1
|
Wang B, Farhan MHR, Yuan L, Sui Y, Chu J, Yang X, Li Y, Huang L, Cheng G. Transfer dynamics of antimicrobial resistance among gram-negative bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176347. [PMID: 39306135 DOI: 10.1016/j.scitotenv.2024.176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Antimicrobial resistance (AMR) in gram-negative bacteria (GNBs) is a significant global health concern, exacerbated by mobile genetic elements (MGEs). This review examines the transfer of antibiotic resistance genes (ARGs) within and between different species of GNB facilitated by MGEs, focusing on the roles of plasmids and phages. The impact of non-antibiotic chemicals, environmental factors affecting ARG transfer frequency, and underlying molecular mechanisms of bacterial resistance evolution are also discussed. Additionally, the study critically assesses the impact of fitness costs and compensatory evolution driven by MGEs in host organisms, shedding light on the transfer frequency of ARGs and host evolution within ecosystems. Overall, this comprehensive review highlights the factors and mechanisms influencing ARG movement among diverse GNB species and underscores the importance of implementing holistic One-Health strategies to effectively address the escalating public health challenges associated with AMR.
Collapse
Affiliation(s)
- Bangjuan Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Haris Raza Farhan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Linlin Yuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Sui
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhua Chu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaohan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Xiang G, Zhao Z, Zhang S, Cai Y, He Y, Zeng J, Chen C, Huang B. Porin deficiency or plasmid copy number increase mediated carbapenem-resistant Escherichia coli resistance evolution. Emerg Microbes Infect 2024; 13:2352432. [PMID: 38712634 PMCID: PMC11107853 DOI: 10.1080/22221751.2024.2352432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
This study investigated resistance evolution mechanisms of conjugated plasmids and bacterial hosts under different concentrations of antibiotic pressure. Ancestral strain ECNX52 was constructed by introducing the blaNDM-5-carrying IncX3 plasmid into E. coli C600, and was subjected to laboratory evolution under different concentrations of meropenem pressure. Minimal inhibitory concentrations and conjugation frequency were determined. Fitness of these strains was assessed. Whole genome sequencing and transcriptional changes were performed. Ancestral host or plasmids were recombined with evolved hosts or plasmids to verify plasmid or host factors in resistance evolution. Role of the repA mutation on plasmid copy number was determined. Two out of the four clones (EM2N1 and EM2N3) exhibited four-fold increase in MIC when exposed to a continuous pressure of 2 μg/mL MEM (1/32 MIC), by down regulating expression of outer membrane protein ompF. Besides, all four clones displayed four-fold increase in MIC and higher conjugation frequency when subjected to a continuous pressure of 4 μg/mL MEM (1/16 MIC), attributing to increasing plasmid copy number generated by repA D140Y (GAT→TAT) mutation. Bacterial hosts and conjugative plasmids can undergo resistance evolution under certain concentrations of antimicrobial pressure by reducing the expression of outer membrane proteins or increasing plasmid copy numbers.
Collapse
Affiliation(s)
- Guoxiu Xiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhiwei Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shebin Zhang
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yimei Cai
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yuting He
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianming Zeng
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Cha Chen
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Wright RCT, Wood AJ, Bottery MJ, Muddiman KJ, Paterson S, Harrison E, Brockhurst MA, Hall JPJ. A chromosomal mutation is superior to a plasmid-encoded mutation for plasmid fitness cost compensation. PLoS Biol 2024; 22:e3002926. [PMID: 39621811 PMCID: PMC11637435 DOI: 10.1371/journal.pbio.3002926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 12/12/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024] Open
Abstract
Plasmids are important vectors of horizontal gene transfer in microbial communities but can impose a burden on the bacteria that carry them. Such plasmid fitness costs are thought to arise principally from conflicts between chromosomal- and plasmid-encoded molecular machineries, and thus can be ameliorated by compensatory mutations (CMs) that reduce or resolve the underlying causes. CMs can arise on plasmids (i.e., plaCM) or on chromosomes (i.e., chrCM), with contrasting predicted effects upon plasmid success and subsequent gene transfer because plaCM can also reduce fitness costs in plasmid recipients, whereas chrCM can potentially ameliorate multiple distinct plasmids. Here, we develop theory and a novel experimental system to directly compare the ecological effects of plaCM and chrCM that arose during evolution experiments between Pseudomonas fluorescens SBW25 and its sympatric mercury resistance megaplasmid pQBR57. We show that while plaCM was predicted to succeed under a broader range of parameters in mathematical models, chrCM dominated in our experiments, including conditions with numerous recipients, due to a more efficacious mechanism of compensation, and advantages arising from transmission of costly plasmids to competitors (plasmid "weaponisation"). We show analytically the presence of a mixed Rock-Paper-Scissors (RPS) regime for CMs, driven by trade-offs with horizontal transmission, that offers one possible explanation for the observed failure of plaCM to dominate even in competition against an uncompensated plasmid. Our results reveal broader implications of plasmid-bacterial evolution for plasmid ecology, demonstrating the importance of specific compensatory mutations for resistance gene spread. One consequence of the superiority of chrCM over plaCM is the likely emergence in microbial communities of compensated bacteria that can act as "hubs" for plasmid accumulation and dissemination.
Collapse
Affiliation(s)
- Rosanna C. T. Wright
- Division of Evolution, Infection and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - A. Jamie Wood
- Department of Biology, University of York, York, United Kingdom
- Department of Mathematics, University of York, York, United Kingdom
| | - Michael J. Bottery
- Division of Evolution, Infection and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Katie J. Muddiman
- Division of Evolution, Infection and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Steve Paterson
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ellie Harrison
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Michael A. Brockhurst
- Division of Evolution, Infection and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - James P. J. Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Cheng M, Dai JJ, Zhang JF, Su YT, Guo SQ, Sun RY, Wang D, Sun J, Liao XP, Chen S, Fang LX. Evolution and maintenance of a large multidrug-resistant plasmid in a Salmonella enterica Typhimurium host under differing antibiotic selection pressures. mSystems 2024; 9:e0119724. [PMID: 39436144 PMCID: PMC11575406 DOI: 10.1128/msystems.01197-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
The dissemination of antibiotic resistance genes (ARGs) through plasmids is a major mechanism for the development of bacterial antimicrobial resistance. The adaptation and evolution mechanisms of multidrug-resistant (MDR) plasmids with their hosts are not fully understood. Herein, we conducted experimental evolution of a 244 kb MDR plasmid (pJXP9) under various conditions including no antibiotics and mono- or combinational drug treatments of colistin (CS), cefotaxime (CTX), and ciprofloxacin (CIP). Our results showed that long-term with or without positive selections for pJXP9, spanning approximately 600 generations, led to modifications of the plasmid-encoded MDR and conjugative transfer regions. These modifications could mitigate the fitness cost of plasmid carriage and enhance plasmid maintenance. The extent of plasmid modifications and the evolution of plasmid-encoded antibiotic resistance depended on treatment type, particularly the drug class and duration of exposure. Interestingly, prolonged exposure to mono- and combinational drugs of CS and CIP resulted in a substantial loss of the plasmid-encoded MDR region and antibiotic resistance, comparable to the selection condition without antibiotic. By contrast, combinational treatment with CTX contributed to the maintenance of the MDR region over a long period of time. Furthermore, drug selection was able to maintain and even amplify the corresponding plasmid-encoded ARGs, with co-selection of ARGs in the adjacent regions. In addition, parallel mutations in chromosomal arcA were also found to be associated with pJXP9 plasmid carriage among endpoint-evolved clones from diverse treatments. Meanwhile, arcA deletion improved the persistence of pJXP9 plasmid without drugs. Overall, our findings indicated that plasmid-borne MDR region deletion and chromosomal arcA inactivation mutation jointly contributed to co-adaptation and co-evolution between MDR IncHI2 plasmid and Salmonella Typhimurium under different drug selection pressure.IMPORTANCEThe plasmid-mediated dissemination of antibiotic resistance genes has become a significant concern for human health, even though the carriage of multidrug-resistant (MDR) plasmids is frequently associated with fitness costs for the bacterial host. However, the mechanisms by which MDR plasmids and bacterial pairs evolve plasmid-mediated antibiotic resistance in the presence of antibiotic selections are not fully understood. Herein, we conducted an experimental evolution of a large multidrug-resistant plasmid in a Salmonella enterica Typhimurium host under single and combinatorial drug selection pressures. Our results show the adaptive evolution of plasmid-encoded antibiotic resistance through alterations of the MDR region in the plasmid, in particular substantial loss of the MDR region, in response to different positive selections, especially mono- and combinational drugs of colistin and ciprofloxacin. In addition, strong parallel mutations in chromosomal arcA were associated with pJXP9 carriage in Salmonella Typhimurium from diverse treatments. Our results thus highlight promoting the loss of the plasmid's MDR region could offer an alternative approach for combating plasmid-encoded antibiotic resistance.
Collapse
Affiliation(s)
- Ming Cheng
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jing-Jing Dai
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jin-Fei Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yu-Ting Su
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Si-Qi Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ruan-Yang Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Dong Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiao-Ping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Liang-Xing Fang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Xue W, Hong J, Wang T. The evolutionary landscape of prokaryotic chromosome/plasmid balance. Commun Biol 2024; 7:1434. [PMID: 39496780 PMCID: PMC11535066 DOI: 10.1038/s42003-024-07167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
The balance between chromosomal and plasmid DNAs determines the genomic plasticity of prokaryotes. Natural selections, acting on the level of organisms or plasmids, shape the abundances of plasmid DNAs in prokaryotic genomes. Despite the importance of plasmids in health and engineering, there have been rare systematic attempts to quantitatively model and predict the determinants underlying the strength of different selection forces. Here, we develop a metabolic flux model that describes the intracellular resource competition between chromosomal and plasmid-encoded reactions. By coarse graining, this model predicts a landscape of natural selections on chromosome/plasmid balance, which is featured by the tradeoff between phenotypic and non-phenotypic selection pressures. This landscape is further validated by the observed pattern of plasmid distributions in the vast collection of prokaryotic genomes retrieved from the NCBI database. Our results establish a universal paradigm to understand the prokaryotic chromosome/plasmid interplay and provide insights into the evolutionary origin of plasmid diversity.
Collapse
Affiliation(s)
- Wenzhi Xue
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Juken Hong
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Teng Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
6
|
Gonçalves Pereira J, Fernandes J, Mendes T, Gonzalez FA, Fernandes SM. Artificial Intelligence to Close the Gap between Pharmacokinetic/Pharmacodynamic Targets and Clinical Outcomes in Critically Ill Patients: A Narrative Review on Beta Lactams. Antibiotics (Basel) 2024; 13:853. [PMID: 39335027 PMCID: PMC11428226 DOI: 10.3390/antibiotics13090853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial dosing can be a complex challenge. Although a solid rationale exists for a link between antibiotic exposure and outcome, conflicting data suggest a poor correlation between pharmacokinetic/pharmacodynamic targets and infection control. Different reasons may lead to this discrepancy: poor tissue penetration by β-lactams due to inflammation and inadequate tissue perfusion; different bacterial response to antibiotics and biofilms; heterogeneity of the host's immune response and drug metabolism; bacterial tolerance and acquisition of resistance during therapy. Consequently, either a fixed dose of antibiotics or a fixed target concentration may be doomed to fail. The role of biomarkers in understanding and monitoring host response to infection is also incompletely defined. Nowadays, with the ever-growing stream of data collected in hospitals, utilizing the most efficient analytical tools may lead to better personalization of therapy. The rise of artificial intelligence and machine learning has allowed large amounts of data to be rapidly accessed and analyzed. These unsupervised learning models can apprehend the data structure and identify homogeneous subgroups, facilitating the individualization of medical interventions. This review aims to discuss the challenges of β-lactam dosing, focusing on its pharmacodynamics and the new challenges and opportunities arising from integrating machine learning algorithms to personalize patient treatment.
Collapse
Affiliation(s)
- João Gonçalves Pereira
- Grupo de Investigação e Desenvolvimento em Infeção e Sépsis, Clínica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
- Serviço de Medicina Intensiva, Hospital Vila Franca de Xira, 2600-009 Vila Franca de Xira, Portugal
| | - Joana Fernandes
- Grupo de Investigação e Desenvolvimento em Infeção e Sépsis, Serviço de Medicina Intensiva, Centro Hospitalar de Trás-os-Montes e Alto Douro, 5000-508 Vila Real, Portugal
| | - Tânia Mendes
- Serviço de Medicina Interna, Hospital Vila Franca de Xira, 2600-009 Vila Franca de Xira, Portugal
| | - Filipe André Gonzalez
- Serviço de Medicina Intensiva, Hospital Garcia De Orta, Clínica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Susana M Fernandes
- Grupo de Investigação e Desenvolvimento em Infeção e Sépsis, Serviço de Medicina Intensiva, Hospital Santa Maria, Clínica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| |
Collapse
|
7
|
Liljegren MM, Gama JA, Johnsen PJ, Harms K. Plasmids affect microindel mutations in Acinetobacter baylyi ADP1. Plasmid 2024; 131-132:102733. [PMID: 39427784 DOI: 10.1016/j.plasmid.2024.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Plasmids can impact the evolution of their hosts, e.g. due to carriage of mutagenic genes, through cross-talk with host genes or as result of SOS induction during transfer. Here we demonstrate that plasmids can affect the level of microindel mutations in the host genome. These mutations are driven by the production of single-stranded DNA molecules that invade replication forks at microhomologies and subsequently get integrated into the genome. Using the gammaproteobacterial model organism Acinetobacter baylyi, we show that carriage of broad host range plasmids from different incompatibility groups can cause microindel mutations directly or indirectly. The plasmid vector pQLICE belonging to the incompatibility group Q (IncQ) and replicating by a characteristic strand displacement mechanism can generate chromosomal microindel mutations directly with short stretches of DNA originating from pQLICE. In addition, results with the IncP plasmid vector pRK415 (theta replication mechanism) show that the presence of plasmids can increase microindel mutation frequencies indirectly (i.e., with chromosomal ectopic DNA), presumably through plasmid-chromosome interactions that lead to DNA damages. These results provide new mechanistic insights into the microindel mutation mechanism, suggesting that single-stranded DNA repair intermediates are the causing agents. By contrast, the IncN plasmid RN3 appears to suppress host microindel mutations. The suppression mechanism remains unknown. Other plasmids in this study (belonging to IncA/C2, IncW, pBBR incompatibility groups) confer ambiguous or no quantifiable mutagenic effects.
Collapse
Affiliation(s)
- Mikkel M Liljegren
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - João A Gama
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pål J Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
8
|
Li B, Ni S, Liu Y, Lin J, Wang X. The histone-like nucleoid-structuring protein encoded by the plasmid pMBL6842 regulates both plasmid stability and host physiology of Pseudoalteromonas rubra SCSIO 6842. Microbiol Res 2024; 286:127817. [PMID: 38941922 DOI: 10.1016/j.micres.2024.127817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Plasmids orchestrate bacterial adaptation across diverse environments and facilitate lateral gene transfer within bacterial communities. Their presence can perturb host metabolism, creating a competitive advantage for plasmid-free cells. Plasmid stability hinges on efficient replication and partition mechanisms. While plasmids commonly encode histone-like nucleoid-structuring (H-NS) family proteins, the precise influence of plasmid-encoded H-NS proteins on stability remains elusive. In this study, we examined the conjugative plasmid pMBL6842, harboring the hns gene, and observed its positive regulation of parAB transcription, critical for plasmid segregation. Deletion of hns led to rapid plasmid loss, which was remedied by hns complementation. Further investigations unveiled adverse effects of hns overexpression on the bacterial host. Transcriptome analysis revealed hns's role in regulating numerous bacterial genes, impacting both host growth and swimming motility in the presence of the hns gene. Therefore, our study unveils the multifaceted roles of H-NS in both plasmid stability and host physiology, underscoring its biological significance and paving the way for future inquiries into the involvement of H-NS in horizontal gene transfer events.
Collapse
Affiliation(s)
- Baiyuan Li
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Songwei Ni
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yabo Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Liu Z, Zhao Q, Xu C, Song H. Compensatory evolution of chromosomes and plasmids counteracts the plasmid fitness cost. Ecol Evol 2024; 14:e70121. [PMID: 39170056 PMCID: PMC11336059 DOI: 10.1002/ece3.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Plasmids incur a fitness cost that has the potential to restrict the dissemination of resistance in bacterial pathogens. However, bacteria can overcome this disadvantage by compensatory evolution to maintain their resistance. Compensatory evolution can occur via both chromosomes and plasmids, but there are a few reviews regarding this topic, and most of them focus on plasmids. In this review, we provide a comprehensive overview of the currently reported mechanisms underlying compensatory evolution on chromosomes and plasmids, elucidate key targets regulating plasmid fitness cost, and discuss future challenges in this field. We found that compensatory evolution on chromosomes primarily arises from mutations in transcriptional regulatory factors, whereas compensatory evolution of plasmids predominantly involves three pathways: plasmid copy number regulation, conjugation transfer efficiency, and expression of antimicrobial resistance (AMR) genes. Furthermore, the importance of reasonable selection of research subjects and effective integration of diverse advanced research methods is also emphasized in our future study on compensatory mechanisms. Overall, this review establishes a theoretical framework that aims to provide innovative ideas for minimizing the emergence and spread of AMR genes.
Collapse
Affiliation(s)
- Ziyi Liu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Qiuyun Zhao
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Chenggang Xu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Houhui Song
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| |
Collapse
|
10
|
Guerrero RF, Dorji T, Harris RM, Shoulders MD, Ogbunugafor CB. Evolutionary druggability for low-dimensional fitness landscapes toward new metrics for antimicrobial applications. eLife 2024; 12:RP88480. [PMID: 38833384 PMCID: PMC11149929 DOI: 10.7554/elife.88480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
The term 'druggability' describes the molecular properties of drugs or targets in pharmacological interventions and is commonly used in work involving drug development for clinical applications. There are no current analogues for this notion that quantify the drug-target interaction with respect to a given target variant's sensitivity across a breadth of drugs in a panel, or a given drug's range of effectiveness across alleles of a target protein. Using data from low-dimensional empirical fitness landscapes composed of 16 β-lactamase alleles and 7 β-lactam drugs, we introduce two metrics that capture (i) the average susceptibility of an allelic variant of a drug target to any available drug in a given panel ('variant vulnerability'), and (ii) the average applicability of a drug (or mixture) across allelic variants of a drug target ('drug applicability'). Finally, we (iii) disentangle the quality and magnitude of interactions between loci in the drug target and the seven drug environments in terms of their mutation by mutation by environment (G x G x E) interactions, offering mechanistic insight into the variant variability and drug applicability metrics. Summarizing, we propose that our framework can be applied to other datasets and pathogen-drug systems to understand which pathogen variants in a clinical setting are the most concerning (low variant vulnerability), and which drugs in a panel are most likely to be effective in an infection defined by standing genetic variation in the pathogen drug target (high drug applicability).
Collapse
Affiliation(s)
- Rafael F Guerrero
- Department of Biological Sciences, North Carolina State UniversityRaleighUnited States
| | - Tandin Dorji
- Department of Mathematics and Statistics, University of VermontBurlingtonUnited States
| | - Ra'Mal M Harris
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - C Brandon Ogbunugafor
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Ecology and Evolutionary Biology, Yale UniversityNew HavenUnited States
- Santa Fe InstituteSanta FeUnited States
- Public Health Modeling Unit, Yale School of Public HealthNew HavenUnited States
| |
Collapse
|
11
|
Herencias C, Álvaro-Llorente L, Ramiro-Martínez P, Fernández-Calvet A, Muñoz-Cazalla A, DelaFuente J, Graf FE, Jaraba-Soto L, Castillo-Polo JA, Cantón R, San Millán Á, Rodríguez-Beltrán J. β-lactamase expression induces collateral sensitivity in Escherichia coli. Nat Commun 2024; 15:4731. [PMID: 38830889 PMCID: PMC11148083 DOI: 10.1038/s41467-024-49122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Major antibiotic groups are losing effectiveness due to the uncontrollable spread of antimicrobial resistance (AMR) genes. Among these, β-lactam resistance genes -encoding β-lactamases- stand as the most common resistance mechanism in Enterobacterales due to their frequent association with mobile genetic elements. In this context, novel approaches that counter mobile AMR are urgently needed. Collateral sensitivity (CS) occurs when the acquisition of resistance to one antibiotic increases susceptibility to another antibiotic and can be exploited to eliminate AMR selectively. However, most CS networks described so far emerge as a consequence of chromosomal mutations and cannot be leveraged to tackle mobile AMR. Here, we dissect the CS response elicited by the acquisition of a prevalent antibiotic resistance plasmid to reveal that the expression of the β-lactamase gene blaOXA-48 induces CS to colistin and azithromycin. We next show that other clinically relevant mobile β-lactamases produce similar CS responses in multiple, phylogenetically unrelated E. coli strains. Finally, by combining experiments with surveillance data comprising thousands of antibiotic susceptibility tests, we show that β-lactamase-induced CS is pervasive within Enterobacterales. These results highlight that the physiological side-effects of β-lactamases can be leveraged therapeutically, paving the way for the rational design of specific therapies to block mobile AMR or at least counteract their effects.
Collapse
Affiliation(s)
- Cristina Herencias
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas-CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura Álvaro-Llorente
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Paula Ramiro-Martínez
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Ada Muñoz-Cazalla
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Fabrice E Graf
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Laura Jaraba-Soto
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Juan Antonio Castillo-Polo
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas-CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Álvaro San Millán
- Centro Nacional de Biotecnología-CSIC, Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública-CIBERESP, Instituto de Salud Carlos III, Madrid, Spain.
| | - Jerónimo Rodríguez-Beltrán
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas-CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Elg CA, Mack E, Rolfsmeier M, McLean TC, Kosterlitz O, Soderling E, Narum S, Rowley PA, Thomas CM, Top EM. Evolution of a Plasmid Regulatory Circuit Ameliorates Plasmid Fitness Cost. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579024. [PMID: 38370613 PMCID: PMC10871194 DOI: 10.1101/2024.02.05.579024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Plasmids play a major role in rapid adaptation of bacteria by facilitating horizontal transfer of diverse genes, most notably those conferring antibiotic resistance. While most plasmids that replicate in a broad range of bacteria also persist well in diverse hosts, there are exceptions that are poorly understood. We investigated why a broad-host range plasmid, pBP136, originally found in clinical Bordetella pertussis isolates, quickly became extinct in laboratory Escherichia coli populations. Through experimental evolution we found that inactivation of a previously uncharacterized plasmid gene, upf31, drastically improved plasmid maintenance in E. coli. This gene inactivation resulted in decreased transcription of the global plasmid regulators (korA, korB, and korC) and numerous genes in their regulons. It also caused transcriptional changes in many chromosomal genes primarily related to metabolism. In silico analyses suggested that the change in plasmid transcriptome may be initiated by Upf31 interacting with the plasmid regulator KorB. Expression of upf31 in trans negatively affected persistence of pBP136Δupf31 as well as the closely related archetypal IncP-1β plasmid R751, which is stable in E. coli and natively encodes a truncated upf31 allele. Our results demonstrate that while the upf31 allele in pBP136 might advantageously modulate gene expression in its original host, B. pertussis, it has harmful effects in E. coli. Thus, evolution of a single plasmid gene can change the range of hosts in which that plasmid persists, due to effects on the regulation of plasmid gene transcription.
Collapse
Affiliation(s)
- Clinton A. Elg
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, Idaho, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Erin Mack
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Michael Rolfsmeier
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Thomas C. McLean
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Olivia Kosterlitz
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Biology Department, University of Washington, Seattle, Washington, USA
| | | | - Solana Narum
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, Idaho, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | | | - Eva M. Top
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, Idaho, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
13
|
Zongo PD, Cabanel N, Royer G, Depardieu F, Hartmann A, Naas T, Glaser P, Rosinski-Chupin I. An antiplasmid system drives antibiotic resistance gene integration in carbapenemase-producing Escherichia coli lineages. Nat Commun 2024; 15:4093. [PMID: 38750030 PMCID: PMC11096173 DOI: 10.1038/s41467-024-48219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Plasmids carrying antibiotic resistance genes (ARG) are the main mechanism of resistance dissemination in Enterobacterales. However, the fitness-resistance trade-off may result in their elimination. Chromosomal integration of ARGs preserves resistance advantage while relieving the selective pressure for keeping costly plasmids. In some bacterial lineages, such as carbapenemase producing sequence type ST38 Escherichia coli, most ARGs are chromosomally integrated. Here we reproduce by experimental evolution the mobilisation of the carbapenemase blaOXA-48 gene from the pOXA-48 plasmid into the chromosome. We demonstrate that this integration depends on a plasmid-induced fitness cost, a mobile genetic structure embedding the ARG and a novel antiplasmid system ApsAB actively involved in pOXA-48 destabilization. We show that ApsAB targets high and low-copy number plasmids. ApsAB combines a nuclease/helicase protein and a novel type of Argonaute-like protein. It belongs to a family of defense systems broadly distributed among bacteria, which might have a strong ecological impact on plasmid diffusion.
Collapse
Affiliation(s)
- Pengdbamba Dieudonné Zongo
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Sorbonne Université, Paris, France
- Université Paris Cité, Paris, France
| | - Nicolas Cabanel
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Université Paris Cité, Paris, France
| | - Guilhem Royer
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Université Paris Cité, Paris, France
| | - Florence Depardieu
- Université Paris Cité, Paris, France
- Synthetic Biology Unit, Institut Pasteur, Paris, France
| | - Alain Hartmann
- UMR AgroEcologie 1347, INRAe, Université Bourgogne Franche-Comté, Dijon, France
| | - Thierry Naas
- Team ReSIST, INSERM UMR 1184, Paris-Saclay University, Le Kremlin-Bicêtre, France
- Department of Bacteriology-Hygiene, Bicêtre Hospital, APHP, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Philippe Glaser
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Université Paris Cité, Paris, France
| | - Isabelle Rosinski-Chupin
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France.
- Université Paris Cité, Paris, France.
| |
Collapse
|
14
|
Yang QE, Ma X, Li M, Zhao M, Zeng L, He M, Deng H, Liao H, Rensing C, Friman VP, Zhou S, Walsh TR. Evolution of triclosan resistance modulates bacterial permissiveness to multidrug resistance plasmids and phages. Nat Commun 2024; 15:3654. [PMID: 38688912 PMCID: PMC11061290 DOI: 10.1038/s41467-024-48006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
The horizontal transfer of plasmids has been recognized as one of the key drivers for the worldwide spread of antimicrobial resistance (AMR) across bacterial pathogens. However, knowledge remain limited about the contribution made by environmental stress on the evolution of bacterial AMR by modulating horizontal acquisition of AMR plasmids and other mobile genetic elements. Here we combined experimental evolution, whole genome sequencing, reverse genetic engineering, and transcriptomics to examine if the evolution of chromosomal AMR to triclosan (TCS) disinfectant has correlated effects on modulating bacterial pathogen (Klebsiella pneumoniae) permissiveness to AMR plasmids and phage susceptibility. Herein, we show that TCS exposure increases the evolvability of K. pneumoniae to evolve TCS-resistant mutants (TRMs) by acquiring mutations and altered expression of several genes previously associated with TCS and antibiotic resistance. Notably, nsrR deletion increases conjugation permissiveness of K. pneumoniae to four AMR plasmids, and enhances susceptibility to various Klebsiella-specific phages through the downregulation of several bacterial defense systems and changes in membrane potential with altered reactive oxygen species response. Our findings suggest that unrestricted use of TCS disinfectant imposes a dual impact on bacterial antibiotic resistance by augmenting both chromosomally and horizontally acquired AMR mechanisms.
Collapse
Affiliation(s)
- Qiu E Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaodan Ma
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Minchun Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengshi Zhao
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lingshuang Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Minzhen He
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Deng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ville-Petri Friman
- Department of Microbiology, University of Helsinki, 00014, Helsinki, Finland
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Timothy R Walsh
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
15
|
Hernandez-Beltran JCR, Rodríguez-Beltrán J, Aguilar-Luviano OB, Velez-Santiago J, Mondragón-Palomino O, MacLean RC, Fuentes-Hernández A, San Millán A, Peña-Miller R. Plasmid-mediated phenotypic noise leads to transient antibiotic resistance in bacteria. Nat Commun 2024; 15:2610. [PMID: 38521779 PMCID: PMC10960800 DOI: 10.1038/s41467-024-45045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/12/2024] [Indexed: 03/25/2024] Open
Abstract
The rise of antibiotic resistance is a critical public health concern, requiring an understanding of mechanisms that enable bacteria to tolerate antimicrobial agents. Bacteria use diverse strategies, including the amplification of drug-resistance genes. In this paper, we showed that multicopy plasmids, often carrying antibiotic resistance genes in clinical bacteria, can rapidly amplify genes, leading to plasmid-mediated phenotypic noise and transient antibiotic resistance. By combining stochastic simulations of a computational model with high-throughput single-cell measurements of blaTEM-1 expression in Escherichia coli MG1655, we showed that plasmid copy number variability stably maintains populations composed of cells with both low and high plasmid copy numbers. This diversity in plasmid copy number enhances the probability of bacterial survival in the presence of antibiotics, while also rapidly reducing the burden of carrying multiple plasmids in drug-free environments. Our results further support the tenet that multicopy plasmids not only act as vehicles for the horizontal transfer of genetic information between cells but also as drivers of bacterial adaptation, enabling rapid modulation of gene copy numbers. Understanding the role of multicopy plasmids in antibiotic resistance is critical, and our study provides insights into how bacteria can transiently survive lethal concentrations of antibiotics.
Collapse
Affiliation(s)
- J Carlos R Hernandez-Beltran
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210, Cuernavaca, México.
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
| | | | | | - Jesús Velez-Santiago
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210, Cuernavaca, México
| | - Octavio Mondragón-Palomino
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - R Craig MacLean
- Department of Biology, University of Oxford, OX1 3SZ, Oxford, UK
| | - Ayari Fuentes-Hernández
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210, Cuernavaca, México
| | - Alvaro San Millán
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - CSIC, 28049, Madrid, Spain
| | - Rafael Peña-Miller
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210, Cuernavaca, México.
| |
Collapse
|
16
|
Ponciano JM, Gómez JP, Ravel J, Forney LJ. Inferring stability and persistence in the vaginal microbiome: A stochastic model of ecological dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.581600. [PMID: 38464272 PMCID: PMC10925280 DOI: 10.1101/2024.03.02.581600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The interplay of stochastic and ecological processes that govern the establishment and persistence of host-associated microbial communities is not well understood. Here we illustrate the conceptual and practical advantages of fitting stochastic population dynamics models to multi-species bacterial time series data. We show how the stability properties, fluctuation regimes and persistence probabilities of human vaginal microbial communities can be better understood by explicitly accommodating three sources of variability in ecological stochastic models of multi-species abundances: 1) stochastic biotic and abiotic forces, 2) ecological feedback and 3) sampling error. Rooting our modeling tool in stochastic population dynamics modeling theory was key to apply standardized measures of a community's reaction to environmental variation that ultimately depends on the nature and intensity of the intra-specific and inter-specific interaction strengths. Using estimates of model parameters, we developed a Risk Prediction Monitoring (RPM) tool that estimates temporal changes in persistence probabilities for any bacterial group of interest. This method mirrors approaches that are often used in conservation biology in which a measure of extinction risks is periodically updated with any change in a population or community. Additionally, we show how to use estimates of interaction strengths and persistence probabilities to formulate hypotheses regarding the molecular mechanisms and genetic composition that underpin different types of interactions. Instead of seeking a definition of "dysbiosis" we propose to translate concepts of theoretical ecology and conservation biology methods into practical approaches for the management of human-associated bacterial communities.
Collapse
Affiliation(s)
| | - Juan P. Gómez
- Departamento de Química y Biología, Universidad del Norte, Barranquilla, Colombia
| | - Jacques Ravel
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - Larry J. Forney
- Institute for Interdisciplinary Data Science and Department of Biological Sciences, University of Idaho, Moscow, ID
| |
Collapse
|
17
|
Sobkowiak A, Scherff N, Schuler F, Bletz S, Mellmann A, Schwierzeck V, van Almsick V. Plasmid-encoded gene duplications of extended-spectrum β-lactamases in clinical bacterial isolates. Front Cell Infect Microbiol 2024; 14:1343858. [PMID: 38469349 PMCID: PMC10925753 DOI: 10.3389/fcimb.2024.1343858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/02/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction The emergence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is an urgent and alarming One Health problem. This study aimed to investigate duplications of plasmid-encoded ESBL genes and their impact on antimicrobial resistance (AMR) phenotypes in clinical and screening isolates. Methods Multi-drug-resistant bacteria from hospitalized patients were collected during routine clinical surveillance from January 2022 to June 2023, and their antimicrobial susceptibility patterns were determined. Genotypes were extracted from long-read whole-genome sequencing data. Furthermore, plasmids and other mobile genetic elements associated with ESBL genes were characterized, and the ESBL genes were correlated to ceftazidime minimal inhibitory concentration (MIC). Results In total, we identified four cases of plasmid-encoded ESBL gene duplications that match four genetically similar plasmids during the 18-month surveillance period: five Escherichia coli and three Klebsiella pneumoniae isolates. As the ESBL genes were part of transposable elements, the surrounding sequence regions were duplicated as well. In-depth analysis revealed insertion sequence (IS)-mediated transposition mechanisms. Isolates with duplicated ESBL genes exhibited a higher MIC for ceftazidime in comparison to isolates with a single gene copy (3-256 vs. 1.5-32 mg/L, respectively). Conclusion ESBL gene duplications led to an increased phenotypic resistance against ceftazidime. Our data suggest that ESBL gene duplications by an IS-mediated transposition are a relevant mechanism for how AMR develops in the clinical setting and is part of the microevolution of plasmids.
Collapse
Affiliation(s)
- Annika Sobkowiak
- Institute of Hygiene, University Hospital Münster, Münster, Germany
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Natalie Scherff
- Institute of Hygiene, University Hospital Münster, Münster, Germany
| | - Franziska Schuler
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Stefan Bletz
- Institute of Hygiene, University Hospital Münster, Münster, Germany
| | | | - Vera Schwierzeck
- Institute of Hygiene, University Hospital Münster, Münster, Germany
| | - Vincent van Almsick
- Institute of Hygiene, University Hospital Münster, Münster, Germany
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| |
Collapse
|
18
|
Lai HY, Cooper TF. Interaction with a phage gene underlie costs of a β-lactamase. mBio 2024; 15:e0277623. [PMID: 38194254 PMCID: PMC10865808 DOI: 10.1128/mbio.02776-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
The fitness cost of an antibiotic resistance gene (ARG) can differ across host strains, creating refuges that allow the maintenance of an ARG in the absence of direct selection for its resistance phenotype. Despite the importance of such ARG-host interactions for predicting ARG dynamics, the basis of ARG fitness costs and their variability between hosts are not well understood. We determined the genetic basis of a host-dependent cost of a β-lactamase, blaTEM-116*, that conferred a significant cost in one Escherichia coli strain but was close to neutral in 11 other Escherichia spp. strains. Selection of a blaTEM-116*-encoding plasmid in the strain in which it initially had a high cost resulted in rapid and parallel compensation for that cost through mutations in a P1-like phage gene, relAP1. When the wild-type relAP1 gene was added to a strain in which it was not present and in which blaTEM-116* was neutral, it caused the ARG to become costly. Thus, relAP1 is both necessary and sufficient to explain blaTEM-116* costs in at least some host backgrounds. To our knowledge, these findings represent the first demonstrated case of the cost of an ARG being influenced by a genetic interaction with a phage gene. The interaction between a phage gene and a plasmid-borne ARG highlights the complexity of selective forces determining the maintenance and spread of ARGs and, by extension, encoding phage and plasmids in natural bacterial communities.IMPORTANCEAntibiotic resistance genes (ARGs) play a major role in the increasing problem of antibiotic resistance in clinically relevant bacteria. Selection of these genes occurs in the presence of antibiotics, but their eventual success also depends on the sometimes substantial costs they impose on host bacteria in antibiotic-free environments. We evolved an ARG that confers resistance to penicillin-type antibiotics in one host in which it did confer a cost and in one host in which it did not. We found that costs were rapidly and consistently reduced through parallel genetic changes in a gene encoded by a phage that was infecting the costly host. The unmutated version of this gene was sufficient to cause the ARG to confer a cost in a host in which it was originally neutral, demonstrating an antagonism between the two genetic elements and underlining the range and complexity of pressures determining ARG dynamics in natural populations.
Collapse
Affiliation(s)
- Huei-Yi Lai
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Tim F. Cooper
- School of Natural Sciences, Massey University, Auckland, New Zealand
| |
Collapse
|
19
|
Nguyen ANT, Gorrell R, Kwok T, Connallon T, McDonald MJ. Horizontal gene transfer facilitates the molecular reverse-evolution of antibiotic sensitivity in experimental populations of H. pylori. Nat Ecol Evol 2024; 8:315-324. [PMID: 38177692 DOI: 10.1038/s41559-023-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024]
Abstract
Reversing the evolution of traits harmful to humans, such as antimicrobial resistance, is a key ambition of applied evolutionary biology. A major impediment to reverse evolution is the relatively low spontaneous mutation rates that revert evolved genotypes back to their ancestral state. However, the repeated re-introduction of ancestral alleles by horizontal gene transfer (HGT) could make reverse evolution likely. Here we evolve populations of an antibiotic-resistant strain of Helicobacter pylori in growth conditions without antibiotics while introducing an ancestral antibiotic-sensitive allele by HGT. We evaluate reverse evolution using DNA sequencing and find that HGT facilitates the molecular reverse evolution of the antibiotic resistance allele, and that selection for high rates of HGT drives the evolution of increased HGT rates in low-HGT treatment populations. Finally, we use a theoretical model and carry out simulations to infer how the fitness costs of antibiotic resistance, rates of HGT and effects of genetic drift interact to determine the probability and predictability of reverse evolution.
Collapse
Affiliation(s)
- An N T Nguyen
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Gorrell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Terry Kwok
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Biomedical Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| | - Michael J McDonald
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
20
|
Siedentop B, Rüegg D, Bonhoeffer S, Chabas H. My host's enemy is my enemy: plasmids carrying CRISPR-Cas as a defence against phages. Proc Biol Sci 2024; 291:20232449. [PMID: 38262608 PMCID: PMC10805597 DOI: 10.1098/rspb.2023.2449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Bacteria are infected by mobile genetic elements like plasmids and virulent phages, and those infections significantly impact bacterial ecology and evolution. Recent discoveries reveal that some plasmids carry anti-phage immune systems like CRISPR-Cas, suggesting that plasmids may participate in the coevolutionary arms race between virulent phages and bacteria. Intuitively, this seems reasonable as virulent phages kill the plasmid's obligate host. However, the efficiency of CRISPR-Cas systems carried by plasmids can be expected to be lower than those carried by the chromosome due to continuous segregation loss, creating susceptible cells for phage amplification. To evaluate the anti-phage protection efficiency of CRISPR-Cas on plasmids, we develop a stochastic model describing the dynamics of a virulent phage infection against which a conjugative plasmid defends using CRISPR-Cas. We show that CRISPR-Cas on plasmids provides robust protection, except in limited parameter sets. In these cases, high segregation loss favours phage outbreaks by generating a population of defenceless cells on which the phage can evolve and escape CRISPR-Cas immunity. We show that the phage's ability to exploit segregation loss depends strongly on the evolvability of both CRISPR-Cas and the phage itself.
Collapse
Affiliation(s)
- Berit Siedentop
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Dario Rüegg
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | | - Hélène Chabas
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
21
|
Yang QE, Ma X, Zeng L, Wang Q, Li M, Teng L, He M, Liu C, Zhao M, Wang M, Hui D, Madsen JS, Liao H, Walsh TR, Zhou S. Interphylum dissemination of NDM-5-positive plasmids in hospital wastewater from Fuzhou, China: a single-centre, culture-independent, plasmid transmission study. THE LANCET. MICROBE 2024; 5:e13-e23. [PMID: 38006896 DOI: 10.1016/s2666-5247(23)00227-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND The global spread of plasmid-borne carbapenem resistance is an ongoing public health challenge; however, the nature of such horizontal gene transfer events among complex bacterial communities remains poorly understood. We examined the in-situ transfer of the globally dominant New Delhi metallo-β-lactamase (NDM)-5-positive IncX3 plasmid (denoted pX3_NDM-5) in hospital wastewater to simulate a real-world, One Health antimicrobial resistance context. METHODS For this transmission study, we tagged pX3_NDM-5 with the green fluorescent protein gene, gfp, using a CRISPR-based method and transferred the plasmid to a donor Escherichia coli strain. Bacteria were extracted from a hospital wastewater treatment plant (Fujian Provincial Maternity and Children's Hospital, Fuzhou, China) as the bacterial recipient community. We mixed this recipient community with the E coli donor strain carrying the gfp-tagged plasmid, both with and without sodium hypochlorite (NaClO) as an environmental stressor, and conducted several culture-based and culture-independent conjugation assays. The conjugation events were observed microscopically and quantified by fluorescence-activated cell sorting. We analysed the taxonomic composition of the sorted transconjugal pool by 16S rRNA gene amplicon sequencing and assessed the stability of the plasmid in the isolated transconjugants and its ability to transfer back to E coli. FINDINGS We show that the plasmid pX3_NDM-5 has a broad host range and can transfer across various bacterial phyla, including between Gram-negative and Gram-positive bacteria. Although environmental stress with NaClO did not affect the overall plasmid transfer frequency, it reduced the breadth of the transconjugant pool. The taxonomic composition of the transconjugal pool was distinct from that of the recipient communities, and environmental stress modulated the permissiveness of some operational taxonomic units towards the acquisition of pX3_NDM-5. Notably, pX3_NDM-5 transconjugants included the Gram-positive pathogen Enterococcus faecalis, and the plasmid could subsequently be reconjugated back to E coli. These findings suggest that E faecalis could act as a natural shuttle vector for the wide dissemination of pX3_NDM-5 plasmids. INTERPRETATION Our culture-independent conjugation model simulates natural environmental conditions and challenges the established theory that Gram-negative and Gram-positive bacteria rarely exchange clinically important plasmids. The data show that plasmids disseminate more widely across genera and phyla than previously thought. These findings have substantial implications when considering the spread of antimicrobial resistance across One Health sectors. FUNDING The Laboratory of Lingnan Modern Agriculture Project, the National Natural Science Foundation of China, the Natural Science Foundation of Fujian Province of China, and the Outstanding Young Research Talents Program of Fujian Agriculture and Forestry University.
Collapse
Affiliation(s)
- Qiu E Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaodan Ma
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingshuang Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinqin Wang
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Minchun Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lin Teng
- Department of Veterinary Medicine, College of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Mingzhen He
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengshi Zhao
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengzhu Wang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deng Hui
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Timothy R Walsh
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
22
|
Zhang S, Wen J, Wang Y, Zhong Z, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Decoding the enigma: unveiling the molecular transmission of avian-associated tet(X4)-positive E. coli in Sichuan Province, China. Poult Sci 2023; 102:103142. [PMID: 37879166 PMCID: PMC10618799 DOI: 10.1016/j.psj.2023.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Tigecycline is considered one of the "last resort antibiotics" for treating complex infections caused by multidrug-resistant (MDR) bacteria, especially for combating clinical resistant strains that produce carbapenemases. However, the tet(X4) gene, which carried by different plasmids can mediate high levels of bacterial resistance to tigecycline, was first reported in 2019. Here, we report the emergence of the plasmid-mediated tet(X4) in avian environment of Sichuan Province. A total of 21 tet(X4)-positive Escherichia coli (E. coli) strains were isolated and identified from avian samples in selected regions, with an isolation rate of 1.6% (21/1,286), and all of them were MDR strains. Multilocus Sequence Typing (MLST) method was used to classify the 21 tet(X4)-positive E. coli into the ST206, ST761, ST155, ST1638, ST542, and ST767 types, which also belong to the 3 phylogenetic subgroups A, B1, and C. Tet(X4) is located on mobile plasmids that can be efficiently and stably propagated. The results of fitness cost experiments showed that tet(X4)-positive plasmids may incur some fitness cost to host bacteria, but different tet(X4)-positive plasmids bring about differential fitness costs. Whole-genome sequencing further confirmed the tet(X4) gene can be located on IncX1-type plasmids and the core genetic structures are ISVsa3-rdmc-tet(X4) or rdmc-tet(X4)-ISVsa3, the former is a 7 copies tandem repeat structure. In this study, we isolated and identified tet(X4)-positive E. coli from the avian origin in Sichuan, analyzed the mobility of the tet(X4) by conjugational transfer and S1-PFGE, and evaluated the biological characteristics of the tet(X4)-positive plasmid using the results of conjugational frequency, plasmid stability, and fitness costs. Finally, combined with the third-generation whole-genome sequencing analysis, the molecular transmission characteristics of the tet(X4) were preliminarily clarified, providing a scientific basis for guiding veterinary clinical use in this area, as well as risk assessment and prevention of the transfer and spread of tigecycline resistant strains or genes.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Jinfeng Wen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuwei Wang
- Mianyang Academy of Agricultural Sciences, Mianyang 621023, PR China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China.
| |
Collapse
|
23
|
Lin X, Zhang C, Han R, Li S, Peng H, Zhou X, Huang L, Xu Y. Oxytetracycline and heavy metals promote the migration of resistance genes in the intestinal microbiome by plasmid transfer. THE ISME JOURNAL 2023; 17:2003-2013. [PMID: 37700035 PMCID: PMC10579362 DOI: 10.1038/s41396-023-01514-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Horizontal gene transfer (HGT) has been considered the most important pathway to introduce antibiotic resistance genes (ARGs), which seriously threatens human health and biological security. The presence of ARGs in the aquatic environment and their effect on the intestinal micro-ecosystem of aquatic animals can occur easily. To investigate the HGT potential and rule of exogenous ARGs in the intestinal flora, a visual conjugative model was developed, including the donor of dual-fluorescent bacterium and the recipient of Xenopus tropicalis intestinal microbiome. Some common pollutants of oxytetracycline (OTC) and three heavy metals (Zn, Cu and Pb) were selected as the stressor. The multi-techniques of flow cytometry (FCM), scanning electron microscopy (SEM), atomic force microscopy (AFM), single-cell Raman spectroscopy with sorting (SCRSS) and indicator analysis were used in this study. The results showed that ARG transfer could occur more easily under stressors. Moreover, the conjugation efficiency mainly depended on the viability of the intestinal bacteria. The mechanisms of OTC and heavy metal stressing conjugation included the upregulation of ompC, traJ, traG and the downregulation of korA gene. Moreover, the enzymatic activities of SOD, CAT, GSH-PX increased and the bacterial surface appearance also changed. The predominant recipient was identified as Citrobacter freundi by SCRSS, in which the abundance and quantity of ARG after conjugation were higher than those before. Therefore, since the diversity of potential recipients in the intestine are very high, the migration of invasive ARGs in the microbiome should be given more attention to prevent its potential risks to public health.
Collapse
Affiliation(s)
- Xiaojun Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Chaonan Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Ruiqi Han
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Shoupeng Li
- Analysis and Test Center, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Huishi Peng
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Xiao Zhou
- Analysis and Test Center, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Lu Huang
- Analysis and Test Center, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China.
| |
Collapse
|
24
|
Sun H, Li H, Zhang X, Liu Y, Chen H, Zheng L, Zhai Y, Zheng H. The honeybee gut resistome and its role in antibiotic resistance dissemination. Integr Zool 2023; 18:1014-1026. [PMID: 36892101 DOI: 10.1111/1749-4877.12714] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
There is now general concern about widespread antibiotic resistance, and growing evidence indicates that gut microbiota is critical in providing antibiotic resistance. Honeybee is an important pollinator; the incidence of antibiotic resistance genes in honeybee gut causes potential risks to not only its own health but also to public and animal health, for its potential disseminator role, thus receiving more attention from the public. Recent analysis results reveal that the gut of honeybee serves as a reservoir of antibiotic resistance genes, probably due to antibiotics application history in beekeeping and horizontal gene transfer from the highly polluted environment. These antibiotic resistance genes accumulate in the honeybee gut and could be transferred to the pathogen, even having the potential to spread during pollination, tending, social interactions, etc. Newly acquired resistance traits may cause fitness reduction in bacteria whereas facilitating adaptive evolution as well. This review outlines the current knowledge about the resistome in honeybee gut and emphasizes its role in antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Huihui Sun
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| |
Collapse
|
25
|
Ogunlana L, Kaur D, Shaw LP, Jangir P, Walsh T, Uphoff S, MacLean RC. Regulatory fine-tuning of mcr-1 increases bacterial fitness and stabilises antibiotic resistance in agricultural settings. THE ISME JOURNAL 2023; 17:2058-2069. [PMID: 37723338 PMCID: PMC10579358 DOI: 10.1038/s41396-023-01509-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
Antibiotic resistance tends to carry fitness costs, making it difficult to understand how resistance can be maintained in the absence of continual antibiotic exposure. Here we investigate this problem in the context of mcr-1, a globally disseminated gene that confers resistance to colistin, an agricultural antibiotic that is used as a last resort for the treatment of multi-drug resistant infections. Here we show that regulatory evolution has fine-tuned the expression of mcr-1, allowing E. coli to reduce the fitness cost of mcr-1 while simultaneously increasing colistin resistance. Conjugative plasmids have transferred low-cost/high-resistance mcr-1 alleles across an incredible diversity of E. coli strains, further stabilising mcr-1 at the species level. Regulatory mutations were associated with increased mcr-1 stability in pig farms following a ban on the use of colistin as a growth promoter that decreased colistin consumption by 90%. Our study shows how regulatory evolution and plasmid transfer can combine to stabilise resistance and limit the impact of reducing antibiotic consumption.
Collapse
Affiliation(s)
- Lois Ogunlana
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Divjot Kaur
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Liam P Shaw
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Pramod Jangir
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Timothy Walsh
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - R C MacLean
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
26
|
Allain M, Mahérault AC, Gachet B, Martinez C, Condamine B, Magnan M, Kempf I, Denamur E, Landraud L. Dissemination of IncI plasmid encoding bla CTX-M-1 is not hampered by its fitness cost in the pig's gut. Antimicrob Agents Chemother 2023; 67:e0011123. [PMID: 37702541 PMCID: PMC10583664 DOI: 10.1128/aac.00111-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/01/2023] [Indexed: 09/14/2023] Open
Abstract
Multiresistance plasmids belonging to the IncI incompatibility group have become one of the most pervasive plasmid types in extended-spectrum beta-lactamase-producing Escherichia coli of animal origin. The extent of the burden imposed on the bacterial cell by these plasmids seems to modulate the emergence of "epidemic" plasmids. However, in vivo data in the natural environment of the strains are scarce. Here, we investigated the cost of a bla CTX-M-1-IncI1 epidemic plasmid in a commensal E. coli animal strain, UB12-RC, before and after oral inoculation of 15 6- to 8-week- old specific-pathogen-free pigs. Growth rate in rich medium was determined on (i) UB12-RC and derivatives, with or without plasmid, in vivo and/or in vitro evolved, and (ii) strains that acquired the plasmid in the gut during the experiment. Although bla CTX-M-1-IncI1 plasmid imposed no measurable burden on the recipient strain after conjugation and during the longitudinal carriage in the pig's gut, we observed a significant difference in the bacterial growth rate between IncI1 plasmid-carrying and plasmid-free isolates collected during in vivo carriage. Only a few mutations on the chromosome of the UB12-RC derivatives were detected by whole-genome sequencing. RNA-Seq analysis of a selected set of these strains showed that transcriptional responses to the bla CTX-M-1-IncI1 acquisition were limited, affecting metabolism, stress response, and motility functions. Our data suggest that the effect of IncI plasmid on host cells is limited, fitness cost being insufficient to act as a barrier to IncI plasmid spread among natural population of E. coli in the gut niche.
Collapse
Affiliation(s)
- Margaux Allain
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| | - Anne Claire Mahérault
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| | - Benoit Gachet
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Caroline Martinez
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Bénédicte Condamine
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Mélanie Magnan
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Isabelle Kempf
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Erick Denamur
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
| | - Luce Landraud
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| |
Collapse
|
27
|
Chowdhury F, Findlay BL. Fitness Costs of Antibiotic Resistance Impede the Evolution of Resistance to Other Antibiotics. ACS Infect Dis 2023; 9:1834-1845. [PMID: 37726252 PMCID: PMC10581211 DOI: 10.1021/acsinfecdis.3c00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Indexed: 09/21/2023]
Abstract
Antibiotic resistance is a major threat to global health, claiming the lives of millions every year. With a nearly dry antibiotic development pipeline, novel strategies are urgently needed to combat resistant pathogens. One emerging strategy is the use of sequential antibiotic therapy, postulated to reduce the rate at which antibiotic resistance evolves. Here, we use the soft agar gradient evolution (SAGE) system to carry out high-throughput in vitro bacterial evolution against antibiotic pressure. We find that evolution of resistance to the antibiotic chloramphenicol (CHL) severely affects bacterial fitness, slowing the rate at which resistance to the antibiotics nitrofurantoin and streptomycin emerges. In vitro acquisition of compensatory mutations in the CHL-resistant cells markedly improves fitness and nitrofurantoin adaptation rates but fails to restore rates to wild-type levels against streptomycin. Genome sequencing reveals distinct evolutionary paths to resistance in fitness-impaired populations, suggesting resistance trade-offs in favor of mitigation of fitness costs. We show that the speed of bacterial fronts in SAGE plates is a reliable indicator of adaptation rates and evolutionary trajectories to resistance. Identification of antibiotics whose mutational resistance mechanisms confer stable impairments may help clinicians prescribe sequential antibiotic therapies that are less prone to resistance evolution.
Collapse
Affiliation(s)
- Farhan
R. Chowdhury
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Brandon L. Findlay
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
28
|
Guerrero RF, Dorji T, Harris RM, Shoulders MD, Ogbunugafor CB. Evolutionary druggability: leveraging low-dimensional fitness landscapes towards new metrics for antimicrobial applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.08.536116. [PMID: 37066376 PMCID: PMC10104179 DOI: 10.1101/2023.04.08.536116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The term "druggability" describes the molecular properties of drugs or targets in pharmacological interventions and is commonly used in work involving drug development for clinical applications. There are no current analogues for this notion that quantify the drug-target interaction with respect to a given target variant's sensitivity across a breadth of drugs in a panel, or a given drug's range of effectiveness across alleles of a target protein. Using data from low-dimensional empirical fitness landscapes composed of 16 β-lactamase alleles and seven β-lactam drugs, we introduce two metrics that capture (i) the average susceptibility of an allelic variant of a drug target to any available drug in a given panel ("variant vulnerability"), and (ii) the average applicability of a drug (or mixture) across allelic variants of a drug target ("drug applicability"). Finally, we (iii) disentangle the quality and magnitude of interactions between loci in the drug target and the seven drug environments in terms of their mutation by mutation by environment (G × G × E) interactions, offering mechanistic insight into the variant variability and drug applicability metrics. Summarizing, we propose that our framework can be applied to other datasets and pathogen-drug systems to understand which pathogen variants in a clinical setting are the most concerning (low variant vulnerability), and which drugs in a panel are most likely to be effective in an infection defined by standing genetic variation in the pathogen drug target (high drug applicability).
Collapse
Affiliation(s)
| | - Tandin Dorji
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT
| | - Ra’Mal M. Harris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | | | - C. Brandon Ogbunugafor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
- DDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Santa Fe Institute, Santa Fe, NM
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT
| |
Collapse
|
29
|
Yang J, Wu R, Xia Q, Yu J, Yi LX, Huang Y, Deng M, He WY, Bai Y, Lv L, Burrus V, Wang C, Liu JH. The evolution of infectious transmission promotes the persistence of mcr-1 plasmids. mBio 2023; 14:e0044223. [PMID: 37314200 PMCID: PMC10470590 DOI: 10.1128/mbio.00442-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/25/2023] [Indexed: 06/15/2023] Open
Abstract
Conjugative plasmids play a vital role in bacterial evolution and promote the spread of antibiotic resistance. They usually cause fitness costs that diminish the growth rates of the host bacteria. Compensatory mutations are known as an effective evolutionary solution to reduce the fitness cost and improve plasmid persistence. However, whether the plasmid transmission by conjugation is sufficient to improve plasmid persistence is debated since it is an inherently costly process. Here, we experimentally evolved an unstable and costly mcr-1 plasmid pHNSHP24 under laboratory conditions and assessed the effects of plasmid cost and transmission on the plasmid maintenance by the plasmid population dynamics model and a plasmid invasion experiment designed to measure the plasmid's ability to invade a plasmid-free bacterial population. The persistence of pHNSHP24 improved after 36 days evolution due to the plasmid-borne mutation A51G in the 5'UTR of gene traJ. This mutation largely increased the infectious transmission of the evolved plasmid, presumably by impairing the inhibitory effect of FinP on the expression of traJ. We showed that increased conjugation rate of the evolved plasmid could compensate for the plasmid loss. Furthermore, we determined that the evolved high transmissibility had little effect on the mcr-1-deficient ancestral plasmid, implying that high conjugation transfer is vital for maintaining the mcr-1-bearing plasmid. Altogether, our findings emphasized that, besides compensatory evolution that reduces fitness costs, the evolution of infectious transmission can improve the persistence of antibiotic-resistant plasmids, indicating that inhibition of the conjugation process could be useful to combat the spread of antibiotic-resistant plasmids. IMPORTANCE Conjugative plasmids play a key role in the spread of antibiotic resistance, and they are well-adapted to the host bacteria. However, the evolutionary adaptation of plasmid-bacteria associations is not well understood. In this study, we experimentally evolved an unstable colistin resistance (mcr-1) plasmid under laboratory conditions and found that increased conjugation rate was crucial for the persistence of this plasmid. Interestingly, the evolved conjugation was caused by a single-base mutation, which could rescue the unstable plasmid from extinction in bacterial populations. Our findings imply that inhibition of the conjugation process could be necessary for combating the persistence of antibiotic-resistance plasmids.
Collapse
Affiliation(s)
- Jun Yang
- College of Veterinary Medicine National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Renjie Wu
- College of Veterinary Medicine National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs South China Agricultural University, Guangzhou, China
| | - Qiang Xia
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Jingjing Yu
- College of Veterinary Medicine National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs South China Agricultural University, Guangzhou, China
| | - Ling-Xian Yi
- College of Veterinary Medicine National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs South China Agricultural University, Guangzhou, China
| | - Ying Huang
- College of Veterinary Medicine National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs South China Agricultural University, Guangzhou, China
| | - Meixin Deng
- College of Veterinary Medicine National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs South China Agricultural University, Guangzhou, China
| | - Wan-Yun He
- College of Veterinary Medicine National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs South China Agricultural University, Guangzhou, China
| | - Yuman Bai
- College of Veterinary Medicine National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs South China Agricultural University, Guangzhou, China
| | - Luchao Lv
- College of Veterinary Medicine National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs South China Agricultural University, Guangzhou, China
| | - Vincent Burrus
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Chengzhen Wang
- College of Veterinary Medicine National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs South China Agricultural University, Guangzhou, China
| | - Jian-Hua Liu
- College of Veterinary Medicine National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
30
|
Fernández-Calvet A, Toribio-Celestino L, Alonso-del Valle A, Sastre-Dominguez J, Valdes-Chiara P, San Millan A, DelaFuente J. The distribution of fitness effects of plasmid pOXA-48 in clinical enterobacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001369. [PMID: 37505800 PMCID: PMC10433420 DOI: 10.1099/mic.0.001369] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Antimicrobial resistance (AMR) in bacteria is a major public health problem. The main route for AMR acquisition in clinically important bacteria is the horizontal transfer of plasmids carrying resistance genes. AMR plasmids allow bacteria to survive antibiotics, but they also entail physiological alterations in the host cell. Multiple studies over the last few years have indicated that these alterations can translate into a fitness cost when antibiotics are absent. However, due to technical limitations, most of these studies are based on analysing new associations between plasmids and bacteria generated in vitro, and we know very little about the effects of plasmids in their native bacterial hosts. In this study, we used a CRISPR-Cas9-tool to selectively cure plasmids from clinical enterobacteria to overcome this limitation. Using this approach, we were able to study the fitness effects of the carbapenem resistance plasmid pOXA-48 in 35 pOXA-48-carrying isolates recovered from hospitalized patients. Our results revealed that pOXA-48 produces variable effects across the collection of wild-type enterobacterial strains naturally carrying the plasmid, ranging from fitness costs to fitness benefits. Importantly, the plasmid was only associated with a significant fitness reduction in four out of 35 clones, and produced no significant changes in fitness in the great majority of isolates. Our results suggest that plasmids produce neutral fitness effects in most native bacterial hosts, helping to explain the great prevalence of plasmids in natural microbial communities.
Collapse
Affiliation(s)
| | | | | | | | | | - Alvaro San Millan
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
31
|
Moradigaravand D, Li L, Dechesne A, Nesme J, de la Cruz R, Ahmad H, Banzhaf M, Sørensen SJ, Smets BF, Kreft JU. Plasmid permissiveness of wastewater microbiomes can be predicted from 16S rRNA sequences by machine learning. Bioinformatics 2023; 39:btad400. [PMID: 37348862 PMCID: PMC10318386 DOI: 10.1093/bioinformatics/btad400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023] Open
Abstract
MOTIVATION Wastewater treatment plants (WWTPs) harbor a dense and diverse microbial community. They constantly receive antimicrobial residues and resistant strains, and therefore provide conditions for horizontal gene transfer (HGT) of antimicrobial resistance (AMR) determinants. This facilitates the transmission of clinically important genes between, e.g. enteric and environmental bacteria, and vice versa. Despite the clinical importance, tools for predicting HGT remain underdeveloped. RESULTS In this study, we examined to which extent water cycle microbial community composition, as inferred by partial 16S rRNA gene sequences, can predict plasmid permissiveness, i.e. the ability of cells to receive a plasmid through conjugation, based on data from standardized filter mating assays using fluorescent bio-reporter plasmids. We leveraged a range of machine learning models for predicting the permissiveness for each taxon in the community, representing the range of hosts a plasmid is able to transfer to, for three broad host-range resistance IncP plasmids (pKJK5, pB10, and RP4). Our results indicate that the predicted permissiveness from the best performing model (random forest) showed a moderate-to-strong average correlation of 0.49 for pB10 [95% confidence interval (CI): 0.44-0.55], 0.43 for pKJK5 (0.95% CI: 0.41-0.49), and 0.53 for RP4 (0.95% CI: 0.48-0.57) with the experimental permissiveness in the unseen test dataset. Predictive phylogenetic signals occurred despite the broad host-range nature of these plasmids. Our results provide a framework that contributes to the assessment of the risk of AMR pollution in wastewater systems. AVAILABILITY AND IMPLEMENTATION The predictive tool is available as an application at https://github.com/DaneshMoradigaravand/PlasmidPerm.
Collapse
Affiliation(s)
- Danesh Moradigaravand
- Laboratory of Infectious Disease Epidemiology, KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Liguan Li
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Joseph Nesme
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Roberto de la Cruz
- Center for Computational Biology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Huda Ahmad
- Laboratory of Infectious Disease Epidemiology, KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Center for Computational Biology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Manuel Banzhaf
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Søren J Sørensen
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Jan-Ulrich Kreft
- Center for Computational Biology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
32
|
Oxendine A, Walsh AA, Young T, Dixon B, Hoke A, Rogers EE, Lee MD, Maurer JJ. Conditions Necessary for the Transfer of Antimicrobial Resistance in Poultry Litter. Antibiotics (Basel) 2023; 12:1006. [PMID: 37370325 DOI: 10.3390/antibiotics12061006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Animal manures contain a large and diverse reservoir of antimicrobial resistance (AMR) genes that could potentially spillover into the general population through transfer of AMR to antibiotic-susceptible pathogens. The ability of poultry litter microbiota to transmit AMR was examined in this study. Abundance of phenotypic AMR was assessed for litter microbiota to the antibiotics: ampicillin (Ap; 25 μg/mL), chloramphenicol (Cm; 25 μg/mL), streptomycin (Sm; 100 μg/mL), and tetracycline (Tc; 25 μg/mL). qPCR was used to estimate gene load of streptomycin-resistance and sulfonamide-resistance genes aadA1 and sul1, respectively, in the poultry litter community. AMR gene load was determined relative to total bacterial abundance using 16S rRNA qPCR. Poultry litter contained 108 CFU/g, with Gram-negative enterics representing a minor population (<104 CFU/g). There was high abundance of resistance to Sm (106 to 107 CFU/g) and Tc (106 to 107 CFU/g) and a sizeable antimicrobial-resistance gene load in regards to gene copies per bacterial genome (aadA1: 0.0001-0.0060 and sul1: 0.0355-0.2455). While plasmid transfer was observed from Escherichia coli R100, as an F-plasmid donor control, to the Salmonella recipient in vitro, no AMR Salmonella were detected in a poultry litter microcosm with the inclusion of E. coli R100. Confirmatory experiments showed that isolated poultry litter bacteria were not interfering with plasmid transfer in filter matings. As no R100 transfer was observed at 25 °C, conjugative plasmid pRSA was chosen for its high plasmid transfer frequency (10-4 to 10-5) at 25 °C. While E. coli strain background influenced the persistence of pRSA in poultry litter, no plasmid transfer to Salmonella was ever observed. Although poultry litter microbiota contains a significant AMR gene load, potential to transmit resistance is low under conditions commonly used to assess plasmid conjugation.
Collapse
Affiliation(s)
- Aaron Oxendine
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Allison A Walsh
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Tamesha Young
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Brandan Dixon
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Alexa Hoke
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Eda Erdogan Rogers
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Margie D Lee
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - John J Maurer
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
33
|
Wedel E, Bernabe-Balas C, Ares-Arroyo M, Montero N, Santos-Lopez A, Mazel D, Gonzalez-Zorn B. Insertion Sequences Determine Plasmid Adaptation to New Bacterial Hosts. mBio 2023:e0315822. [PMID: 37097157 DOI: 10.1128/mbio.03158-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Plasmids facilitate the vertical and horizontal spread of antimicrobial resistance genes between bacteria. The host range and adaptation of plasmids to new hosts determine their impact on the spread of resistance. In this work, we explore the mechanisms driving plasmid adaptation to novel hosts in experimental evolution. Using the small multicopy plasmid pB1000, usually found in Pasteurellaceae, we studied its adaptation to a host from a different bacterial family, Escherichia coli. We observed two different mechanisms of adaptation. One mechanism is single nucleotide polymorphisms (SNPs) in the origin of replication (oriV) of the plasmid, which increase the copy number in E. coli cells, elevating the stability, and resistance profile. The second mechanism consists of two insertion sequences (ISs), IS1 and IS10, which decrease the fitness cost of the plasmid by disrupting an uncharacterized gene on pB1000 that is harmful to E. coli. Both mechanisms increase the stability of pB1000 independently, but only their combination allows long-term maintenance. Crucially, we show that the mechanisms have a different impact on the host range of the plasmid. SNPs in oriV prevent the replication in the original host, resulting in a shift of the host range. In contrast, the introduction of ISs either shifts or expands the host range, depending on the IS. While IS1 leads to expansion, IS10 cannot be reintroduced into the original host. This study gives new insights into the relevance of ISs in plasmid-host adaptation to understand the success in spreading resistance. IMPORTANCE ColE1-like plasmids are small, mobilizable plasmids that can be found across at least four orders of Gammaproteobacteria and are strongly associated with antimicrobial resistance genes. Plasmid pB1000 carries the gene blaROB-1, conferring high-level resistance to penicillins and cefaclor. pB1000 has been described in various species of the family Pasteurellaceae, for example, in Haemophilus influenzae, which can cause diseases such as otitis media, meningitis, and pneumonia. To understand the resistance spread through horizontal transfer, it is essential to study the mechanisms of plasmid adaptation to novel hosts. In this work we identify that a gene from pB1000, which encodes a peptide that is toxic for E. coli, and the low plasmid copy number (PCN) of pB1000 in E. coli cells are essential targets in the described plasmid-host adaptation and therefore limit the spread of pB1000-encoded blaROB-1. Furthermore, we show how the interplay of two adaptation mechanisms leads to successful plasmid maintenance in a different bacterial family.
Collapse
Affiliation(s)
- Emilia Wedel
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Bernabe-Balas
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Ares-Arroyo
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Natalia Montero
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Alfonso Santos-Lopez
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Didier Mazel
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
34
|
Farghaly M, Hynes MF, Nazari M, Checkley S, Liljebjelke K. Examination of the horizontal gene transfer dynamics of an integrative and conjugative element encoding multidrug resistance in Histophilus somni. Can J Microbiol 2023; 69:123-135. [PMID: 36495587 DOI: 10.1139/cjm-2021-0349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Integrative and conjugative elements (ICEs) are self-transferable mobile genetic elements that play a significant role in disseminating antimicrobial resistance between bacteria via horizontal gene transfer. A recently identified ICE in a clinical isolate of Histophilus somni (ICEHs02) is 72 914 base pairs in length and harbours seven predicted antimicrobial resistance genes conferring resistance to tetracycline (tetR-tet(H)), florfenicol (floR), sulfonamide (Sul2), aminoglycosides (APH(3″)-Ib, APH(6)-Id, APH(3')-Ia), and copper (mco). This study investigated ICEHs02 host range, assessed effects of antimicrobial stressors on transfer frequency, and examined effects of ICEHs02 acquisition on hosts. Conjugation assays examined transfer frequency of ICEHs02 to H. somni and Pasteurella multocida strains. Polymerase chain reaction assays confirmed the presence of a circular intermediate, ICE-associated core genes, and cargo genes in recipient strains. Susceptibility testing examined ICEHs02-associated resistance phenotypes in recipient strains. Tetracycline and ciprofloxacin induction significantly increased the transfer rates of ICEHs02 in vitro. The copy numbers of the circular intermediate of ICEHs02 per chromosome exhibited significant increases of ∼37-fold after tetracycline exposure and ∼4-fold after ciprofloxacin treatment. The acquisition of ICEHs02 reduced the relative fitness of H. somni transconjugants (TG) by 28% (w = 0.72 ± 0.04) and the relative fitness of P. multocida TG was decreased by 15% (w = 0.85 ± 0.01).
Collapse
Affiliation(s)
- Mai Farghaly
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael F Hynes
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Mohammad Nazari
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Sylvia Checkley
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Karen Liljebjelke
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
35
|
Wang J, Raza W, Jiang G, Yi Z, Fields B, Greenrod S, Friman VP, Jousset A, Shen Q, Wei Z. Bacterial volatile organic compounds attenuate pathogen virulence via evolutionary trade-offs. THE ISME JOURNAL 2023; 17:443-452. [PMID: 36635489 PMCID: PMC9938241 DOI: 10.1038/s41396-023-01356-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Volatile organic compounds (VOCs) produced by soil bacteria have been shown to exert plant pathogen biocontrol potential owing to their strong antimicrobial activity. While the impact of VOCs on soil microbial ecology is well established, their effect on plant pathogen evolution is yet poorly understood. Here we experimentally investigated how plant-pathogenic Ralstonia solanacearum bacterium adapts to VOC-mixture produced by a biocontrol Bacillus amyloliquefaciens T-5 bacterium and how these adaptations might affect its virulence. We found that VOC selection led to a clear increase in VOC-tolerance, which was accompanied with cross-tolerance to several antibiotics commonly produced by soil bacteria. The increasing VOC-tolerance led to trade-offs with R. solanacearum virulence, resulting in almost complete loss of pathogenicity in planta. At the genetic level, these phenotypic changes were associated with parallel mutations in genes encoding lipopolysaccharide O-antigen (wecA) and type-4 pilus biosynthesis (pilM), which both have been linked with outer membrane permeability to antimicrobials and plant pathogen virulence. Reverse genetic engineering revealed that both mutations were important, with pilM having a relatively larger negative effect on the virulence, while wecA having a relatively larger effect on increased antimicrobial tolerance. Together, our results suggest that microbial VOCs are important drivers of bacterial evolution and could potentially be used in biocontrol to select for less virulent pathogens via evolutionary trade-offs.
Collapse
Affiliation(s)
- Jianing Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China
| | - Waseem Raza
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China.
- Institute for Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China
| | - Zhang Yi
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China
| | - Bryden Fields
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Samuel Greenrod
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ville-Petri Friman
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China.
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
- Department of Microbiology, University of Helsinki, Helsinki, 00014, Finland.
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China.
| |
Collapse
|
36
|
Carrilero L, Dunn SJ, Moran RA, McNally A, Brockhurst MA. Evolutionary Responses to Acquiring a Multidrug Resistance Plasmid Are Dominated by Metabolic Functions across Diverse Escherichia coli Lineages. mSystems 2023; 8:e0071322. [PMID: 36722946 PMCID: PMC9948715 DOI: 10.1128/msystems.00713-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/02/2023] [Indexed: 02/02/2023] Open
Abstract
Multidrug resistance (MDR) plasmids drive the spread of antibiotic resistance between bacterial lineages. The immediate impact of MDR plasmid acquisition on fitness and cellular processes varies among bacterial lineages, but how the evolutionary processes enabling the genomic integration of MDR plasmids vary is less well understood, particularly in clinical pathogens. Using diverse Escherichia coli lineages experimentally evolved for ~700 generations, we show that the evolutionary response to gaining the MDR plasmid pLL35 was dominated by chromosomal mutations affecting metabolic and regulatory functions, with both strain-specific and shared mutational targets. The expression of several of these functions, such as anaerobic metabolism, is known to be altered upon acquisition of pLL35. Interactions with resident mobile genetic elements, notably several IS-elements, potentiated parallel mutations, including insertions upstream of hns that were associated with its upregulation and the downregulation of the plasmid-encoded extended-spectrum beta-lactamase gene. Plasmid parallel mutations targeted conjugation-related genes, whose expression was also commonly downregulated in evolved clones. Beyond their role in horizontal gene transfer, plasmids can be an important selective force shaping the evolution of bacterial chromosomes and core cellular functions. IMPORTANCE Plasmids drive the spread of antimicrobial resistance genes between bacterial genomes. However, the evolutionary processes allowing plasmids to be assimilated by diverse bacterial genomes are poorly understood, especially in clinical pathogens. Using experimental evolution with diverse E. coli lineages and a clinical multidrug resistance plasmid, we show that although plasmids drove unique evolutionary paths per lineage, there was a surprising degree of convergence in the functions targeted by mutations across lineages, dominated by metabolic functions. Remarkably, these same metabolic functions show higher evolutionary rates in MDR-lineages in nature and in some cases, like anaerobic metabolism, their expression is directly manipulated by the plasmid. Interactions with other mobile elements resident in the genomes accelerated adaptation by disrupting genes and regulatory sequences that they inserted into. Beyond their role in horizontal gene transfer, plasmids are an important selective force driving the evolution of bacterial genomes and core cellular functions.
Collapse
Affiliation(s)
- Laura Carrilero
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- School of Biosciences, University of Sheffield, United Kingdom
| | - Steven J. Dunn
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Robert A. Moran
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Michael A. Brockhurst
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
37
|
Li F, Wang J, Jiang Y, Guo Y, Liu N, Xiao S, Yao L, Li J, Zhuo C, He N, Liu B, Zhuo C. Adaptive Evolution Compensated for the Plasmid Fitness Costs Brought by Specific Genetic Conflicts. Pathogens 2023; 12:pathogens12010137. [PMID: 36678485 PMCID: PMC9861728 DOI: 10.3390/pathogens12010137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
New Delhi metallo-β-lactamase (NDM)-carrying IncX3 plasmids is important in the transmission of carbapenem resistance in Escherichia coli. Fitness costs related to plasmid carriage are expected to limit gene exchange; however, the causes of these fitness costs are poorly understood. Compensatory mutations are believed to ameliorate plasmid fitness costs and enable the plasmid's wide spread, suggesting that such costs are caused by specific plasmid-host genetic conflicts. By combining conjugation tests and experimental evolution with comparative genetic analysis, we showed here that the fitness costs related to ndm/IncX3 plasmids in E. coli C600 are caused by co-mutations of multiple host chromosomal genes related to sugar metabolism and cell membrane function. Adaptive evolution revealed that mutations in genes associated with oxidative stress, nucleotide and short-chain fatty acid metabolism, and cell membranes ameliorated the costs associated with plasmid carriage. Specific genetic conflicts associated with the ndm/IncX3 plasmid in E. coli C600 involve metabolism and cell-membrane-related genes, which could be ameliorated by compensatory mutations. Collectively, our findings could explain the wide spread of IncX3 plasmids in bacterial genomes, despite their potential cost.
Collapse
Affiliation(s)
- Feifeng Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Jiong Wang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Ying Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Yingyi Guo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Ningjing Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Shunian Xiao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Likang Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Jiahui Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Chuyue Zhuo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Nanhao He
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Baomo Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen Univesity, Guangzhou 510030, China
- Correspondence: (B.L.); (C.Z.)
| | - Chao Zhuo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
- Correspondence: (B.L.); (C.Z.)
| |
Collapse
|
38
|
Bethke JH, Ma HR, Tsoi R, Cheng L, Xiao M, You L. Vertical and horizontal gene transfer tradeoffs direct plasmid fitness. Mol Syst Biol 2022; 19:e11300. [PMID: 36573357 PMCID: PMC9912019 DOI: 10.15252/msb.202211300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
Plasmid fitness is directed by two orthogonal processes-vertical transfer through cell division and horizontal transfer through conjugation. When considered individually, improvements in either mode of transfer can promote how well a plasmid spreads and persists. Together, however, the metabolic cost of conjugation could create a tradeoff that constrains plasmid evolution. Here, we present evidence for the presence, consequences, and molecular basis of a conjugation-growth tradeoff across 40 plasmids derived from clinical Escherichia coli pathogens. We discover that most plasmids operate below a conjugation efficiency threshold for major growth effects, indicating strong natural selection for vertical transfer. Below this threshold, E. coli demonstrates a remarkable growth tolerance to over four orders of magnitude change in conjugation efficiency. This tolerance fades as nutrients become scarce and horizontal transfer attracts a greater share of host resources. Our results provide insight into evolutionary constraints directing plasmid fitness and strategies to combat the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Jonathan H Bethke
- Department of Molecular Genetics and MicrobiologyDuke UniversityNCDurhamUSA
| | - Helena R Ma
- Department of Biomedical EngineeringDuke UniversityNCDurhamUSA,Center for Quantitative BiodesignDuke UniversityNCDurhamUSA
| | - Ryan Tsoi
- Department of Biomedical EngineeringDuke UniversityNCDurhamUSA
| | - Li Cheng
- BGI‐ShenzhenShenzhenChina,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI‐ShenzhenShenzhenChina,School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Minfeng Xiao
- BGI‐ShenzhenShenzhenChina,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI‐ShenzhenShenzhenChina
| | - Lingchong You
- Department of Molecular Genetics and MicrobiologyDuke UniversityNCDurhamUSA,Department of Biomedical EngineeringDuke UniversityNCDurhamUSA,Center for Quantitative BiodesignDuke UniversityNCDurhamUSA,School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
39
|
Genomics, Transcriptomics, and Metabolomics Reveal That Minimal Modifications in the Host Are Crucial for the Compensatory Evolution of ColE1-Like Plasmids. mSphere 2022; 7:e0018422. [PMID: 36416553 PMCID: PMC9769657 DOI: 10.1128/msphere.00184-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Plasmid-mediated antimicrobial resistance is one of the major threats to public health worldwide. The mechanisms involved in the plasmid/host coadaptation are still poorly characterized, and their understanding is crucial to comprehend the genesis and evolution of multidrug-resistant bacteria. With this purpose, we designed an experimental evolution using Haemophilus influenzae RdKW20 as the model strain carrying the ColE1-like plasmid pB1000. Five H. influenzae populations adapted previously to the culture conditions were transformed with pB1000 and subsequently evolved to compensate for the plasmid-associated fitness cost. Afterward, we performed an integrative multiomic analysis combining genomics, transcriptomics, and metabolomics to explore the molecular mechanisms involved in the compensatory evolution of the plasmid. Our results demonstrate that minimal modifications in the host are responsible for plasmid adaptation. Among all of them, the most enriched process was amino acid metabolism, especially those pathways related to serine, tryptophan, and arginine, eventually related to the genesis and resolution of plasmid dimers. Additional rearrangements occurred during the plasmid adaptation, such as an overexpression of the ribonucleotide reductases and metabolic modifications within specific membrane phospholipids. All these findings demonstrate that the plasmid compensation occurs through the combination of diverse host-mediated mechanisms, of which some are beyond genomic and transcriptomic modifications. IMPORTANCE The ability of bacteria to horizontally transfer genetic material has turned antimicrobial resistance into one of the major sanitary crises of the 21st century. Plasmid conjugation is considered the main mechanism responsible for the mobilization of resistance genes, and its understanding is crucial to tackle this crisis. It is generally accepted that the acquisition and maintenance of mobile genetic elements entail a fitness cost to its host, which is susceptible to be alleviated through a coadaptation process or compensatory evolution. Notwithstanding, despite recent major efforts, the underlying mechanisms involved in this adaptation remain poorly characterized. Analyzing the plasmid/host coadaptation from a multiomic perspective sheds light on the physiological processes involved in the compensation, providing a new understanding on the genesis and evolution of plasmid-mediated antimicrobial-resistant bacteria.
Collapse
|
40
|
Biofilms preserve the transmissibility of a multi-drug resistance plasmid. NPJ Biofilms Microbiomes 2022; 8:95. [PMID: 36481746 PMCID: PMC9732292 DOI: 10.1038/s41522-022-00357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Self-transmissible multidrug resistance (MDR) plasmids are a major health concern because they can spread antibiotic resistance to pathogens. Even though most pathogens form biofilms, little is known about how MDR plasmids persist and evolve in biofilms. We hypothesize that (i) biofilms act as refugia of MDR plasmids by retaining them in the absence of antibiotics longer than well-mixed planktonic populations and that (ii) the evolutionary trajectories that account for the improvement of plasmid persistence over time differ between biofilms and planktonic populations. In this study, we evolved Acinetobacter baumannii with an MDR plasmid in biofilm and planktonic populations with and without antibiotic selection. In the absence of selection, biofilm populations were better able to maintain the MDR plasmid than planktonic populations. In planktonic populations, plasmid persistence improved rapidly but was accompanied by a loss of genes required for the horizontal transfer of plasmids. In contrast, in biofilms, most plasmids retained their transfer genes, but on average, plasmid, persistence improved less over time. Our results showed that biofilms can act as refugia of MDR plasmids and favor the horizontal mode of plasmid transfer, which has important implications for the spread of MDR.
Collapse
|
41
|
DelaFuente J, Toribio-Celestino L, Santos-Lopez A, León-Sampedro R, Alonso-Del Valle A, Costas C, Hernández-García M, Cui L, Rodríguez-Beltrán J, Bikard D, Cantón R, San Millan A. Within-patient evolution of plasmid-mediated antimicrobial resistance. Nat Ecol Evol 2022; 6:1980-1991. [PMID: 36303001 PMCID: PMC7613874 DOI: 10.1038/s41559-022-01908-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022]
Abstract
Antimicrobial resistance (AMR) in bacteria is a major threat to public health; one of the key elements in the spread and evolution of AMR in clinical pathogens is the transfer of conjugative plasmids. The drivers of AMR evolution have been studied extensively in vitro but the evolution of plasmid-mediated AMR in vivo remains poorly explored. Here, we tracked the evolution of the clinically relevant plasmid pOXA-48, which confers resistance to the last-resort antibiotics carbapenems, in a large collection of enterobacterial clones isolated from the gut of hospitalized patients. Combining genomic and experimental approaches, we first characterized plasmid diversity and the genotypic and phenotypic effects of multiple plasmid mutations on a common genetic background. Second, using cutting-edge genomic editing in wild-type multidrug-resistant enterobacteria, we dissected three cases of within-patient plasmid-mediated AMR evolution. Our results revealed compensatory evolution of plasmid-associated fitness cost and the evolution of enhanced plasmid-mediated AMR in bacteria evolving in the gut of hospitalized patients. Crucially, we observed that the evolution of pOXA-48-mediated AMR in vivo involves a pivotal trade-off between resistance levels and bacterial fitness. This study highlights the need to develop new evolution-informed approaches to tackle plasmid-mediated AMR dissemination.
Collapse
Affiliation(s)
- Javier DelaFuente
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.
| | - Laura Toribio-Celestino
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Alfonso Santos-Lopez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo León-Sampedro
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
- Institute of Integrative Biology, Department of Environmental Systems Science, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Aida Alonso-Del Valle
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Coloma Costas
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Lun Cui
- Institut Pasteur, Universite de Paris Cité, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6047, Synthetic Biology, Paris, France
| | - Jerónimo Rodríguez-Beltrán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - David Bikard
- Institut Pasteur, Universite de Paris Cité, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6047, Synthetic Biology, Paris, France
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alvaro San Millan
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
42
|
Downing T, Rahm A. Bacterial plasmid-associated and chromosomal proteins have fundamentally different properties in protein interaction networks. Sci Rep 2022; 12:19203. [PMID: 36357451 PMCID: PMC9649638 DOI: 10.1038/s41598-022-20809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Plasmids facilitate horizontal gene transfer, which enables the diversification of pathogens into new anatomical and environmental niches, implying that plasmid-encoded genes can cooperate well with chromosomal genes. We hypothesise that such mobile genes are functionally different to chromosomal ones due to this ability to encode proteins performing non-essential functions like antimicrobial resistance and traverse distinct host cells. The effect of plasmid-driven gene gain on protein-protein interaction network topology is an important question in this area. Moreover, the extent to which these chromosomally- and plasmid-encoded proteins interact with proteins from their own groups compared to the levels with the other group remains unclear. Here, we examined the incidence and protein-protein interactions of all known plasmid-encoded proteins across representative specimens from most bacteria using all available plasmids. We found that plasmid-encoded genes constitute ~ 0.65% of the total number of genes per bacterial sample, and that plasmid genes are preferentially associated with different species but had limited taxonomical power beyond this. Surprisingly, plasmid-encoded proteins had both more protein-protein interactions compared to chromosomal proteins, countering the hypothesis that genes with higher mobility rates should have fewer protein-level interactions. Nonetheless, topological analysis and investigation of the protein-protein interaction networks' connectivity and change in the number of independent components demonstrated that the plasmid-encoded proteins had limited overall impact in > 96% of samples. This paper assembled extensive data on plasmid-encoded proteins, their interactions and associations with diverse bacterial specimens that is available for the community to investigate in more detail.
Collapse
Affiliation(s)
- Tim Downing
- grid.15596.3e0000000102380260School of Biotechnology, Dublin City University, Dublin, Ireland ,grid.63622.330000 0004 0388 7540Present Address: The Pirbright Institute, Pirbright, UK
| | - Alexander Rahm
- grid.449688.f0000 0004 0647 1487GAATI Lab, University of French Polynesia, Tahiti, French Polynesia
| |
Collapse
|
43
|
Xiao X, Liu Z, Chen X, Peng K, Li R, Liu Y, Wang Z. Persistence of plasmid and tet(X4) in an Escherichia coli isolate coharboring blaNDM-5 and mcr-1 after acquiring an IncFII tet(X4)-positive plasmid. Front Microbiol 2022; 13:1010387. [PMID: 36338060 PMCID: PMC9626518 DOI: 10.3389/fmicb.2022.1010387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022] Open
Abstract
The prevalence of plasmid-mediated tigecycline resistance gene tet(X4) is presenting an increasing trend. Once tet(X4)-bearing plasmids are captured by multidrug-resistant bacteria, such as blaNDM and mcr-coharboring bacteria, it will promote bacteria to develop an ultra-broad resistance spectrum, limiting clinical treatment options. However, little is known about the destiny of such bacteria or how they will evolve in the future. Herein, we constructed a multidrug-resistant bacteria coharboring tet(X4), blaNDM-5, and mcr-1 by introducing a tet(X4)-bearing plasmid into a blaNDM-5 and mcr-1 positive E. coli strain. Subsequently, the stability of tet(X4) and the plasmid was measured after being evolved under tigecycline or antibiotic-free circumstance. Interestingly, we observed both tet(X4)-bearing plasmids in tigecycline treated strains and non-tigecycline treated strains were stable, which might be jointly affected by the increased conjugation frequency and the structural alterations of the tet(X4)-positive plasmid. However, the stability of tet(X4) gene showed different scenarios in the two types of evolved strains. The tet(X4) gene in non-tigecycline treated strains was stable whereas the tet(X4) gene was discarded rapidly in tigecycline treated strains. Accordingly, we found the expression levels of tet(X4) gene in tigecycline-treated strains were several times higher than in non-tigecycline treated strains and ancestral strains, which might in turn impose a stronger burden on the host bacteria. SNPs analysis revealed that a myriad of mutations occurred in genes involving in conjugation transfer, and the missense mutation of marR gene in chromosome of tigecycline treated strains might account for the completely different stability of tet(X4)-bearing plasmid and tet(X4) gene. Collectively, these findings shed a light on the possibility of the emergence of multidrug resistant bacteria due to the transmission of tet(X4)-bearing plasmid, and highlighted that the antibiotic residues may be critical to the development of such bacteria.
Collapse
Affiliation(s)
- Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Ziyi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Xiaojun Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Kai Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- *Correspondence: Zhiqiang Wang,
| |
Collapse
|
44
|
Haudiquet M, de Sousa JM, Touchon M, Rocha EPC. Selfish, promiscuous and sometimes useful: how mobile genetic elements drive horizontal gene transfer in microbial populations. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210234. [PMID: 35989606 PMCID: PMC9393566 DOI: 10.1098/rstb.2021.0234] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Horizontal gene transfer (HGT) drives microbial adaptation but is often under the control of mobile genetic elements (MGEs) whose interests are not necessarily aligned with those of their hosts. In general, transfer is costly to the donor cell while potentially beneficial to the recipients. The diversity and plasticity of cell–MGEs interactions, and those among MGEs, result in complex evolutionary processes where the source, or even the existence of selection for maintaining a function in the genome, is often unclear. For example, MGE-driven HGT depends on cell envelope structures and defense systems, but many of these are transferred by MGEs themselves. MGEs can spur periods of intense gene transfer by increasing their own rates of horizontal transmission upon communicating, eavesdropping, or sensing the environment and the host physiology. This may result in high-frequency transfer of host genes unrelated to the MGE. Here, we review how MGEs drive HGT and how their transfer mechanisms, selective pressures and genomic traits affect gene flow, and therefore adaptation, in microbial populations. The encoding of many adaptive niche-defining microbial traits in MGEs means that intragenomic conflicts and alliances between cells and their MGEs are key to microbial functional diversification. This article is part of a discussion meeting issue ‘Genomic population structures of microbial pathogens’.
Collapse
Affiliation(s)
- Matthieu Haudiquet
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Jorge Moura de Sousa
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Marie Touchon
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| |
Collapse
|
45
|
Hemez C, Clarelli F, Palmer AC, Bleis C, Abel S, Chindelevitch L, Cohen T, Abel zur Wiesch P. Mechanisms of antibiotic action shape the fitness landscapes of resistance mutations. Comput Struct Biotechnol J 2022; 20:4688-4703. [PMID: 36147681 PMCID: PMC9463365 DOI: 10.1016/j.csbj.2022.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Antibiotic-resistant pathogens are a major public health threat. A deeper understanding of how an antibiotic's mechanism of action influences the emergence of resistance would aid in the design of new drugs and help to preserve the effectiveness of existing ones. To this end, we developed a model that links bacterial population dynamics with antibiotic-target binding kinetics. Our approach allows us to derive mechanistic insights on drug activity from population-scale experimental data and to quantify the interplay between drug mechanism and resistance selection. We find that both bacteriostatic and bactericidal agents can be equally effective at suppressing the selection of resistant mutants, but that key determinants of resistance selection are the relationships between the number of drug-inactivated targets within a cell and the rates of cellular growth and death. We also show that heterogeneous drug-target binding within a population enables resistant bacteria to evolve fitness-improving secondary mutations even when drug doses remain above the resistant strain's minimum inhibitory concentration. Our work suggests that antibiotic doses beyond this "secondary mutation selection window" could safeguard against the emergence of high-fitness resistant strains during treatment.
Collapse
Affiliation(s)
- Colin Hemez
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Graduate Program in Biophysics, Harvard University, Boston, MA 02115, USA
| | - Fabrizio Clarelli
- Department of Pharmacy, UiT – The Arctic University of Norway, 9019 Tromsø, Norway
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Adam C. Palmer
- Department of Pharmacology, Computational Medicine Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christina Bleis
- Department of Pharmacy, UiT – The Arctic University of Norway, 9019 Tromsø, Norway
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sören Abel
- Department of Pharmacy, UiT – The Arctic University of Norway, 9019 Tromsø, Norway
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Division of Infection Control, Norwegian Institute of Public Health, Oslo 0318, Norway
| | - Leonid Chindelevitch
- Department of Infectious Disease Epidemiology, Imperial College, London SW7 2AZ, UK
| | - Theodore Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Pia Abel zur Wiesch
- Department of Pharmacy, UiT – The Arctic University of Norway, 9019 Tromsø, Norway
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Division of Infection Control, Norwegian Institute of Public Health, Oslo 0318, Norway
| |
Collapse
|
46
|
Excreted Antibiotics May Be Key to Emergence of Increasingly Efficient Antibiotic Resistance in Food Animal Production. Appl Environ Microbiol 2022; 88:e0079122. [PMID: 35867586 PMCID: PMC9361830 DOI: 10.1128/aem.00791-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
At a time when antibiotic resistance is seemingly ubiquitous worldwide, understanding the mechanisms responsible for successful emergence of new resistance genes may provide insights into the persistence and pathways of dissemination for antibiotic-resistant organisms in general. For example, Escherichia coli strains harboring a class A β-lactamase-encoding gene (blaCTX-M-15) appear to be displacing strains that harbor a class C β-lactamase gene (blaCMY-2) in Washington State dairy cattle. We cloned these genes with native promoters into low-copy-number plasmids that were then transformed into isogenic strains of E. coli, and growth curves were generated for two commonly administered antibiotics (ampicillin and ceftiofur). Both strains met the definition of resistance for ampicillin (≥32 μg/mL) and ceftiofur (≥16 μg/mL). Growth of the CMY-2-producing strain was compromised at 1,000 μg/mL ampicillin, whereas the CTX-M-15-producing strain was not inhibited in the presence of 3,000 μg/mL ampicillin or with most concentrations of ceftiofur, although there were mixed outcomes with ceftiofur metabolites. Consequently, in the absence of competing genes, E. coli harboring either gene would experience a selective advantage if exposed to these antibiotics. Successful emergence of CTX-M-15-producing strains where CMY-2-producing strains are already established, however, requires high concentrations of antibiotics that can only be found in the urine of treated animals (e.g., >2,000 μg/mL for ampicillin, based on literature). This ex vivo selection pressure may be important for the emergence of new and more efficient antibiotic resistance genes and likely for persistence of antibiotic-resistant bacteria in food animal populations. IMPORTANCE We studied the relative fitness benefits of a cephalosporin resistance enzyme (CTX-M-15) that is displacing a similar enzyme (CMY-2), which is extant in E. coli from dairy cattle in Washington State. In vitro experiments demonstrated that CTX-M-15 provides a significant fitness advantage, but only in the presence of very high concentrations of antibiotic that are only found when the antibiotic ampicillin, and to a lesser extent ceftiofur, is excreted in urine from treated animals. As such, the increasing prevalence of bacteria with blaCTX-M-15 is likely occurring ex vivo. Interventions should focus on controlling waste from treated animals and, when possible, selecting antibiotics that are less likely to impact the proximal environment of treated animals.
Collapse
|
47
|
Bottery MJ. Ecological dynamics of plasmid transfer and persistence in microbial communities. Curr Opin Microbiol 2022; 68:102152. [PMID: 35504055 PMCID: PMC9586876 DOI: 10.1016/j.mib.2022.102152] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
Plasmids are a major driver of horizontal gene transfer in prokaryotes, allowing the sharing of ecologically important accessory traits between distantly related bacterial taxa. Within microbial communities, interspecies transfer of conjugative plasmids can rapidly drive the generation genomic innovation and diversification. Recent studies are starting to shed light on how the microbial community context, that is, the bacterial diversity together with interspecies interactions that occur within a community, can alter the dynamics of conjugative plasmid transfer and persistence. Here, I summarise the latest research exploring how community ecology can both facilitate and impose barriers to the spread of conjugative plasmids within complex microbial communities. Ultimately, the fate of plasmids within communities is unlikely to be determined by any one individual host, rather it will depend on the interacting factors imposed by the community in which it is embedded.
Collapse
Affiliation(s)
- Michael J Bottery
- Division of Evolution Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
48
|
Mellor KC, Blackwell GA, Cawthraw SA, Mensah NE, Reid SWJ, Thomson NR, Petrovska L, Mather AE. Contrasting long-term dynamics of antimicrobial resistance and virulence plasmids in Salmonella Typhimurium from animals. Microb Genom 2022; 8. [PMID: 35997596 PMCID: PMC9484752 DOI: 10.1099/mgen.0.000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmids are mobile elements that can carry genes encoding traits of clinical concern, including antimicrobial resistance (AMR) and virulence. Population-level studies of Enterobacterales, including Escherichia coli, Shigella and Klebsiella, indicate that plasmids are important drivers of lineage expansions and dissemination of AMR genes. Salmonella Typhimurium is the second most common cause of salmonellosis in humans and livestock in the UK and Europe. The long-term dynamics of plasmids between S. Typhimurium were investigated using isolates collected through national surveillance of animals in England and Wales over a 25-year period. The population structure of S. Typhimurium and its virulence plasmid (where present) were inferred through phylogenetic analyses using whole-genome sequence data for 496 isolates. Antimicrobial resistance genes and plasmid markers were detected in silico. Phenotypic plasmid characterization, using the Kado and Liu method, was used to confirm the number and size of plasmids. The differences in AMR and plasmids between clades were striking, with livestock clades more likely to carry one or more AMR plasmid and be multi-drug-resistant compared to clades associated with wildlife and companion animals. Multiple small non-AMR plasmids were distributed across clades. However, all hybrid AMR–virulence plasmids and most AMR plasmids were highly clade-associated and persisted over decades, with minimal evidence of horizontal transfer between clades. This contrasts with the role of plasmids in the short-term dissemination of AMR between diverse strains in other Enterobacterales in high-antimicrobial-use settings, with implications for predicting plasmid dissemination amongst S. Typhimurium.
Collapse
Affiliation(s)
- Kate C Mellor
- Royal Veterinary College, Hatfield, UK.,London School of Hygiene and Tropical Medicine, London, UK
| | - Grace A Blackwell
- European Bioinformatics Institute, Hinxton, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | | | | | | | - Nicholas R Thomson
- London School of Hygiene and Tropical Medicine, London, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Alison E Mather
- Quadram Institute Bioscience, Norwich, UK.,University of East Anglia, Norwich, UK
| |
Collapse
|
49
|
Kosterlitz O, Muñiz Tirado A, Wate C, Elg C, Bozic I, Top EM, Kerr B. Estimating the transfer rates of bacterial plasmids with an adapted Luria–Delbrück fluctuation analysis. PLoS Biol 2022; 20:e3001732. [PMID: 35877684 PMCID: PMC9352209 DOI: 10.1371/journal.pbio.3001732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/04/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
To increase our basic understanding of the ecology and evolution of conjugative plasmids, we need reliable estimates of their rate of transfer between bacterial cells. Current assays to measure transfer rate are based on deterministic modeling frameworks. However, some cell numbers in these assays can be very small, making estimates that rely on these numbers prone to noise. Here, we take a different approach to estimate plasmid transfer rate, which explicitly embraces this noise. Inspired by the classic fluctuation analysis of Luria and Delbrück, our method is grounded in a stochastic modeling framework. In addition to capturing the random nature of plasmid conjugation, our new methodology, the Luria–Delbrück method (“LDM”), can be used on a diverse set of bacterial systems, including cases for which current approaches are inaccurate. A notable example involves plasmid transfer between different strains or species where the rate that one type of cell donates the plasmid is not equal to the rate at which the other cell type donates. Asymmetry in these rates has the potential to bias or constrain current transfer estimates, thereby limiting our capabilities for estimating transfer in microbial communities. In contrast, the LDM overcomes obstacles of traditional methods by avoiding restrictive assumptions about growth and transfer rates for each population within the assay. Using stochastic simulations and experiments, we show that the LDM has high accuracy and precision for estimation of transfer rates compared to the most widely used methods, which can produce estimates that differ from the LDM estimate by orders of magnitude. Plasmid transfer can often spread resistance between important clinical pathogens. This study shows that widely used methods can lead to biased estimates of plasmid transfer rate by several orders of magnitude, and presents a new approach, inspired by the classic Luria-Delbrück approach, for accurately assessing this fundamental rate parameter
Collapse
Affiliation(s)
- Olivia Kosterlitz
- Biology Department, University of Washington, Seattle, Washington, United States of America
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, United States of America
- * E-mail: (OK); (BK)
| | - Adamaris Muñiz Tirado
- Biology Department, University of Washington, Seattle, Washington, United States of America
| | - Claire Wate
- Biology Department, University of Washington, Seattle, Washington, United States of America
| | - Clint Elg
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, United States of America
- Department of Biological Sciences and Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| | - Eva M. Top
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, United States of America
- Department of Biological Sciences and Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Benjamin Kerr
- Biology Department, University of Washington, Seattle, Washington, United States of America
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, United States of America
- * E-mail: (OK); (BK)
| |
Collapse
|
50
|
Darmancier H, Domingues CPF, Rebelo JS, Amaro A, Dionísio F, Pothier J, Serra O, Nogueira T. Are Virulence and Antibiotic Resistance Genes Linked? A Comprehensive Analysis of Bacterial Chromosomes and Plasmids. Antibiotics (Basel) 2022; 11:antibiotics11060706. [PMID: 35740113 PMCID: PMC9220345 DOI: 10.3390/antibiotics11060706] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 01/27/2023] Open
Abstract
Although pathogenic bacteria are the targets of antibiotics, these drugs also affect hundreds of commensal or mutualistic species. Moreover, the use of antibiotics is not only restricted to the treatment of infections but is also largely applied in agriculture and in prophylaxis. During this work, we tested the hypothesis that there is a correlation between the number and the genomic location of antibiotic resistance (AR) genes and virulence factor (VF) genes. We performed a comprehensive study of 16,632 reference bacterial genomes in which we identified and counted all orthologues of AR and VF genes in each of the locations: chromosomes, plasmids, or in both locations of the same genome. We found that, on a global scale, no correlation emerges. However, some categories of AR and VF genes co-occur preferentially, and in the mobilome, which supports the hypothesis that some bacterial pathogens are under selective pressure to be resistant to specific antibiotics, a fact that can jeopardize antimicrobial therapy for some human-threatening diseases.
Collapse
Affiliation(s)
- Helena Darmancier
- Bacteriology and Mycology Laboratory, INIAV—National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (H.D.); (C.P.F.D.); (A.A.)
| | - Célia P. F. Domingues
- Bacteriology and Mycology Laboratory, INIAV—National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (H.D.); (C.P.F.D.); (A.A.)
- cE3c—Center for Ecology, Evolution and Environmental Change & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (J.S.R.); (F.D.)
| | - João S. Rebelo
- cE3c—Center for Ecology, Evolution and Environmental Change & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (J.S.R.); (F.D.)
| | - Ana Amaro
- Bacteriology and Mycology Laboratory, INIAV—National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (H.D.); (C.P.F.D.); (A.A.)
| | - Francisco Dionísio
- cE3c—Center for Ecology, Evolution and Environmental Change & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (J.S.R.); (F.D.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Joël Pothier
- Atelier de Bioinformatique, ISYEB, UMR 7205 CNRS MNHN UPMC EPHE, Muséum National d’Histoire Naturelle, CP 50, 45 Rue Buffon, F-75005 Paris, France;
| | - Octávio Serra
- INIAV—National Institute for Agrarian and Veterinary Research, Portuguese Plant Germoplasm Bank, 4700-859 Braga, Portugal;
| | - Teresa Nogueira
- Bacteriology and Mycology Laboratory, INIAV—National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (H.D.); (C.P.F.D.); (A.A.)
- cE3c—Center for Ecology, Evolution and Environmental Change & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (J.S.R.); (F.D.)
- Correspondence:
| |
Collapse
|