1
|
Cheng X, Nie S, Huang Y, Liu Q, Wu L, Wang X. Electron-Delocalization Across High Surface Entropy Sub-1 nm Nanobelts Toward Enhanced Electrocatalytic Urea Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404595. [PMID: 38966880 DOI: 10.1002/smll.202404595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Integration of inherently incompatible elements into a single sublattice, resulting in the formation of monophasic metal oxide, holds great scientific promise; it unveils that the overlooked surface entropy in subnanometer materials can thermodynamically facilitate the formation of homogeneous single-phase structures. Here a facile approach is proposed for synthesizing multimetallic oxide subnanometer nanobelts (MMO-PMA SNBs) by harnessing the potential of phosphomolybdic acid (PMA) clusters to capture inorganic nuclei and inhibiting their subsequent growth in solvothermal reactions. Experimental and theoretical analyses show that PMA in MMO-PMA SNBs not only aids subnanometer structure formation but also induces in situ modifications to catalytic sites. The electron transfer from PMA, coupled with the loss of elemental identity of transition metals, leads to electron delocalization, jointly activating the reaction sites. The unique structure makes pentametallic oxide (PMO-PMA SNBs) achieve a current density of 10 mA cm-2 at a low potential of 1.34 V and remain stable for 24 h at 10 mA cm-2 on urea oxidation reaction (UOR). The exceptional UOR catalytic activity suggests a potential for utilizing multimetallic subnanometer nanostructures in energy conversion and environmental remediation.
Collapse
Affiliation(s)
- Xijun Cheng
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuan Huang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Nie S, Wu L, Liu Q, Wang X. Entropy-Derived Synthesis of the CuPd Sub-1nm Alloy for CO 2-to-acetate Electroreduction. J Am Chem Soc 2024; 146:29364-29372. [PMID: 39425939 DOI: 10.1021/jacs.4c07711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Bimetallic alloys exhibit remarkable properties in catalysis and energy storage, while their precise synthesis at the subnanoscale remains a formidable challenge due to their immiscible nature in thermodynamics. In this study, we engineer an atomically dispersed CuPd alloy with an average size of 1.5 nm loaded on CuO and phosphomolybdic acid (PMA) coassembly subnanosheets (CuO-PMA SNSs). Driven by the high vibrational entropy, Cu atoms could escape from CuO supports and bond with adjacent Pd single atoms, leading to the in situ formation of CuPd alloys. Furthermore, this strategy can also be utilized for synthesizing the ZnPt alloy with an average size of 1 nm, thereby providing a general pathway for the design of immiscible subnanoalloys. The fully exposed Cu-Pd pairs in CuPd subnanoalloys significantly enhance the adsorption and coverage of surface *CO during the electrochemical reduction of CO2, thereby leading to enhanced stability of ethenone intermediates and facilitating the production of C2 compounds. The resulting CuPd subnanoalloy exhibits a remarkable Faradaic efficiency of 46.5 ± 2.1% for CO2-to-acetate electroreduction and achieves a high acetate productivity of 99 ± 2.8 μmol cm-2 at -0.7 V versus RHE.
Collapse
Affiliation(s)
- Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Akram B, Musawar SS, Mumtaz S, Nazir F, Umer P, Liu Q. Homogeneous Integration of Polyoxometalates and Titania into Crumpled Layers. SMALL METHODS 2024:e2401377. [PMID: 39422133 DOI: 10.1002/smtd.202401377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Indexed: 10/19/2024]
Abstract
The crumpling and buckling in nanosheets are anticipated to provide new characteristics that could not be observed in ideal flat layers. However, the rigid lattice structure of inorganic metal oxides limits their assembly into well-defined crumpled layers. Here, this study demonstrates that at the sub-nm scale, polyoxometalates (POMs) clusters having well-defined structures can intercede during the nucleation process of titania and co-assemble with nuclei to form uniform, large-sized crumpled binary 2D layers with a thickness of 2 nm. The obtained crumpled layers are then used as a support material to immobilize Pd nanoclusters with an average size of 2 nm. Pd-immobilized crumpled layers are employed as heterogeneous catalysts for the partial hydrogenation of acetylene. This structurally and compositionally unique heterogeneous catalyst manifests exceptional selectivity to cis-alkene with almost 100% yield as compared to commercially available titania which only exhibits 10% diphenylacetylene conversion and 42% selectivity in the given period of time.
Collapse
Affiliation(s)
- Bilal Akram
- Department of Chemistry, Women University of Azad Jammu and Kashmir, Bagh, AJK 12500, Pakistan
| | - Syeda Sundas Musawar
- Department of Chemistry, Women University of Azad Jammu and Kashmir, Bagh, AJK 12500, Pakistan
| | - Sanam Mumtaz
- Department of Chemistry, Women University of Azad Jammu and Kashmir, Bagh, AJK 12500, Pakistan
| | - Fozia Nazir
- Department of Chemistry, Women University of Azad Jammu and Kashmir, Bagh, AJK 12500, Pakistan
| | - Palwisha Umer
- Department of Chemistry, Women University of Azad Jammu and Kashmir, Bagh, AJK 12500, Pakistan
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Liu YC, Zhu CY, Zhao X, Tan HQ, Cheng SH, Yang D, Wang X, Li YG. CdWO 4 Sub-1 nm Nanowires for Visible-Light CO 2 Photoreduction. Angew Chem Int Ed Engl 2024:e202418349. [PMID: 39373128 DOI: 10.1002/anie.202418349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/08/2024]
Abstract
Quantum size effect usually causes energy level splitting and band broadening as material size decreases. However, this may change again by the surface adsorbents, doping and defects, which rarely attracts much attention. Herein, CdWO4 sub-1 nm nanowires (SNWs) with oleylamine adsorption, PO4 3--doping and oxygen defects are synthesized by combining Cd(CH3COO)2, H3PW12O40 (PW12) and oleylamine (abbreviated as PO4 3--CdWO4-X SNWs). Compared with bulk CdWO4, they exhibit unexpected absorption spectra (extended from 292 nm to 453 nm) and band gap (reduced from 4.25 eV to 2.74 eV), thus bringing remarkable visible-light CO2 photoreduction activity. Under 410 nm LED light irradiation, PO4 3--CdWO4-40 SNWs exhibit the highest photocatalytic performance with a CO2-to-CO generation rate of 1685 μmol g-1 h-1. Density functional theory (DFT) calculations demonstrate the adsorbed oleylamine raises the valence band and enhances the adsorption of reaction substrate and intermediates, thus decreasing their reduction energy barriers. Furthermore, PO4 3--doping and oxygen defects will generate defect energy band below the conduction band of PO4 3--CdWO4-40 SNWs, resulting in remarkable visible light absorption and superior photocatalytic CO2 reduction performance. This work highlights the significant impacts of surface adsorbents, doping and defects on the physicochemical and catalytic properties of sub-nano materials.
Collapse
Affiliation(s)
- Yan-Chun Liu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Chang-Yan Zhu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xia Zhao
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Hua-Qiao Tan
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Si-Hang Cheng
- School of Chemical and Materials Engineering, Bohai University, Jinzhou, 121000, China
| | - Dan Yang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang-Guang Li
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
5
|
Liu Q, Wang X, Wang X. Sub-1 nm Materials Chemistry: Challenges and Prospects. J Am Chem Soc 2024; 146:26587-26602. [PMID: 39312400 DOI: 10.1021/jacs.4c08828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Subnanometer materials (SNMs) refer to nanomaterials with a feature size close to 1 nm, similar to the diameter of a single polymer, DNA strand, and a single cluster/unit cell. The growth and assembly of subnanometer building blocks can be controlled by interactions at atomic levels, representing the limit for the precise manipulation of materials. The size, geometry, and flexibility of 1D SNMs inorganic backbones are similar to the polymer chains, bringing excellent gelability, adhesiveness, and processability different from inorganic nanocrystals. The ultrahigh surface atom ratio of SNMs results in significantly increased surface energy, leading to significant rearrangement of surface atoms. Unconventional phases, immiscible metal alloys, and high entropy materials with few atomic layers can be stabilized, and the spontaneous twisting of SNMs may induce the intrinsic structural chirality. Electron delocalization may also emerge at the subnanoscale, giving rise to the significantly enhanced catalytic activity. In this perspective, we summarized recent progress on SNMs, including their synthesis, polymer-like properties, metastable phases, structural chirality, and catalytic properties, toward energy conversion. As a critical size region in nanoscience, the development of functional SNMs may fuse the boundary of inorganic materials and polymers and conduce to the precise manufacturing of materials at atomic levels.
Collapse
Affiliation(s)
- Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaoya Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
6
|
Akram B, Ali M, Liu Q. Polyoxometalate Induced Assembly Into Surface Functionalized Multidimensional Heterostructures with Enhanced Catalytic Activity. SMALL METHODS 2024; 8:e2301432. [PMID: 38213012 DOI: 10.1002/smtd.202301432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/29/2023] [Indexed: 01/13/2024]
Abstract
The self-assembly of inorganic nanocrystals offers an efficient way for the fabrication of functional materials. However, it is still challenging for the construction of multidimensional nanostructures with controllable shapes, compositions and functions. Here, a series of heterostructures in different dimensions by surface modification of polyoxometalate (POM) clusters is developed. Three kinds of POM clusters (phosphomolybdic acid (PMA), phosphotungstic acid (PTA) and silicotungstic acid (STA) and five kinds of metal oxides (TiO2, VOx, La2O3, In2O3 and Gd2O3) can be used as building blocks, and a class of 1D, 2D and 3D heterostructures can be achieved by the control of surface ligand coverage. Compared with individual building blocks and other cluster-based superstructures, TiO2-PMA superstructures exhibit enhanced catalytic activity toward thioether oxidations, which is attributed to the electron transfer between TiO2 and POM clusters.
Collapse
Affiliation(s)
- Bilal Akram
- Department of Chemistry, Women University of Azad Jammu and Kashmir, AJ&K, Bagh, 12500, Pakistan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mudussar Ali
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Xing S, Ma X, Gu Q, Ma N, Zhang Z, Han G, Huang R, Feng X, Yang B, Duan C, Liu Y. Cluster-Cluster Co-Nucleation Induced Defective Polyoxometalate-Based Metal-Organic Frameworks for Efficient Tandem Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400410. [PMID: 38721986 DOI: 10.1002/smll.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Indexed: 10/01/2024]
Abstract
The construction of defective sites is one of the effective strategies to create high-activity Metal-Organic frameworks (MOFs) catalysts. However, traditional synthesis methods usually suffer from cumbersome synthesis steps and disordered defect structures. Herein, a cluster-cluster co-nucleation (CCCN) strategy is presented that involves the in situ introduction of size-matched functional polyoxometalates (H6P2W18O62, {P2W18}) to intervene the nucleation process of cluster-based MOFs (UiO-66), achieving one-step inducement of exposed defective sites without redundant post-processing. POM-induced UiO-66 ({P2W18}-0.1@UiO-66) exhibits a classical reo topology for well-defined cluster defects. Moreover, the defective sites and the interaction between POM and skeletal cluster nodes are directly observed by Integrated Differential Phase Contrast in Scanning Transmission Electron Microscopy (iDPC-STEM). Owing to the molecular-level proximity between defective sites and POM in the same nano-reaction space, {P2W18}-0.1@UiO-66 exhibits efficient tandem catalysis in the preparation of γ-valerolactone (γ-GVL) from laevulinic acid (LA) by the combination of Lewis and Brønsted acids with 11 times higher performance than defective UiO-66 formed by conventional coordination modulation strategy. The CCCN strategy is applicable to different POM and has the potential to be extended to other cluster-based MOFs, which will pave a new way for the construction of functional MOFs with multi-centered synergistic catalysis.
Collapse
Affiliation(s)
- Songzhu Xing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xujiao Ma
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Qingqing Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Nana Ma
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Zhong Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Guoying Han
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Rui Huang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiao Feng
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chunying Duan
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yiwei Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
8
|
Nie S, Wu L, Zhang Q, Huang Y, Liu Q, Wang X. High-entropy-perovskite subnanowires for photoelectrocatalytic coupling of methane to acetic acid. Nat Commun 2024; 15:6669. [PMID: 39107324 PMCID: PMC11303686 DOI: 10.1038/s41467-024-50977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
The incorporation of multiple immiscible metals in high-entropy oxides can create the unconventional coordination environment of catalytic active sites, while the high formation temperature of high-entropy oxides results in bulk materials with low specific surface areas. Here we develop the high-entropy LaMnO3-type perovskite-polyoxometalate subnanowire heterostructures with periodically aligned high-entropy LaMnO3 oxides and polyoxometalate under a significantly reduced temperature of 100 oC, which is much lower than the temperature required by state-of-the-art calcination methods for synthesizing high-entropy oxides. The high-entropy LaMnO3-polyoxometalate subnanowires exhibit excellent catalytic activity for the photoelectrochemical coupling of methane into acetic acid under mild conditions (1 bar, 25 oC), with a high productivity (up to 4.45 mmol g‒1cat h‒1) and selectivity ( > 99%). Due to the electron delocalization at the subnanometer scale, the contiguous active sites of high-entropy LaMnO3 and polyoxometalate in the heterostructure can efficiently activate C - H bonds and stabilize the resulted *COOH intermediates, which benefits the in situ coupling of *CH3 and *COOH into acetic acid.
Collapse
Affiliation(s)
- Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yunwei Huang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Nie S, Wang X. Electron Delocalization and Transfer Across Polyoxometalates-Based Subnanomaterials in Catalytic Reactions. SMALL METHODS 2024; 8:e2301359. [PMID: 38161270 DOI: 10.1002/smtd.202301359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/27/2023] [Indexed: 01/03/2024]
Abstract
Due to their identical building blocks and high surface-to-volume ratio, subnanomaterials exhibit significant properties compared to their bulk nanomaterial counterparts. The interactions between these building blocks can result in either equal or unequal sharing of electrons, leading to electron transfer in heterojunctions or electron delocalization within symmetric structures. Clusters, possessing electronic properties akin to atoms, can serve as reservoirs of electrons to stabilize crucial intermediates in catalytic reactions. This perspective provides a novel understanding of well-defined subnanomaterials with distinct architectures, such as cluster-based constructions and co-assembled heterojunctions, emphasizing the relationship between electronic structures and catalytic properties. The objective is to provide novel perspectives on the realm of subnanomaterials and cluster-based architectures.
Collapse
Affiliation(s)
- Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Li HL, Zhao SH, Gao A, Lian C, Cao X. {SeO 2(OH)} Bridging Lanthanide-Containing Antimono-Seleno-Tungstates. Inorg Chem 2024; 63:9899-9906. [PMID: 38743634 DOI: 10.1021/acs.inorgchem.4c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A series of new trigonal pyramidal {SeO2(OH)} bridging lanthanide-containing antimono-seleno-tungstates [H2N(CH3)2]8Na8Cs4H9[Ln2SeW4O11(OH)(H2O)4(SbW9O33)(SeW9O33)(Se1/2Sb1/2W9O33)]2·32H2O [Ln = Tb (1), Dy (2), Ho (3), Er (4)] have been prepared by the synthetic strategy of simultaneously using the antimonotungstate precursor and simple material in an acidic aqueous solution and structurally characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR spectrometry, and thermogravimetric analysis. Their molecular structures contain an unprecedented hexameric polyoxoanion [Ln2SeW4O11(OH)(H2O)4(SbW9O33)(SeW9O33)(Se1/2Sb1/2W9O33)]229- constituted by two equivalent trimeric subunits Ln2W4O9(H2O)4(SbW9O33)(SeW9O33)(Se1/2Sb1/2W9O33) bridged via two μ2-{SeO2(OH)} linkers. Furthermore, the catalytic oxidation of various aromatic sulfides and sulfur mustard simulant 2-chloroethyl ethyl sulfide (CEES) by compound 3 as the heterogeneous catalyst has been investigated, exhibiting high conversion and selectivity as well as good stability and recyclability.
Collapse
Affiliation(s)
- Hai-Lou Li
- College of Chemistry and Chemical Engineering & Green Catalysis and Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Si-Han Zhao
- College of Chemistry and Chemical Engineering & Green Catalysis and Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Aiping Gao
- College of Chemistry and Chemical Engineering & Green Catalysis and Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Chen Lian
- College of Chemistry and Chemical Engineering & Green Catalysis and Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering & Green Catalysis and Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| |
Collapse
|
11
|
Ge H, Zheng L, Yuan G, Shi W, Liu J, Zhang Y, Wang X. Polyoxometallate Cluster Induced High-Entropy Oxide Sub-1 nm Nanosheets as Photoelectrocatalysts for Zn-Air Batteries. J Am Chem Soc 2024; 146:10735-10744. [PMID: 38574239 DOI: 10.1021/jacs.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The lack of highly efficient and inexpensive catalysts severely hinders the large-scale application of Zn-air batteries (ZABs). High-entropy oxides (HEOs) exhibit unique structures and attractive properties; thus, they are promising to be used in ZABs. However, conventional high-temperature synthesis methods tend to obtain microscale HEOs with a lower exposure rate of active sites. Here, we report a facile solvothermal strategy for preparing two-dimensional (2D) HEO sub-1 nm nanosheets (SNSs) induced by polyoxometalate (POM) clusters. Taking advantage of the special 2D sub-1 nm structure and precise element regulation, these 2D HEOs-POM SNSs exhibit enhanced bifunctional oxygen evolution and oxygen reduction reaction activity under light irradiation. Further applying these 2D HEOs-POM SNSs to ZABs as cathode catalysts, the CoFeNiMnCuZnOx-phosphomolybdic acid SNSs-based ZABs deliver a low charge/discharge voltage gap of 0.25 V at 2 mA cm-2 under light irradiation. Meanwhile, it could maintain an ultralong-term stability for 1600 h at 2 mA cm-2 and 930 h at 10 mA cm-2. The 2D sub-1 nm structure and fine element control in HEOs provide opportunities to solve the problems of low intrinsic activity, limited active sites, and instability of air cathodes in ZABs.
Collapse
Affiliation(s)
- Huaiyun Ge
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Guobao Yuan
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
| | - Wenxiong Shi
- School of Materials Science and Engineering, Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| | - Junli Liu
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
| | - Yu Zhang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Dipalo MC, Yu B, Cheng X, Nie S, Liu J, Shi W, Zhang F, Liu Q, Wang X. Microwave-assisted synthesis of polyoxometalate-Dy 2O 3 monolayer nanosheets and nanotubes. NANOSCALE 2024. [PMID: 38563321 DOI: 10.1039/d4nr00323c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Two-dimensional (2D) materials have shown unique chemical and physical properties; however, their synthesis is highly dependent on the layered structure of building blocks. Herein, we developed monolayer Dy2O3-phosphomolybdic acid (PMA) nanosheets and nanotubes based on microwave synthesis. Microwave-assisted synthesis with high-energy input gives a faster and dynamically driven growth of nanomaterials, resulting in high-purity nanostructures with a narrow size distribution. The reaction times of the nanosheets and nanotubes under microwave synthesis are significantly reduced compared with oven-synthesis. Dy2O3-PMA nanosheets and nanotubes exhibit enhanced activity and stability in photoconductance, with higher sensitivities (0.308 μA cm-2 for nanosheets and 0.271 μA cm-2 for nanotubes) compared to the individual PMA (0.12 μA cm-2) and Dy2O3 (0.025 μA cm-2) building blocks. This work demonstrates the promising application potential of microwave-synthesized 2D heterostructures in superconductors and photoelectronic devices.
Collapse
Affiliation(s)
- Maria C Dipalo
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Biao Yu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Xijun Cheng
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Junli Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Fenghua Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
13
|
Feng N, Wang Z, Sun D, Zhang L, Xin X, Sun P, Azam M, Li H. Kinetically Controlled Structural Modulation of the Self-Assembled Silver Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305366. [PMID: 37792210 DOI: 10.1002/smll.202305366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Indexed: 10/05/2023]
Abstract
Metal nanoclusters (NCs) with atomic precision are growing into a fascinating class of building blocks for supramolecular chemistry. What makes it more interesting is the enhanced optical properties of the ordered structures, including aggregation-induced emission (AIE). However, algorithm dictating the self-assembly of metal NCs in multicomponent environment remains largely unknown, and effective means to manipulate the self-assembly is still lacking, especially under kinetic control. Herein, nanofibers which contain sub-1 nm nanowires and exhibit circularly polarized phosphorescence (CPP) are obtained from crystallization-induced self-assembly (CISA) of water-soluble, negatively charged silver NCs (Ag9 -NCs) in the presence of glutamic acid (Glu). By the introduction of a positively-charged additive (choline chloride, CC), the structure of the nanowires is modulated and the lateral interaction between adjacent nanofibers is adjusted, leading to simultaneous improvement of the phosphorescence and chirality which finally enhances CPP. Importantly, changing the time at which CC is introduced altered the kinetic pathway of the CISA, which enables to effectively manipulate both the final structures of the self-assembled Ag9 -NCs and the output of the optical signals.
Collapse
Affiliation(s)
- Ning Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Zhi Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
- Key Laboratory of China Research Institute of Daily Chemistry Co., Ltd, Sinolight Corporation, Taiyuan, 030001, P. R. China
| | - Xia Xin
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Panpan Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
14
|
Wang T, Chen W, Liu Q, Wang W, Wang Y, Wu B, Shi W, Zhu Y, He P, Wang X. Self-Assembly of Polyoxometalate-Based Sub-1 nm Polyhedral Building Blocks into Rhombic Dodecahedral Superstructures. Angew Chem Int Ed Engl 2023:e202314045. [PMID: 37916968 DOI: 10.1002/anie.202314045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
Self-assembly of subnanometer (sub-1 nm) scale polyhedral building blocks can yield some superstructures with novel and interesting morphology as well as potential functionalities. However, achieving the self-assembly of sub-1 nm polyhedral building blocks is still a great challenge. Herein, through encapsulating the titanium-substituted polyoxometalate (POM, K7 PTi2 W10 O40 ) with tetrabutylammonium cations (TBA+ ), we first synthesized a sub-1 nm rhombic dodecahedral building block by further tailoring the spatial distribution of TBA+ on the POM. Molecular dynamics (MD) simulations demonstrated the eight TBA+ cations interacted with the POM cluster and formed the sub-1 nm rhombic dodecahedron. As a result of anisotropy, the sub-1 nm building blocks have self-assembled into rhombic dodecahedral POM (RD-POM) assemblies at the microscale. Benefiting from the regular structure, Br- ions, and abundant active sites, the obtained RD-POM assemblies exhibit excellent catalytic performance in the cycloaddition of CO2 with epoxides without co-catalysts. This work provides a promising approach to tailor the symmetry and structure of sub-1 nm building blocks by tuning the spatial distribution of ligands, which may shed light on the fabrication of superstructures with novel properties by self-assembly.
Collapse
Affiliation(s)
- Tian Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Weichao Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qingda Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wei Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yinming Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Biao Wu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Peilei He
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
15
|
Nie S, Wu L, Wang X. Electron-Delocalization-Stabilized Photoelectrocatalytic Coupling of Methane by NiO-Polyoxometalate Sub-1 nm Heterostructures. J Am Chem Soc 2023; 145:23681-23690. [PMID: 37861371 DOI: 10.1021/jacs.3c07984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The oxidative coupling of methane to C2 oxygenates merits great scientific and technological potential yet remains a challenge due to its inferior selectivity. Subnanomaterials (SNMs) with "p-n-p-n"-type heteroconstructions feature enhanced external field coupling properties and tunable electronic structures, serving as promising catalysts for the selective partial oxidation of methane. Here we develop NiO-polyoxometalate (POM) subnanocoils with a thickness of 1.8 nm, showing excellent catalytic activity toward photoelectrochemical coupling of methane into a C2 product under mild conditions (1 bar, 25 °C) with a notable productivity (up to 4.48 mmol gcat-1 h-1) and a high selectivity (>99%). Under photoelectrochemical coupling, C-H bonds can be activated by NiO, and the resulted *COOH intermediates are stabilized by the delocalized electrons in POM clusters. The contiguous active sites of NiO and POM at the molecular level allow the in situ coupling of *COOH into oxalate. This work points out an economic way for the oxidation of methane under mild conditions and may enlighten the design of functional SNMs from fundamental standpoints.
Collapse
Affiliation(s)
- Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Yuan G, Ge H, Shi W, Liu J, Zhang Y, Wang X. Hybrid Sub-1 nm Nanosheets of Co-assembled MnZnCuO x and Polyoxometalate Clusters as Anodes for Li-ion Batteries. Angew Chem Int Ed Engl 2023; 62:e202309934. [PMID: 37551751 DOI: 10.1002/anie.202309934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Transition metal oxide (TMO) anode materials in lithium-ion batteries (LIBs) usually suffer from serious volume expansion leading to the pulverization of structures, further giving rise to lower specific capacity and worse cycling stability. Herein, by introducing polyoxometalate (POM) clusters into TMOs and precisely controlling the amount of POMs, the MnZnCuOx -phosphomolybdic acid hybrid sub-1 nm nanosheets (MZC-PMA HSNSs) anode is successfully fabricated, where the special electron rich structure of POMs is conducive to accelerating the migration of lithium ions on the anode to obtain higher specific capacity, and the non-covalent interactions between POMs and TMOs make the HSNSs possess excellent structural and chemical stability, thus exhibiting outstanding electrochemical performance in LIBs, achieving a high reversible capacity (1157 mAh g-1 at 100 mA g-1 ) and an admirable long-term cycling stability at low and high current densities.
Collapse
Affiliation(s)
- Guobao Yuan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, 100191, Beijing, China
| | - Huaiyun Ge
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, 100191, Beijing, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Junli Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, 100191, Beijing, China
| | - Yu Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, 100191, Beijing, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
17
|
Wang X, Wang J, Li J, Du Y, Wu J, He H. Fabrication of Nitrogen-Doped Carbon@Magnesium Silicate Composite by One-Step Hydrothermal Method and Its High-Efficiency Adsorption of As(V) and Tetracycline. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5338. [PMID: 37570044 PMCID: PMC10420030 DOI: 10.3390/ma16155338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Tetracycline (TC) and arsenic contaminants are two main pollutants in aquaculture and livestock husbandry, and they have drawn worldwide attention. To address this issue, a novel N-doped carbon@magnesium silicate (CMS) was fabricated via a facile and low-cost hydrothermal route, adopting glucose and ammonia as C and N sources, respectively. The synergetic combination of carbon and magnesium silicate makes CMS possess a high surface area of 201 m2/g and abundant functional groups. Due to the abundant C- and N-containing functional groups and Mg-containing adsorptive sites, the maximum adsorption capacity values of CMS towards As(V) and TC are 498.75 mg/g and 1228.5 mg/g, respectively. The type of adsorption of As(V) and TC onto CMS is monolayer adsorption. An adsorption kinetic study revealed that the mass transfer and intraparticle process dominates the sorption rate of As(V) and TC adsorption onto CMS, respectively. Various functional groups synthetically participate in the adsorption process through complexion, π-π EDA interactions, and hydrogen bonds. This work provides a one-step, low-cost route to fabricate a N-doped carbonaceous adsorbent with a high surface area and abundant functional groups, which has great potential in the application of practical sewage treatment.
Collapse
Affiliation(s)
- Xuekai Wang
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.W.)
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Jinshu Wang
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.W.)
| | - Jianjun Li
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Yucheng Du
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.W.)
| | - Junshu Wu
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.W.)
| | - Heng He
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.W.)
| |
Collapse
|
18
|
Li H, Zheng L, Lu Q, Li Z, Wang X. A monolayer crystalline covalent network of polyoxometalate clusters. SCIENCE ADVANCES 2023; 9:eadi6595. [PMID: 37436995 DOI: 10.1126/sciadv.adi6595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Monolayer two-dimensional (2D) materials are of great interest because of their unique electronic structures, noticeable in-plane confinement effect, and exceptional catalytic properties. Here, we prepared 2D covalent networks of polyoxometalate clusters (CN-POM) featuring monolayer crystalline molecular sheets, formed by the covalent connection between tetragonally arranged POM clusters. The CN-POM shows a superior catalytic efficiency in the oxidation of benzyl alcohol, and the conversion rate is five times higher than that of the POM cluster units. Theoretical calculations show that in-plane electron delocalization of CN-POM contributes to easier electron transfer and increases catalytic efficiency. Moreover, the conductivity of the covalently interconnected molecular sheets was 46 times greater than that of individual POM clusters. The preparation of monolayer covalent network of POM clusters provides a strategy to synthesize advanced cluster-based 2D materials and a precise molecular model to investigate the electronic structure of crystalline covalent networks.
Collapse
Affiliation(s)
- Haoyang Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qichen Lu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Huaneng Clean Energy Research Institute, Beijing 102209, China
| | - Zhong Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Hu H, Han X, Wu G, Ma Z, Wu B, Yan M, Lin X, Zheng X, Hong X. Spiral Square Nanosheets Assembled from Ru Clusters. J Am Chem Soc 2023. [PMID: 37224478 DOI: 10.1021/jacs.3c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Spiral two-dimensional (2D) nanosheets exhibit unique physical and chemical phenomena due to their twisted structures. While self-assembly of clusters is an ideal strategy to form hierarchical 2D structures, it is challenging to form spiral nanosheets. Herein, we first report a screw dislocation involved assembled method to obtain 2D spiral cluster assembled nanosheets (CANs) with uniform square morphology. The 2D spiral Ru CANs with a length of approximately 4 μm and thickness of 20.7 ± 3.0 nm per layer were prepared via the assembly of 1-2 nm Ru clusters in the presence of molten block copolymer Pluronic F127. Cryo-electron microscopy (cryo-EM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) demonstrate the existence of screw dislocation in the spiral assembled structure. The X-ray absorption fine structure spectrum indicates that Ru clusters are Ru3+ species, and Ru atoms are mainly coordinated with Cl with a coordination number of 6.5. Fourier-transform infrared (FT-IR) spectra and solid-state nuclear magnetic resonance hydrogen spectra (1H NMR) indicate that the assembly process of Ru clusters is formed by noncovalent interactions, including hydrogen bonding and hydrophilic interactions. Additionally, the Ru-F127 CANs exhibit excellent photothermal conversion performance in the near-infrared (NIR) region.
Collapse
Affiliation(s)
- Haohui Hu
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiao Han
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Geng Wu
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhentao Ma
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Bei Wu
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Muyu Yan
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xingen Lin
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Xun Hong
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
20
|
Liang K, Zhao H, Li J, Huang X, Jia S, Chen W, Ren Y. Engineering Crystal Growth and Surface Modification of Na 3 V 2 (PO 4 ) 2 F 3 Cathode for High-Energy-Density Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207562. [PMID: 36799138 DOI: 10.1002/smll.202207562] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/20/2023] [Indexed: 05/11/2023]
Abstract
Na3 V2 (PO4 )2 F3 (NVPF) is a suitable cathode for sodium-ion batteries owing to its stable structure. However, the large radius of Na+ restricts diffusion kinetics during charging and discharging. Thus, in this study, a phosphomolybdic acid (PMA)-assisted hydrothermal method is proposed. In the hydrothermal process, the NVPF morphologies vary from bulk to cuboid with varying PMA contents. The optimal channel for accelerated Na+ transmission is obtained by cuboid NVPF. With nitrogen-doping of carbon, the conductivity of NVPF is further enhanced. Combined with crystal growth engineering and surface modification, the optimal nitrogen-doped carbon-covered NVPF cuboid (c-NVPF@NC) exhibits a high initial discharge capacity of 121 mAh g-1 at 0.2 C. Coupled with a commercial hard carbon (CHC) anode, the c-NVPF@NC||CHC full battery delivers 118 mAh g-1 at 0.2 C, thereby achieving a high energy density of 450 Wh kg-1 . Therefore, this work provides a novel strategy for boosting electrochemical performance by crystal growth engineering and surface modification.
Collapse
Affiliation(s)
- Kang Liang
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou, 213164, P. R. China
| | - Hongshun Zhao
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou, 213164, P. R. China
| | - Jianbin Li
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou, 213164, P. R. China
| | - Xiaobing Huang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan, 415000, P. R. China
| | - Shuyong Jia
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou, 213164, P. R. China
| | - Wenkai Chen
- Department of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yurong Ren
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
21
|
Liu Q, Wang X. Precise Assembly of Polyoxometalates at Single-cluster Levels. Angew Chem Int Ed Engl 2023; 62:e202217764. [PMID: 36577699 DOI: 10.1002/anie.202217764] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Polyoxometalate (POM) clusters with atomic precision structures are promising candidates construct functional nanomaterials via self-assembly. Non-covalent interactions at molecular levels can govern the self-assembly of POM clusters, for which the precise control of POM-based assemblies can be realized at single-cluster levels. This mini-review focuses on the synthesis and properties of POM-based nanostructures, including amphiphilic POM assemblies and co-assemblies of POM clusters and other subnanometer building blocks. Several synthetic strategies have been developed for rational control of POM-based assemblies in terms of morphologies, compositions and properties. 1D subnanometer POM assemblies demonstrate remarkable enhanced mechanical properties due to the topological interactions between nanowires and surroundings. The in-depth understanding of POM-based assemblies may help in the design of functional nanomaterials in fundamental perspectives and applications.
Collapse
Affiliation(s)
- Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
22
|
Zhang H, Zhou Y, Xu M, Chen A, Ni Z, Akdim O, Wågberg T, Huang X, Hu G. Interface Engineering on Amorphous/Crystalline Hydroxides/Sulfides Heterostructure Nanoarrays for Enhanced Solar Water Splitting. ACS NANO 2023; 17:636-647. [PMID: 36524746 DOI: 10.1021/acsnano.2c09880] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Developing highly efficient and stable noble-metal-free electrocatalysts for water splitting is critical for producing clean and sustainable energy. Here, we design a hierarchical transition metal hydroxide/sulfide (NiFe(OH)x-Ni3S2/NF) electrode with dual heterointerface coexistence using a cation exchange-induced surface reconfiguration strategy. The electrode exhibits superior electrocatalytic activities, achieving low overpotentials of 55 mV for hydrogen evolution and 182 mV for oxygen evolution at 10 mA cm-2. Furthermore, the assembled two-electrode system requires voltages as low as 1.55 and 1.62 V to deliver industrially relevant current densities of 500 and 1000 mA cm-2, respectively, with excellent durability for over 200 h, which is comparable to commercial electrolysis. Theoretical calculations reveal that the hierarchical heterostructure increases the electronic delocalization of the Fe and Ni catalytic centers, lowering the energy barrier of the rate-limiting step and promoting O2 desorption. Finally, by implementing the catalysts in a solar-driven water electrolysis system, we demonstrate a record and durable solar-to-hydrogen (STH) conversion efficiency of up to 20.05%. This work provides a promising strategy for developing low-cost and high-efficiency bifunctional catalysts for a large-scale solar-to-hydrogen generation.
Collapse
Affiliation(s)
- Hua Zhang
- School of Materials and Energy, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yintang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Anran Chen
- School of Materials and Energy, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zitao Ni
- School of Materials and Energy, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Ouardia Akdim
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå 901 87, Sweden
| | - Xiaoyang Huang
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Guangzhi Hu
- School of Materials and Energy, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
- Department of Physics, Umeå University, Umeå 901 87, Sweden
| |
Collapse
|
23
|
Liu J, Li Y, Chen Z, Liu N, Zheng L, Shi W, Wang X. Polyoxometalate Cluster-Incorporated High Entropy Oxide Sub-1 nm Nanowires. J Am Chem Soc 2022; 144:23191-23197. [DOI: 10.1021/jacs.2c10602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Junli Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Yuqi Li
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Laboratory for Advanced Materials and Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Zhao Chen
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Laboratory for Advanced Materials and Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin300387, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing100084, China
| |
Collapse
|
24
|
Han X, Wu G, Ge Y, Yang S, Rao D, Guo Z, Zhang Y, Yan M, Zhang H, Gu L, Wu Y, Lin Y, Zhang H, Hong X. In situ Observation of Structural Evolution and Phase Engineering of Amorphous Materials during Crystal Nucleation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206994. [PMID: 36222376 DOI: 10.1002/adma.202206994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The nucleation pathway determines the structures and thus properties of formed nanomaterials, which is governed by the free energy of the intermediate phase during nucleation. The amorphous structure, as one of the intermediate phases during nucleation, plays an important role in modulating the nucleation pathway. However, the process and mechanism of crystal nucleation from amorphous structures still need to be fully investigated. Here, in situ aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) is employed to conduct real-time imaging of the nucleation of ultrathin amorphous nanosheets (NSs). The results indicate that their nucleation contains three distinct stages, i.e., aggregation of atoms, crystallization to form lattice-expanded nanocrystals, and relaxation of the lattice-expanded nanocrystals to form final nanocrystals. In particular, the crystallization processes of various amorphous materials are investigated systematically to form corresponding nanocrystals with unconventional crystalline phases, including face-centered-cubic (fcc) Ru, hexagonal-close-packed (hcp) Rh, and a new intermetallic IrCo alloy. In situ electron energy-loss spectroscopy (EELS) analysis unveils that the doped carbon in the original amorphous NSs can migrate to the surface during the nucleation process, stabilizing the obtained unconventional crystal phases transformed from the amorphous structures, which is also proven by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xiao Han
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Geng Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, P. R. China
| | - Shaokang Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Dewei Rao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Zhiyan Guo
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yan Zhang
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Muyu Yan
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Haoran Zhang
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lin Gu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Yuen Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yue Lin
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
25
|
Akram B, Wang M, Wang X. PMA-FeCo mixed-oxide magnetic quasi-nanosheets. NANOSCALE 2022; 14:15635-15639. [PMID: 36193803 DOI: 10.1039/d2nr04748a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Free-standing 2D nanoassemblies are a new class of advanced functional materials that can integrate the unique properties of their individual components. Herein, we report a facile template-free solvothermal strategy to manipulate the assembly of structurally distinct building blocks into free-standing 2D quasi-nanosheets. The obtained 2D nanoassemblies are magnetic in nature with thickness in the range of tens of nanometers and lateral dimensions of several micrometers. They showed exceptionally high stability and can even remain intact in any solvent for months without any significant disassembly. The magnetic quasi-nanosheets were further used to remove polystyrene (PS), a model microplastic pollutant, from water. The robust phosphomolybdic acid (PMA) cluster-based hybrid exhibited outstanding PS removal performance because of the unique quasi-nanosheet architecture and multiple coordination sites of the redox-active PMA clusters. Overall, our developed co-assembly and subsequent water purification strategy effectively tackles various limitations associated with traditional assembly and water purification strategies.
Collapse
Affiliation(s)
- Bilal Akram
- Department of Chemistry, Women University of Azad Jammu and Kashmir, Bagh AJ&K 12500, Pakistan
| | - Mingxin Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Liu Q, Wang X. Fabricating sub-nanometer materials through cluster assembly. Chem Sci 2022; 13:12280-12289. [PMID: 36382289 PMCID: PMC9629133 DOI: 10.1039/d2sc03813g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/25/2022] [Indexed: 10/05/2023] Open
Abstract
The self-assembly of clusters provides a feasible approach for the bottom-up fabrication of functional materials with tailored properties. Sub-nanometer cluster assembly with a well-defined construction presents a precisely controllable structure and extraordinary properties, which provides an ideal model for the investigation of structures and properties at the molecular level. Non-covalent interactions between clusters may dominate the assembly behavior, appearing as tunable structures different from their nano-counterparts. Interactions between clusters and their superatom orbitals can significantly influence the electronic structures, because of which exceptional properties may emerge. In this paper, recent progress on cluster-based assemblies is introduced, including sub-nanometer building blocks of noble metal and polyoxometalate (POM) clusters. The structures, formation mechanism and properties of these cluster assemblies are discussed from experimental and theoretical aspects. This perspective aims to provide a new insight into the design and manufacture of sub-nanometer materials based on clusters.
Collapse
Affiliation(s)
- Qingda Liu
- Department of Chemistry, Key Lab of Organic Optoelectronics and Molecular Engineering, Tsinghua University Beijing 100084 China
| | - Xun Wang
- Department of Chemistry, Key Lab of Organic Optoelectronics and Molecular Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
27
|
Zhang T, Weng S, Wang X, Zhang Z, Gao Y, Lin T, Zhu Y, Zhang W, Sun C. Platinum atomic clusters embedded in polyoxometalates-carbon black as an efficient and durable catalyst for hydrogen evolution reaction. J Colloid Interface Sci 2022; 624:704-712. [PMID: 35696788 DOI: 10.1016/j.jcis.2022.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 12/31/2022]
Abstract
Platinum-based catalysts are regarded as the Holy Grail of hydrogen evolution reaction (HER). As a benchmark catalyst for HER, the commercial Pt/C catalyst has low Pt utilization efficiency and high cost, which hinders its commercialization. Atomic clusters-based catalysts show high efficiency of atom utilization and high performance toward electrocatalysis. Herein, an environmentally friendly preparation strategy is proposed to construct Pt atomic clusters on the polyoxometalates-carbon black (Pt-POMs-CB) support. Density functional theory (DFT) calculations reveal that the Pt clusters can be stably anchored on the surface with the driving force arising from the charge transfer from Pt atoms to O atoms of the POMs. Benefiting from metal-support interaction, Pt atomic clusters embedded in silicotungstic acid-carbon black (Pt-STA-CB) exhibit excellent HER activity with an overpotential of 33.8 mV at 10 mA cm-2, and high mass activity is 1.62 A mg-1Pt at 33.8 mV, which is 5.4 times that of the commercial Pt/C. In addition, the catalyst displays high stability of 800 h at current density of 500 mA cm-2. It provides a platform for facile and low-cost preparation of stable Pt-based catalysts, which is crucial for their large-scale production and practical application in the industry.
Collapse
Affiliation(s)
- Tongrui Zhang
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Suting Weng
- Institute of Physics, Chinese Academy of Sciences; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xuefeng Wang
- Institute of Physics, Chinese Academy of Sciences; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; Tianmu Lake Institute of Advanced Energy Storage Technologies Co. Ltd., Liyang 213300, Jiangsu, China
| | - Zhijun Zhang
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
| | - Yaling Gao
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
| | - Ting Lin
- Institute of Physics, Chinese Academy of Sciences; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yuanqin Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Wei Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Chunwen Sun
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
28
|
Rong S, Wang X. Recent progress of sub-1 nm nanomaterials: synthesis, polymer-analogue properties and applications in redox catalysis. Chem Commun (Camb) 2022; 58:11475-11487. [PMID: 36156040 DOI: 10.1039/d2cc04332g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sub-1 nm nanomaterials (SNMs) have attracted attention for their novel structures and size-related properties. In the past decade, various SNMs were synthesized, such as nanowires, nanorings, nanosheets, nanobelts, nanotubes, and other superstructures. We discussed their synthetic strategies systematically, including the ligand pathway and the cluster-nuclei co-assembly pathway. In addition, SNMs exhibit unique size-related properties. Firstly, SNWs show polymer-analogue properties due to their sub-nanometric size and ultrahigh aspect ratio. We illustrate the polymer-analogue properties on both microscopic and macroscopic scales. The macroscopic assemblies of SNWs can be widely applied for organic liquid storage, energy, and optical applications. Finally, we summarized the applications of SNMs in redox catalysis. Their extraordinary catalytic activity is attributed to their large specific surface area and electronic delocalization at the sub-nanometric scale. We hope this feature article can provide new viewpoints on the design and applications of SNMs.
Collapse
Affiliation(s)
- Shujian Rong
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Liu D, Yi W, Fu Y, Kong Q, Xi G. In Situ Surface Restraint-Induced Synthesis of Transition-Metal Nitride Ultrathin Nanocrystals as Ultrasensitive SERS Substrate with Ultrahigh Durability. ACS NANO 2022; 16:13123-13133. [PMID: 35930704 DOI: 10.1021/acsnano.2c05914] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is a major challenge to synthesize crystalline transition-metal nitride (TMN) ultrathin nanocrystals due to their harsh reaction conditions. Herein, we report that highly crystalline tungsten nitride (W2N, WN, W3N4, W2N3) nanocrystals with small size and excellent dispersibility are prepared by a mild and general in situ surface restraint-induced growth method. These ultrafine tungsten nitride nanocrystals are immobilized in ultrathin carbon layers, forming an interesting hybrid nanobelt structure. The hybrid WN/C nanobelts exhibit a strong localized surface plasmon resonance (LSPR) effect and surface-enhanced Raman scattering (SERS) effect, including a lowest detection limit of 1 × 10-12 M and a Raman enhancement factor of 6.5 × 108 comparable to noble metals, which may be one of the best records for non-noble metal SERS substrates. Moreover, they even can maintain the SERS performance in a variety of harsh environments, showing outstanding corrosion resistance, radiation resistance, and oxidation resistance, which is not available on traditional noble metal and semiconductor SERS substrates. A synergistic Raman enhancement mechanism of LSPR and interface charge transfer is found in the carbon-coated tungsten nitride substrate. A microfluidic SERS channel integrating the enrichment and detection of trace substances is constructed with the WN/C nanobelt, which realizes high-throughput dynamic SERS analysis.
Collapse
Affiliation(s)
- Damin Liu
- Key Laboratory of Analytical Chemistry for Consumer Products, Chinese Academy of Inspection and Quarantine, Beijing 100176, P.R. China
| | - Wencai Yi
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P.R. China
| | - Yanling Fu
- Key Laboratory of Analytical Chemistry for Consumer Products, Chinese Academy of Inspection and Quarantine, Beijing 100176, P.R. China
| | - Qinghong Kong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Guangcheng Xi
- Key Laboratory of Analytical Chemistry for Consumer Products, Chinese Academy of Inspection and Quarantine, Beijing 100176, P.R. China
| |
Collapse
|
30
|
Zhou X, Yang J, Yang J, Yin P. Topological Interaction among Molecular Cluster Assemblies Affords Tunable Viscoelasticity. J Phys Chem Lett 2022; 13:7009-7015. [PMID: 35895296 DOI: 10.1021/acs.jpclett.2c01817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the assemblies of subnanoscale polyhedral oligomeric silsesquioxane, topological interaction makes the dominant contribution to their viscoelasticity with broad tunability. The assembly molecules are designed with dumbbell, triangular, and tetrahedral shapes, and they demonstrate an intrinsic glassy feature with neither long-range ordering nor supramolecular assembly formation in their bulk. Their viscoelasticity can be broadly tuned through the tailoring of molecular topologies, while the trimer and tetramer assemblies afford elastic moduli comparable to those of rubbers (∼0.5 MPa) even 80 K above their glass transition temperatures. Molecular dynamics studies reveal the topological constraints resulting from the topology-disrupted cooperative dynamics among the cluster assemblies, and this finally leads to the typical caging dynamics of the structural units and the elasticity of the bulk materials. Further broadband dielectric spectroscopy studies uncover the unique hierarchical relaxation dynamics, inspiring the strategy for the decoupling of mechanical strengths and toughness for the design of impact resistant materials.
Collapse
Affiliation(s)
- Xin Zhou
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Junsheng Yang
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jie Yang
- State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
31
|
Li J, Wang L, Wang T, Chang J, Wu D, Xu F, Jiang K, Gao Z. Self-supported molybdenum nickel oxide catalytic electrode designed via molecular cluster-mediated electroplating and electrochemical activation for an efficient and durable oxygen evolution reaction. J Colloid Interface Sci 2022; 628:607-618. [PMID: 35940145 DOI: 10.1016/j.jcis.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022]
Abstract
Efficient and durable nonprecious catalysts for the oxygen evolution reaction (OER) are crucial for practical water electrolysis for hydrogen production. A self-supported OER catalytic electrode with sufficient exposure of the catalyst and tight anchoring onto the current collector is vital for the catalytic activity and stability, and is therefore deemed to be a preferable tactic to enhance water electrolysis performance. Herein, a polyoxometalate (POM) molecular cluster-mediated electroplating and activation tactics are proposed to design a self-supported molybdenum nickel oxide (MoNiOx) catalytic electrode for the OER. The MoNiOx active layer can anchor tightly onto the Ni foam current collector with sufficient surface exposure and high structural stability, therefore enabling high alkali OER catalytic efficiency (222 mV at 10 mA cm-2) and robust durability (only slight decay in catalytic efficiency upon 12 days of chronopotentiometry (V-t) test). Moreover, the easily processable electroplating and active protocol can serve as a general approach to prepare other OER catalytic electrodes by altering the reactants and current collectors. The current work paves a facile and universal way to design a highly active and durable molybdenum (Mo) based hybrid catalytic electrode for OER via molecular cluster-assisted electroplating and activation treatment.
Collapse
Affiliation(s)
- Jinzhou Li
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang 453007, PR China
| | - Lili Wang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang 453007, PR China
| | - Tianning Wang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang 453007, PR China
| | - Jiuli Chang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang 453007, PR China.
| | - Dapeng Wu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Henan, Xinxiang 453007, PR China
| | - Fang Xu
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang 453007, PR China
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Henan, Xinxiang 453007, PR China.
| | - Zhiyong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang 453007, PR China.
| |
Collapse
|
32
|
Bootharaju MS, Baek W, Deng G, Singh K, Voznyy O, Zheng N, Hyeon T. Structure of a subnanometer-sized semiconductor Cd14Se13 cluster. Chem 2022. [DOI: 10.1016/j.chempr.2022.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Detecting the Subtle Photo-Responsive Conformational Bistability of Monomeric Azobenzene Functionalized Keggin Polyoxometalates by Using Ion-Mobility Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123927. [PMID: 35745050 PMCID: PMC9228792 DOI: 10.3390/molecules27123927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022]
Abstract
Accurately characterizing the conformational variation of novel molecular assemblies is important but often ignored due to limited characterization methods. Herein, we reported the use of ion-mobility mass spectrometry (IMS/MS) to investigate the conformational changes of four azobenzene covalently functionalized Keggin hybrids (azo-Keggins, compounds 1–4). The as-prepared azo-Keggins showed the general molecular formula of [C16H36N]4[SiW11O40(Si(CH2)3NH–CO(CH2)nO–C6H4N=NC6H4–R)2] (R = H, n = 0 (1); R = NO2, n = 0 (2); R = H, n = 5 (3); R = H, n = 10 (4)). The resultant azo-Keggins maintained stable monomeric states in the gas phase with intact molecular structures. Furthermore, the subtle photo-responsive trans-cis conformational variations of azo-Keggins were clearly revealed by the molecular shape-related collision cross-section value difference ranging from 2.44 Å2 to 6.91 Å2. The longer the alkyl chains linkers were, the larger the conformational variation was. Moreover, for compounds 1 and 2, higher stability in trans-conformation can be observed, while for compounds 3 and 4, bistability can be achieved for both of them.
Collapse
|
34
|
Liu Q, Zhang Q, Shi W, Hu H, Zhuang J, Wang X. Self-assembly of polyoxometalate clusters into two-dimensional clusterphene structures featuring hexagonal pores. Nat Chem 2022; 14:433-440. [PMID: 35145248 DOI: 10.1038/s41557-022-00889-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 01/04/2022] [Indexed: 11/09/2022]
Abstract
Two-dimensional (2D) structures have been shown to possess interesting and potentially useful properties. Because of their isotropic structure, however, clusters tend to assemble into 3D architectures. Here we report the assembly of polyoxometalate clusters into layered structures that feature uniform hexagonal pores and in-plane electron delocalization properties. Because these structures are 2D and visually reminiscent of graphene, they are referred to as 'clusterphenes'. A series of multilayer and monolayer clusterphenes have been constructed with 13 types of polyoxometalate cluster. The resulting clusterphenes were shown to exhibit substantially improved stability and catalytic efficiency towards olefin epoxidation reactions, with a turnover frequency of 4.16 h-1, which is 76.5 times that of the unassembled clusters. The catalytic activity of the clusterphenes derives from the electron delocalization between identical clusters within the 2D layer, which efficiently reduces the activation energy of the catalytic reaction.
Collapse
Affiliation(s)
- Qingda Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Wenxiong Shi
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Hanshi Hu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jing Zhuang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
35
|
Lu M, Zhang M, Liu J, Yu TY, Chang JN, Shang LJ, Li SL, Lan YQ. Confining and Highly Dispersing Single Polyoxometalate Clusters in Covalent Organic Frameworks by Covalent Linkages for CO2 Photoreduction. J Am Chem Soc 2022; 144:1861-1871. [DOI: 10.1021/jacs.1c11987] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Meng Lu
- School of Chemistry, South China Normal University, Guangzhou 510006, People’s Republic of China
| | - Mi Zhang
- School of Chemistry, South China Normal University, Guangzhou 510006, People’s Republic of China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, People’s Republic of China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Tao-Yuan Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Jia-Nan Chang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Lin-Jie Shang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou 510006, People’s Republic of China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou 510006, People’s Republic of China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
36
|
Yang J, He Y, He J, Liu Y, Geng H, Chen S, Lin L, Liu M, Chen T, Jiang Q, Weckhuysen BM, Luo W, Wu Z. Enhanced Catalytic Performance through In Situ Encapsulation of Ultrafine Ru Clusters within a High-Aluminum Zeolite. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiangqian Yang
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18,
Changping, Beijing 102249, China
| | - Ying He
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18,
Changping, Beijing 102249, China
| | - Jiang He
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanshuai Liu
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584CG, The Netherlands
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Huawei Geng
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Shaohua Chen
- School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lu Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Meng Liu
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18,
Changping, Beijing 102249, China
| | - Tiehong Chen
- School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qike Jiang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584CG, The Netherlands
| | - Wenhao Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhijie Wu
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18,
Changping, Beijing 102249, China
| |
Collapse
|
37
|
Lu Q, Wang X. Recent Progress of Sub-Nanometric Materials in Photothermal Energy Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104225. [PMID: 34837484 PMCID: PMC8728870 DOI: 10.1002/advs.202104225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Sub-nanometric materials (SNMs) are an attractive scope in recent years due to their atomic-level size and unique properties. Among various performances of SNMs, photothermal energy conversion is one of the most important ones because it can efficiently utilize the light energy. Herein, the SNMs with photothermal energy conversion behaviors and their applications are reviewed. First, a hydrothermal/solvothermal method for the synthesis of SNMs is systematically discussed, including the LaMer pathway and the cluster-nuclei coassembly pathway. Based on this synthetic strategy, many kinds of SNMs with different morphologies are successfully prepared, such as nanorings, nanowires, nanosheets, and nanobelts. These SNMs exhibit excellent photothermal performance under the laser or solar irradiation according to their different light absorption ranges. These enhanced absorption performances of SNMs are induced by the mechanism of plasmonic localized heating or nonradiative relaxation. Finally, the applications of the photothermal SNMs are illustrated. The SNMs with photothermal behaviors can be widely applied in the fields of solar vapor generation, biomedicine, and light-responsive composites construction. It is hoped that this review can provide new viewpoints and profound understanding to the SNMs in photothermal energy conversion.
Collapse
Affiliation(s)
- Qichen Lu
- Key Lab of Organic Optoelectronics and Molecular EngineeringDepartment of ChemistryTsinghua UniversityBeijing100084China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular EngineeringDepartment of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
38
|
Cheng X, Zhang S, Wang X. Cluster-Nuclei Coassembled One-Dimensional Subnanometer Heteronanostructures. NANO LETTERS 2021; 21:9845-9852. [PMID: 34816712 DOI: 10.1021/acs.nanolett.1c03936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The cluster-nuclei coassembled strategy provides an impressive way to obtain 1D subnanometer heteronanostructures, including subnanometer nanowires and subnanometer nanobelts. These nanomaterials have diameters and thicknesses close to the size of a unit cell and exhibit excellent performance originating from multicomponent synergy. This Mini Review summarizes the recent progress of these novel functional nanomaterials, including their properties and applications in catalysis, energy conversion, and other fields. On the basis of previous studies, the development direction of cluster-nuclei coassembled 1D subnanometer materials is pointed out.
Collapse
Affiliation(s)
- Xijun Cheng
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Simin Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| |
Collapse
|
39
|
Ren Y, Xie W, Li Y, Ma J, Li J, Liu Y, Zou Y, Deng Y. Noble Metal Nanoparticles Decorated Metal Oxide Semiconducting Nanowire Arrays Interwoven into 3D Mesoporous Superstructures for Low-Temperature Gas Sensing. ACS CENTRAL SCIENCE 2021; 7:1885-1897. [PMID: 34841059 PMCID: PMC8614104 DOI: 10.1021/acscentsci.1c00912] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 05/07/2023]
Abstract
Mesoporous materials have been extensively studied for various applications due to their high specific surface areas and well-interconnected uniform nanopores. Great attention has been paid to synthesizing stable functional mesoporous metal oxides for catalysis, energy storage and conversion, chemical sensing, and so forth. Heteroatom doping and surface modification of metal oxides are typical routes to improve their performance. However, it still remains challenging to directly and conveniently synthesize mesoporous metal oxides with both a specific functionalized surface and heteroatom-doped framework. Here, we report a one-step multicomponent coassembly to synthesize Pt nanoparticle-decorated Si-doped WO3 nanowires interwoven into 3D mesoporous superstructures (Pt/Si-WO3 NWIMSs) by using amphiphilic poly(ethylene oxide)-block-polystyrene (PEO-b-PS), Keggin polyoxometalates (H4SiW12O40) and hydrophobic (1,5-cyclooctadiene)dimethylplatinum(II) as the as structure-directing agent, tungsten precursor and platinum source, respectively. The Pt/Si-WO3 NWIMSs exhibit a unique mesoporous structure consisting of 3D interwoven Si-doped WO3 nanowires with surfaces homogeneously decorated by Pt nanoparticles. Because of the highly porous structure, excellent transport of carriers in nanowires, and rich WO3/Pt active interfaces, the semiconductor gas sensors based on Pt/Si-WO3 NWIMSs show excellent sensing properties toward ethanol at low temperature (100 °C) with high sensitivity (S = 93 vs 50 ppm), low detection limit (0.5 ppm), fast response-recovery speed (17-7 s), excellent selectivity, and long-term stability.
Collapse
Affiliation(s)
- Yuan Ren
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Wenhe Xie
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yanyan Li
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Junhao Ma
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Jichun Li
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yan Liu
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yidong Zou
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yonghui Deng
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
- State
Key Laboratory of Transducer Technology Shanghai Institute of Microsystem
and Information Technology, Chinese Academy
of Sciences, Shanghai 200050, China
| |
Collapse
|
40
|
Abstract
Subnanometric materials (SNMs) refer to nanomaterials with sizes comparable to the diameter of common linear polymers or confined at the level of a single unit cell in at least one dimension, usually <1 nm. Conventional inorganic nanoparticles are usually deemed to be rigid, lacking self-adjustable conformation. In contrast, the size at subnanometric scale endows SNMs with flexibility analogous to polymers, resulting in their abundant self-adjustable conformation. It is noteworthy that some highly flexible SNMs can adjust their shape automatically to form chiral conformation, which is rare in conventional inorganic nanoparticles. Herein, we summarize the chiral conformation of SNMs and clarify the driving force behind their formation, in an attempt to establish a better understanding for the origin of flexibility and chirality at subnanometric scale. In addition, the general strategies for controlling the conformation of SNMs are elaborated, which might shed light on the efficient fabrications of chiral inorganic materials. Finally, the challenges facing this area as well as some unexplored topics are discussed.
Collapse
Affiliation(s)
- Biao Yu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
41
|
Wang J, Ma L, Wang X, Wang X, Yao J, Yi Q, Tang R, Zou G. Sub‐Nanometer Thick Wafer‐Size NiO Films with Room‐Temperature Ferromagnetic Behavior. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiong Wang
- College of Energy Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China Soochow University Suzhou 215123 China
| | - Liang Ma
- College of Energy Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China Soochow University Suzhou 215123 China
| | - Xiangyi Wang
- College of Energy Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China Soochow University Suzhou 215123 China
| | - Xiaohan Wang
- College of Energy Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China Soochow University Suzhou 215123 China
| | - Junjie Yao
- College of Energy Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China Soochow University Suzhou 215123 China
| | - Qinghua Yi
- College of Energy Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China Soochow University Suzhou 215123 China
| | - Rujun Tang
- School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Soochow University Suzhou 215123 China
| | - Guifu Zou
- College of Energy Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China Soochow University Suzhou 215123 China
| |
Collapse
|
42
|
Wang J, Ma L, Wang X, Wang X, Yao J, Yi Q, Tang R, Zou G. Sub-Nanometer Thick Wafer-Size NiO Films with Room-Temperature Ferromagnetic Behavior. Angew Chem Int Ed Engl 2021; 60:25020-25027. [PMID: 34534391 DOI: 10.1002/anie.202110185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 12/18/2022]
Abstract
Adding ferromagnetism into semiconductors attracts much attentions due to its potential usage of magnetic spins in novel devices, such as spin field-effect transistors. However, it remains challenging to stabilize their ferromagnetism above room temperature. Here we introduce an atomic chemical-solution strategy to grow wafer-size NiO thin films with controllable thickness down to sub-nanometer scale (0.92 nm) for the first time. Surface lattice defects break the magnetic symmetry of NiO and produce surface ferromagnetic behaviors. Our sub-nanometric NiO thin film exhibits the highest reported room-temperature ferromagnetic behavior with a saturation magnetization of 157 emu/cc and coercivity of 418 Oe. Attributed to wafer size, the easily-transferred NiO thin film is further verified in a magnetoresistance device. Our work provides a sub-nanometric platform to produce wafer-size ferromagnetic NiO thin films as atomic layer magnetic units in future transparent magnetoelectric devices.
Collapse
Affiliation(s)
- Jiong Wang
- College of Energy, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215123, China
| | - Liang Ma
- College of Energy, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215123, China
| | - Xiangyi Wang
- College of Energy, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215123, China
| | - Xiaohan Wang
- College of Energy, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215123, China
| | - Junjie Yao
- College of Energy, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215123, China
| | - Qinghua Yi
- College of Energy, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215123, China
| | - Rujun Tang
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215123, China
| | - Guifu Zou
- College of Energy, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215123, China
| |
Collapse
|
43
|
Meng J, Lei M, Lai C, Wu Q, Liu Y, Li C. Lithium Ion Repulsion-Enrichment Synergism Induced by Core-Shell Ionic Complexes to Enable High-Loading Lithium Metal Batteries. Angew Chem Int Ed Engl 2021; 60:23256-23266. [PMID: 34405939 DOI: 10.1002/anie.202108143] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/11/2021] [Indexed: 11/11/2022]
Abstract
A core-shell additive with anionic Keggin-type polyoxometalate (POM) cluster as core and N-containing cation of ionic liquid (IL) as shell is proposed to stabilize Li-metal batteries (LMBs). The suspended POM derived complex in ether-based electrolyte is absorbed around the protuberances of anode and triggers a lithiophobic repulsion mechanism for the homogenization of Li+ redistribution. The gradually released POM cores with negative charge then enrich Li+ and co-assemble with Li. The Li+ repulsion-enrichment synergism can compact Li deposition and reinforce solid electrolyte interphase. This sustained-release additive enables Li∥Li symmetric cells with a long lifetime over 500 h and 300 h at high current densities of 3 and 5 mA cm-2 respectively. The complex additive is also compatible with high-voltage Li∥LiNi0.8 Co0.15 Al0.05 O2 (NCA) cells. Even with a NCA loading as high as ca. 20 mg cm-2 , the additive contained Li∥NCA cell can still cycle for over 100 cycles at 2.6 mA cm-2 .
Collapse
Affiliation(s)
- Junwei Meng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai, 201899, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
| | - Meng Lei
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai, 201899, China.,CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
| | - Chuanzhong Lai
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai, 201899, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
| | - Qingping Wu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai, 201899, China.,CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
| | - Yangyang Liu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai, 201899, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
| | - Chilin Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai, 201899, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
| |
Collapse
|
44
|
Meng J, Lei M, Lai C, Wu Q, Liu Y, Li C. Lithium Ion Repulsion‐Enrichment Synergism Induced by Core–Shell Ionic Complexes to Enable High‐Loading Lithium Metal Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Junwei Meng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences 585 He Shuo Road Shanghai 201899 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
- CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 201899 China
| | - Meng Lei
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences 585 He Shuo Road Shanghai 201899 China
- CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 201899 China
| | - Chuanzhong Lai
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences 585 He Shuo Road Shanghai 201899 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
- CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 201899 China
| | - Qingping Wu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences 585 He Shuo Road Shanghai 201899 China
- CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 201899 China
| | - Yangyang Liu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences 585 He Shuo Road Shanghai 201899 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
- CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 201899 China
| | - Chilin Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences 585 He Shuo Road Shanghai 201899 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
- CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 201899 China
| |
Collapse
|
45
|
Liu J, Shi W, Wang X. ZnO-POM Cluster Sub-1 nm Nanosheets as Robust Catalysts for the Oxidation of Thioethers at Room Temperature. J Am Chem Soc 2021; 143:16217-16225. [PMID: 34546752 DOI: 10.1021/jacs.1c07477] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional (2D) zinc oxides have attracted more and more research interests due to their unique properties. Yet, it remains a great challenge to limit the thickness to the sub-1 nm scale and further combine with other components to obtain 2D hybrid zinc oxide (ZnO)-based sub-1 nm materials. Herein, a versatile strategy was successfully developed to realize the controllable preparation of ZnO-polyoxometalate (POM)-based 2D hybrid sub-1 nm nanosheet (HSNS) superstructures by incorporating three kinds of molybdenum-based POM clusters into the zinc oxide system. Molecular dynamics simulation results demonstrated that POM clusters interact with ZnO/Zn(OH)2 molecules and coassembled into stable 2D HSNSs. Significantly, theses materials as robust catalysts showed excellent catalytic activity, selectivity, and stability in the oxidation of thioethers at room temperature, which partly can be attributed to the special 2D sub-1 nm nanostructures with large specific areas leading to the full exposure of active sites. Meanwhile, the synergetic effect of multiple components also played an important role during the catalytic process. Thus, this work would pave the way for the precise synthesis of multicomponent 2D hybrid sub-1 nm materials for widespread applications.
Collapse
Affiliation(s)
- Junli Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300387, China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Yin J, Xiao H, Xu P, Yang J, Fan Z, Ke Y, Ouyang X, Liu GX, Sun TL, Tang L, Cheng SZD, Yin P. Polymer Topology Reinforced Synergistic Interactions among Nanoscale Molecular Clusters for Impact Resistance with Facile Processability and Recoverability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jia‐Fu Yin
- South China Advanced Institute for Soft Matter Science and Technology State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Haiyan Xiao
- South China Advanced Institute for Soft Matter Science and Technology State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Peidong Xu
- School of Civil Engineering and Transportation State Key Laboratory of Subtropical Building Science South China University of, Technology Guangzhou 510640 China
| | - Junsheng Yang
- South China Advanced Institute for Soft Matter Science and Technology State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Zhiwei Fan
- South China Advanced Institute for Soft Matter Science and Technology State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Yubin Ke
- China Spallation Neutron Source Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology Chinese Academy of Science Dongguan 523000 China
| | - Xikai Ouyang
- Center for Advanced Low-Dimension Materials College of Material Science and Engineering Donghua University Shanghai 201620 China
| | - Geng Xin Liu
- Center for Advanced Low-Dimension Materials College of Material Science and Engineering Donghua University Shanghai 201620 China
| | - Tao Lin Sun
- South China Advanced Institute for Soft Matter Science and Technology State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Liqun Tang
- School of Civil Engineering and Transportation State Key Laboratory of Subtropical Building Science South China University of, Technology Guangzhou 510640 China
| | - Stephen Z. D. Cheng
- South China Advanced Institute for Soft Matter Science and Technology State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
- China Spallation Neutron Source Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology Chinese Academy of Science Dongguan 523000 China
| |
Collapse
|
47
|
Liu J, Wang M, Dipalo MC, Zhuang J, Shi W, Wang X. Ternary hybrid CuO-PMA-Ag sub-1 nm nanosheet heterostructures. Chem Sci 2021; 12:11490-11494. [PMID: 34667553 PMCID: PMC8447927 DOI: 10.1039/d1sc02548a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/23/2021] [Indexed: 01/26/2023] Open
Abstract
Multi-component two-dimensional (2D) hybrid sub-1 nm heterostructures could potentially possess many novel properties. Controlling the site-selective distribution of nanoparticles (NPs) at the edge of 2D hybrid nanomaterial substrates is desirable but it remains a great challenge. Herein, we realized for the first time the preparation of ternary hybrid CuO-phosphomolybdic acid-Ag sub-1 nm nanosheet heterostructures (CuO-PMA-Ag THSNHs), where the Ag NPs selectively distributed at the edge of 2D hybrid CuO-PMA sub-1 nm nanosheets (SNSs). And the obtained CuO-PMA-Ag THSNHs as the catalyst exhibited excellent catalytic activity in alkene epoxidation. Furthermore, molecular dynamics (MD) simulations demonstrated that the SNSs interact with Ag NPs to form stable nanoheterostructures. This work would pave the way for the synthesis and broader applications of multi-component 2D hybrid sub-1 nm heterostructures.
Collapse
Affiliation(s)
- Junli Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Mingxin Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Maria C Dipalo
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Jing Zhuang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300387 China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
48
|
Yin JF, Xiao H, Xu P, Yang J, Fan Z, Ke Y, Ouyang X, Liu GX, Sun TL, Tang L, Cheng SZD, Yin P. Polymer Topology Reinforced Synergistic Interactions among Nanoscale Molecular Clusters for Impact Resistance with Facile Processability and Recoverability. Angew Chem Int Ed Engl 2021; 60:22212-22218. [PMID: 34375017 DOI: 10.1002/anie.202108196] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Indexed: 11/08/2022]
Abstract
The intrinsic conflicts between mechanical performances and processability are main challenges to develop cost-effective impact-resistant materials from polymers and their composites. Herein, polyhedral oligomeric silsesquioxanes (POSSs) are integrated as side chains to the polymer backbones. The one-dimension (1D) rigid topology imposes strong space confinements to realize synergistic interactions among POSS units, reinforcing the correlations among polymer chains. The afforded composites demonstrate unprecedented mechanical properties with ultra-stretchability, high rate-dependent strength, superior impact-resistant capacity as well as feasible processability/recoverability. The hierarchical structures of the hybrid polymers enable the co-existence of multiple dynamic relaxations that are responsible for fast energy dissipation and high mechanical strengths. The effective synergistic correlation strategy paves a new pathway for the design of advanced cluster-based materials.
Collapse
Affiliation(s)
- Jia-Fu Yin
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Haiyan Xiao
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Peidong Xu
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building Science, South China University of, Technology, Guangzhou, 510640, China
| | - Junsheng Yang
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Zhiwei Fan
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yubin Ke
- China Spallation Neutron Source, Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, Chinese Academy of Science, Dongguan, 523000, China
| | - Xikai Ouyang
- Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Geng Xin Liu
- Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Tao Lin Sun
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Liqun Tang
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building Science, South China University of, Technology, Guangzhou, 510640, China
| | - Stephen Z D Cheng
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.,China Spallation Neutron Source, Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, Chinese Academy of Science, Dongguan, 523000, China
| |
Collapse
|
49
|
Zhang F, Liu R, Wei Y, Wei J, Yang Z. Self-Assembled Open Porous Nanoparticle Superstructures. J Am Chem Soc 2021; 143:11662-11669. [PMID: 34310117 DOI: 10.1021/jacs.1c04784] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Imparting porosity to inorganic nanoparticle assemblies to build up self-assembled open porous nanoparticle superstructures represents one of the most challenging issues and will reshape the property and application scope of traditional inorganic nanoparticle solids. Herein, we discovered how to engineer open pores into diverse ordered nanoparticle superstructures via their inclusion-induced assembly within 1D nanotubes, akin to the molecular host-guest complexation. The open porous structure of self-assembled composites is generated from nonclose-packing of nanoparticles in 1D confined space. Tuning the size ratios of the tube-to-nanoparticle enables the structural modulation of these porous nanoparticle superstructures, with symmetries such as C1, zigzag, C2, C4, and C5. Moreover, when the internal surface of the nanotubes is blocked by molecular additives, the nanoparticles would switch their assembly pathway and self-assemble on the external surface of the nanotubes without the formation of porous nanoparticle assemblies. We also show that the open porous nanoparticle superstructures can be ideal candidate for catalysis with accelerated reaction rates.
Collapse
Affiliation(s)
- Fenghua Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Rongjuan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yanze Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
50
|
Yang X, Liu T, Li R, Yang X, Lyu M, Fang L, Zhang L, Wang K, Zhu A, Zhang L, Qiu C, Zhang YZ, Wang X, Peng LM, Yang F, Li Y. Host-Guest Molecular Interaction Enabled Separation of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes. J Am Chem Soc 2021; 143:10120-10130. [PMID: 34105955 DOI: 10.1021/jacs.1c02245] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Semiconducting single-walled carbon nanotubes (s-SWCNTs) with a diameter of around 1.0-1.5 nm, which present bandgaps comparable to silicon, are highly desired for electronic applications. Therefore, the preparation of s-SWCNTs of such diameters has been attracting great attention. The inner surface of SWCNTs has a suitable curvature and large contacting area, which is attractive in host-guest chemistry triggered by electron transfer. Here we reported a strategy of host-guest molecular interaction between SWCNTs and inner clusters with designed size, thus selectively separating s-SWCNTs of expected diameters. When polyoxometalate clusters of ∼1 nm in size were filled in the inner cavities of SWCNTs, s-SWCNTs with diameters concentrated at ∼1.3-1.4 nm were selectively extracted with the purity of ∼98% by a commercially available polyfluorene derivative. The field-effect transistors built from the sorted s-SWCNTs showed a typical behavior of semiconductors. The sorting mechanisms associated with size-dependent electron transfer from nanotubes to inner polyoxometalate were revealed by the spectroscopic and in situ electron microscopic evidence as well as the theoretical calculation. The polyoxometalates with designable size and redox property enable the flexible regulation of interaction between the nanotubes and the clusters, thus tuning the diameter of sorted s-SWCNTs. The present sorting strategy is simple and should be generally feasible in other SWCNT sorting techniques, bringing both great easiness in dispersant design and improved selectivity.
Collapse
Affiliation(s)
- Xusheng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tianhui Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruoming Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoxin Yang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Min Lyu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Li Fang
- Department of Electronics, Peking University, Beijing 100871, China
| | - Lei Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kun Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Anquan Zhu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Luyao Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chenguang Qiu
- Department of Electronics, Peking University, Beijing 100871, China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lian-Mao Peng
- Department of Electronics, Peking University, Beijing 100871, China
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking University Shenzhen Institute, Shenzhen 518057, China.,PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518055, China
| |
Collapse
|