1
|
Khaira HK, Kochhar S, Aneja J, Verma M, Rajendran R, Thind A. Association of chronotype pattern on the quality of sleep and anxiety among medical undergraduates - a cross-sectional study. Int J Adolesc Med Health 2025; 37:53-58. [PMID: 39993323 DOI: 10.1515/ijamh-2024-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/09/2025] [Indexed: 02/26/2025]
Abstract
OBJECTIVES This study aims to explore the relationship between chronotypes, sleep quality, and anxiety among medical undergraduates, providing valuable insights for academic institutions seeking to enhance student well-being. METHODS A cross-sectional design was used, involving 200 medical undergraduates who were selected based on specific inclusion and exclusion criteria. Data collection included comprehensive clinical histories and the administration of three validated questionnaires: the Morningness-Eveningness Questionnaire Self-Assessment (MEQ-SA), the Pittsburgh Sleep Quality Index (PSQI), and the State-Trait Anxiety Inventory (STAI). Participants were recruited during class breaks, and informed consent was obtained prior to participation. RESULTS The majority of participants (76.5 %; n=152) exhibited a neutral chronotype, with a mean MEQ score of 50.18 (±7.781). No significant correlations were found between MEQ scores and variables such as sex, BMI, or electronic media use. However, individuals classified as evening types reported higher anxiety levels, with mean STAI-S and STAI-T scores of 56.09 (±4.566) and 49.09 (±6.202), respectively (ANOVA, F=31.798, p=0.001; F=30.294, p=0.001). The mean global PSQI score was 6.00 (±2.553), with 56 % of participants reporting poor sleep quality. Evening chronotypes had significantly poorer sleep quality, as evidenced by higher PSQI scores (8.14±1.670) (ANOVA, F=43.663, p=0.001). CONCLUSIONS The findings underscore the need for academic institutions to reconsider the alignment of academic schedules with students' chronotypes, potentially enhancing academic performance and reducing health risks. Despite these contributions, the study has limitations, including geographical and demographic constraints and reliance on self-reported data, suggesting the need for further research to provide more comprehensive insights.
Collapse
Affiliation(s)
| | - Sonia Kochhar
- Department of Physiology, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Jitender Aneja
- Department of Psychiatry, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Madhur Verma
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Rajathi Rajendran
- Department of Physiology, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Anupinder Thind
- Department of Physiology, All India Institute of Medical Sciences, Bathinda, Punjab, India
| |
Collapse
|
2
|
Chan JWY, Li CT, Chau SWH, Chan NY, Li TMH, Huang B, Tsoh J, Li SX, Chong KKL, Roecklein KA, Wing YK. Attenuated melanopsin-mediated post-illumination pupillary response is associated with reduced actigraphic amplitude and mesor in older adults. Sleep 2025; 48:zsae239. [PMID: 39383299 DOI: 10.1093/sleep/zsae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Indexed: 10/11/2024] Open
Abstract
STUDY OBJECTIVES This study aimed to explore the relationship between post-illumination pupillary response (PIPR) with sleep and circadian measures in a community sample of healthy older adults. METHODS Eligible participants were invited to complete a 1 week sleep diary and actigraphy, and provide an overnight urine sample to measure urinary 6-sulfatoxymelatonin (aMT6s). PIPR was defined as the (1) pupil constriction at 6 second poststimulus (PIPR-6s) and (2) for -30s beginning 10 seconds after stimulus (PIPR-30s), normalized as a percentage to the baseline pupil diameter, after 1 second of blue and 1 second of red light stimulus, respectively. The Net-PIPRs were reported by subtracting the PIPR to red stimulus from the PIPR to blue stimulus. The relationship between PIPR metrics to aMT6s and actigraphic rest-activity rhythm parameters was examined by generalized linear models. RESULTS A total of 48 participants were recruited (mean age: 62.6 ± 7.1 years, male: 44%). Both Net PIPR-6s and Net PIPR-30s were significantly associated with actigraphic rest-activity amplitude (B = 0.03, p = .001 and B = 0.03, p = .01, respectively) and actigraphic rest-activity mesor (B = 0.02, p = .001 and B = 0.03, p = .004, respectively). Additionally, the Net PIPR-30s were positively associated with overnight aMT6s level (B = 0.04, p = .03) and negatively associated with actigraphic rest-activity acrophase (B = -0.01, p = .004) in the fully adjusted models. CONCLUSIONS Attenuated PIPR is associated with a reduced actigraphic amplitude and mesor. The reduced retinal light responsivity may be a potential pathway contributing to impaired photic input to the circadian clock and resulted in age-related circadian changes in older adults.
Collapse
Affiliation(s)
- Joey W Y Chan
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun-Tung Li
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Steven Wai Ho Chau
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ngan Yin Chan
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tim Man-Ho Li
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bei Huang
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joshua Tsoh
- Department of Psychiatry, Prince of Wales Hospital, Hong Kong SAR, China
| | - Shirley X Li
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Kelvin K L Chong
- Department of Ophthalmology and Visual Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Yun Kwok Wing
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Dissegna A, Chiandetti C. Artificial light at night alters risk-related behaviors of the ground-dwelling isopod Porcellionides pruinosus. J Exp Biol 2025; 228:JEB249626. [PMID: 39758007 DOI: 10.1242/jeb.249626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
Artificial light at night (ALAN) has emerged as a significant ecological disruptor, affecting various behavioral and physiological processes in numerous species. This study investigated the impact of ALAN on the risk-related behaviors and activity patterns of the ground-dwelling isopod Porcellionides pruinosus. Isopods were exposed to one of three different illuminance conditions (<0.01, 1 and 10 lx) over a period of 14 consecutive nights. Behavioral assays included emergence, open-field, habituation to a looming stimulus, and spatial navigation tests. Additionally, the distribution and activity patterns of the isopods within the terraria were monitored. Our results indicate that ALAN significantly disrupted the repeatability of risk-related behaviors, suggesting individual-level behavioral alterations. At the group level, ALAN-exposed isopods exhibited prolonged freezing durations in response to a looming stimulus, increased shelter-seeking behavior and reduced dispersal in the terrarium. These findings suggest that ALAN-induced transformation of activity pattern of isopods is linked to the adoption of more prudent behaviors. A similar phenomenon may affect the activity pattern of other ground-dwelling invertebrates, leading to severe alterations of the soil invertebrate community.
Collapse
Affiliation(s)
- Andrea Dissegna
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Cinzia Chiandetti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
4
|
Zhang ML, Li XP, Gao LF, Liu J, Bi ZJ, Miao YH, Shan Y, Yu HL. Nobiletin, an activator of the pyruvate kinase isozyme M1/M2 protein, upregulated the glycolytic signalling pathway and alleviated depressive-like behaviour caused by artificial light exposure at night in zebrafish. Food Chem 2025; 463:141328. [PMID: 39305673 DOI: 10.1016/j.foodchem.2024.141328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/25/2024] [Accepted: 09/15/2024] [Indexed: 11/06/2024]
Abstract
We established a zebrafish model of depression-like behaviour induced by exposure to artificial light at night (ALAN) and found that nobiletin (NOB) alleviated depression-like behaviour. Subsequently, based on the results of a 24-h free movement assay, clock gene expression and brain tissue transcriptome sequencing, the glycolysis signalling pathway was identified as a potential target through which NOB exerted antidepressant effects. Using the ALAN zebrafish model, we found that supplementation with exogenous L-lactic acid alleviated depressive-like behaviour. Molecular docking and molecular dynamics simulations revealed an inter-molecular interaction between NOB and the pyruvate kinase isozyme M1/M2 (PKM2) protein. We then used compound 3 k to construct a zebrafish model in which PKM2 was inhibited. Our analysis of this model suggested that NOB alleviated depression-like behaviour via inhibition of PKM2. In summary, NOB alleviated depressive-like behaviour induced by ALAN in zebrafish via targeting of PKM2 and activation of the glycolytic signalling pathway.
Collapse
Affiliation(s)
- Meng-Ling Zhang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xiao-Peng Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410000, China
| | - Li-Fang Gao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jian Liu
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410000, China
| | - Zi-Jun Bi
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yu-Han Miao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Shan
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410000, China
| | - Huan-Ling Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
De Russi G, Bertolucci C, Lucon-Xiccato T. Artificial light at night impairs visual lateralisation in a fish. J Exp Biol 2025; 228:JEB249272. [PMID: 39698928 DOI: 10.1242/jeb.249272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Environmental light, particularly during early development, significantly influences lateralisation, the asymmetric information processing between brain hemispheres. We hypothesised that lateralisation could be affected by artificial light at night (ALAN), a widespread form of environmental pollution. In our experiment, we exposed eggs and larvae of zebrafish to either control or ALAN conditions and then tested them in a rotational test to assess motor lateralisation, and a mirror test to assess lateralisation in response to visual stimuli. The control group exhibited a significant lateralisation bias at the population level, prioritising the processing of visual information with their right hemisphere. In contrast, the zebrafish exposed to ALAN did not show this bias, leading to a notable reduction in lateralisation. Additionally, we found evidence of reduced individual differences in lateralisation in the ALAN group. Overall, our findings demonstrate that ALAN disrupts the natural lateralisation in fish larvae, possibly affecting their behaviour and survival.
Collapse
Affiliation(s)
- Gaia De Russi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Troscianko J. A hyperspectral open-source imager (HOSI). BMC Biol 2025; 23:5. [PMID: 39773480 PMCID: PMC11708076 DOI: 10.1186/s12915-024-02110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The spatial and spectral properties of the light environment underpin many aspects of animal behaviour, ecology and evolution, and quantifying this information is crucial in fields ranging from optical physics, agriculture/plant sciences, human psychophysics, food science, architecture and materials sciences. The escalating threat of artificial light at night (ALAN) presents unique challenges for measuring the visual impact of light pollution, requiring measurement at low light levels across the human-visible and ultraviolet ranges, across all viewing angles, and often with high within-scene contrast. RESULTS Here, I present a hyperspectral open-source imager (HOSI), an innovative and low-cost solution for collecting full-field hyperspectral data. The system uses a Hamamatsu C12880MA micro spectrometer to take single-point measurements, together with a motorised gimbal for spatial control. The hardware uses off-the-shelf components and 3D printed parts, costing around £350 in total. The system can run directly from a computer or smartphone with a graphical user interface, making it highly portable and user-friendly. The HOSI system can take panoramic hyperspectral images that meet the difficult requirements of ALAN research, sensitive to low light around 0.001 cd.m-2, across 320-880 nm range with spectral resolution of ~ 9 nm (FWHM) and spatial resolution of ~ 2 cycles per degree. The independent exposure of each pixel also allows for an extremely wide dynamic range that can encompass typical natural and artificially illuminated scenes, with sample night-time scans achieving full-spectrum peak-to-peak dynamic ranges of > 50,000:1. CONCLUSIONS This system's adaptability, cost-effectiveness and open-source nature position it as a valuable tool for researchers investigating the complex relationships between light, environment, behaviour, ecology and biodiversity, with further potential uses in many other fields.
Collapse
Affiliation(s)
- Jolyon Troscianko
- Centre for Ecology & Conservation, University of Exeter, Penryn, UK.
| |
Collapse
|
7
|
Li W, Zhang D, Zou Q, Bose APH, Jordan A, McCallum ES, Bao J, Duan M. Behavioural and transgenerational effects of artificial light at night (ALAN) of varying spectral compositions in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176336. [PMID: 39299330 DOI: 10.1016/j.scitotenv.2024.176336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/26/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Artificial light at night (ALAN) can disrupt the natural behaviour, physiology, and circadian rhythms of organisms exposed to it, and therefore presents a significant and widespread ecological concern. ALAN typically comprises a wide range of wavelengths, and different wavelengths have different effects on circadian clocks. In the animals investigated thus far, short and middle wavelengths are intensely involved in synchronisation and entrainment, but we still have a poor understanding of how different wavelengths might affect behaviour when animals are exposed to ALAN, in particular whether some wavelengths are disproportionally detrimental. This experiment examined the direct and transgenerational effects of 10 different wavelength treatments of ALAN on behaviour in zebrafish (Danio rerio), a diurnally active model organism. Across a 10-day period, female zebrafish were exposed to either a monochromatic wavelength, white light ALAN, or to a control treatment, and the individual impacts of each treatment on locomotion and anxiety-like behaviours were examined both for solitary fish and fish in groups. We found the strongest impact at short wavelengths (365 to 470 nm), with individuals and groups of zebrafish showing more anxiety-like behaviour after fewer nights of ALAN exposure relative to the other wavelengths. Furthermore, F1 offspring born from ALAN-exposed mothers displayed less frequent movement and shorter movement distances despite never being exposed to ALAN themselves, regardless of the spectral treatment. Our results highlight both the specific and broad-spectrum potential for ALAN to cause disruption to locomotion in adult zebrafish and their offspring.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Behavioural Evolution Research Group, Max Planck Institute of Animal Behaviour, Buecklestr 5a, 78464 Konstanz, Germany; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Dongxu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qingqing Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Aneesh P H Bose
- Behavioural Evolution Research Group, Max Planck Institute of Animal Behaviour, Buecklestr 5a, 78464 Konstanz, Germany; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå, Västerbotten 90736, Sweden
| | - Alex Jordan
- Behavioural Evolution Research Group, Max Planck Institute of Animal Behaviour, Buecklestr 5a, 78464 Konstanz, Germany
| | - Erin S McCallum
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå, Västerbotten 90736, Sweden
| | - Jianghui Bao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
8
|
Grunst M, Grunst A, Thys B, Pinxten R, Eens M. Anthropogenic noise and light pollution decrease the repeatability of activity patterns and dampen expression of chronotypes in a free-living songbird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176552. [PMID: 39353492 DOI: 10.1016/j.scitotenv.2024.176552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Anthropogenic environmental change is introducing a suite of novel disturbance factors, which can have wide-ranging effects on mean behavior and behavioral repeatability. For example, exposure to sensory pollutants, such as anthropogenic noise and artificial light at night (ALAN), may affect consistent and repeatable individual-level timing of daily activity, which is referred to as chronotypes. Although chronotypes have been increasingly documented in wild animal populations and may affect fitness, evidence for long-term stability across life-history stages and seasons is notably lacking. Furthermore, how multiple anthropogenic stressors may interact to erode or magnify the expression of chronotypes remains unclear. We tested for existence of chronotypes across life-history stages and seasons in suburban female great tits (Parus major), using emergence time from nest boxes in the morning as a proxy for activity onset. We then examined joint effects of noise pollution and ALAN on expression of chronotypes, and tested for effects of noise, ALAN, and weather conditions on mean emergence time. We found repeatability of daily activity patterns (emergence times) across life-history stages and seasons, providing evidence of chronotypes, as well as interactive effects of anthropogenic disturbance factors and weather conditions on population mean behavior. Furthermore, across-season repeatability of emergence times was approximately double in magnitude in low light and low noise conditions, relative to in conditions with higher light and/or noise pollution. Thus, joint exposure to these sensory pollutants tends to erode expression of chronotypes. This effect was driven by higher among-individual variance in the relatively undisturbed environment and collapse of this variance in the more disturbed environments. Decreased repeatability in environments with high disturbance levels may reduce potential for behavioral traits, such as chronotype, to be the target of selection and limit adaptability.
Collapse
Affiliation(s)
- Melissa Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Department of Biology, Indiana State University, Terre Haute, IN, USA.
| | - Andrea Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Department of Biology, Indiana State University, Terre Haute, IN, USA
| | - Bert Thys
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
9
|
Cuthbert RN, Dalu T, Callaghan A, Dolan EJ, Johnston B. Dyeing waters: Does indiscriminate dye use threaten aquatic ecosystems? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176107. [PMID: 39255935 DOI: 10.1016/j.scitotenv.2024.176107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Aquatic ecosystem conservation is imperative to reaching global biodiversity and sustainability targets. However, the ecological status of waters has been continuously eroded through mismanagement in the face of existing and emerging anthropogenic stressors, such as pollutants. There has been an emerging trend towards the use of dyes to manage algae and plants as well as to alter aesthetics within various aquatic environments. This artificial colouring has potential ecological implications through reductions in light levels and disruptions to thermoclines (i.e., temperature regime changes with depth). Abiotic regime shifts could in turn drive ecological cascades by depowering primary production, hampering top-down trophic interactions, and affecting evolved animal behaviours. Despite commercial dyes being marketed as acutely non-toxic, very little is known about the chronic effects of these dyes across ecological scales and contexts. We thus call for greater research efforts to understand the ecological consequences of dye usage in aquatic environments, as well as the socio-cultural drivers for its application. This emerging research area could harness approaches such as biological assays, community module experiments, remote sensing, culturomics, and social surveys to elucidate dye effects, trends, and perspectives under a pollution framework. A greater understanding of the potential effects of dye in aquatic ecosystems under relevant contexts would help to inform management decisions and regulation options, while helping to mediate ecocentric and anthropocentric perspectives.
Collapse
Affiliation(s)
- Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom.
| | - Tatenda Dalu
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit 1200, South Africa
| | - Amanda Callaghan
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6EX, United Kingdom
| | - Ellen J Dolan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Barry Johnston
- School of Engineering, Wrexham University, Mold Road, Plas Coch, Wrexham LL11 2AW, Wales, United Kingdom
| |
Collapse
|
10
|
Foppen K, Pinxten R, Meijdam M, Eens M. Artificial Light at Night Advances the Onset of Vocal Activity in Both Male and Female Great Tits During the Breeding Season, While Noise Pollution Has Less Impact and Only in Females. Animals (Basel) 2024; 14:3199. [PMID: 39595252 PMCID: PMC11590875 DOI: 10.3390/ani14223199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Artificial light at night (ALAN) and noise pollution are two important stressors associated with urbanisation that can have a profound impact on animal behaviour and physiology, potentially disrupting biological rhythms. Although the influence of ALAN and noise pollution on daily activity patterns of songbirds has been clearly demonstrated, studies often focus on males, and the few that examined females have not included the potential influence of males on female activity patterns. Using free-living pairs of great tits (Parus major) as a model, we examined for the first time the effects of ALAN and noise pollution and their interaction on the onset of (vocal) activity in both members of a pair. We focused on the egg-laying phase, when both sexes are most vocally active. The onset of male dawn song, female emergence time from the nest box and the onset of female calling in the nest box were measured and used as a proxy for the chronotype. The repeatabilities for all chronotype proxies were high, with higher repeatabilities for males. Consistent with previous studies, ALAN advanced the onset of male dawn song, while it did not elicit a strong response in female emergence time. Additionally, our results suggest an indirect effect of ALAN on the onset of female vocal activity via acoustic interaction with the male. Noise pollution advanced the emergence time in females, while an interaction between ALAN and noise pollution was found for the onset of female calling. In agreement with previous studies, several covariables were shown to have an influence on the activity onset. Taking several proxies for chronotype into account, this study has provided robust evidence of effects of ALAN on male and female cavity-nesting songbirds during the egg-laying period.
Collapse
Affiliation(s)
- Kim Foppen
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (R.P.); (M.M.)
| | | | | | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (R.P.); (M.M.)
| |
Collapse
|
11
|
Fiorini-Torrico R, De Vleeschouwer KM, Fuzessy L, Oliveira LDC. Glucocorticoids and behavior in non-human primates: A meta-analytic approach to unveil potential coping mechanisms. Horm Behav 2024; 166:105654. [PMID: 39522450 DOI: 10.1016/j.yhbeh.2024.105654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/07/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Glucocorticoids (GCs) mediate responses to energetic and psychosocial challenges and are associated with behavioral adjustments that form part of an adaptive vertebrate stress response. GCs and behavior can indirectly influence each other, leading to either an intensification or attenuation of stress responses. Exploring these GC-behavior relationships may offer insights into the beneficial aspects of behavior and help identify coping mechanisms that potentially enhance individual fitness. We conducted a systematic review of the relationship between GCs and several behavioral traits, as described in the literature on captive and wild primates, and evaluated the effect of different categorical factors on these relationships using a meta-analytic approach. According to the type of behavior, we grouped statistical measures into affiliative, agonistic, anxiety-like, and foraging domains which were further differentiated into behavioral subgroups. We also categorized measures based on setting, method, sex and age of individuals, and sample matrix involved in each primary study. Overall, we found that some affiliative and foraging behaviors are associated with lower GC levels, while agonistic and anxiety-like behaviors are linked to higher GC levels. Specifically, non-sexual affiliation and energetically inexpensive activities were negatively related to GCs. In contrast, inter- and intragroup aggression, noncommunicative and self-directed behaviors, and energetically expensive activities were positively related to GCs. By demonstrating how certain social, ecological and intrinsic factors affect the GC-behavior relationships, our study helps elucidate the contexts that may alleviate or intensify the stress responses in non-human primates.
Collapse
Affiliation(s)
- Roberto Fiorini-Torrico
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Applied Ecology and Conservation Lab, Universidade Estadual de Santa Cruz, Rod. Jorge Amado km. 16, 45662-900 Ilhéus, BA, Brazil; Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, B-2018 Antwerp, Belgium.
| | - Kristel Myriam De Vleeschouwer
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, B-2018 Antwerp, Belgium
| | - Lisieux Fuzessy
- CREAF - Centre for Ecological Research and Forestry Applications, 08193 Barcelona, Catalonia, Spain; UNESP - São Paulo State University, Institute of Biosciences, Av. 24 A 1515, 13506-900 Rio Claro, SP, Brazil
| | - Leonardo de Carvalho Oliveira
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Applied Ecology and Conservation Lab, Universidade Estadual de Santa Cruz, Rod. Jorge Amado km. 16, 45662-900 Ilhéus, BA, Brazil; Departamento de Ciências, Faculdade de Formação de Professores, Universidade do Estado do Rio de Janeiro, R. Francisco Portela 1470, 24435-005 São Gonçalo, RJ, Brazil; Bicho do Mato Instituto de Pesquisa, Av. Cônsul Antônio Cadar 600, 30360-082 Belo Horizonte, MG, Brazil
| |
Collapse
|
12
|
Fabusova M, Gaston KJ, Troscianko J. Pulsed artificial light at night alters moth flight behaviour. Biol Lett 2024; 20:20240403. [PMID: 39532146 PMCID: PMC11557245 DOI: 10.1098/rsbl.2024.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Vehicle headlights create pulsed artificial light at night (pALAN) that is unpredictable, intense and extends into previously dark areas. Nocturnal insects often have remarkable low-light vision, but their slow pupillary light responses may leave them vulnerable to pALAN, which has important ecological consequences. To test this, we exposed nocturnal moths-important pollinators and prey-to four pALAN treatments. These comprised 'cool' and 'warm' lights, either emitted from phosphor-coated light-emitting diodes (LEDs) or RGB (red-green-blue) LEDs, matched in colour (CCT) and intensity to human vision. We assessed the initial behavioural response, likely crucial to the survival of an organism, of 428 wild-caught moths comprising 64 species. We found that exposure to a cool phosphor-coated LED light pulse increased instances of erratic flight and flight-to-light that are likely detrimental as they increase the risks of impact with a vehicle, predation or excess energy expenditure. Our findings suggest that pALAN can cause a wide range of behavioural responses in nocturnal moths, but that the most harmful effects could be minimized by reversing the current shift towards high CCT (cool) phosphor-coated LED car headlights. Lower CCT or RGB alternatives are likely to provide benefits for road safety while reducing ecological harm.
Collapse
Affiliation(s)
- Madeleine Fabusova
- Centre for Ecology & Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Kevin J. Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, PenrynTR10 9FE, UK
| | - Jolyon Troscianko
- Centre for Ecology & Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| |
Collapse
|
13
|
Quintanilla-Ahumada D, Quijón PA, Jahnsen-Guzmán N, Zúñiga-Cueto N, Miranda-Benabarre C, Lynn KD, Pulgar J, Palma J, Manríquez PH, Duarte C. The impacts of artificial light at night (ALAN) spectral composition on key behavioral traits of a sandy beach isopod. MARINE POLLUTION BULLETIN 2024; 208:116924. [PMID: 39278176 DOI: 10.1016/j.marpolbul.2024.116924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Artificial light at night (ALAN) is a widespread human-induced disturbance, whose effects have been documented in many ecosystems. However, limited attention has been given to the source of the lights behind ALAN, so this study examined three of them: High-Pressure Sodium (HPS) lamps and warm and cool white Light-Emitting Diodes (LEDs). Laboratory experiments compared the effects of each type of light to natural day/night conditions, upon the activity, feeding behavior and growth of the isopod Tylos spinulosus. Tanks equipped with actographs monitored locomotor activity, while separate tanks were utilized to assess food consumption and growth under natural and ALAN conditions. Our results show that all ALAN sources disrupt and reduce isopods' activity and feeding behavior, with cool and warm LEDs being the most severe and mildest, respectively. Instead, ALAN had only minor effects on isopod growth. Our findings suggest that warm LEDs may be preferable for ALAN mitigation purposes.
Collapse
Affiliation(s)
- Diego Quintanilla-Ahumada
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Pedro A Quijón
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Nicole Jahnsen-Guzmán
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Nicol Zúñiga-Cueto
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Miranda-Benabarre
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - K Devon Lynn
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile
| | | | - Patricio H Manríquez
- Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile.
| |
Collapse
|
14
|
Degen J, Storms M, Lee CB, Jechow A, Stöckl AL, Hölker F, Jakhar A, Walter T, Walter S, Mitesser O, Hovestadt T, Degen T. Shedding light with harmonic radar: Unveiling the hidden impacts of streetlights on moth flight behavior. Proc Natl Acad Sci U S A 2024; 121:e2401215121. [PMID: 39378094 PMCID: PMC11494349 DOI: 10.1073/pnas.2401215121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/31/2024] [Indexed: 10/10/2024] Open
Abstract
One of the most dramatic changes occurring on our planet is the ever-increasing extensive use of artificial light at night, which drastically altered the environment to which nocturnal animals are adapted. Such light pollution has been identified as a driver in the dramatic insect decline of the past years. One nocturnal species group experiencing marked declines are moths, which play a key role in food webs and ecosystem services such as plant pollination. Moths can be easily monitored within the illuminated area of a streetlight, where they typically exhibit disoriented behavior. Yet, little is known about their behavior beyond the illuminated area. Harmonic radar tracking enabled us to close this knowledge gap. We found a significant change in flight behavior beyond the illuminated area of a streetlight. A detailed analysis of the recorded trajectories revealed a barrier effect of streetlights on lappet moths whenever the moon was not available as a natural celestial cue. Furthermore, streetlights increased the tortuosity of flights for both hawk moths and lappet moths. Surprisingly, we had to reject our fundamental hypothesis that most individuals would fly toward a streetlight. Instead, this was true for only 4% of the tested individuals, indicating that the impact of light pollution might be more severe than assumed to date. Our results provide experimental evidence for the fragmentation of landscapes by streetlights and demonstrate that light pollution affects movement patterns of moths beyond what was previously assumed, potentially affecting their reproductive success and hampering a vital ecosystem service.
Collapse
Affiliation(s)
- Jacqueline Degen
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg97074, Germany
| | - Mona Storms
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg97074, Germany
| | - Chengfa Benjamin Lee
- Department of Remote Sensing, University of Würzburg, Würzburg97074, Germany
- Photogrammetry and Image Analysis Department, German Aerospace Center, Remote Sensing Technology Institute, Berlin12489, Germany
| | - Andreas Jechow
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin12587, Germany
- Department of Engineering, Brandenburg University of Applied Sciences, Brandenburg an der Havel14770, Germany
| | - Anna Lisa Stöckl
- Department of Biology, University of Konstanz, Konstanz78464, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz78457, Germany
- Zukunftskolleg, University of Konstanz, Konstanz78457, Germany
| | - Franz Hölker
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin12587, Germany
- Department of Biology, Freie Universität Berlin, Berlin14195, Germany
| | - Aryan Jakhar
- Department of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram695551, India
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI02912
- Institute at Brown for Environment and Society, Brown University, Providence, RI02912
| | - Thomas Walter
- Department of Computer Science, University of Würzburg, Würzburg97074, Germany
| | - Stefan Walter
- Department of Biology, Freie Universität Berlin, Berlin14195, Germany
| | - Oliver Mitesser
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| | - Thomas Hovestadt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| | - Tobias Degen
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg97074, Germany
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| |
Collapse
|
15
|
Hutton P, Lendvai ÁZ, Németh J, McGraw KJ. Urban house finches are more resistant to the effects of artificial light at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174525. [PMID: 38972420 DOI: 10.1016/j.scitotenv.2024.174525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Rapid urbanization of habitats alters the physical, chemical, auditory, and photic environments of human and wild animal inhabitants. One of the most widespread transformations is caused by artificial light at night (ALAN), but it is not clear the extent to which individuals acclimate to such rapid environmental change. Here, we tested the hypothesis that urban birds show increased resistance to harmful behavioral, parasitological, and physiological effects of ALAN. We captured house finches (Haemorhous mexicanus), a bird that commonly inhabits cities and their natural surroundings, from two urban and two rural sites in Phoenix, Arizona, USA, which differ by both degree of urbanization and by multiple orders of magnitude in ALAN intensity, and placed them in a common garden laboratory setting. We exposed half of the birds from each habitat type to ecologically relevant levels of night lighting during the subjective night and found that, while ALAN exposure reduced sleep in both urban and rural birds, ALAN-exposed urban birds were able to sleep longer than ALAN-exposed rural birds. We also found that ALAN exposure increased the proliferation rate of an intestinal coccidian parasite (Isospora spp.) in both urban and rural birds, but that the rate of proliferation was lower in urban relative to rural birds. We found that night lighting suppressed titers of feather corticosterone in rural but not urban birds, suggesting that light impairs HPA function through chronic stress or suppression of its circadian rhythmicity, and that urban birds were again resistant to this effect. Mediation analyses show that the effect of ALAN exposure in rural birds was significantly sleep-mediated for feather corticosterone but not coccidiosis, suggesting a diversity of mechanisms by which ALAN alters physiology. We contribute further evidence that animals from night-lit habitats can develop resistance to ALAN and its detrimental effects.
Collapse
Affiliation(s)
- Pierce Hutton
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Jószef Németh
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
16
|
Isaksson C, Ziegler AK, Powell D, Gudmundsson A, Andersson MN, Rissler J. Transcriptome analysis of avian livers reveals different molecular changes to three urban pollutants: Soot, artificial light at night and noise. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124461. [PMID: 38964643 DOI: 10.1016/j.envpol.2024.124461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Identifying key molecular pathways and genes involved in the response to urban pollutants is an important step in furthering our understanding of the impact of urbanisation on wildlife. The expansion of urban habitats and the associated human-introduced environmental changes are considered a global threat to the health and persistence of humans and wildlife. The present study experimentally investigates how short-term exposure to three urban-related pollutants -soot, artificial light at night (ALAN) and traffic noise-affects transcriptome-wide gene expression in livers from captive female zebra finches (Taeniopygia guttata). Compared to unexposed controls, 17, 52, and 28 genes were differentially expressed in soot, ALAN and noise-exposed birds, respectively. In soot-exposed birds, the enriched gene ontology (GO) terms were associated with a suppressed immune system such as interferon regulating genes (IRGs) and responses to external stimuli. For ALAN-exposed birds, enriched GO terms were instead based on downregulated genes associated with detoxification, redox, hormonal-, and metabolic processes. Noise exposure resulted in downregulation of genes associated with the GO terms: cellular responses to substances, catabolic and cytokine responses. Among the individually differentially expressed genes (DEGs), soot led to an increased expression of genes related to tumour progression. Likewise, ALAN revealed an upregulation of multiple genes linked to different cancer types. Both sensory pollutants (ALAN and noise) led to increased expression of genes linked to neuronal function. Interestingly, noise caused upregulation of genes associated with serotonin regulation and function (SLC6A4 and HTR7), which previous studies have shown to be under selection in urban birds. These outcomes indicate that short-term exposure to the three urban pollutants perturbate the liver transcriptome, but most often in different ways, which highlights future studies of multiple-stress exposure and their interactive effects, along with their long-term impacts for urban-dwelling wildlife.
Collapse
Affiliation(s)
- C Isaksson
- Department of Biology, Lund University, SE-223 62, Lund, Sweden.
| | - A-K Ziegler
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - D Powell
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - A Gudmundsson
- Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, SE-223 62, Lund, Sweden
| | - M N Andersson
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - J Rissler
- Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, SE-223 62, Lund, Sweden
| |
Collapse
|
17
|
Tomotani BM, Strauß AFT, Kishkinev D, van de Haar H, Helm B. Circadian clock period length is not consistently linked to chronotype in a wild songbird. Eur J Neurosci 2024; 60:5522-5536. [PMID: 39256897 DOI: 10.1111/ejn.16535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Circadian clock properties vary between individuals and relate to variation in entrained timing in captivity. How this variation translates into behavioural differences in natural settings, however, is poorly understood. Here, we tested in great tits whether variation in the free-running period length (tau) under constant dim light (LL) was linked to the phase angle of the entrained rhythm ("chronotype") in captivity and in the wild, as recently indicated in our study species. We also assessed links between tau and the timing of first activity onset and offset under LL relative to the last experienced light-dark (LD) cycle. We kept 66 great tits, caught in two winters, in LL for 14 days and subsequently released them with a radio transmitter back to the wild, where their activity and body temperature rhythms were tracked for 1 to 22 days. For a subset of birds, chronotype was also recorded in the lab before release. Neither wild nor lab chronotypes were related to tau. We also found no correlation between lab and wild chronotypes. However, the first onset in LL had a positive relationship with tau, but only in males. Our results demonstrate that links between tau and phase of entrainment, postulated on theoretical grounds, may not consistently hold under natural conditions, possibly due to strong masking. This calls for more holistic research on how the many components of the circadian system interact with the environment to shape timing in the wild. Wild birds showed chronotypes in the field that were unlinked to their circadian period length tau measured in captivity. In males only, the first onset of activity after exposure to constant dim light did correlate with tau. Our study emphasises the need to investigate clocks in the real world, including a need to better understand masking.
Collapse
Affiliation(s)
- Barbara M Tomotani
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, AB, The Netherlands
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Aurelia F T Strauß
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, AB, The Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | | | - Huib van de Haar
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, AB, The Netherlands
| | - Barbara Helm
- Swiss Ornithological Institute, Sempach, Switzerland
| |
Collapse
|
18
|
Sanna G, Domenici P, Maggi E. Artificial light at night alters the locomotor behavior of the Mediterranean sea urchin Paracentrotus lividus. MARINE POLLUTION BULLETIN 2024; 206:116782. [PMID: 39096864 DOI: 10.1016/j.marpolbul.2024.116782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Artificial light at night (ALAN) is a recognized source of anthropogenic disturbance, although its effects on biological systems have not been fully explored. Within marine ecosystems, coastal areas are the most impacted by ALAN. Here, we focused on the Mediterranean sea urchin Paracentrotus lividus, which has a crucial role in shaping benthic ecosystems. Our objective was to investigate if ALAN affects the nocturnal locomotor behavior of P. lividus. A semi-controlled field study was conducted along a rocky shore near a promenade lit at night. Results suggested a potential impact of ALAN on the locomotor behavior of sea urchins. Individuals of P. lividus tended to move away from the light sources while its directions in dark conditions were uniform. Their locomotor performance, in presence of ALAN, was characterized by shorter latency time, lower sinuosity and higher mean speed at increasing light intensity, with potential cascading effect at the ecosystem level.
Collapse
Affiliation(s)
- Giorgia Sanna
- Dipartimento di Biologia, CoNISMa, Università di Pisa, via Derna No.1, Pisa 56126, Italy
| | - Paolo Domenici
- IBF-CNR, Consiglio Nazionale delle Ricerche, Area di Ricerca San Cataldo, via G. Moruzzi No.1, Pisa 56124, Italy
| | - Elena Maggi
- Dipartimento di Biologia, CoNISMa, Università di Pisa, via Derna No.1, Pisa 56126, Italy.
| |
Collapse
|
19
|
Hermans C, Litovska I, de Pastors M, Visser ME, Spoelstra K. Artificial light at night drives diel activity patterns of synanthropic pipistrelle bats and their prey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173699. [PMID: 38830420 DOI: 10.1016/j.scitotenv.2024.173699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
The use of artificial light at night (ALAN) has increased drastically worldwide over the last decades. ALAN can have major effects on nocturnal communities, including insects and bats. Insects are attracted to street lights and few bat species take advantage of this by foraging on the attracted insects. ALAN potentially affects the temporal patterns of insect abundance and thereby bat foraging behaviour. In a natural dark environment, these patterns are usually bimodal, with an activity peak in the early evening and the morning. Little is known about how ALAN affects insect presence throughout the night, and whether the light spectrum plays a role. This is important, as these temporal changes may be a key driver of disturbances in bat-insect interactions. Here, we studied how white and red light affect insects' and bats' nightly activity patterns. The activity of insects and bats (Pipistrellus spp.) was recorded throughout the night at seven experimentally illuminated sites in a forest-edge ecosystem. ALAN disrupted activity patterns, with both insects and bats being more active throughout the night. ALAN facilitated all-night foraging in bats especially near white light, but these effects were attenuated near red light. The ability to forage throughout the night may be a key advantage causing synanthropic bats to dominate in illuminated environments, but this could also prove detrimental in the long term. As red light reduced disturbing effects of ALAN on insects and bats diel activity pattern, it opens the possibility of using spectral composition as a mitigation measure.
Collapse
Affiliation(s)
- Claire Hermans
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands.
| | - Iryna Litovska
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands; Wageningen University and Research, Wageningen, the Netherlands
| | - Mélyssa de Pastors
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| |
Collapse
|
20
|
Barragan RC, Meltzoff AN. Opportunity to view the starry night sky is linked to human emotion and behavioral interest in astronomy. Sci Rep 2024; 14:19314. [PMID: 39164331 PMCID: PMC11336222 DOI: 10.1038/s41598-024-69920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Prior to the modern era, the stars in the night sky were readily visible across the globe, but light pollution has created disparities in the opportunity to see these astronomical objects with the naked eye. This alteration may measurably impact human behavior. We hypothesize that light pollution is related to the development of people's interest in astronomy, which often serves as a "gateway" to science more broadly. In a state-by-state analysis, we used location information to examine astronomy interest data for millions of US residents. Results show that, among populations with low light pollution, a feeling of "wonder about the universe" is prevalent (r = 0.50). We found that this human emotion mediates the association between low light pollution and behavioral interest in astronomy. Although the effects of light pollution on astronomy, biology, ecology, and health are well-known, the present work demonstrates that light pollution is also relevant to human scientific behavior, with broad implications for science education and society.
Collapse
Affiliation(s)
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, 98195, USA.
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
21
|
van Koppenhagen N, Haller J, Kappeler J, Gossner MM, Bolliger J. LED streetlight characteristics alter the functional composition of ground-dwelling invertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124209. [PMID: 38795821 DOI: 10.1016/j.envpol.2024.124209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Artificial Light at Night (ALAN) has been identified as a primary driver of environmental change in the 21st century with key impacts on ecosystems. At the same time, developments of LED lighting systems with adjustable parameters-such as color temperature and light intensity-may provide an opportunity to mitigate the negative effects of ALAN. To test the potential effects of LED properties, we conducted a comprehensive field study over two summers at three forest sites in Switzerland. We investigated the impact of three key attributes of LED lights (color temperature, brightness, and luminaire shape) on the abundance and community structure of ground-dwelling invertebrate functional groups (predators, omnivores, and detritivores). We found a significantly increased nocturnal attraction of omnivores (+275%) and predators (+70%), but not detritivores, to ALAN, altering arthropod community composition and trophic interactions in forests. LED color temperature and luminaire shape showed minimal effects on all three functional groups, while reducing light level from 100% to 50% attracted fewer individuals in all groups with a significant effect in omnivores (-57%). In addition, we observed significant interactions of color temperatures and luminaire shapes with light intensity, with a decrease in numbers when dimming the light to 50% intensity combined with a color temperature of 3700 K for predators (-53%), with diffusing luminaire shapes for omnivores (-77%) and with standard luminaire shape for detritivores (-27%). The predator-detritivore ratio showed a significant color temperature - light level interaction, with increased numbers of predators around streetlights with 3700 K and 100% intensity, resulting in an elevated top-down pressure on detritivores. These results suggest the importance of considering combined light characteristics in future outdoor lighting designs.
Collapse
Affiliation(s)
- Nicola van Koppenhagen
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland.
| | - Jörg Haller
- EKZ, Dreikönigstrasse 18, CH-8022, Zürich, Switzerland
| | - Julia Kappeler
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Martin M Gossner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland; ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, CH-8092, Zurich, Switzerland
| | - Janine Bolliger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
22
|
Reid R, Capilla-Lasheras P, Haddou Y, Boonekamp J, Dominoni DM. The impact of urbanization on health depends on the health metric, life stage and level of urbanization: a global meta-analysis on avian species. Proc Biol Sci 2024; 291:20240617. [PMID: 39016598 PMCID: PMC11253839 DOI: 10.1098/rspb.2024.0617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
Stressors associated with urban habitats have been linked to poor wildlife health but whether a general negative relationship between urbanization and animal health can be affirmed is unclear. We conducted a meta-analysis of avian literature to test whether health biomarkers differed on average between urban and non-urban environments, and whether there are systematic differences across species, biomarkers, life stages and species traits. Our dataset included 644 effect sizes derived from 112 articles published between 1989 and 2022, on 51 bird species. First, we showed that there was no clear impact of urbanization on health when we categorized the sampling locations as urban or non-urban. However, we did find a small negative effect of urbanization on health when this dichotomous variable was replaced by a quantitative variable representing the degree of urbanization at each location. Second, we showed that the effect of urbanization on avian health was dependent on the type of health biomarker measured as well as the individual life stage, with young individuals being more negatively affected. Our comprehensive analysis calls for future studies to disentangle specific urban-related drivers of health that might be obscured in categorical urban versus non-urban comparisons.
Collapse
Affiliation(s)
- Rachel Reid
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| | - Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| | - Yacob Haddou
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| | - Jelle Boonekamp
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| | - Davide M. Dominoni
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| |
Collapse
|
23
|
Amar A, Reynolds C, Thomson RL, Dominoni D. Investigating the impacts of artificial light via blackouts. Trends Ecol Evol 2024; 39:612-615. [PMID: 38777636 DOI: 10.1016/j.tree.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024]
Abstract
Natural experiments provide remarkable opportunities to test the large-scale effects of human activities. Widespread energy blackouts offer such an 'experiment' to test the impacts of artificial light at night (ALAN) on wildlife. We use the situation in South Africa, where regular scheduled blackouts are being implemented, to highlight this opportunity.
Collapse
Affiliation(s)
- Arjun Amar
- FitzPatrick Institute of African Ornithology, Department of Biological Sciences, University of Cape Town, South Africa.
| | - Chevonne Reynolds
- School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Robert L Thomson
- FitzPatrick Institute of African Ornithology, Department of Biological Sciences, University of Cape Town, South Africa
| | - Davide Dominoni
- School of Biodiversity, One Health and Veterinary medicine, University of Glasgow, UK
| |
Collapse
|
24
|
Zou W, Wu P, Wei X, Zhou D, Deng Y, Jiang Y, Luo B, Liu W, Huo J, Peng S, Feng J. Artificial light affects foraging behavior of a synanthropic bat. Integr Zool 2024; 19:710-720. [PMID: 37987100 DOI: 10.1111/1749-4877.12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Artificial light at night has been considered an emerging threat to global biodiversity. However, the impacts of artificial light on foraging behavior in most wild animals remain largely unclear. Here, we aimed to assess whether artificial light affects foraging behavior in Asian parti-colored bats (Vespertilio sinensis). We manipulated the spectra of light-emitting diode (LED) lighting in a laboratory. Using video and audio recording, we monitored foraging onset, total foraging time, food consumption, freezing behavior (temporary cessation of body movement), and echolocation vocalizations in triads of bats under each lighting condition. Analyses showed that the foraging activities of experimental bats were reduced under LED light. Green, yellow, and red light had greater negative effects on bats' foraging onset, total foraging time, and food consumption than white and blue light. LED light of different spectra induced increased freezing time and echolocation vocalizations in captive bats, except for the white light. The peak wavelength of light emission correlated positively with freezing time, estimated echolocation pulse rate (the number of echolocation pulses per minute), and foraging onset, but negatively with total foraging time and food consumption. These results demonstrate that artificial light disturbs foraging behavior in Asian parti-colored bats. Our findings have implications for understanding the influencing mechanism of light pollution on bat foraging.
Collapse
Affiliation(s)
- Wenyu Zou
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
| | - Pan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
| | - Xinyi Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
| | - Daying Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
| | - Yingchun Deng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Yunke Jiang
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
| | - Bo Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong, China
| | - Wenqin Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
| | - Jiaxin Huo
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
| | - Shichen Peng
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
25
|
Beaugeard E, Brischoux F, Angelier F. Light pollution affects activity differentially across breeding stages in an urban exploiter: An experiment in the house sparrow (Passer domesticus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124055. [PMID: 38692388 DOI: 10.1016/j.envpol.2024.124055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Artificial Light At Night (ALAN) is a major urban perturbation, which can have detrimental effects on wildlife. Recent urban planning has led to an increased use of white light emission diodes (LEDs) in cities. However, little is known about the effects of this type of ALAN on wild vertebrates, especially during reproduction. We designed an experiment to test the impact of ALAN on the activity rhythms (daily time of first activity (TFA) and time of last activity (TLA)) of captive House sparrows (Passer domesticus) during several reproductive stages (from pre-breeding to post-breeding). We also tested the impact of ALAN on reproductive performance (laying date, clutch size, hatching and fledging success). Experimental birds were active earlier in the morning (earlier TFA) relative to controls although experimental and control birds did not differ in their TLA. The effect of ALAN on TFA was apparent during specific stages only (pre-breeding and chick-rearing stages), suggesting that sparrows actively adjust their activity in response to ALAN only during specific periods. This impact of ALAN on activity did not persist through the whole breeding season, suggesting that sparrows may habituate to ALAN. Alternatively, they may not be able to sustain a long-term increased activity in response to ALAN because of sleep deprivation and related physiological costs. Finally, we did not find any impact of ALAN on the reproductive performance of captive house sparrows held under optimal conditions. This suggests that ALAN may not be dramatically detrimental to the reproduction of this urban exploiter, at least when food availability is not constraining.
Collapse
Affiliation(s)
- Erika Beaugeard
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France.
| |
Collapse
|
26
|
Quintanilla-Ahumada D, Quijón PA, Jahnsen-Guzmán N, Lynn KD, Pulgar J, Palma J, Manríquez PH, Duarte C. Splitting light pollution: Wavelength effects on the activity of two sandy beach species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124317. [PMID: 38844041 DOI: 10.1016/j.envpol.2024.124317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Artificial Light at Night (ALAN) threatens to disrupt most natural habitats and species, including those in coastal settings, where a growing number of studies have identified ALAN impacts. A careful examination of the light properties behind those impacts is important to better understand and manage the effects of this stressor. This study focused on ALAN monochromatic wavelengths and examined which types of light spectra altered the natural activity of two prominent coastal species from the Pacific southeast: the talitroid amphipod Orchestoidea tuberculata and the oniscoid isopod Tylos spinulosus. We compared the natural daylight/night activity of these organisms with the one they exhibit when exposed to five different ALAN wavelengths: lights in the violet, blue, green, amber, and red spectra. Our working hypothesis was that ALAN alters these species' activity at night, but the magnitude of such impact differs depending on light wavelengths. Measurements of activity over 24 h cycles for five consecutive days and in three separate experiments confirmed a natural circadian activity pattern in both species, with strong activity at night (∼90% of probability) and barely any activity during daylight. However, when exposed to ALAN, activity declined significantly in both species under all light wavelengths. Interestingly, amphipods exhibited moderate activity (∼40% of probability) when exposed to red lights at night, whereas isopods shifted some of their activity to daylight hours in two of the experiments when exposed to blue or amber lights, suggesting a possible alteration in this species circadian rhythm. Altogether, our results were consistent with our working hypothesis, and suggest that ALAN reduces night activity, and some wavelengths have differential effects on each species. Differences between amphipods and isopods are likely related to their distinct adaptations to natural low-light habitat conditions, and therefore distinct sensitivity to ALAN.
Collapse
Affiliation(s)
- Diego Quintanilla-Ahumada
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Quijón
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Nicole Jahnsen-Guzmán
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - K Devon Lynn
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile
| | | | - Patricio H Manríquez
- Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile.
| |
Collapse
|
27
|
Dietenberger M, Jechow A, Kalinkat G, Schroer S, Saathoff B, Hölker F. Reducing the fatal attraction of nocturnal insects using tailored and shielded road lights. Commun Biol 2024; 7:671. [PMID: 38822081 PMCID: PMC11143364 DOI: 10.1038/s42003-024-06304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/08/2024] [Indexed: 06/02/2024] Open
Abstract
The attraction of insects to artificial light is a global environmental problem with far-reaching implications for ecosystems. Since light pollution is rarely integrated into conservation approaches, effective mitigation strategies towards environmentally friendly lighting that drastically reduce insect attraction are urgently needed. Here, we tested novel luminaires in two experiments (i) at a controlled experimental field site and (ii) on streets within three municipalities. The luminaires are individually tailored to only emit light onto the target area and to reduce spill light. In addition, a customized shielding renders the light source nearly invisible beyond the lit area. We show that these novel luminaires significantly reduce the attraction effect on flying insects compared to different conventional luminaires with the same illuminance on the ground. This underlines the huge potential of spatially optimized lighting to help to bend the curve of global insect decline without compromising human safety aspects. A customized light distribution should therefore be part of sustainable future lighting concepts, most relevant in the vicinity of protected areas.
Collapse
Affiliation(s)
- Manuel Dietenberger
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany.
- Chair of Nature Conservation and Landscape Ecology, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 76, 79104, Freiburg, Germany.
| | - Andreas Jechow
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany
- Department of Engineering, Brandenburg University of Applied Sciences, Magdeburger Str. 50, 14770, Brandenburg an der Havel, Germany
| | - Gregor Kalinkat
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany
| | - Sibylle Schroer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany
| | - Birte Saathoff
- Institute of Energy and Automation Technology, Technische Universität Berlin, Marchstraße 23, 10587, Berlin, Germany
| | - Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| |
Collapse
|
28
|
Curti JN, Barton M, Flores RG, Lechner M, Lipman A, Montgomery GA, Park AY, Rochel K, Tingley MW. Using unstructured crowd-sourced data to evaluate urban tolerance of terrestrial native animal species within a California Mega-City. PLoS One 2024; 19:e0295476. [PMID: 38809860 PMCID: PMC11135677 DOI: 10.1371/journal.pone.0295476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/18/2024] [Indexed: 05/31/2024] Open
Abstract
In response to biodiversity loss and biotic community homogenization in urbanized landscapes, there are increasing efforts to conserve and increase biodiversity within urban areas. Accordingly, around the world, previously extirpated species are (re)colonizing and otherwise infiltrating urban landscapes, while other species are disappearing from these landscapes. Tracking the occurrence of traditionally urban intolerant species and loss of traditionally urban tolerant species should be a management goal of urban areas, but we generally lack tools to study this phenomenon. To address this gap, we first used species' occurrences from iNaturalist, a large collaborative dataset of species observations, to calculate an urban association index (UAI) for 967 native animal species that occur in the city of Los Angeles. On average, the occurrence of native species was negatively associated with our composite measure of urban intensity, with the exception of snails and slugs, which instead occur more frequently in areas of increased urban intensity. Next, we assessed 8,348 0.25 x 0.25 mile grids across the City of Los Angeles to determine the average grid-level UAI scores (i.e., a summary of the UAIs present in a grid cell, which we term Community Urban Tolerance Index or CUTI). We found that areas of higher urban intensity host more urban tolerant species, but also that taxonomic groups differ in their aggregate tolerance of urban areas, and that spatial patterns of tolerance vary between groups. The framework established here has been designed to be iteratively reevaluated by city managers of Los Angeles in order to track the progress of initiatives to preserve and encourage urban biodiversity, but can be rescaled to sample different regions within the city or different cities altogether to provide a valuable tool for city managers globally.
Collapse
Affiliation(s)
- Joseph N. Curti
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States of America
| | - Michelle Barton
- LA Sanitation and Environment, Los Angeles City, CA, United States of America
| | - Rhay G. Flores
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States of America
| | - Maren Lechner
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States of America
| | - Alison Lipman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States of America
| | - Graham A. Montgomery
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States of America
| | - Albert Y. Park
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States of America
| | - Kirstin Rochel
- LA Sanitation and Environment, Los Angeles City, CA, United States of America
| | - Morgan W. Tingley
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States of America
| |
Collapse
|
29
|
Nowak-Olejnik A, Działek J, Hibner J, Liro J, Madej R, Sudmanns M, Haase D. The benefits and disbenefits associated with cultural ecosystem services of urban green spaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172092. [PMID: 38556014 DOI: 10.1016/j.scitotenv.2024.172092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Cultural ecosystem services (CES) and disservices shape landscape planning policy to a huge extent. We focus on the benefits and disbenefits associated with CES. The study aimed to explore the co-occurrence of the benefits and disbenefits associated with CES as well as the relationship between spatial and landscape characteristics and specific benefits and disbenefits. We conducted a map-based online questionnaire among visitors of two urban green spaces in Kraków, Poland (Wolski Forest and Jordan Park). Respondents were asked to map places visited and assign them benefits and disbenefits using indicator statements. We found three bundles of benefits (connection to nature, social bonding in nature and responsibility) and five to seven bundles of disbenefits (1). The experiences (e.g., strengthening social bonds) were more concentrated whereas the identities (e.g., reflection) were more blurred spatially owing to their individualistic nature (2). The relationship between benefits/disbenefits and landscape features showed a relatively weak correlation, with a more discernible pattern observed in the case of experiences and capabilities (3). Respondents perceived more human-related disbenefits (overcrowding, noise, rubbish), exhibiting a greater geographical concentration, especially in proximity to tourist attractions (4). The ecosystem-related disbenefits (insects, allergies) were less geographically concentrated (5). Furthermore, the study unveiled differences in the perception of disbenefits across seasons. Visitors of warmer months expressed concerns about overcrowding, insects, and allergies, while those exploring the study areas in winter indicated challenges associated with darkness and snow-covered paths (6). These are important implications for management to increase the comfort of visits to green spaces.
Collapse
Affiliation(s)
- Agnieszka Nowak-Olejnik
- Institute of Geography and Spatial Management, Jagiellonian University, Gronostajowa 7, 30-347 Kraków, Poland.
| | - Jarosław Działek
- Institute of Geography and Spatial Management, Jagiellonian University, Gronostajowa 7, 30-347 Kraków, Poland.
| | - Joanna Hibner
- Institute of Geography and Spatial Management, Jagiellonian University, Gronostajowa 7, 30-347 Kraków, Poland.
| | - Justyna Liro
- Institute of Geography and Spatial Management, Jagiellonian University, Gronostajowa 7, 30-347 Kraków, Poland.
| | - Rafał Madej
- Institute of Geography and Spatial Management, Jagiellonian University, Gronostajowa 7, 30-347 Kraków, Poland.
| | - Martin Sudmanns
- Department of Geoinformatics - Z_GIS, University of Salzburg, Salzburg, Austria.
| | - Dagmar Haase
- Institute of Geography, Humboldt-University Berlin, Unter den Linden 6, 10099 Berlin, Germany; Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany.
| |
Collapse
|
30
|
Zhou C, Dong P, Gao P, Wang Z, Ning H, Xia M, Zhou Z. Phosphate phosphors with anti-thermal quenching properties for urban ecological lighting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124102. [PMID: 38432102 DOI: 10.1016/j.saa.2024.124102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
White light-emitting diode (LED) for night lighting disrupts photoperiod in plants, which affects the plant's photosynthesis. Therefore, it is necessary to find a new type of white LED with little effect on plant photosynthesis. In this study, a series of phosphate phosphors Ca9NaY2/3(PO4)7:Dy3+ (CNYP:Dy3+) were synthesized. Cation Li+ substitute Na+ were used to improve the luminescence properties of CNYP:Dy3+ phosphor. The CNYP:Dy3+ phosphor exhibits visible white light emission with emission peaks at 480 nm (blue light) and 570 nm (yellow light) excited by the near ultraviolet light 350 nm. The optimal concentration of Dy3+ was 0.10 mol, and the mechanism of concentration quenching was evaluated as energy migration among the nearest or next-nearest Dy3+. The substitution of Na+ by Li+ of CNYP:0.10Dy3+ improves the internal quantum efficiency from 30.24 % to 59.05 %, and presents good near-zero thermal quenching performance at 423 K. To assess the suitability of this phosphor for urban ecological lighting, the spectrum resemblance (SR) index between the electroluminescence spectrum of the prepared pc-LED and the absorption spectra of chlorophyll a and b was evaluated as 6.63 % and 18.61 %, respectively. This work exhibits a feasible scheme for the development of urban ecological lighting.
Collapse
Affiliation(s)
- Cheng Zhou
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Optical Agriculture Engineering Technology Research Center, Changsha, 410128, PR China
| | - Peng Dong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Optical Agriculture Engineering Technology Research Center, Changsha, 410128, PR China
| | - Peixin Gao
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Optical Agriculture Engineering Technology Research Center, Changsha, 410128, PR China
| | - Zirui Wang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Optical Agriculture Engineering Technology Research Center, Changsha, 410128, PR China
| | - Huifang Ning
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Optical Agriculture Engineering Technology Research Center, Changsha, 410128, PR China
| | - Mao Xia
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Optical Agriculture Engineering Technology Research Center, Changsha, 410128, PR China.
| | - Zhi Zhou
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Optical Agriculture Engineering Technology Research Center, Changsha, 410128, PR China
| |
Collapse
|
31
|
Strauß AFT, Bosma L, Visser ME, Helm B. Short-time exposure to light at night affects incubation patterns and correlates with subsequent body weight in great tits (Parus major). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:364-376. [PMID: 38327263 DOI: 10.1002/jez.2787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Artificial light at night (ALAN) widely affects wildlife by blurring light-dark differences, including transitions such as sunrise and sunset, thereby affecting regulation of diel rhythms. As a result, activity onsets in many wild diurnal songbirds advance under ALAN. From chronobiological studies, it is known that the direction and strength of the response to light depends on when during the night exposure takes place. However, these experiments are mostly done under continuous light conditions, when animals have free-running rhythms. It remains unclear whether phase-dependence also holds in entrained, wild songbirds; i.e., does the effect of ALAN on activity patterns differ between exposure in the morning compared to the evening? This information is essential to assess the effects of mitigation measures by limiting ALAN to selected times of the night. We exposed incubating great tits (Parus major) inside the nest-box to 4 h of dim light, of which 1 h overlapped with dawn before sunrise or dusk after sunset. We found a small advancing effect of morning-light on activity onset and of evening-light on offset compared to dark controls but not vice versa. Breeding success and chick condition were unaffected by the light treatments. However, light-treated females had lower weights 9-18 days after the end of the treatment compared to the controls, independent of whether ALAN occurred in the morning or the evening, indicating possible costs of ALAN. Despite the weak behavioral response, ALAN might have affected the females' circadian clock or physiology resulting in lower body condition.
Collapse
Affiliation(s)
- Aurelia F T Strauß
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Lies Bosma
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Marcel E Visser
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Barbara Helm
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Bird Migration Unit, Swiss Ornithological Institute, Sempach, Switzerland
| |
Collapse
|
32
|
Ocampo EH, Nuñez JD, Ribeiro PD, Pérez García M, Bas CC, Luppi TA. Disparate response of decapods to low pH: A meta-analysis of life history, physiology and behavior traits across life stages and environments. MARINE POLLUTION BULLETIN 2024; 202:116293. [PMID: 38537497 DOI: 10.1016/j.marpolbul.2024.116293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 05/08/2024]
Abstract
We employed a meta-analysis to determine if the presumed resilience of decapods to ocean acidification extends to all biological aspects, environments, and life stages. Most response categories appeared unaffected by acidification. However, certain fitness-related traits (growth, survival, and, to some extent, calcification) were impacted. Acid-base balance and stress response scaled positively with reductions in pH, which maintains homeostasis, possibly at the cost of other processes. Juveniles were the only stage impacted by acidification, which is believed to reduce recruitment. We observed few differences in responses to acidification among decapods inhabiting contrasting environments. Our meta-analysis shows decapods as a group slightly to moderately sensitive to low pH, with impacts on some biological aspects rather than on all specific life stages or habitats. Although extreme pH scenarios may not occur in the open ocean, coastal and estuarine areas might experience lower pH levels in the near to medium future, posing potential challenges for decapods.
Collapse
Affiliation(s)
- Emiliano H Ocampo
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina
| | - Jesus D Nuñez
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina
| | - Pablo D Ribeiro
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina
| | - Macarena Pérez García
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina.
| | - Claudia C Bas
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina
| | - Tomas A Luppi
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina
| |
Collapse
|
33
|
Caley A, Marzinelli EM, Byrne M, Mayer-Pinto M. Artificial light at night and warming impact grazing rates and gonad index of the sea urchin Centrostephanus rodgersii. Proc Biol Sci 2024; 291:20240415. [PMID: 38628122 PMCID: PMC11021935 DOI: 10.1098/rspb.2024.0415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Artificial light at night (ALAN) is a growing threat to coastal habitats, and is likely to exacerbate the impacts of other stressors. Kelp forests are dominant habitats on temperate reefs but are declining due to ocean warming and overgrazing. We tested the independent and interactive effects of ALAN (dark versus ALAN) and warming (ambient versus warm) on grazing rates and gonad index of the sea urchin Centrostephanus rodgersii. Within these treatments, urchins were fed either 'fresh' kelp or 'treated' kelp. Treated kelp (Ecklonia radiata) was exposed to the same light and temperature combinations as urchins. We assessed photosynthetic yield, carbon and nitrogen content and C : N ratio of treated kelp to help identify potential drivers behind any effects on urchins. Grazing increased with warming and ALAN for urchins fed fresh kelp, and increased with warming for urchins fed treated kelp. Gonad index was higher in ALAN/ambient and dark/warm treatments compared to dark/ambient treatments for urchins fed fresh kelp. Kelp carbon content was higher in ALAN/ambient treatments than ALAN/warm treatments at one time point. This indicates ocean warming and ALAN may increase urchin grazing pressure on rocky reefs, an important finding for management strategies.
Collapse
Affiliation(s)
- Amelia Caley
- Centre for Marine Science and Innovation; Evolution and Ecology Research Centre; School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ezequiel M. Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Mariana Mayer-Pinto
- Centre for Marine Science and Innovation; Evolution and Ecology Research Centre; School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
34
|
Evalen PS, Barnhardt EN, Ryu J, Stahlschmidt ZR. Toxicity of glyphosate to animals: A meta-analytical approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123669. [PMID: 38460584 DOI: 10.1016/j.envpol.2024.123669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Glyphosate (GLY)-based herbicides (GBHs) are the most commonly applied pesticide worldwide, and non-target organisms (e.g., animals) are now regularly exposed to GLY and GBHs due to the accumulation of these chemicals in many environments. Although GLY/GBH was previously considered to be non-toxic, growing evidence indicates that GLY/GBH negatively affects some animal taxa. However, there has been no systematic analysis quantifying its toxicity to animals. Therefore, we used a meta-analytical approach to determine whether there is a demonstrable effect of GLY/GBH toxicity across animals. We further addressed whether the effects of GLY/GBH vary due to (1) taxon (invertebrate vs. vertebrate), (2) habitat (aquatic vs. terrestrial), (3) type of biological response (behavior vs. physiology vs. survival), and (4) dosage or concentration of GLY/GBH. Using this approach, we also determined whether adjuvants (e.g., surfactants) in commercial formulations of GBHs increased toxicity for animals relative to exposure to GLY alone. We analyzed 1282 observations from 121 articles. We conclude that GLY is generally sub-lethally toxic for animals, particularly for animals in aquatic or marine habitats, and that toxicity did not exhibit dose-dependency. Yet, our analyses detected evidence for widespread publication bias so we encourage continued experimental investigations to better understand factors influencing GLY/GBH toxicity to animals.
Collapse
Affiliation(s)
- P S Evalen
- University of the Pacific, Stockton, CA, USA; University of Pennsylvania, Philadelphia, PA, USA
| | | | - J Ryu
- University of the Pacific, Stockton, CA, USA
| | | |
Collapse
|
35
|
He Y, Ganguly A, Lindgren S, Quispe L, Suvanto C, Zhao K, Candolin U. Carry-over effect of artificial light at night on daytime mating activity in an ecologically important detritivore, the amphipod Gammarus pulex. J Exp Biol 2024; 227:jeb246682. [PMID: 38516876 DOI: 10.1242/jeb.246682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Artificial light at night (ALAN) is a growing environmental problem influencing the fitness of individuals through effects on their physiology and behaviour. Research on animals has primarily focused on effects on behaviour during the night, whereas less is known about effects transferred to daytime. Here, we investigated in the lab the impact of ALAN on the mating behaviour of an ecologically important freshwater amphipod, Gammarus pulex, during both daytime and nighttime. We manipulated the presence of ALAN and the intensity of male-male competition for access to females, and found the impact of ALAN on mating activity to be stronger during daytime than during nighttime, independent of male-male competition. At night, ALAN only reduced the probability of precopula pair formation, while during the daytime, it both decreased general activity and increased the probability of pair separation after pair formation. Thus, ALAN reduced mating success in G. pulex not only directly, through effects on mating behaviour at night, but also indirectly through a carry-over effect on daytime activity and the ability to remain in precopula. These results emphasise the importance of considering delayed effects of ALAN on organisms, including daytime activities that can be more important fitness determinants than nighttime activities.
Collapse
Affiliation(s)
- Yuhan He
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Anirban Ganguly
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Susan Lindgren
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Laura Quispe
- Université Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - Corinne Suvanto
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Kangshun Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ulrika Candolin
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| |
Collapse
|
36
|
Chapman KE, Smith MT, Gaston KJ, Hempel de Ibarra N. Bumblebee nest departures under low light conditions at sunrise and sunset. Biol Lett 2024; 20:20230518. [PMID: 38593853 PMCID: PMC11003773 DOI: 10.1098/rsbl.2023.0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
Only a few diurnal animals, such as bumblebees, extend their activity into the time around sunrise and sunset when illumination levels are low. Low light impairs viewing conditions and increases sensory costs, but whether diurnal insects use low light as a cue to make behavioural decisions is uncertain. To investigate how they decide to initiate foraging at these times of day, we observed bumblebee nest-departure behaviours inside a flight net, under naturally changing light conditions. In brighter light bees did not attempt to return to the nest and departed with minimal delay, as expected. In low light the probability of non-departures increased, as a small number of bees attempted to return after spending time on the departure platform. Additionally, in lower illumination bees spent more time on the platform before flying away, up to 68 s. Our results suggest that bees may assess light conditions once outside the colony to inform the decision to depart. These findings give novel insights into how behavioural decisions are made at the start and the end of a foraging day in diurnal animals when the limits of their vision impose additional costs on foraging efficiency.
Collapse
Affiliation(s)
- Katherine E. Chapman
- Centre for Research in Animal Behaviour, Psychology, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Michael T. Smith
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Kevin J. Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| | - Natalie Hempel de Ibarra
- Centre for Research in Animal Behaviour, Psychology, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
37
|
Abbas S, Okdeh N, Roufayel R, Kovacic H, Sabatier JM, Fajloun Z, Abi Khattar Z. Neuroarchitecture: How the Perception of Our Surroundings Impacts the Brain. BIOLOGY 2024; 13:220. [PMID: 38666832 PMCID: PMC11048496 DOI: 10.3390/biology13040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
The study of neuroarchitecture is concerned with the significant effects of architecture on human behavior, emotions and thought processes. This review explores the intricate relationship between the brain and perceived environments, focusing on the roles of the anterior cingulate cortex (ACC) and parahippocampal place area (PPA) in processing architectural stimuli. It highlights the importance of mirror neurons in generating empathetic responses to our surroundings and discusses how architectural elements like lighting, color, and space layout significantly impact emotional and cognitive experiences. The review also presents insights into the concept of cognitive maps and spatial navigation, emphasizing the role of architecture in facilitating wayfinding and orientation. Additionally, it addresses how neuroarchitecture can be applied to enhance learning and healing environments, drawing upon principles from the Reggio Emilia approach and considerations for designing spaces for the elderly and those with cognitive impairments. Overall, this review offers a neuroscientific basis for understanding how human cognition, emotions, spatial navigation, and well-being are influenced by architectural design.
Collapse
Affiliation(s)
- Sarah Abbas
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon;
- Faculty of Architecture and Design, Azm University, Azm Educational Campus, Tripoli 1300, Lebanon
| | - Nathalie Okdeh
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Hervé Kovacic
- CNRS, INP, Institut Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France; (H.K.); (J.-M.S.)
| | - Jean-Marc Sabatier
- CNRS, INP, Institut Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France; (H.K.); (J.-M.S.)
| | - Ziad Fajloun
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon;
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon;
| |
Collapse
|
38
|
Adams CA, Clair CCS, Knight EC, Bayne EM. Behaviour and landscape contexts determine the effects of artificial light on two crepuscular bird species. LANDSCAPE ECOLOGY 2024; 39:83. [PMID: 38550967 PMCID: PMC10965584 DOI: 10.1007/s10980-024-01875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/13/2024] [Indexed: 04/29/2024]
Abstract
Context Artificial light at night (ALAN) is increasing worldwide, with many ecological effects. Aerial insectivores may benefit from foraging on insects congregating at light sources. However, ALAN could negatively impact them by increasing nest visibility and predation risk, especially for ground-nesting species like nightjars (Caprimulgidae). Objectives We tested predictions based on these two alternative hypotheses, potential foraging benefits vs potential predation costs of ALAN, for two nightjar species in British Columbia: Common Nighthawks (Chordeiles minor) and Common Poorwills (Phalaenoptilus nuttallii). Methods We modeled the relationship between ALAN and relative abundance using count data from the Canadian Nightjar Survey. We distinguished territorial from extra-territorial Common Nighthawks based on their wingboom behaviour. Results We found limited support for the foraging benefit hypothesis: there was an increase in relative abundance of extra-territorial Common Nighthawks in areas with higher ALAN but only in areas with little to no urban land cover. Common Nighthawks' association with ALAN became negative in areas with 18% or more urban land cover. We found support for the nest predation hypothesis: the were strong negative associations with ALAN for both Common Poorwills and territorial Common Nighthawks. Conclusions The positive effects of ALAN on foraging nightjars may be limited to species that can forage outside their nesting territory and to non-urban areas, while the negative effects of ALAN on nesting nightjars may persist across species and landscape contexts. Reducing light pollution in breeding habitat may be important for nightjars and other bird species that nest on the ground. Supplementary Information The online version contains supplementary material available at 10.1007/s10980-024-01875-3.
Collapse
Affiliation(s)
- Carrie Ann Adams
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, AB Canada
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, 1474 Campus Delivery, Fort Collins, CO USA
| | - Colleen Cassady St. Clair
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, AB Canada
| | - Elly C. Knight
- Alberta Biodiversity Monitoring Institute, 1-107 Centennial Centre for Interdisciplinary Studies (CCIS), University of Alberta, Edmonton, AB Canada
| | - Erin M. Bayne
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, AB Canada
| |
Collapse
|
39
|
Candolin U. Coping with light pollution in urban environments: Patterns and challenges. iScience 2024; 27:109244. [PMID: 38433890 PMCID: PMC10904992 DOI: 10.1016/j.isci.2024.109244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Artificial light at night is a growing environmental problem that is especially pronounced in urban environments. Yet, impacts on urban wildlife have received scant attention and patterns and consequences are largely unknown. Here, I present a conceptual framework outlining the challenges species encounter when exposed to urban light pollution and how they may respond through plastic adjustments and genetic adaptation. Light pollution interferes with biological rhythms, influences behaviors, fragments habitats, and alters predation risk and resource abundance, which changes the diversity and spatiotemporal distribution of species and, hence, the structure and function of urban ecosystems. Furthermore, light pollution interacts with other urban disturbances, which can exacerbate negative effects on species. Given the rapid growth of urban areas and light pollution and the importance of healthy urban ecosystems for human wellbeing, more research is needed on the impacts of light pollution on species and the consequences for urban ecosystems.
Collapse
Affiliation(s)
- Ulrika Candolin
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
Zhou D, Deng Y, Wei X, Li T, Li Z, Wang S, Jiang Y, Liu W, Luo B, Feng J. Behavioral responses of cave-roosting bats to artificial light of different spectra and intensities: Implications for lighting management strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170339. [PMID: 38278253 DOI: 10.1016/j.scitotenv.2024.170339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/26/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Artificial light at night has become an emerging environmental pollutant, posing a serious threat to biodiversity. Cave-roosting animals are vulnerable to light pollution due to long-term adaptation to nocturnal niches, and the problem is especially severe in the context of cave tourism and limestone mining. Mitigating the adverse impacts of artificial light on cave-dwelling animals presents a challenge. This study aimed to assess the relative contributions of spectral parameters and light intensity to the emergence behavior of nine cave-roosting bat species: Rhinolophus macrotis, Rhinolophus pearsonii, Rhinolophus rex, Rhinolophus pusillus, Rhinolophus siamensis, Rhinolophus sinicus, Hipposideros armiger, Myotis davidii, and Miniopterus fuliginosus. We manipulated light spectra and intensities through light-emitting diode (LED) lighting and gel filters at the entrance of bat roost. We monitored nightly passes per species to quantify bat emergence under the dark control and ten lighting conditions (blue, green, yellow, red, and white light at high and low intensities) using ultrasonic recording. Our analyses showed that the number of bat passes tended to be reduced in the presence of white, green, and yellow light, independent of light intensity. In contrast, the number of bat passes showed no pronounced differences under the dark control, blue light, and red light. The number of bat passes was primarily affected by LED light's blue component, red component, peak wavelength, and half-width instead of light intensity. These results demonstrate that spectral parameters of LED light can significantly affect emergence behavior of cave-dwelling bats. Our findings highlight the importance of manipulating light colors to reduce the negative impacts of light pollution on cave-roosting bats as a function of their spectral sensitivity. We recommend the use of gel filters to manage existing artificial lighting systems at the entrance of bat-inhabited caves.
Collapse
Affiliation(s)
- Daying Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China; Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong 637000, China
| | - Yingchun Deng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Xinyi Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Taohong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Ziyi Li
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Sirui Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Yunke Jiang
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Wenqin Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Bo Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China; Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong 637000, China.
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China; College of Life Science, Jilin Agricultural University, 2888 Xincheng street, Changchun 130118, China.
| |
Collapse
|
41
|
Trigos-Peral G, Maák IE, Schmid S, Chudzik P, Czaczkes TJ, Witek M, Casacci LP, Sánchez-García D, Lőrincz Á, Kochanowski M, Heinze J. Urban abiotic stressors drive changes in the foraging activity and colony growth of the black garden ant Lasius niger. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170157. [PMID: 38242447 DOI: 10.1016/j.scitotenv.2024.170157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Changes in habitat characteristics are known to have profound effects on biotic communities and their functional traits. In the context of an urban-rural gradient, urbanisation drastically alters abiotic characteristics, e.g., by increasing environmental temperatures and through light pollution. These abiotic changes significantly impact the functional traits of organisms, particularly insects. Furthermore, changes in habitat characteristics also drive changes in the behavioural traits of animals, allowing them to adapt and thrive in new environments. In our study, we focused on the synanthropic ant species Lasius niger as a model organism. We conducted nocturnal field observations and complemented them with laboratory experiments to investigate the influence of night warming (NW) associated with Urban Heat Islands (UHI), light pollution (ALAN), and habitat type on ant foraging behaviour. In addition, we investigated the influence of elevated temperatures on brood development and worker mortality. Our findings revealed that urban populations of L. niger were generally more active during the night compared to their rural counterparts, although the magnitude of this difference varied with specific city characteristics. In laboratory settings, higher temperatures and continuous illumination were associated with increased activity level in ants, again differing between urban and rural populations. Rural ants exhibited more locomotion compared to their urban counterparts when maintained under identical conditions, which might enable them to forage more effectively in a potentially more challenging environment. High temperatures decreased the developmental time of brood from both habitat types and increased worker mortality, although rural colonies were more strongly affected. Overall, our study provides novel insights into the influence of urban environmental stressors on the foraging activity pattern and colony development of ants. Such stressors can be important for the establishment and spread of synanthropic ant species, including invasive ones, and the biotic homogenization of anthropogenic ecosystems.
Collapse
Affiliation(s)
- G Trigos-Peral
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland.
| | - I E Maák
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland; University of Szeged, Szeged, Hungary
| | - S Schmid
- University of Regensburg, Regensburg, Germany
| | - P Chudzik
- Han University of Applied Sciences, Nijmegen, Netherlands
| | | | - M Witek
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland
| | - L P Casacci
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - D Sánchez-García
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland
| | - Á Lőrincz
- University of Szeged, Szeged, Hungary
| | | | - J Heinze
- University of Regensburg, Regensburg, Germany
| |
Collapse
|
42
|
Oosthuizen T, Pillay N, Oosthuizen MK. Wild mice in an urbanized world: Effects of light at night under natural and laboratory conditions in the single-striped grass mouse ( Lemniscomys rosalia). Chronobiol Int 2024; 41:347-355. [PMID: 38353271 DOI: 10.1080/07420528.2024.2317284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024]
Abstract
Urbanization, and the accompanying artificial light at night (ALAN), can disrupt the activity of animals. Such disruptions at the base of a food web can ripple through the ecosystem. Most studies of ALAN are performed in the laboratory. Thus, we lack basic information about the circadian responses of animals under natural environmental conditions to fully evaluate the impact of ALAN. We studied the behaviour and activity of wild-caught, peri-urban single-striped grass mice (Lemniscomys rosalia) under a natural treatment and in a standard laboratory treatment, including dim light at night to mimic conditions that they could experience. The species exhibited predominantly crepuscular activity under all experimental treatments. It showed the highest level of activity under the natural treatment, whereas ALAN significantly suppressed its activity. Males were more active than females under all experimental treatments. The marked changes in activity under ALAN is of particular concern since global change in combination with urbanization can lead to a change in vegetation density and composition that will decrease the number of suitable microhabitats and expose small mammals to novel habitat changes. We suggest that the single-striped mice could become vulnerable because of urbanization, leading to impacts on its ecosystem broadly.
Collapse
Affiliation(s)
- Tasha Oosthuizen
- School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Maria K Oosthuizen
- School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Johannesburg, South Africa
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
- Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
43
|
Harrington S. Shifting landscapes: The environmental impact of urbanisation on childhood myopia, obesity and diabetes. Ophthalmic Physiol Opt 2024; 44:237-240. [PMID: 38078538 DOI: 10.1111/opo.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024]
Affiliation(s)
- Síofra Harrington
- School of Physics, Clinical, and Optometric Sciences and Centre for Eye Research Ireland, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
44
|
Levy K, Barnea A, Tauber E, Ayali A. Crickets in the spotlight: exploring the impact of light on circadian behavior. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:267-279. [PMID: 38252321 PMCID: PMC10994875 DOI: 10.1007/s00359-023-01686-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Crickets serve as a well-established model organism in biological research spanning various fields, such as behavior, physiology, neurobiology, and ecology. Cricket circadian behavior was first reported over a century ago and prompted a wealth of studies delving into their chronobiology. Circadian rhythms have been described in relation to fundamental cricket behaviors, encompassing stridulation and locomotion, but also in hormonal secretion and gene expression. Here we review how changes in illumination patterns and light intensity differentially impact the different cricket behaviors as well as circadian gene expression. We further describe the cricket's circadian pacemaker. Ample anatomical manipulations support the location of a major circadian pacemaker in the cricket optic lobes and another in the central brain, possibly interconnected via signaling of the neuropeptide PDF. The cricket circadian machinery comprises a molecular cascade based on two major transcriptional/translational negative feedback loops, deviating somewhat from the canonical model of Drosophila and emphasizing the significance of exploring alternative models. Finally, the nocturnal nature of crickets has provided a unique avenue for investigating the repercussions of artificial light at night on cricket behavior and ecology, underscoring the critical role played by natural light cycles in synchronizing cricket behaviors and populations, further supporting the use of the cricket model in the study of the effects of light on insects. Some gaps in our knowledge and challenges for future studies are discussed.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, 6997801, Tel-Aviv, Israel.
| | - Anat Barnea
- Department of Natural Sciences, The Open University of Israel, 4353701, Ra'anana, Israel
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, 3103301, Haifa, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, 6997801, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel-Aviv, Israel.
| |
Collapse
|
45
|
Mendoza H, López-Pérez AM, Rubio AV, Barrón-Rodríguez JJ, Mazari-Hiriart M, Pontifes PA, Dirzo R, Suzán G. Association between anthropization and rodent reservoirs of zoonotic pathogens in Northwestern Mexico. PLoS One 2024; 19:e0298976. [PMID: 38386681 PMCID: PMC10883555 DOI: 10.1371/journal.pone.0298976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
The world is facing a major pulse of ecological and social changes that may favor the risk of zoonotic outbreaks. Such risk facilitation may occur through the modification of the host's community diversity and structure, leading to an increase in pathogen reservoirs and the contact rate between these reservoirs and humans. Here, we examined whether anthropization alters the relative abundance and richness of zoonotic reservoir and non-reservoir rodents in three Socio-Ecological Systems. We hypothesized that anthropization increases the relative abundance and richness of rodent reservoirs while decreasing non-reservoir species. We first developed an Anthropization index based on 15 quantitative socio-ecological variables classified into five groups: 1) Vegetation type, 2) Urbanization degree, 3) Water quality, 4) Potential contaminant sources, and 5) Others. We then monitored rodent communities in three regions of Northwestern Mexico (Baja California, Chihuahua, and Sonora). A total of 683 rodents of 14 genera and 27 species were captured, nine of which have been identified as reservoirs of zoonotic pathogens (359 individuals, 53%). In all regions, we found that as anthropization increased, the relative abundance of reservoir rodents increased; in contrast, the relative abundance of non-reservoir rodents decreased. In Sonora, reservoir richness increased with increasing anthropization, while in Baja California and Chihuahua non-reservoir richness decreased as anthropization increased. We also found a significant positive relationship between the anthropization degree and the abundance of house mice (Mus musculus) and deer mice (Peromyscus maniculatus), the most abundant reservoir species in the study. These findings support the hypothesis that reservoir species of zoonotic pathogens increase their abundance in disturbed environments, which may increase the risk of pathogen exposure to humans, while anthropization creates an environmental filtering that promotes the local extinction of non-reservoir species.
Collapse
Affiliation(s)
- Hugo Mendoza
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Andrés M. López-Pérez
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, United States of America
- Red de Biología y Conservación de Vertebrados, Instituto de Ecología A.C., Xalapa, México
| | - André V. Rubio
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Julio J. Barrón-Rodríguez
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marisa Mazari-Hiriart
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Paulina A. Pontifes
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
- MIVEGEC Unit, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Rodolfo Dirzo
- Departments of Biology and Earth Systems Science, Stanford University, Stanford, CA, United States of America
| | - Gerardo Suzán
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
46
|
McTigue LE, Lassiter EV, Shaw M, Johansson E, Wilson K, DeGregorio BA. Does daily activity overlap of seven mesocarnivores vary based on human development? PLoS One 2024; 19:e0288477. [PMID: 38206932 PMCID: PMC10783707 DOI: 10.1371/journal.pone.0288477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/27/2023] [Indexed: 01/13/2024] Open
Abstract
Many species of wildlife alter their daily activity patterns in response to co-occurring species as well as the surrounding environment. Often smaller or subordinate species alter their activity patterns to avoid being active at the same time as larger, dominant species to avoid agonistic interactions. Human development can complicate interspecies interactions, as not all wildlife respond to human activity in the same manner. While some species may change the timing of their activity to avoid being active when humans are, others may be unaffected or may benefit from being active at the same time as humans to reduce predation risk or competition. To further explore these patterns, we used data from a coordinated national camera-trapping program (Snapshot USA) to explore how the activity patterns and temporal activity overlap of a suite of seven widely co-occurring mammalian mesocarnivores varied along a gradient of human development. Our focal species ranged in size from the large and often dominant coyote (Canis latrans) to the much smaller and subordinate Virginia opossum (Didelphis virginiana). Some species changed their activity based on surrounding human development. Coyotes were most active at night in areas of high and medium human development. Red fox (Vulpes vulpes) were more active at dusk in areas of high development relative to areas of low or medium development. However, because most species were primarily nocturnal regardless of human development, temporal activity overlap was high between all species. Only opossum and raccoon (Procyon lotor) showed changes in activity overlap with high overlap in areas of low development compared to areas of moderate development. Although we found that coyotes and red fox altered their activity patterns in response to human development, our results showed that competitive and predatory pressures between these seven widespread generalist species were insufficient to cause them to substantially alter their activity patterns.
Collapse
Affiliation(s)
- Leah E. McTigue
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States of America
| | - Ellery V. Lassiter
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States of America
| | - Mike Shaw
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States of America
| | - Emily Johansson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States of America
| | - Ken Wilson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States of America
| | - Brett A. DeGregorio
- U.S. Geological Survey, Arkansas Cooperative Fish and Wildlife Research Unit, Fayetteville, AR, United States of America
| |
Collapse
|
47
|
Chen M, Zhao Y, Lu Q, Ye Z, Bai A, Xie Z, Zhang D, Jiang Y. Artificial light at night and risk of depression: a systematic review and meta-analysis. Environ Health Prev Med 2024; 29:73. [PMID: 39721676 DOI: 10.1265/ehpm.24-00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Artificial light at night (ALAN) has been increasingly recognized as a potential environmental risk factor for mental health issues. However, no meta-analyses have been conducted to summarize the findings. This study aimed to evaluate the pooled associations between outdoor and indoor ALAN exposures and the risk of depression. METHODS Adhering to the PRISMA guideline, we conducted systematic searches across PubMed, Web of Science, EMBASE, Cochrane, and Ovid databases for studies published before May 1st, 2024. RESULTS A total of 7 studies (5 for outdoor ALAN and 2 for indoor ALAN) with a combined total of 560,219 participants were included in the meta-analysis. Specifically, a 1 nW/cm2/sr increase in outdoor ALAN was associated with a 0.43% (95% CI: 0.21%, 0.65%) increase in depression risk. Meanwhile, a 1 lux increase in indoor ALAN was associated with a 3.29% (95% CI: 0.85%, 5.79%) increase in depression risk. No potential heterogeneity was observed for outdoor ALAN exposure and indoor ALAN exposure. Subgroup analyses for outdoor ALAN indicated that development level, sample size, age group, sex, study design, modality of depression assessment, or adjustment of sleep-related variables in models may not be potential sources of heterogeneity. Sensitivity analyses confirmed the robustness of the findings, while evidence of publication bias was observed for studies on outdoor ALAN. CONCLUSIONS Our findings suggest that both outdoor and indoor ALAN exposures are associated with increased risk of depression. These results underscore the importance of considering outdoor and indoor ALAN in public health strategies aimed at reducing depression risk. Nevertheless, further studies with prospective design are still warranted considering the limited study numbers.
Collapse
Affiliation(s)
- Manman Chen
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yuankai Zhao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Qu Lu
- School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Zichen Ye
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Anying Bai
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Zhilan Xie
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Daqian Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yu Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College
- School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|
48
|
Botté A, Payton L, Lefeuvre E, Tran D. Is part-night lighting a suitable mitigation strategy to limit Artificial Light at Night effects on the biological rhythm at the behavioral and molecular scales of the oyster Crassostrea gigas? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167052. [PMID: 37714354 DOI: 10.1016/j.scitotenv.2023.167052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Artificial Light at Night (ALAN) is a fast-spreading threat to organisms, especially in coastal environments, where night lighting is increasing due to constant anthropization. Considering that ALAN affects a large diversity of coastal organisms, finding efficient solutions to limit these effects is of great importance but poorly investigated. The potential benefit of one strategy, in particular, should be studied since its use is growing: part-night lighting (PNL), which consists in switching off the lights for a few hours during nighttime. The aim of this study is to investigate the positive potential of the PNL strategy on the daily rhythm of the oyster Crassostrea gigas, a key species of coastal areas of ecological and commercial interest. Oysters were exposed to a control condition and three different ALAN modalities. A realistic PNL condition is applied, recreating a strategy of city policy in a coastal city boarding an urbanized bay (Lanton, Arcachon Bay, France). The PNL modality consists in switching off ALAN direct sources (5 lx) for 4 h (23-3 h) during which oysters are in darkness. Then, a PNL + skyglow (PNL + S) modality reproduces the previous one mimicking a skyglow (0.1 lx), an indirect ALAN source, during the direct lighting switch off, to get as close as possible to realistic conditions. Finally, the third ALAN condition mimics full-night direct lighting (FNL). Results revealed that PNL reduces some adverse effects of FNL on the behavioral daily rhythm. But, counterintuitively, PNL + S appears more harmful than FNL for some parameters of the behavioral daily rhythm. PNL + S modality is also the only one that affect oysters' clock and melatonin synthesis gene expression, suggesting physiological consequences. Thus, in realistic conditions, the PNL mitigation strategy might not be beneficial in the presence of skyglow, seeing worse for a coastal organism such as the oysters.
Collapse
Affiliation(s)
- Audrey Botté
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France
| | - Laura Payton
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France
| | - Elisa Lefeuvre
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France
| | - Damien Tran
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France.
| |
Collapse
|
49
|
Evans DM. Mitigating the impacts of street lighting on biodiversity and ecosystem functioning. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220355. [PMID: 37899015 PMCID: PMC10613540 DOI: 10.1098/rstb.2022.0355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/07/2023] [Indexed: 10/31/2023] Open
Abstract
Street lights are not only a major source of direct light pollution emissions, but stock has been transitioning to light-emitting diode (LED) technology in many parts of the world, resulting in increases in the blue part of the visible spectrum that is more harmful to biodiversity and human health. But LEDs can be modified more easily than conventional sodium lamps by adjusting their intensity, spectral output and other features of street light systems. In this Opinion piece, I provide an updated overview of street light mitigation strategies and contend that research in this area has been slow. I show how experimental lighting rigs that mimic real street lights can be used for mitigation testing, since invertebrate behaviour, abundances and interactions can respond quickly and measurably. I demonstrate how advances in network ecology that use species interaction data can provide much-needed assessments of the impacts of street lights on biodiversity and ecosystem functioning, and ultimately provide new tools and metrics for biomonitoring. I acknowledge the limitations of measuring local, short-term responses of biodiversity and identify promising avenues for collaborating with industry and government agencies in new or existing road lighting schemes, to minimize the negative long-term impacts at marginal cost. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Darren M. Evans
- School of Natural and Environmental Sciences, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
50
|
Hirt MR, Evans DM, Miller CR, Ryser R. Light pollution in complex ecological systems. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220351. [PMID: 37899008 PMCID: PMC10613538 DOI: 10.1098/rstb.2022.0351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Light pollution has emerged as a burgeoning area of scientific interest, receiving increasing attention in recent years. The resulting body of literature has revealed a diverse array of species-specific and context-dependent responses to artificial light at night (ALAN). Because predicting and generalizing community-level effects is difficult, our current comprehension of the ecological impacts of light pollution on complex ecological systems remains notably limited. It is critical to better understand ALAN's effects at higher levels of ecological organization in order to comprehend and mitigate the repercussions of ALAN on ecosystem functioning and stability amidst ongoing global change. This theme issue seeks to explore the effects of light pollution on complex ecological systems, by bridging various realms and scaling up from individual processes and functions to communities and networks. Through this integrated approach, this collection aims to shed light on the intricate interplay between light pollution, ecological dynamics and humans in a world increasingly impacted by anthropogenic lighting. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Myriam R. Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| | - Darren M. Evans
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 4LB, UK
| | - Colleen R. Miller
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
- Cornell Laboratory of Ornithology, Ithaca, NY, 14850, USA
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| |
Collapse
|