1
|
Vaishanv NK, Eghbarieh N, Jagtap RA, Gose AE, Haines BE, Masarwa A. Stereoselective C-B and C-H Bonds Functionalization of PolyBorylated Alkenes. Angew Chem Int Ed Engl 2024; 63:e202412167. [PMID: 38980310 DOI: 10.1002/anie.202412167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/10/2024]
Abstract
Alkenes are fundamental functional groups which feature in various materials and bioactive molecules; however, efficient divergent strategies for their stereodefined synthesis are difficult. In this regard, numerous synthetic methodologies have been developed to construct carbon-carbon bonds with regio- and stereoselectivity, enabling the predictable and efficient synthesis of stereodefined alkenes. In fact, an appealing alternative approach for accessing challenging stereodefined alkene molecular frameworks could involve the sequential selective activation and cross-coupling of strong bonds instead of conventional C-C bond formation. In this study, we introduce a series of programmed site- and stereoselective strategies that capitalizes on the versatile reactivity of readily accessible polymetalloid alkenes (i.e. polyborylated alkenes), through a tandem cross-coupling reaction, which is catalyzed by an organometallic Rh-complex to produce complex molecular scaffolds. By merging selective C-B and remote C-H bond functionalization, we achieve the in situ generation of polyfunctional C(sp2)-nucleophilic intermediates. These species can be further modified by selective coupling reactions with various C-based electrophiles, enabling the formation of C(sp2)-C(sp3) bond for the generation of even more complex molecular architectures using the readily available starting polyborylated-alkenes. Mechanistic and computational studies provide insight into the origins of the stereoselectivities and C-H activation via a 1,4-Rh migration process.
Collapse
Affiliation(s)
- Narendra K Vaishanv
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Nadim Eghbarieh
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Rahul A Jagtap
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Anthony E Gose
- Department of Chemistry, Westmont College, 955 La Paz Road, Santa Barbara, CA-93108, USA
| | - Brandon E Haines
- Department of Chemistry, Westmont College, 955 La Paz Road, Santa Barbara, CA-93108, USA
| | - Ahmad Masarwa
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
2
|
Deshwal S, Gopalakrishnan DK, Purohit A, Karmakar T, Vaitla J. Diastereoselective cyclopropanation of α,β-unsaturated carbonyl compounds with vinyl sulfoxonium ylides. Org Biomol Chem 2024; 22:6294-6307. [PMID: 39045784 DOI: 10.1039/d4ob00677a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Herein, we report a three-component stereoselective cyclopropanation of vinyl sulfoxonium ylides with indane 1,3-dione and aldehydes under mild reaction conditions. In contrast to previous reports, the present work shows that electrophilic addition selectively takes place at the α-position of the vinyl sulfoxonium ylide. The interesting feature of this approach is that the multicomponent reaction selectively proceeds because of the difference in nucleophilic reactivity of vinyl sulfoxonium ylides and indane 1,3-dione with electrophilic partners, such as aldehydes and in situ generated arylidenes. Additionally, density functional theory (DFT) studies were conducted to investigate the difference in the reactivity of these reactants, as well as to unveil the mechanism of this three-component reaction. Furthermore, non-covalent interactions of selectivity-determining transition states explain the origin of the diastereoselectivity of cyclopropanation.
Collapse
Affiliation(s)
- Shalu Deshwal
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | | | - Alok Purohit
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Janakiram Vaitla
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
3
|
Shen HC, Wang ZS, Noble A, Aggarwal VK. Simultaneous Stereoinvertive and Stereoselective C(sp 3)-C(sp 3) Cross-Coupling of Boronic Esters and Allylic Carbonates. J Am Chem Soc 2024; 146:13719-13726. [PMID: 38721780 PMCID: PMC11117407 DOI: 10.1021/jacs.4c03686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
With increasing interest in constructing more three-dimensional entities, there has been growing interest in cross-coupling reactions that forge C(sp3)-C(sp3) bonds, which leads to additional challenges as it is not just a more difficult bond to construct but issues of stereocontrol also arise. Herein, we report the stereocontrolled cross-coupling of enantioenriched boronic esters with racemic allylic carbonates enabled by iridium catalysis, leading to the formation of C(sp3)-C(sp3) bonds with single or vicinal stereogenic centers. The method shows broad substrate scope, enabling primary, secondary, and even tertiary boronic esters to be employed, and can be used to prepare any of the four possible stereoisomers of a coupled product with vicinal chiral centers. The new method, which combines the simultaneous enantiospecific reaction of a chiral nucleophile with the enantioselective reaction of a chiral electrophile in a single process, offers a solution for stereodivergent cross-coupling of two C(sp3) fragments.
Collapse
Affiliation(s)
| | | | - Adam Noble
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Varinder K. Aggarwal
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
4
|
Ji DS, Zhang R, Han XY, Hu XQ, Xu PF. Stereodivergent Synthesis of All Stereoisomers of 2,3-Disubstituted δ-Lactam Derivatives via Organocatalytic Cascade Reactions and Base-Induced Epimerization. Org Lett 2024; 26:315-320. [PMID: 38175121 DOI: 10.1021/acs.orglett.3c03861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A protocol was developed to achieve stereodivergent synthesis of stereoisomers of δ-lactam bearing vicinal chiral centers. Organocatalytic cascade reactions were employed to produce the target products as the kinetic products, which exhibited remarkable enantioselectivities. In the presence of DBU, the kinetic product underwent epimerization to form a thermodynamically more stable diastereomer without loss in enantioselectivity. By simply switching the chiral organocatalyst and its enantiomer, we can efficiently obtain four stereoisomers with high enantioselectivities.
Collapse
Affiliation(s)
- Dong-Sheng Ji
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu 730000, P. R. China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Rui Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu 730000, P. R. China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Xu-Yan Han
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu 730000, P. R. China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Xiu-Qin Hu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu 730000, P. R. China
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Gansu 730000, P. R. China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
5
|
Chen XX, Luo H, Chen YW, Liu Y, He ZT. Enantioselective Palladium-Catalyzed Directed Migratory Allylation of Remote Dienes. Angew Chem Int Ed Engl 2023; 62:e202307628. [PMID: 37387558 DOI: 10.1002/anie.202307628] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/01/2023]
Abstract
Chain walking has been an efficient route to realize the functionalization of inert C(sp3 )-H bonds, but this strategy is limited to mono-olefin migration and functionalization. Herein, we demonstrate the feasibility of tandem directed simultaneous migrations of remote olefins and stereoselective allylation for the first time. The adoption of palladium hydride catalysis and secondary amine morpholine as solvent is critical for achieving high substrate compatibility and stereochemical control with this method. The protocol is also applicable to the functionalization of three vicinal C(sp3 )-H bonds and thus construct three continuous stereocenters along a propylidene moiety via a short synthetic process. Preliminary mechanistic experiments corroborated the design of simultaneous walking of remote dienes.
Collapse
Affiliation(s)
- Xian-Xiao Chen
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hao Luo
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ye-Wei Chen
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yang Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
6
|
Mendel M, Gnägi L, Dabranskaya U, Schoenebeck F. Rapid and Modular Access to Vinyl Cyclopropanes Enabled by Air-stable Palladium(I) Dimer Catalysis. Angew Chem Int Ed Engl 2023; 62:e202211167. [PMID: 36226918 PMCID: PMC10107780 DOI: 10.1002/anie.202211167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022]
Abstract
While vinyl cyclopropanes are valuable functional groups in drugs or natural products as well as established precursors to trigger a rich variety of synthetic transformations, their reactive nature can make their installation via direct catalytic approaches challenging. We herein present a modular access to (di)vinyl cyclopropanes under very mild conditions and full conservation of stereochemistry, allowing access to the cis or trans cyclopropane- as well as E or Z vinyl-stereochemical relationships. Our protocol relies on air-stable dinuclear PdI catalysis, which enables rapid (<30 min) and selective access to a diverse range of vinyl cyclopropane motifs at room temperature, even on gram scale.
Collapse
Affiliation(s)
- Marvin Mendel
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Lars Gnägi
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | | | |
Collapse
|
7
|
Wang YC, Xiao ZX, Wang M, Yang SQ, Liu JB, He ZT. Umpolung Asymmetric 1,5-Conjugate Addition via Palladium Hydride Catalysis. Angew Chem Int Ed Engl 2023; 62:e202215568. [PMID: 36374273 DOI: 10.1002/anie.202215568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Electronically matched nucleophilic 1,6-conjugate addition has been well studied and widely applied in synthetic areas. In contrast, nucleophilic 1,5-conjugate addition represents an electronically forbidden process and is considered unfeasible. Here, we describe modular protocols for 1,5-conjugate addition reactions via palladium hydride catalysis. Both palladium and synergistic Pd/organocatalyst systems are developed to catalyze 1,5-conjugate reaction, followed by inter- or intramolecular [3+2] cyclization. A migratory 1,5-addition protocol is established to corroborate the feasibility of this umpolung concept. The 1,5-addition products are conveniently transformed into a series of privileged enantioenriched motifs, including polysubstituted tetrahydrofuran, dihydrofuran, cyclopropane, cyclobutane, azetidine, oxetane, thietane, spirocycle and bridged rings. Preliminary mechanistic studies corroborate the involvement of palladium hydride catalysis.
Collapse
Affiliation(s)
- Yu-Chao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhao-Xin Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Miao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shao-Qian Yang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jin-Biao Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
8
|
Pavlíčková T, Stöckl Y, Marek I. Synthesis and Functionalization of Tertiary Propargylic Boronic Esters by Alkynyllithium-Mediated 1,2-Metalate Rearrangement of Borylated Cyclopropanes. Org Lett 2022; 24:8901-8906. [PMID: 36446049 PMCID: PMC9791689 DOI: 10.1021/acs.orglett.2c03756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 11/30/2022]
Abstract
Implementing the use of alkynyllithium reagents in a stereospecific 1,2-metalate rearrangement-mediated ring opening of polysubstituted cyclopropyl boronic esters provides a variety of tertiary pinacol boranes bearing adjacent tertiary or quaternary carbon stereocenters with high levels of diastereomeric purity. The potential of this strategy was demonstrated through a selection of α- and γ-functionalization of the propargyl boronic esters.
Collapse
Affiliation(s)
- Tereza Pavlíčková
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Yannick Stöckl
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
9
|
Cohen A, Siddaraju Y, Marek I. Directed Diastereoselective Cyclopropanation and Epoxidation of Alkenyl Cyclopropyl Carbinol Derivatives. Org Lett 2022; 24:8322-8325. [PMID: 36354275 PMCID: PMC9743385 DOI: 10.1021/acs.orglett.2c03305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report the directed diastereoselective Simmons-Smith cyclopropanation and vanadium-catalyzed epoxidation reactions of alkenyl cyclopropyl carbinol derivatives. The reaction furnished densely substituted stereodefined bicyclopropanes and cyclopropyl oxiranes as a single diastereomer in each case. The remarkable selectivity is obtained thanks to the rigidity of the cyclopropyl core, allowing diastereoselective reactions on the alkenyl moiety. This emphasizes the uniqueness of the cyclopropyl ring as a central platform in stereoselective synthesis.
Collapse
|
10
|
Abstract
We report the first palladium hydride enabled hydroalkenylation of strained molecules. This new mild protocol proceeds via a regio- and chemoselective hydropalladation step, followed by a photoinduced radical alkyl Heck reaction. This methodology represents a new reactivity mode for strained molecules and opens new avenues for photoinduced palladium catalysis. The reaction is compatible with a wide range of functional groups and can be applied to complex structures, delivering a diverse array of highly valuable and modifiable alkenylated cyclobutanes and cyclopropanes. A hydroalkenylation/diastereoselective rearrangement cascade toward a cyclopentene scaffold has also been demonstrated.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
11
|
Abstract
The various facets of the chemistry of cyclopropane derivatives, the smallest carbocycle, are amazingly diverse and continue to fascinate theoreticians, synthetic or structural chemists having interest in fundamental physical, medicinal chemistry, and natural product synthesis. The challenges generated by this intriguing cyclic arrangement of only three tetravalent carbons represent a wide area of the chemical spectrum. From fundamental aspects of bonding through the synthesis of highly strained molecules, the understanding of the mode of action in biological systems to the selective cleavage into acyclic substrates makes the chemistry of these small rings fascinating. Therefore, efficient routes to prepare differently polysubstituted cyclopropanes have always been of a primordial importance. In the past decade, we and others have expanded the scope of the carbometalation reaction of cyclopropenes as a broad and general method to the formation of stereodefined cyclopropane derivatives. Although cyclopropenes, with their even higher strain energy, easily undergo addition reactions of organometallic reagents, their carbometalation reactions generate new regio-, diastereo-, and enantioselectivity issues that needed to be addressed. These various stereochemical aspects accompanied our research from its origins to today, and we are proposing in this Account, a didactic overview of the different ways by which cyclopropenes can lead to the formation of polysubstituted cyclopropanes or open-products possessing several stereogenic centers as a single regio- and diastereomer.We initially launched our research campaign on the chemistry of these strained three-membered rings by the regio- and diastereoselective copper-catalyzed carbomagnesiation of enantiomerically enriched cyclopropenyl carbinols. The directing alcohol governed both the regio- and diastereoselectivity of the addition and also served as a good leaving group as it undergoes a selective 1,2-elimination reaction to provide enantioenriched alkylidenecyclopropanes in excellent yields and enantiomeric excesses. Then, we turned our attention to the regio- and stereoselective synthesis of stereodefined tri- and tetrasubstituted cyclopropanes through the diastereoselective addition to sp2- monosubstituted cyclopropenyl ester derivatives. With the aim to further expand this concept to the formation of penta- and hexa-substituted cyclopropanes as single isomer, we had first to design the preparation of the required 1,2-disubstituted cyclopropenes that would control the regioselective addition of the organometallic derivatives. The synthesis of penta- and hexa-substituted cyclopropanes was then reported for the first time as a single regio- and diastereomer. It should be noted that the in situ formed cyclopropyl-metal intermediate is configurationally stable and can be subsequently functionalized with pure retention of the configuration by addition of electrophiles. Then, the enantioselective-catalyzed carbometalation reaction of achiral cyclopropenes allowed the synthesis of several new classes of cyclopropane derivatives in high enantiomeric ratios. Finally, by combining the regio- and diastereoselective carbometalation reaction of a cyclopropene with a subsequent reaction of the resulting cyclopropylmetal species, a selective carbon-carbon bond cleavage was observed to lead to the preparation of acyclic substrates possessing several stereocenters including a quaternary carbon stereogenic center. Our original vision of using strain within an embedded double bond in a three-membered ring has provided new routes to the stereoselective synthesis of polysubstituted cyclopropanes and has been extremely successful, as it represents a current new tool for the synthesis of persubstituted cyclopropanes as a single diastereomer.
Collapse
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000 Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000 Israel
| |
Collapse
|
12
|
Augustin AU, Di Silvio S, Marek I. Borylated Cyclopropanes as Spring-Loaded Entities: Access to Vicinal Tertiary and Quaternary Carbon Stereocenters in Acyclic Systems. J Am Chem Soc 2022; 144:16298-16302. [PMID: 36041738 PMCID: PMC9479080 DOI: 10.1021/jacs.2c07394] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Herein, we present the formation of acyclic frameworks
bearing
two consecutive stereocenters of either tertiary or quaternary nature
starting from easily accessible cyclopropenes. This holistic approach
involves a regio- and diastereoselective hydro- or carboborylation
of substituted cyclopropenyl esters. Formation of boronate complexes
of the latter via the addition of nucleophiles and subsequent stereospecific
1,2-migration with carbon–carbon bond cleavage delivered the
title compounds.
Collapse
Affiliation(s)
- André U Augustin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Sergio Di Silvio
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
13
|
Siddaraju Y, Sabbatani J, Cohen A, Marek I. Preparation of Distant Quaternary Carbon Stereocenters by Double Selective Ring-Opening of 1,1-Biscyclopropyl Methanol Derivatives. Angew Chem Int Ed Engl 2022; 61:e202203652. [PMID: 35521738 PMCID: PMC9401570 DOI: 10.1002/anie.202203652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 12/15/2022]
Abstract
The diastereoselective double carbometalation reaction of cyclopropenes provides, in a single-pot operation, two ω-ene-[1,1]-bicyclopropyl ester derivatives. One regioisomer then undergoes a Pd-catalyzed addition of aryl iodide to provide skipped dienes possessing several distant stereocenters including two congested quaternary carbon centers with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Yogesh Siddaraju
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| | - Juliette Sabbatani
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| | - Anthony Cohen
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| |
Collapse
|
14
|
Song LR, Li H, Wang SF, Lin JP, Huang B, Long YQ. Metal-free hypervalent iodine-promoted tandem carbonyl migration and unactivated C(Ph)-C(Alkyl) bond cleavage for quinolone scaffold synthesis. Chem Commun (Camb) 2022; 58:8340-8343. [PMID: 35758629 DOI: 10.1039/d2cc02245a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unexpected iodine(III)-mediated C(sp3)-C(sp2) bond cleavage of 3-(methylamino)-2-(2-substitutedbenzoyl)acrylates for efficient synthesis of privileged scaffold 4-quinolones was described. Notably, a wide range of alkyl groups (e.g. methyl, tert-butyl or alkyl chain) can be conveniently cleaved in this system. The detailed mechanism studies revealed that the transformation proceeded through cascade ipso-cyclization and 1,2-carbonyl migration, the smaller bond energy determined ortho C-C bond cleavage rather than C-H bond cleavage, via an enamine radical intermediate.
Collapse
Affiliation(s)
- Li-Rui Song
- School of Pharmaceutic Sciences, Soochow University, Suzhou, 215123, China. .,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - He Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Shen-Feng Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Jian-Ping Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Bin Huang
- School of Pharmaceutic Sciences, Soochow University, Suzhou, 215123, China.
| | - Ya-Qiu Long
- School of Pharmaceutic Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
15
|
Chen X, Marek I. Stereoinvertive Nucleophilic Substitution at Quaternary Carbon Stereocenters of Cyclopropyl Ketones and Ethers. Angew Chem Int Ed Engl 2022; 61:e202203673. [PMID: 35471589 PMCID: PMC9324837 DOI: 10.1002/anie.202203673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/09/2022]
Abstract
A highly regio- and diastereoselective nucleophilic substitution at the quaternary carbon stereocenter of cyclopropyl ketones and cyclopropyl carbinol derivatives using TMSBr, DMPSCl and TMSN3 as nucleophiles has been developed. A variety of acyclic tertiary alkyl bromides, chlorides and azides were therefore prepared with excellent diastereopurity. The substitution occurs at the most substituted quaternary carbon center in a stereoinvertive manner, which may be attributed to the existence of a bicyclobutonium species.
Collapse
Affiliation(s)
- Xu Chen
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyTechnion CityHaifa3200009Israel
| | - Ilan Marek
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyTechnion CityHaifa3200009Israel
| |
Collapse
|
16
|
Luan P, Li Y, Huang C, Dong L, Ma T, Liu J, Gao J, Liu Y, Jiang Y. Design of De Novo Three-Enzyme Nanoreactors for Stereodivergent Synthesis of α-Substituted Cyclohexanols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Pengqian Luan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yongxing Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Chen Huang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Lele Dong
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Teng Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jianqiao Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
17
|
Zhang Q, Wang S, Yin J, Xiong T, Zhang Q. Remote Site-Selective Asymmetric Protoboration of Unactivated Alkenes Enabled by Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2022; 61:e202202713. [PMID: 35297558 DOI: 10.1002/anie.202202713] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/14/2022]
Abstract
A remote C(sp3 )-H bond asymmetric borylation of unactivated alkenes was achieved by bimetallic relay catalysis. The reaction proceeded through reversible and consecutive β-H elimination/olefin insertion promoted by CoH species generated in situ, followed by copper-catalyzed asymmetric protoboration. The use of this synergistic Co/Cu catalysis protocol allowed the enantioselective protoboration of various unactivated terminal alkenes and internal alkenes, as well as an unrefined mixture of olefin isomers, at the distal less-reactive β-position to a functional group, leading to chiral organoboronates.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Simin Wang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianjun Yin
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tao Xiong
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
18
|
Chen X, Marek I. Stereoinvertive Nucleophilic Substitution at Quaternary Carbon Stereocenters of Cyclopropyl Ketones and Ethers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xu Chen
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Technion City Haifa 3200009 Israel
| |
Collapse
|
19
|
Siddaraju Y, Sabbatani J, Cohen A, Marek I. Preparation of Distant Quaternary Carbon Stereocenters by Double Selective Ring‐Opening of 1,1‐Biscyclopropyl Methanol Derivatives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Anthony Cohen
- Technion Israel Institute of Technology Chemistry ISRAEL
| | - Ilan Marek
- Technion - Israel Institute of Technology Schulich Faculty of Chemistry Technion City 32000 Haifa ISRAEL
| |
Collapse
|
20
|
Cohen A, Kaushansky A, Marek I. Mechanistic Insights on the Selectivity of the Tandem Heck-Ring-Opening of Cyclopropyldiol Derivatives. JACS AU 2022; 2:687-696. [PMID: 35373195 PMCID: PMC8970019 DOI: 10.1021/jacsau.1c00547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The preparation of a new class of alkenyl cyclopropyl diols, easily available through a copper-catalyzed carbometalation reaction of cyclopropenes, has enabled the study of key mechanistic aspects of the tandem Heck-cyclopropane ring-opening reaction. Utilizing these substrates containing two distinct hydroxyl groups allowed us to examine parameters affecting the reaction outcome and selectivity. The combination of these experimental results with detailed DFT studies shed light on the mechanism governing the regio- and stereoselectivity of the cyclopropane ring-opening. A thorough investigation displayed the dual roles fulfilled by the hydroxyl group during the reaction, which is key to this remarkable transformation. In addition to its mechanistic implication, the reaction granted access to various lactones possessing up to four stereocenters as a single diastereomer, conveniently prepared in only two catalytic steps from easily accessible achiral cyclopropenes.
Collapse
|
21
|
Zhang Q, Wang S, Yin J, Xiong T, Zhang Q. Remote Site‐Selective Asymmetric Protoboration of Unactivated Alkenes Enabled by Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiao Zhang
- Northeast Normal University Department of Chemistry CHINA
| | - Simin Wang
- Northeast Normal University Department of Chemistry CHINA
| | - Jianjun Yin
- Northeast Normal University Department of Chemistry CHINA
| | - Tao Xiong
- Northeast Normal University Department of Chemistry Renmin ST. 5268 130024 ChangChun CHINA
| | - Qian Zhang
- Northeast Normal University Department of Chemistry CHINA
| |
Collapse
|
22
|
Zhang WB, Chen G, Shi SL. Enantioselective Ni/N-Heterocyclic Carbene-Catalyzed Redox-Economical Coupling of Aldehydes, Alkynes, and Enones for Rapid Construction of Acyclic All-Carbon Quaternary Stereocenters. J Am Chem Soc 2021; 144:130-136. [PMID: 34941237 DOI: 10.1021/jacs.1c12625] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acyclic quaternary carbon stereocenters exist widely in natural products and bioactive molecules, but their enantioselective construction remains a prominent challenge. In particular, multicomponent enantioselective couplings of simple precursors to acyclic all-carbon quaternary stereocenters are very rare. We describe herein an N-heterocyclic carbene (NHC)-Ni catalyzed redox-economical three-component reaction of aldehydes, alkynes, and enones that proceeds in a highly chemo-, regio-, and enantioselective manner. A wide variety of valuable acyclic α-quaternary chiral ketones were synthesized in a single step with 100% atom economy. This reaction proceeds through the formation of a transient cyclic enolate followed by an aldol reaction/ring-opening sequence. The strategy is expected to inspire new and efficient approaches to generate other acyclic quaternary stereocenters.
Collapse
Affiliation(s)
- Wu-Bin Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guang Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
23
|
Zhang Q, Wang S, Zhang Q, Xiong T, Zhang Q. Radical Addition-Triggered Remote Migratory Isomerization of Unactivated Alkenes to Difluoromethylene-Containing Alkenes Enabled by Bimetallic Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Rd., Changchun, Jilin 130024, China
| | - Simin Wang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Rd., Changchun, Jilin 130024, China
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Rd., Changchun, Jilin 130024, China
| | - Tao Xiong
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Rd., Changchun, Jilin 130024, China
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Rd., Changchun, Jilin 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
24
|
Struble TJ, Smajlagic I, Foy H, Dudding T, Johnston JN. DFT-Based Stereochemical Rationales for the Bifunctional Brønsted Acid/Base-Catalyzed Diastereodivergent and Enantioselective aza-Henry Reactions of α-Nitro Esters. J Org Chem 2021; 86:15606-15617. [PMID: 34669416 DOI: 10.1021/acs.joc.1c02112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A pair of chiral bis(amidine) [BAM] proton complexes provide reagent (catalyst)-controlled, highly diastereo- and enantioselective direct aza-Henry reactions leading to α-alkyl-substituted α,β-diamino esters. A C2-symmetric ligand provides high anti-selectivity, while a nonsymmetric congener exhibits syn-selectivity in this example of diastereodivergent, enantioselective catalysis. A detailed computational analysis is reported for the first time, one that supports distinct models for selectivity resulting from the more hindered binding cavity of the C1-symmetric ligand. Binding in this congested pocket accommodates four hydrogen bond contacts among ligands and substrates, ultimately favoring a pre-syn arrangement highlighted by pyridinium-azomethine activation and quinolinium-nitronate activation. The complementary transition states reveal a wide range of alternatives. Comparing the C1- and C2-symmetric catalysts highlights distinct electrophile binding orientations despite their common hydrogen bond donor-acceptor features. Among the factors driving unusual high syn-diastereoselection are favorable dispersion forces that leverage the anthracenyl substituent of the C1-symmetric ligand.
Collapse
Affiliation(s)
- Thomas J Struble
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ivor Smajlagic
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Hayden Foy
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Jeffrey N Johnston
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
25
|
Gao S, Duan M, Liu J, Yu P, Houk KN, Chen M. Stereochemical Control via Chirality Pairing: Stereodivergent Syntheses of Enantioenriched Homoallylic Alcohols. Angew Chem Int Ed Engl 2021; 60:24096-24106. [PMID: 34608723 DOI: 10.1002/anie.202107004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 12/14/2022]
Abstract
We report herein the development of stereodivergent syntheses of enantioenriched homoallylic alcohols using chiral nonracemic α-CH2 Bpin-substituted crotylboronate. Chiral phosphoric acid (S)-A-catalyzed asymmetric allyl addition with the reagent gave Z-anti-homoallylic alcohols with excellent enantioselectivities and Z-selectivities. When the enantiomeric acid catalyst (R)-A was utilized, the stereoselectivity was completely reversed and E-anti-homoallylic alcohols were obtained with high E-selectivities and excellent enantioselectivities. By pairing the chirality of the boron reagent with the catalyst, two complementary stereoisomers of chiral homoallylic alcohols can be obtained selectively from the same boron reagent. DFT computational studies were conducted to probe the origins of the observed stereoselectivity. These reactions generate highly enantioenriched homoallylic alcohol products that are valuable for rapid construction of polyketide structural frameworks.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Meng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, USA.,Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
26
|
Gao S, Duan M, Liu J, Yu P, Houk KN, Chen M. Stereochemical Control via Chirality Pairing: Stereodivergent Syntheses of Enantioenriched Homoallylic Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Meng Duan
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles California 90095 USA
- Department of Chemistry and Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Jiaming Liu
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles California 90095 USA
| | - Ming Chen
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| |
Collapse
|
27
|
Palladium-catalyzed regio- and enantioselective migratory allylic C(sp 3)-H functionalization. Nat Commun 2021; 12:5626. [PMID: 34561444 PMCID: PMC8463607 DOI: 10.1038/s41467-021-25978-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/10/2021] [Indexed: 11/12/2022] Open
Abstract
Transition metal-catalyzed asymmetric allylic substitution with a suitably pre-stored leaving group in the substrate is widely used in organic synthesis. In contrast, the enantioselective allylic C(sp3)-H functionalization is more straightforward but far less explored. Here we report a catalytic protocol for the long-standing challenging enantioselective allylic C(sp3)-H functionalization. Through palladium hydride-catalyzed chain-walking and allylic substitution, allylic C-H functionalization of a wide range of acyclic nonconjugated dienes is achieved in high yields (up to 93% yield), high enantioselectivities (up to 98:2 er), and with 100% atom efficiency. Exploring the reactivity of substrates with varying pKa values uncovers a reasonable scope of nucleophiles and potential factors controlling the reaction. A set of efficient downstream transformations to enantiopure skeletons showcase the practical value of the methodology. Mechanistic experiments corroborate the PdH-catalyzed asymmetric migratory allylic substitution process. Alkene isomerizations and asymmetric C–H functionalizations have been independently studied, but their combination in one protocol is uncommon. Here the authors show a palladium-catalyzed method to iteratively “walk” a terminal alkene along a carbon chain to a position next to styrenes where a soft nucleophile is added asymmetrically.
Collapse
|
28
|
Wurzer N, Klimczak U, Babl T, Fischer S, Angnes RA, Kreutzer D, Pattanaik A, Rehbein J, Reiser O. Heck-Type Coupling of Fused Bicyclic Vinylcyclopropanes: Synthesis of 1,2-Dihydropyridines, 2,3-Dihydro-1 H-azepines, 1,4-Cyclohexadienes, and 2 H-Pyrans. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Nikolai Wurzer
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Urszula Klimczak
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Tobias Babl
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Sebastian Fischer
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ricardo A. Angnes
- Institute of Chemistry, University of Campinas, Rua Carlos Gomes, 241, Cidade Universitária, Campinas, 13083-970 São Paulo, Brazil
| | - Dominik Kreutzer
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Aryaman Pattanaik
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Julia Rehbein
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
29
|
Huang S, Wen H, Tian Y, Wang P, Qin W, Yan H. Organocatalytic Enantioselective Construction of Chiral Azepine Skeleton Bearing Multiple‐Stereogenic Elements. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shengli Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Haojun Wen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Yuhong Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
30
|
He Y, Han B, Zhu S. Terminal-Selective C(sp 3)–H Arylation: NiH-Catalyzed Remote Hydroarylation of Unactivated Internal Olefins. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuli He
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People’s Republic of China
| | - Bo Han
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People’s Republic of China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People’s Republic of China
| |
Collapse
|
31
|
Suresh R, Massad I, Marek I. Stereoselective tandem iridium-catalyzed alkene isomerization-cope rearrangement of ω-diene epoxides: efficient access to acyclic 1,6-dicarbonyl compounds. Chem Sci 2021; 12:9328-9332. [PMID: 34349902 PMCID: PMC8278922 DOI: 10.1039/d1sc02575a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023] Open
Abstract
The Cope rearrangement of 2,3-divinyloxiranes, a rare example of epoxide C-C bond cleavage, results in 4,5-dihydrooxepines which are amenable to hydrolysis, furnishing 1,6-dicarbonyl compounds containing two contiguous stereocenters at the 3- and 4-positions. We employ an Ir-based alkene isomerization catalyst to form the reactive 2,3-divinyloxirane in situ with complete regio- and stereocontrol, which translates into excellent control over the stereochemistry of the resulting oxepines and ultimately to an attractive strategy towards 1,6-dicarbonyl compounds.
Collapse
Affiliation(s)
- Rahul Suresh
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City 3200009 Haifa Israel
| | - Itai Massad
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City 3200009 Haifa Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City 3200009 Haifa Israel
| |
Collapse
|
32
|
Huang S, Wen H, Tian Y, Wang P, Qin W, Yan H. Organocatalytic Enantioselective Construction of Chiral Azepine Skeleton Bearing Multiple-Stereogenic Elements. Angew Chem Int Ed Engl 2021; 60:21486-21493. [PMID: 34235834 DOI: 10.1002/anie.202108040] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/19/2022]
Abstract
Enantioselective construction of molecules bearing multiple stereogenic elements is increasingly related to the synthesis of enantiopure natural products, pharmaceuticals, and functional materials. However, atom-economical and enantioselective approaches to install multiple stereogenic elements in a small molecular template by limited chemical transformation remain challenging. We describe an organocatalytic enantioselective method for the preparation of polychiral molecules bearing four types of stereogenic elements in fused azepines via vinylidene ortho-quinone methide (VQM)-mediated intramolecular electrophilic aromatic substitution. This method was proved robust with a wide range of substrate scope (46-92 % yield), with excellent diastereoselectivity (>20:1 dr) and enantioselectivity achieved (up to 97 % ee). Optical properties and Ru3+ -induced fluorescence responses of these compounds suggest their potential applications in optoelectronic materials and heavy metal ion detection.
Collapse
Affiliation(s)
- Shengli Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Haojun Wen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yuhong Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
33
|
Scaringi S, Mazet C. Kinetically Controlled Stereoselective Access to Branched 1,3-Dienes by Ru-Catalyzed Remote Conjugative Isomerization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02144] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Simone Scaringi
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
34
|
Cohen Y, Augustin AU, Levy L, Jones PG, Werz DB, Marek I. Regio- and Diastereoselective Copper-Catalyzed Carbomagnesiation for the Synthesis of Penta- and Hexa-Substituted Cyclopropanes. Angew Chem Int Ed Engl 2021; 60:11804-11808. [PMID: 33742749 DOI: 10.1002/anie.202102509] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 11/07/2022]
Abstract
Despite the highly strained nature of cyclopropanes possessing three vicinal quaternary carbon stereocenters, the regio- and diastereoselective copper-catalyzed carbomagnesiation reaction of cyclopropenes provides an easy and efficient access to these novel persubstituted cyclopropyl cores with a complete regio- and diastereoselectivity.
Collapse
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - André U Augustin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - Laura Levy
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - Peter G Jones
- Technische Universität Braunschweig, Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| |
Collapse
|
35
|
Cohen Y, Augustin AU, Levy L, Jones PG, Werz DB, Marek I. Regio‐ and Diastereoselective Copper‐Catalyzed Carbomagnesiation for the Synthesis of Penta‐ and Hexa‐Substituted Cyclopropanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - André U. Augustin
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - Laura Levy
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Ilan Marek
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| |
Collapse
|
36
|
Dong K, Zheng H, Su Y, Humeidi A, Arman H, Xu X, Doyle MP. Catalyst-Directed Divergent Catalytic Approaches to Expand Structural and Functional Scaffold Diversity via Metallo-Enolcarbene Intermediates. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kuiyong Dong
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Haifeng Zheng
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Yongliang Su
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ahmad Humeidi
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi Arman
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Michael P. Doyle
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
37
|
Bonfield HE, Valette D, Lindsay DM, Reid M. Stereoselective Remote Functionalization via Palladium-Catalyzed Redox-Relay Heck Methodologies. Chemistry 2021; 27:158-174. [PMID: 32744766 PMCID: PMC7821197 DOI: 10.1002/chem.202002849] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 11/29/2022]
Abstract
Exploration of novel, three-dimensional chemical space is of growing interest in the drug discovery community and with this comes the challenge for synthetic chemists to devise new stereoselective methods to introduce chirality in a rapid and efficient manner. This Minireview provides a timely summary of the development of palladium-catalyzed asymmetric redox-relay Heck-type processes. These reactions represent an important class of transformation for the selective introduction of remote stereocenters, and have risen to prominence over the past decade. Within this Minireview, the vast scope of these transformations will be showcased, alongside applications to pharmaceutically relevant chiral building blocks and drug substances. To complement this overview, a mechanistic summary and discussion of the current limitations of the transformation are presented, followed by an outlook on future areas of investigation.
Collapse
Affiliation(s)
- Holly E. Bonfield
- Chemical DevelopmentGlaxoSmithKlineGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
- Department of Pure and Applied Chemistry WestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| | - Damien Valette
- Chemical DevelopmentGlaxoSmithKlineGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
| | - David M. Lindsay
- Department of Pure and Applied Chemistry WestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| | - Marc Reid
- Department of Pure and Applied Chemistry WestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| |
Collapse
|
38
|
Liu J, Gong H, Zhu S. Nickel-Catalyzed, Regio- and Enantioselective Benzylic Alkenylation of Olefins with Alkenyl Bromide. Angew Chem Int Ed Engl 2020; 60:4060-4064. [PMID: 33171012 DOI: 10.1002/anie.202012614] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/01/2020] [Indexed: 12/20/2022]
Abstract
A NiH-catalyzed migratory hydroalkenylation reaction of olefins with alkenyl bromides has been developed, affording benzylic alkenylation products with high yields and excellent chemoselectivity. The mild conditions of the reaction preclude olefinic products from undergoing further isomerization or subsequent alkenylation. Catalytic enantioselective hydroalkenylation of styrenes was achieved by using a chiral bisoxazoline ligand.
Collapse
Affiliation(s)
- Jiandong Liu
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | - Hegui Gong
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
39
|
Liu J, Gong H, Zhu S. Nickel‐Catalyzed, Regio‐ and Enantioselective Benzylic Alkenylation of Olefins with Alkenyl Bromide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiandong Liu
- School of Materials Science and Engineering Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 China
| | - Hegui Gong
- School of Materials Science and Engineering Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
40
|
Pierrot D, Marek I. Stereospecific Reactions Leading to Allylboronic Esters Within Acyclic Systems Bearing Distant Stereocenters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David Pierrot
- Schulich Faculty of Chemistry, Technion— Israel Institute of Technology Technion City 3200009 Haifa Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion— Israel Institute of Technology Technion City 3200009 Haifa Israel
| |
Collapse
|
41
|
Pierrot D, Marek I. Stereospecific Reactions Leading to Allylboronic Esters Within Acyclic Systems Bearing Distant Stereocenters. Angew Chem Int Ed Engl 2020; 59:20434-20438. [PMID: 32757448 DOI: 10.1002/anie.202010135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/05/2020] [Indexed: 11/11/2022]
Abstract
The preparation of acyclic molecules featuring congested stereocenters in a 1,4-relationship in only three catalytic steps from commercially available building blocks is reported. This approach involves a diastereoselective diboration of alkenyl cyclopropyl methanol derivatives followed by a regioselective exergonic ring fragmentation. The starting materials can be prepared enantiomerically enriched and all substituents can be interconverted, therefore, this strategy allows a large variety of diversely functionalized allylboronic esters possessing distant tetrasubstituted stereocenters with high diastereoselectivity.
Collapse
Affiliation(s)
- David Pierrot
- Schulich Faculty of Chemistry, Technion-, Israel Institute of Technology, Technion City, 3200009, Haifa, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-, Israel Institute of Technology, Technion City, 3200009, Haifa, Israel
| |
Collapse
|
42
|
Baumgartner Y, Baudoin O. One-Pot Alkene Hydroboration/Palladium-Catalyzed Migratory Suzuki–Miyaura Cross-Coupling. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02755] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yann Baumgartner
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Olivier Baudoin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| |
Collapse
|
43
|
Cohen Y, Cohen A, Marek I. Creating Stereocenters within Acyclic Systems by C–C Bond Cleavage of Cyclopropanes. Chem Rev 2020; 121:140-161. [DOI: 10.1021/acs.chemrev.0c00167] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Anthony Cohen
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
44
|
Yang C, Gao Y, Bai S, Jiang C, Qi X. Chemoselective Cross-Coupling of gem-Borazirconocene Alkanes with Aryl Halides. J Am Chem Soc 2020; 142:11506-11513. [PMID: 32496064 DOI: 10.1021/jacs.0c03821] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The direct and chemoselective conversion of the carbon-metal bond of gem-dimetallic reagents enables rapid and sequential formation of multiple carbon-carbon and carbon-heteroatom bonds, thus representing a powerful method for efficiently increasing structural complexity. Herein, we report a visible-light-induced, nickel-catalyzed, chemoselective cross-coupling reaction between gem-borazirconocene alkanes and diverse aryl halides, affording a wide range of alkyl Bpin derivatives in high yields with excellent regioselectivity. This practical method features attractively simple reaction conditions and a broad substrate scope. Additionally, we systematically investigated a Bpin-directed chain walking process underlying the regioselectivity of alkylzirconocenes, thus uncovering the mechanism of the remote functionalization of internal olefins achieved with our method. Finally, DFT calculations indicate that the high regioselectivity of this reaction originates from the directing effect of the Bpin group.
Collapse
Affiliation(s)
- Chao Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.,National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yadong Gao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.,National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Songlin Bai
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Chao Jiang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Cohen A, Chagneau J, Marek I. Stereoselective Preparation of Distant Stereocenters (1,5) within Acyclic Molecules. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01762] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anthony Cohen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 32000, Israel
| | - Jean Chagneau
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 32000, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 32000, Israel
| |
Collapse
|
46
|
Ho GM, Segura L, Marek I. Ru-catalyzed isomerization of ω-alkenylboronates towards stereoselective synthesis of vinylboronates with subsequent in situ functionalization. Chem Sci 2020; 11:5944-5949. [PMID: 34094086 PMCID: PMC8159340 DOI: 10.1039/d0sc02542a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The stereoselective preparation of synthetically versatile vinylboronates from ω-alkenylboronates is achieved through a ruthenium-catalyzed isomerization reaction. A variety of di- and trisubstituted vinylboronates were conveniently produced and could be used as a new starting point for subsequent in situ remote functionalization through either a sequential Ru/Pd or Ru/Cu double catalytic system. A regio- and stereoselective ruthenium-catalyzed isomerization of ω-alkenyl boronates into stereodefined di- and trisubstituted alkenylboronate derivatives is reported.![]()
Collapse
Affiliation(s)
- Guo-Ming Ho
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City 3200009 Haifa Israel
| | - Lucas Segura
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City 3200009 Haifa Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City 3200009 Haifa Israel
| |
Collapse
|
47
|
Changotra A, Bhaskararao B, Hadad CM, Sunoj RB. Insights on Absolute and Relative Stereocontrol in Stereodivergent Cooperative Catalysis. J Am Chem Soc 2020; 142:9612-9624. [DOI: 10.1021/jacs.9b13962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Avtar Changotra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Bangaru Bhaskararao
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Christopher M. Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
48
|
Wu X, Tang Z, Zhang C, Wang C, Wu L, Qu J, Chen Y. Pd-Catalyzed Regiodivergent Synthesis of Diverse Oxindoles Enabled by the Versatile Heck Reaction of Carbamoyl Chlorides. Org Lett 2020; 22:3915-3921. [DOI: 10.1021/acs.orglett.0c01197] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zaiquan Tang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chengxi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chenchen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Licheng Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
49
|
Zhang W, Zhang S, Li B. Highly Enantioselective Synthesis of Propargyl Amide with Vicinal Stereocenters through Ir‐Catalyzed Hydroalkynylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen‐Wen Zhang
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Su‐Lei Zhang
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Bi‐Jie Li
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
50
|
He Y, Liu C, Yu L, Zhu S. Ligand-Enabled Nickel-Catalyzed Redox-Relay Migratory Hydroarylation of Alkenes with Arylborons. Angew Chem Int Ed Engl 2020; 59:9186-9191. [PMID: 32141689 DOI: 10.1002/anie.202001742] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Indexed: 12/31/2022]
Abstract
A redox-relay migratory hydroarylation of isomeric mixtures of olefins with arylboronic acids catalyzed by nickel complexes bearing diamine ligands is described. A range of structurally diverse 1,1-diarylalkanes, including those containing a 1,1-diarylated quaternary carbon, were obtained in excellent yields and with high regioselectivity. Preliminary experimental evidence supports the proposed non-dissociated chainwalking of aryl-nickel(II)-hydride species along the alkyl chain of alkenes before selective reductive elimination at a benzylic position. A catalyst loading as low as 0.5 mol % proved to be sufficient in large-scale synthesis while retaining high reactivity, highlighting the practical value of this transformation.
Collapse
Affiliation(s)
- Yuli He
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Chuang Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|