyEMMA revealed encrypted protein dynamic motions in active kinetic metastable states. Comparison between Principal component analysis and Anisotropic mode analysis deciphered structural residue interactions and salt bridge contacts between apo and inhibitor bound TAM kinases. Various structural changes occurred in αC-helix and activation loop involving hydrogen bonding between residues from Lys-(β3 sheet), Glu-(αC-helix) and Asp-(DFG-motif) resulting in higher RMSD. Mechanical stiffness plots revealed that similar regions in apo and cabozantinib bound Axl fluctuated during MD simulations whereas different regions in Tyro3 and Mer kinases. The residue interaction network plots revealed important salt bridges that lead to constrained domain motions in the TAM kinases.Communicated by Ramaswamy H. Sarma.
Collapse
|
41
|
'Piperazining' the catalytic gatekeepers: unraveling the pan-inhibition of SRC kinases; LYN, FYN and BLK by masitinib. Future Med Chem 2019; 11:2365-2380. [PMID: 31516031 DOI: 10.4155/fmc-2018-0354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Blocking oncogenic signaling of B-cell receptor (BCR) has been explored as a viable strategy in the treatment of diffuse large B-cell lymphoma. Masitinib is shown to multitarget LYN, FYN and BLK kinases that propagate BCR signals to downstream effectors. However, the molecular mechanisms of its selectivity and pan-inhibition remain elusive. Materials & methods: This study therefore employed molecular dynamics simulations coupled with advanced post-molecular dynamics simulation techniques to unravel the structural mechanisms that inform the reported multitargeting ability of masitinib. Results: Molecular dynamics simulations revealed initial selective targeting of catalytic residues (Asp334/Glu335 - LYN; Asp130/Asp148/Glu54 - FYN; Asp89 - BLK) by masitinib, with high-affinity interactions via its piperazine ring at the entrance of the ATP-binding pockets, before systematic access into the hydrophobic deep pocket grooves. Conclusion: Identification of these 'gatekeeper' residues could open up a novel paradigm of structure-based design of highly selective pan-inhibitors of BCR signaling in the treatment of diffuse large B-cell lymphoma.
Collapse
|
42
|
Tsai CC, Yue Z, Shen J. How Electrostatic Coupling Enables Conformational Plasticity in a Tyrosine Kinase. J Am Chem Soc 2019; 141:15092-15101. [PMID: 31476863 DOI: 10.1021/jacs.9b06064] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein kinases are important cellular signaling molecules involved in cancer and a multitude of other diseases. It is well-known that inactive kinases display a remarkable conformational plasticity; however, the molecular mechanisms remain poorly understood. Conformational heterogeneity presents an opportunity but also a challenge in kinase drug discovery. The ability to predictively model various conformational states could accelerate selective inhibitor design. Here we performed a proton-coupled molecular dynamics study to explore the conformational landscape of a c-Src kinase. Starting from a completely inactive structure, the simulations captured all major types of conformational states without the use of a target structure, mutation, or bias. The simulations allowed us to test the experimental hypotheses regarding the mechanism of DFG flip, its coupling to the αC-helix movement, and the formation of regulatory spine. Perhaps the most significant finding is how key titratable residues, such as DFG-Asp, αC-Glu, and HRD-Asp, change protonation states dependent on the DFG, αC, and activation loop conformations. Our data offer direct evidence to support a long-standing hypothesis that protonation of Asp favors the DFG-out state and explain why DFG flip is also possible in simulations with deprotonated Asp. The simulations also revealed intermediate states, among which a unique DFG-out/α-C state formed as DFG-Asp is moved into a back pocket forming a salt bridge with catalytic Lys, which can be tested in selective inhibitor design. Our finding of how proton coupling enables the remarkable conformational plasticity may shift the paradigm of computational studies of kinases which assume fixed protonation states. Understanding proton-coupled conformational dynamics may hold a key to further innovation in kinase drug discovery.
Collapse
Affiliation(s)
- Cheng-Chieh Tsai
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Zhi Yue
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Jana Shen
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| |
Collapse
|
43
|
Shao Q, Zhu W. Exploring the Ligand Binding/Unbinding Pathway by Selectively Enhanced Sampling of Ligand in a Protein-Ligand Complex. J Phys Chem B 2019; 123:7974-7983. [PMID: 31478672 DOI: 10.1021/acs.jpcb.9b05226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding the protein-ligand binding is of fundamental biological interest and is essential for structure-based drug design. The difficulty in capturing the dynamic process, however, poses a great challenge for current experimental and theoretical simulation techniques. A selective integrated-tempering-sampling molecular dynamics (SITSMD) method offering an option for selectively enhanced sampling of the ligand in a protein-ligand complex was utilized to quantitatively illuminate the binding of benzamidine to the wild-type trypsin protease and its two mutants (S214E and S214K). The SITSMD simulations could produce consistent results as the extensive conventional MD simulation and gave additional insights into the binding pathway for the test protein-ligand complex system using significantly saved computational resource and time, indicating the potential of such a method in investigating protein-ligand binding. Additionally, the simulations identified the different roles of trypsin-benzamidine van der Waals (vdW) and electrostatic interactions in the binding: the former interaction works as the driving force for dragging the benzamidine close to the native binding pocket, and the latter interaction mainly contributes to stabilizing the benzamidine inside the pocket. The S214E mutation introduces more favorable electrostatic interactions, and as a result, both vdW and electrostatic interactions drive the benzamidine binding, lowering the binding and unbinding free energy barrier. In contrast, the S214K mutation prohibits the binding of the benzamidine to the native ligand binding pocket by introducing disliked charge-charge interactions. In summary, these findings suggest that the change in specific residues could modify the protein druggability, including the binding kinetics and thermodynamics.
Collapse
Affiliation(s)
- Qiang Shao
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China.,Beijing National Laboratory for Molecular Sciences , 1st North Street , Zhongguancun, Beijing 100080 , China
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China.,Open Studio for Druggability Research of Marine Natural Products , Pilot National Laboratory for Marine Science and Technology , 1 Wenhai Road , Aoshanwei, Jimo, Qingdao 266237 , China
| |
Collapse
|
44
|
Activation loop dynamics are controlled by conformation-selective inhibitors of ERK2. Proc Natl Acad Sci U S A 2019; 116:15463-15468. [PMID: 31311868 DOI: 10.1073/pnas.1906824116] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Conformational selection by small molecules expands inhibitory possibilities for protein kinases. Nuclear magnetic resonance (NMR) measurements of the mitogen-activated protein (MAP) kinase ERK2 have shown that activation by dual phosphorylation induces global motions involving exchange between two states, L and R. We show that ERK inhibitors Vertex-11e and SCH772984 exploit the small energetic difference between L and R to shift the equilibrium in opposing directions. An X-ray structure of active 2P-ERK2 complexed with AMP-PNP reveals a shift in the Gly-rich loop along with domain closure to position the nucleotide in a more catalytically productive conformation relative to inactive 0P-ERK2:ATP. X-ray structures of 2P-ERK2 complexed with Vertex-11e or GDC-0994 recapitulate this closure, which is blocked in a complex with a SCH772984 analog. Thus, the L→R shift in 2P-ERK2 is associated with movements needed to form a competent active site. Solution measurements by hydrogen-exchange mass spectrometry (HX-MS) reveal distinct binding interactions for Vertex-11e, GDC-0994, and AMP-PNP with active vs. inactive ERK2, where the extent of HX protection correlates with R state formation. Furthermore, Vertex-11e and SCH772984 show opposite effects on HX near the activation loop. Consequently, these inhibitors differentially affect MAP kinase phosphatase activity toward 2P-ERK2. We conclude that global motions in ERK2 reflect conformational changes at the active site that promote productive nucleotide binding and couple with changes at the activation loop to allow control of dephosphorylation by conformationally selective inhibitors.
Collapse
|
45
|
Liu R, Yue Z, Tsai CC, Shen J. Assessing Lysine and Cysteine Reactivities for Designing Targeted Covalent Kinase Inhibitors. J Am Chem Soc 2019; 141:6553-6560. [PMID: 30945531 DOI: 10.1021/jacs.8b13248] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeted covalent inhibitor design is gaining increasing interest and acceptance. A typical covalent kinase inhibitor design targets a reactive cysteine; however, this strategy is limited by the low abundance of cysteine and acquired drug resistance from point mutations. Inspired by the recent development of lysine-targeted chemical probes, we asked if nucleophilic (reactive) catalytic lysines are common on the basis of the published crystal structures of the human kinome. Using a newly developed p Ka prediction tool based on continuous constant pH molecular dynamics, the catalytic lysines of eight unique kinases from various human kinase groups were retrospectively and prospectively predicted to be nucleophilic, when kinase is in the rare DFG-out/αC-out type of conformation. Importantly, other reactive lysines as well as cysteines at various locations were also identified. On the basis of the findings, we proposed a new strategy in which selective type II reversible kinase inhibitors are modified to design highly selective, lysine-targeted covalent inhibitors. Traditional covalent drugs were discovered serendipitously; the presented tool, which can assess the reactivities of any potentially targetable residues, may accelerate the rational discovery of new covalent inhibitors. Another significant finding of the work is that lysines and cysteines in kinases may adopt neutral and charged states at physiological pH, respectively. This finding may shift the current paradigm of computational studies of kinases, which assume fixed solution protonation states.
Collapse
Affiliation(s)
- Ruibin Liu
- Department of Pharmaceutical Sciences , School of Pharmacy, University of Maryland , Baltimore , Maryland 21201 , United States
| | - Zhi Yue
- Department of Pharmaceutical Sciences , School of Pharmacy, University of Maryland , Baltimore , Maryland 21201 , United States
| | - Cheng-Chieh Tsai
- Department of Pharmaceutical Sciences , School of Pharmacy, University of Maryland , Baltimore , Maryland 21201 , United States
| | - Jana Shen
- Department of Pharmaceutical Sciences , School of Pharmacy, University of Maryland , Baltimore , Maryland 21201 , United States
| |
Collapse
|
46
|
Martin-Fernandez ML, Clarke DT, Roberts SK, Zanetti-Domingues LC, Gervasio FL. Structure and Dynamics of the EGF Receptor as Revealed by Experiments and Simulations and Its Relevance to Non-Small Cell Lung Cancer. Cells 2019; 8:E316. [PMID: 30959819 PMCID: PMC6523254 DOI: 10.3390/cells8040316] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/25/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is historically the prototypical receptor tyrosine kinase, being the first cloned and the first where the importance of ligand-induced dimer activation was ascertained. However, many years of structure determination has shown that EGFR is not completely understood. One challenge is that the many structure fragments stored at the PDB only provide a partial view because full-length proteins are flexible entities and dynamics play a key role in their functionality. Another challenge is the shortage of high-resolution data on functionally important higher-order complexes. Still, the interest in the structure/function relationships of EGFR remains unabated because of the crucial role played by oncogenic EGFR mutants in driving non-small cell lung cancer (NSCLC). Despite targeted therapies against EGFR setting a milestone in the treatment of this disease, ubiquitous drug resistance inevitably emerges after one year or so of treatment. The magnitude of the challenge has inspired novel strategies. Among these, the combination of multi-disciplinary experiments and molecular dynamic (MD) simulations have been pivotal in revealing the basic nature of EGFR monomers, dimers and multimers, and the structure-function relationships that underpin the mechanisms by which EGFR dysregulation contributes to the onset of NSCLC and resistance to treatment.
Collapse
Affiliation(s)
- Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - David T Clarke
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - Selene K Roberts
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | | |
Collapse
|
47
|
Lu S, He X, Ni D, Zhang J. Allosteric Modulator Discovery: From Serendipity to Structure-Based Design. J Med Chem 2019; 62:6405-6421. [PMID: 30817889 DOI: 10.1021/acs.jmedchem.8b01749] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Xinheng He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Duan Ni
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
48
|
Zhang S, Zhang Y, Stenzoski NE, Zou J, Peran I, McCallum SA, Raleigh DP, Royer CA. Pressure-Temperature Analysis of the Stability of the CTL9 Domain Reveals Hidden Intermediates. Biophys J 2019; 116:445-453. [PMID: 30685054 DOI: 10.1016/j.bpj.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/13/2018] [Accepted: 01/02/2019] [Indexed: 11/30/2022] Open
Abstract
The observation of two-state unfolding for many small single-domain proteins by denaturants has led to speculation that protein sequences may have evolved to limit the population of partially folded states that could be detrimental to fitness. How such strong cooperativity arises from a multitude of individual interactions is not well understood. Here, we investigate the stability and folding cooperativity of the C-terminal domain of the ribosomal protein L9 in the pressure-temperature plane using site-specific NMR. In contrast to apparent cooperative unfolding detected with denaturant-induced and thermal-induced unfolding experiments and stopped-flow refolding studies at ambient pressure, NMR-detected pressure unfolding revealed significant deviation from two-state behavior, with a core region that was selectively destabilized by increasing temperature. Comparison of pressure-dependent NMR signals from both the folded and unfolded states revealed the population of at least one invisible excited state at atmospheric pressure. The core destabilizing cavity-creating I98A mutation apparently increased the cooperativity of the loss of folded-state peak intensity while also increasing the population of this invisible excited state present at atmospheric pressure. These observations highlight how local stability is subtly modulated by sequence to tune protein conformational landscapes and illustrate the ability of pressure- and temperature-dependent studies to reveal otherwise hidden states.
Collapse
Affiliation(s)
- Siwen Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York
| | - Yi Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York
| | - Natalie E Stenzoski
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York
| | - Junjie Zou
- Department of Chemistry, Stony Brook University, Stony Brook, New York; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Ivan Peran
- Department of Chemistry, Stony Brook University, Stony Brook, New York
| | | | - Daniel P Raleigh
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York; Department of Chemistry, Stony Brook University, Stony Brook, New York; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York; Institue of Structural and Molecular Biology, University College London, London, United Kingdom.
| | - Catherine A Royer
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York.
| |
Collapse
|
49
|
Liao Q, Kulkarni Y, Sengupta U, Petrović D, Mulholland AJ, van der Kamp MW, Strodel B, Kamerlin SCL. Loop Motion in Triosephosphate Isomerase Is Not a Simple Open and Shut Case. J Am Chem Soc 2018; 140:15889-15903. [PMID: 30362343 DOI: 10.1021/jacs.8b09378] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conformational changes are crucial for the catalytic action of many enzymes. A prototypical and well-studied example is loop opening and closure in triosephosphate isomerase (TIM), which is thought to determine the rate of catalytic turnover in many circumstances. Specifically, TIM loop 6 "grips" the phosphodianion of the substrate and, together with a change in loop 7, sets up the TIM active site for efficient catalysis. Crystal structures of TIM typically show an open or a closed conformation of loop 6, with the tip of the loop moving ∼7 Å between conformations. Many studies have interpreted this motion as a two-state, rigid-body transition. Here, we use extensive molecular dynamics simulations, with both conventional and enhanced sampling techniques, to analyze loop motion in apo and substrate-bound TIM in detail, using five crystal structures of the dimeric TIM from Saccharomyces cerevisiae. We find that loop 6 is highly flexible and samples multiple conformational states. Empirical valence bond simulations of the first reaction step show that slight displacements away from the fully closed-loop conformation can be sufficient to abolish most of the catalytic activity; full closure is required for efficient reaction. The conformational change of the loops in TIM is thus not a simple "open and shut" case and is crucial for its catalytic action. Our detailed analysis of loop motion in a highly efficient enzyme highlights the complexity of loop conformational changes and their role in biological catalysis.
Collapse
Affiliation(s)
- Qinghua Liao
- Department of Chemistry - BMC , Uppsala University , BMC Box 576, 751 23 Uppsala , Sweden
| | - Yashraj Kulkarni
- Department of Chemistry - BMC , Uppsala University , BMC Box 576, 751 23 Uppsala , Sweden
| | - Ushnish Sengupta
- Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich , 52425 Jülich , Germany.,German Research School for Simulation Sciences , RWTH Aachen University , 52062 Aachen , Germany
| | - Dušan Petrović
- Department of Chemistry - BMC , Uppsala University , BMC Box 576, 751 23 Uppsala , Sweden.,Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Cantock's Close , BS8 1TS Bristol , United Kingdom
| | - Marc W van der Kamp
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Cantock's Close , BS8 1TS Bristol , United Kingdom.,School of Biochemistry , University of Bristol , University Walk , BS8 1TD Bristol , United Kingdom
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich , 52425 Jülich , Germany.,Institute of Theoretical and Computational Chemistry , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | | |
Collapse
|