1
|
Topanotti LR, Fuchs JM, Albert M, Schick J, Penanhoat A, Lu JZ, Pérez CAR, Foltran EC, Appleby S, Wildermuth B, Stuckenberg T, Likulunga LE, Glatthorn J, Schuldt A, Polle A, Balkenhol N, Scheu S, Ammer C, Paul C, Guerrero-Ramírez N. Enhancing economic multifunctionality without compromising multidiversity and ecosystem multifunctionality via forest enrichment. SCIENCE ADVANCES 2024; 10:eadp6566. [PMID: 39441929 PMCID: PMC11498224 DOI: 10.1126/sciadv.adp6566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Enriching tree species-poor and less productive forests by introducing economically valuable species is a strategy proposed for achieving multipurpose forest management. However, empirical evidence from managed and mature forests on the impact of this enrichment on ecological (multidiversity and ecosystem multifunctionality) and economic dimensions remains scarce, particularly when nonnative species are used. Here, we propose and test a framework that integrates economic multifunctionality, encompassing timber production-oriented goals and resistance against disturbances, with multidiversity and ecosystem multifunctionality in European beech forest stands enriched with conifers. Our results show that enriched beech forest stands (~80 years old) can provide high levels of economic multifunctionality without compromising multidiversity and ecosystem multifunctionality. In comparison to pure beech stands, enriched stands with Douglas-fir supported win-win-win situations for these three dimensions. Our findings contribute to the discussion of integrating biodiversity, ecosystem, and economic functions, providing empirical evidence for future forest management.
Collapse
Affiliation(s)
- Larissa Regina Topanotti
- Department of Forest Economics and Sustainable Land-Use Planning, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
- Universidade Federal de Santa Catarina, Divisão de Atividades Agropecuárias, Campus Curitibanos, Rodovia Ulysses Gaboardi km 03, 89520-000 Curitibanos, Brazil
| | - Jasper M. Fuchs
- Department of Forest Economics and Sustainable Land-Use Planning, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
- Forest Resources Management, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Matthias Albert
- Department of Forest Growth, Northwest German Forest Research Institute, Grätzelstr. 2, 37079 Göttingen, Germany
| | - Jan Schick
- Department of Forest Growth, Northwest German Forest Research Institute, Grätzelstr. 2, 37079 Göttingen, Germany
- Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 5, 37077 Göttingen, Germany
| | - Alice Penanhoat
- Department of Spatial Structures and Digitization of Forests, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
- Department of Silviculture and Forest Ecology of Temperate Zones, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| | - Jing-Zhong Lu
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | - Carmen Alicia Rivera Pérez
- Department of Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Biodiversity and Evolution of Plants, Institute of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstr. 114-118, 26129 Oldenburg, Germany
| | - Estela Covre Foltran
- French National Institute for Agriculture, Food and Environment (INRAE), 33140 Villenave-d’Ornon, Bordeaux, France
| | - Scott Appleby
- Department of Wildlife Sciences, University of Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - Benjamin Wildermuth
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
- Institute of Ecology and Evolution, University of Jena, Dornburger Str. 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany
| | - Thalea Stuckenberg
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | - Likulunga Emmanuel Likulunga
- Department of Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Biological Sciences Department, University of Zambia, Great East Road Campus, 32379 Lusaka, Zambia
| | - Jonas Glatthorn
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Andreas Schuldt
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - Andrea Polle
- Department of Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| | - Niko Balkenhol
- Department of Wildlife Sciences, University of Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| | - Christian Ammer
- Department of Silviculture and Forest Ecology of Temperate Zones, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| | - Carola Paul
- Department of Forest Economics and Sustainable Land-Use Planning, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| | - Nathaly Guerrero-Ramírez
- Department of Silviculture and Forest Ecology of Temperate Zones, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| |
Collapse
|
2
|
Muise ER, Andrew ME, Coops NC, Hermosilla T, Burton AC, Ban SS. Disentangling linkages between satellite-derived indicators of forest structure and productivity for ecosystem monitoring. Sci Rep 2024; 14:13717. [PMID: 38877188 PMCID: PMC11178816 DOI: 10.1038/s41598-024-64615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
The essential biodiversity variables (EBV) framework has been proposed as a monitoring system of standardized, comparable variables that represents a minimum set of biological information to monitor biodiversity change at large spatial extents. Six classes of EBVs (genetic composition, species populations, species traits, community composition, ecosystem structure and ecosystem function) are defined, a number of which are ideally suited to observation and monitoring by remote sensing systems. We used moderate-resolution remotely sensed indicators representing two ecosystem-level EBV classes (ecosystem structure and function) to assess their complementarity and redundancy across a range of ecosystems encompassing significant environmental gradients. Redundancy analyses found that remote sensing indicators of forest structure were not strongly related to indicators of ecosystem productivity (represented by the Dynamic Habitat Indices; DHIs), with the structural information only explaining 15.7% of the variation in the DHIs. Complex metrics of forest structure, such as aboveground biomass, did not contribute additional information over simpler height-based attributes that can be directly estimated with light detection and ranging (LIDAR) observations. With respect to ecosystem conditions, we found that forest types and ecosystems dominated by coniferous trees had less redundancy between the remote sensing indicators when compared to broadleaf or mixed forest types. Likewise, higher productivity environments exhibited the least redundancy between indicators, in contrast to more environmentally stressed regions. We suggest that biodiversity researchers continue to exploit multiple dimensions of remote sensing data given the complementary information they provide on structure and function focused EBVs, which makes them jointly suitable for monitoring forest ecosystems.
Collapse
Affiliation(s)
- Evan R Muise
- Department of Forest Resource Management, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Margaret E Andrew
- Centre for Terrestrial Ecosystem Science and Sustainability, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
| | - Nicholas C Coops
- Department of Forest Resource Management, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Txomin Hermosilla
- Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
| | - A Cole Burton
- Department of Forest Resource Management, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Stephen S Ban
- BC Parks, Ministry of Environment and Climate Change Strategy, Stn Prov Govt, PO Box 9360, Victoria, BC, V8V 9M2, Canada
| |
Collapse
|
3
|
Dagostin F, Tagliapietra V, Marini G, Ferrari G, Cervellini M, Wint W, Alexander NS, Zuccali MG, Molinaro S, Fiorito N, Dub T, Rocchini D, Rizzoli A. High habitat richness reduces the risk of tick-borne encephalitis in Europe: A multi-scale study. One Health 2024; 18:100669. [PMID: 38283833 PMCID: PMC10820641 DOI: 10.1016/j.onehlt.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Background The natural transmission cycle of tick-borne encephalitis (TBE) virus is enhanced by complex interactions between ticks and key hosts strongly connected to habitat characteristics. The diversity of wildlife host species and their relative abundance is known to affect transmission of tick-borne diseases. Therefore, in the current context of global biodiversity loss, we explored the relationship between habitat richness and the pattern of human TBE cases in Europe to assess biodiversity's role in disease risk mitigation. Methods We assessed human TBE case distribution across 879 European regions using official epidemiological data reported to The European Surveillance System (TESSy) between 2017 and 2021 from 15 countries. We explored the relationship between TBE presence and the habitat richness index (HRI1) by means of binomial regression. We validated our findings at local scale using data collected between 2017 and 2021 in 227 municipalities located in Trento and Belluno provinces, two known TBE foci in northern Italy. Findings Our results showed a significant parabolic effect of HRI on the probability of presence of human TBE cases in the European regions included in our dataset, and a significant, negative effect of HRI on the local presence of TBE in northern Italy. At both spatial scales, TBE risk decreases in areas with higher values of HRI. Interpretation To our knowledge, no efforts have yet been made to explore the relationship between biodiversity and TBE risk, probably due to the scarcity of high-resolution, large-scale data about the abundance or density of critical host species. Hence, in this study we considered habitat richness as proxy for vertebrate host diversity. The results suggest that in highly diverse habitats TBE risk decreases. Hence, biodiversity loss could enhance TBE risk for both humans and wildlife. This association is relevant to support the hypothesis that the maintenance of highly diverse ecosystems mitigates disease risk.
Collapse
Affiliation(s)
- Francesca Dagostin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Valentina Tagliapietra
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Giulia Ferrari
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Marco Cervellini
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- School of Biosciences and Veterinary Medicine, Plant Diversity and Ecosystems Management Unit, University of Camerino, Italy
| | - William Wint
- Environmental Research Group Oxford Ltd, c/o Dept Biology, Oxford, United Kingdom
| | - Neil S. Alexander
- Environmental Research Group Oxford Ltd, c/o Dept Biology, Oxford, United Kingdom
| | | | | | | | - Timothée Dub
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Duccio Rocchini
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Department of Spatial Sciences, Faculty of Environmental Sciences, Czech University of Life, Czech Republic
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
4
|
Trepel J, le Roux E, Abraham AJ, Buitenwerf R, Kamp J, Kristensen JA, Tietje M, Lundgren EJ, Svenning JC. Meta-analysis shows that wild large herbivores shape ecosystem properties and promote spatial heterogeneity. Nat Ecol Evol 2024; 8:705-716. [PMID: 38337048 DOI: 10.1038/s41559-024-02327-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Megafauna (animals ≥45 kg) have probably shaped the Earth's terrestrial ecosystems for millions of years with pronounced impacts on biogeochemistry, vegetation, ecological communities and evolutionary processes. However, a quantitative global synthesis on the generality of megafauna effects on ecosystems is lacking. Here we conducted a meta-analysis of 297 studies and 5,990 individual observations across six continents to determine how wild herbivorous megafauna influence ecosystem structure, ecological processes and spatial heterogeneity, and whether these impacts depend on body size and environmental factors. Despite large variability in megafauna effects, we show that megafauna significantly alter soil nutrient availability, promote open vegetation structure and reduce the abundance of smaller animals. Other responses (14 out of 26), including, for example, soil carbon, were not significantly affected. Further, megafauna significantly increase ecosystem heterogeneity by affecting spatial heterogeneity in vegetation structure and the abundance and diversity of smaller animals. Given that spatial heterogeneity is considered an important driver of biodiversity across taxonomic groups and scales, these results support the hypothesis that megafauna may promote biodiversity at large scales. Megafauna declined precipitously in diversity and abundance since the late Pleistocene, and our results indicate that their restoration would substantially influence Earth's terrestrial ecosystems.
Collapse
Affiliation(s)
- Jonas Trepel
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus C, Denmark.
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark.
- Department of Conservation Biology, University of Göttingen, Göttingen, Germany.
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark.
| | - Elizabeth le Roux
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus C, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Andrew J Abraham
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus C, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Robert Buitenwerf
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus C, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Johannes Kamp
- Department of Conservation Biology, University of Göttingen, Göttingen, Germany
| | - Jeppe A Kristensen
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus C, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Melanie Tietje
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Erick J Lundgren
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus C, Denmark.
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark.
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark.
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus C, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
5
|
Deng W, Bai NE, Qi FL, Yang XY, She R, Xiao W. Temporal dynamics of the microbial heterogeneity-diversity relationship in microcosmic systems. Oecologia 2024; 204:35-46. [PMID: 38070053 DOI: 10.1007/s00442-023-05484-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/14/2023] [Indexed: 02/02/2024]
Abstract
Spatial heterogeneity significantly enhances biodiversity, representing one of the ecology's most enduring paradigms. However, many studies have found decreasing, humped, and neutral correlations between spatial heterogeneity and biodiversity (heterogeneity-diversity relationships, HDR). These findings have pushed this widely accepted theory back into controversy. Microbial HDR research has lagged compared to that of plants and animals. Nevertheless, microbes have features that add a temporal-scale perspective to HDR research that is critical to understanding patterns of HDR. In this study, 157 microcosms with different types spatial heterogeneity were set up to map the HDR of microorganisms and their temporal dynamics using high-throughput sequencing techniques. The results show that the following: 1. Spatial heterogeneity can significantly alter microbial diversity in microcosmic systems. Changes in microbial diversity, in turn, lead to changes in environmental conditions. These changes caused microorganisms to exhibit increasing, decreasing, humped, U-shaped, and neutral HDR patterns. 2. The emergence of HDR patterns is characterized by temporal dynamics. Additionally, the HDR patterns generated by spatial structural and compositional heterogeneity exhibit inconsistent emergence times. These results suggest that the temporal dynamics of HDR may be one of the reasons for the coexistence of multiple patterns in previous studies. The feedback regulation between spatial heterogeneity-biodiversity-environmental conditions is an essential reason for the temporally dynamics of HDR patterns. All future ecological studies should pay attention to the temporal dynamic patterns of ecological factors.
Collapse
Affiliation(s)
- Wei Deng
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, China
| | - Nong-En Bai
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, China
| | - Fu-Liang Qi
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, China
| | - Xiao-Yan Yang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, China
- International Centre of Biodiversity and Primates Conservation, Dali, Yunnan, China
| | - Rong She
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China.
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, China.
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, China.
- International Centre of Biodiversity and Primates Conservation, Dali, Yunnan, China.
- Yunling Black-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali, 761003, China.
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China.
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, China.
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, China.
- International Centre of Biodiversity and Primates Conservation, Dali, Yunnan, China.
- Yunling Black-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali, 761003, China.
| |
Collapse
|
6
|
Ray T, Delory BM, Beugnon R, Bruelheide H, Cesarz S, Eisenhauer N, Ferlian O, Quosh J, von Oheimb G, Fichtner A. Tree diversity increases productivity through enhancing structural complexity across mycorrhizal types. SCIENCE ADVANCES 2023; 9:eadi2362. [PMID: 37801499 PMCID: PMC10558120 DOI: 10.1126/sciadv.adi2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Tree species diversity and mycorrhizal associations play a central role for forest productivity, but factors driving positive biodiversity-productivity relationships remain poorly understood. In a biodiversity experiment manipulating tree diversity and mycorrhizal associations, we examined the roles of above- and belowground processes in modulating wood productivity in young temperate tree communities and potential underlying mechanisms. We found that tree species richness, but not mycorrhizal associations, increased forest productivity by enhancing aboveground structural complexity within communities. Structurally complex communities were almost twice as productive as structurally simple stands, particularly when light interception was high. We further demonstrate that overyielding was largely explained by positive net biodiversity effects on structural complexity with functional variation in shade tolerance and taxonomic diversity being key drivers of structural complexity in mixtures. Consideration of stand structural complexity appears to be a crucial element in predicting carbon sequestration in the early successional stages of mixed-species forests.
Collapse
Affiliation(s)
- Tama Ray
- Institute of General Ecology and Environmental Protection, Technische Universität Dresden, Tharandt, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Benjamin M. Delory
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig Institute for Meteorology, Universität Leipzig, Stephanstraße 3, 04103 Leipzig, Germany
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919, route de Mende, F-34293 Montpellier Cedex 5, France
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Julius Quosh
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, Technische Universität Dresden, Tharandt, Germany
| | - Andreas Fichtner
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| |
Collapse
|
7
|
Wildermuth B, Dönges C, Matevski D, Penanhoat A, Seifert CL, Seidel D, Scheu S, Schuldt A. Tree species identity, canopy structure and prey availability differentially affect canopy spider diversity and trophic composition. Oecologia 2023; 203:37-51. [PMID: 37709958 PMCID: PMC10615988 DOI: 10.1007/s00442-023-05447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Forest canopies maintain a high proportion of arthropod diversity. The drivers that structure these communities, however, are poorly understood. Therefore, integrative research connecting tree species identity and environmental stand properties with taxonomic and functional community composition of canopy arthropods is required. In this study, we investigated how the taxonomic, functional and trophic composition of arboreal spider communities is affected by tree species composition and associated differences in canopy structure and prey availability in temperate forests. We sampled canopy spiders as well as their potential prey using insecticidal fogging in monospecific and mixed stands of native European beech, native Norway spruce and non-native Douglas fir. Trophic metrics were obtained from stable isotope analysis and structural canopy properties were assessed with mobile laser scanning. Monospecific native spruce stands promoted local canopy spider abundance and diversity, but native beech and beech-conifer mixtures had the highest diversity at landscape scale. Spider community composition differed between monospecific stands, with broadleaf-conifer mixtures mitigating these differences. Irrespective of tree species identity, spider abundance, taxonomic diversity, functional richness and isotopic richness increased in structurally heterogeneous canopies with high prey abundances, but functional evenness and trophic divergence decreased. Our study shows that canopy spiders are differentially affected by tree species identity, canopy structure and prey availability. Broadleaf-conifer mixtures mitigated negative effects of (non-native) conifers, but positive mixture effects were only evident at the landscape scale. Structurally heterogeneous canopies promoted the dominance of only specific trait clusters. This indicates that intermediate heterogeneity might result in high stability of ecological communities.
Collapse
Affiliation(s)
- Benjamin Wildermuth
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany.
| | - Clemens Dönges
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
| | - Dragan Matevski
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
- Animal Ecology, Leuphana University Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Alice Penanhoat
- Department for Spatial Structures and Digitization of Forests, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Carlo L Seifert
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
| | - Dominik Seidel
- Department for Spatial Structures and Digitization of Forests, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Stefan Scheu
- Animal Ecology Group, JF Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Andreas Schuldt
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| |
Collapse
|
8
|
Seliger A, Ammer C, Kreft H, Zerbe S. Changes of vegetation in coniferous monocultures in the context of conversion to mixed forests in 30 years - Implications for biodiversity restoration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118199. [PMID: 37244102 DOI: 10.1016/j.jenvman.2023.118199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
The understorey vegetation of temperate forests harbours a major proportion of terrestrial biodiversity and fulfills an important role in ecosystem functioning. Over the past decades, temperate forest understoreys were found to change in species diversity and composition due to several anthropogenic and natural drivers. Currently, the conversion and restoration of even-aged coniferous monocultures into more diverse and mixed broad-leaved forests are major objectives of sustainable forest management in Central Europe. This forest conversion alters understorey communities and abiotic site conditions but the underlying patterns and processes are not yet fully understood. Therefore, we investigated changes in the Bavarian Spessart mountains in southwest Germany, where we re-sampled 108 semi-permanent plots from four different coniferous stand types (i.e., Norway spruce, Scots pine, Douglas fir, European larch) about 30 years after the initial assessment. On these plots, we recorded understorey vegetation and forest structure, and derived abiotic site conditions based on ecological indicator values of understorey vegetation, followed by multivariate analysis. We found changes in plant communities that point towards a decrease of soil acidity and a "thermophilization" of forest understoreys. Understorey species richness remained constant, while understorey's Shannon and Simpson diversity increased. The observed changes in forest structure explained the temporal shifts in understorey species composition. The understorey species composition did not experience a significant floristic homogenization since the 1990s. However, plant communities exhibited a reduction in species characteristic of coniferous forests and a simultaneous increase in species associated with broad-leaved forests. The increase of specialist species (closed forests and open sites) may have compensated for the detected decrease in generalist species. We conclude that the forest conversion towards mixed broad-leaved forest in the Spessart mountains of the past decades might have masked homogenization trends that are increasingly reported from Central European forest understoreys.
Collapse
Affiliation(s)
- Alexander Seliger
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Bolzano, Italy; University of Göttingen, Department of Silviculture and Forest Ecology of the Temperate Zones, Faculty of Forest Sciences and Forest Ecology, Göttingen, Germany.
| | - Christian Ammer
- University of Göttingen, Department of Silviculture and Forest Ecology of the Temperate Zones, Faculty of Forest Sciences and Forest Ecology, Göttingen, Germany
| | - Holger Kreft
- University of Göttingen, Department of Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, Göttingen, Germany
| | - Stefan Zerbe
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Bolzano, Italy
| |
Collapse
|
9
|
Wen Z, Yang Q, Huang B, Zhang L, Zheng H, Shen Y, Yang Y, Ouyang Z, Li R. Landscape composition and configuration relatively affect invasive pest and its associator across multiple spatial scales. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1114508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Landscape structures affect pests, depending on compositional heterogeneity (the number and proportions of different habitats), configurational heterogeneity (spatial arrangement of habitats), and spatial scales. However, there is limited information on the relative effects of compositional and configurational heterogeneity on invasive pests and their associates (species that can benefit from invasive pests), and how they vary across spatial scales. In this study, we assayed the invasive pest Bactrocera dorsalis (Hendel) and its associated fly Drosophila melanogaster in 15 landscapes centered on mango orchards. We calculated landscape composition (forest percentage, mango percentage, and Shannon's diversity) and configuration (edge density) using two methods: spatial distance scales and combined scales. Spatial distance scales included buffer rings with radii of 0.5, 1.0, and 1.5 km, and combined scales referred to cutting or not cutting a smaller ring from larger ones. Our results shown that compositional heterogeneity positively affected B. dorsalis and D. melanogaster due to forest cover percentage, whereas configurational heterogeneity with high edge density negative effect on B. dorsalis. Forest cover had less of an effect on B. dorsalis than configurational heterogeneity, but the opposite effect was observed for D. melanogaster. Importantly, the direction and strength of forest cover and configurational heterogeneity to species did not vary with spatial distance scales or spatial combined scales. Thus, compositional and configurational heterogeneity exhibit differential effects on this invasive pest and its associator, and revealed that the relative effects of landscape structures are consistent across multiple scales. These results provide new insights into landscape effects on interconnected species using a diverse spatial-scale approach.
Collapse
|
10
|
Maskell L, Alison J, Forbes N, Jarvis S, Robinson D, Siriwardena G, Wood C, Smart S. Inconsistent relationships between area, heterogeneity and plant species richness in temperate farmed landscapes. OIKOS 2023. [DOI: 10.1111/oik.09720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Neil Forbes
- RSPB, Lancaster Office 7.3.1. Cameron House, White Cross Estate Lancaster UK
| | | | | | | | - Claire Wood
- UK Centre for Ecology & Hydrology Lancaster UK
| | - Simon Smart
- UK Centre for Ecology & Hydrology Lancaster UK
| |
Collapse
|
11
|
Ekholm A, Axelsson P, Hjältén J, Lundmark T, Sjögren J. Short-term effects of continuous cover forestry on forest biomass production and biodiversity: Applying single-tree selection in forests dominated by Picea abies. AMBIO 2022; 51:2478-2495. [PMID: 35661986 PMCID: PMC9584012 DOI: 10.1007/s13280-022-01749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The rotation forestry system provides high biomass production, but could also have a negative impact on species sensitive to disturbance. Continuous cover forestry (CCF) could contribute to solving these conflicting goals, but its feasibility in nutrient limited boreal forests is yet unresolved. In a unique experiment, we simultaneously assessed the short-term effect of single-tree selection on both biomass production and biodiversity (vascular plants, bryophytes, wood-inhabiting fungi), and tested fertilization as a way to mediate growth-biodiversity trade-offs. We found that unharvested stands and stands subjected to single-tree selection had a similar species assemblage of vascular plants, bryophytes, and wood-inhabiting fungi. Fertilization increased growth by 37% and induced shifts in two understory species (favoring the grass Avenella flexuosa and disfavoring the bryophyte Hylocomium splendens). We conclude that single-tree selection may become a useful tool to enhance biodiversity in managed forests.
Collapse
Affiliation(s)
- Adam Ekholm
- Department of Wildlife, Fish, and Environmental Studies, Swedish Univ. of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Petter Axelsson
- Department of Wildlife, Fish, and Environmental Studies, Swedish Univ. of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Joakim Hjältén
- Department of Wildlife, Fish, and Environmental Studies, Swedish Univ. of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Tomas Lundmark
- Department of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Jörgen Sjögren
- Department of Wildlife, Fish, and Environmental Studies, Swedish Univ. of Agricultural Sciences, 901 83 Umeå, Sweden
| |
Collapse
|
12
|
Tew ER, Conway GJ, Henderson IG, Milodowski DT, Swinfield T, Sutherland WJ. Recommendations to enhance breeding bird diversity in managed plantation forests determined using LiDAR. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2678. [PMID: 35588196 PMCID: PMC9787994 DOI: 10.1002/eap.2678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Widespread afforestation is a crucial component of climate mitigation strategies worldwide. This presents a significant opportunity for biodiversity conservation if forests are appropriately managed. Within forests, structural and habitat diversity are known to be critical for biodiversity but pragmatic management recommendations are lacking. We make a comprehensive assessment of the effects of habitat variables on bird populations using data from over 4000 ha of forested landscape. We combine high-resolution remote sensing data with comprehensive management databases to classify habitat attributes and measure the response of six taxonomic and functional diversity metrics: species richness, Shannon diversity, functional richness, functional evenness, functional divergence, and functional dispersion. We use a novel approach that combines hierarchical partitioning analysis with linear models to determine the relative importance of different habitat variables for each bird diversity metric. The age class of forest stands was consistently the most important variable across all bird diversity metrics, outperforming other structural measures such as horizontal and vertical heterogeneity and canopy density. Shrub density and gap fraction were each significantly associated with one bird diversity metric. In contrast, variables describing within-stand structural heterogeneity (vertical and horizontal) were generally less important while tree species identity (e.g., conifer or broadleaved) was not significant for any bird diversity metric. Each of the six bird diversity metrics had different patterns of independent variable importance and significance, emphasizing the need to consider multiple diversity metrics in biodiversity assessments. Similarly, the optimal resolution for remote sensing metrics varied between structural variables and bird diversity metrics, suggesting that the use of remote sensing data in biodiversity studies could be greatly improved by first exploring different resolutions and data aggregations. Based on the results from this comprehensive study, we recommend that managers focus on creating habitat diversity at the between-, rather than exclusively within-stand scale, such as by creating a matrix of different age classes, to maximize bird diversity. This recommendation for forest managers is powerful yet pragmatic in its simplicity.
Collapse
Affiliation(s)
- Eleanor R. Tew
- Department of ZoologyUniversity of Cambridge, The David Attenborough BuildingCambridgeUK
- Forestry EnglandBristolUK
| | | | | | - David T. Milodowski
- School of GeoSciencesUniversity of EdinburghEdinburghUK
- National Centre for Earth ObservationUniversity of EdinburghEdinburghUK
| | - Tom Swinfield
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - William J. Sutherland
- Department of ZoologyUniversity of Cambridge, The David Attenborough BuildingCambridgeUK
- Biosecurity Research Initiative at St Catharine's (BIORISC), St Catharine's CollegeUniversity of CambridgeCambridgeUK
| |
Collapse
|
13
|
Aridity and High Salinity, Rather Than Soil Nutrients, Regulate Nitrogen and Phosphorus Stoichiometry in Desert Plants from the Individual to the Community Level. FORESTS 2022. [DOI: 10.3390/f13060890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The stoichiometric characteristics of plant nitrogen (N) and phosphorus (P) and their correlations with soil properties are regarded as key for exploring plant physiological and ecological processes and predicting ecosystem functions. However, quantitative studies on the relative contributions of water–salt gradients and nutrient gradients to plant stoichiometry are limited. In addition, previous studies have been conducted at the plant species and individual levels, meaning that how community-scale stoichiometry responds to soil properties is still unclear. Therefore, we selected typical sample strips from 13 sampling sites in arid regions to assess the leaf N and P levels of 23 species of desert plants and measure the corresponding soil water content, total salt content, total nitrogen content, and total phosphorus content. The aim was to elucidate the main soil properties that influence the stoichiometric characteristics of desert plants and compare the individual and community responses to those soil properties. Our results indicated that the growth of desert plants is mainly limited by nitrogen, with individual plant leaf nitrogen and phosphorus concentrations ranging from 4.08 to 31.39 mg g−1 and 0.48 to 3.78 mg g−1, respectively. Community stoichiometry was significantly lower than that of individual plants. A significant correlation was observed between the mean N concentration, P concentration, and N:P ratio of plant leaves. At the individual plant scale, aridity significantly reduced leaf N and P concentrations, while high salt content significantly increased leaf N concentrations. At the community scale, aridity had no significant effects on leaf nitrogen or phosphorus stoichiometry, while high salinity significantly increased the leaf N:P ratio and there were no significant interactions between the aridity and salinity conditions. No significant effects of soil nutrient gradients were observed on plant N and P stoichiometric characteristics at the individual or community levels. These results suggest that individual desert plants have lower leaf N and P concentrations to adapt to extreme drought and only adapt to salt stress through higher leaf N concentrations. The N and P stoichiometric characteristics of desert plant communities are not sensitive to variations in aridity and salinity in this extreme habitat. The results of this study could enhance our perceptions of plant adaptation mechanisms to extreme habitats within terrestrial ecosystems.
Collapse
|
14
|
Calderón‐Sanou I, Zinger L, Hedde M, Martinez‐Almoyna C, Saillard A, Renaud J, Gielly L, Khedim N, Lionnet C, Ohlmann M, Consortium O, Münkemüller T, Thuiller W. Energy and physiological tolerance explain multi‐trophic soil diversity in temperate mountains. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Irene Calderón‐Sanou
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - Lucie Zinger
- Département de biologie Institut de Biologie de l’ENS (IBENS) École normale supérieure CNRS INSERM Université PSL Paris France
| | - Mickael Hedde
- Eco&Sols Univ Montpellier CIRAD INRA IRD Montpellier SupAgro Montpellier France
| | - Camille Martinez‐Almoyna
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - Amelie Saillard
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - Julien Renaud
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - Ludovic Gielly
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - Norine Khedim
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
- Univ. Savoie Mont‐Blanc Univ. Grenoble Alpes CNRS EDYTEM Chambéry France
| | - Clement Lionnet
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - Marc Ohlmann
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | | | - Tamara Münkemüller
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - Wilfried Thuiller
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| |
Collapse
|
15
|
Diverse Effects of Climate, Land Use, and Insects on Dung and Carrion Decomposition. Ecosystems 2022. [DOI: 10.1007/s10021-022-00764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractLand-use intensification and climate change threaten ecosystem functions. A fundamental, yet often overlooked, function is decomposition of necromass. The direct and indirect anthropogenic effects on decomposition, however, are poorly understood. We measured decomposition of two contrasting types of necromass, rat carrion and bison dung, on 179 study sites in Central Europe across an elevational climate gradient of 168–1122 m a.s.l. and within both local and regional land uses. Local land-use types included forest, grassland, arable fields, and settlements and were embedded in three regional land-use types (near-natural, agricultural, and urban). The effects of insects on decomposition were quantified by experimental exclusion, while controlling for removal by vertebrates. We used generalized additive mixed models to evaluate dung weight loss and carrion decay rate along elevation and across regional and local land-use types. We observed a unimodal relationship of dung decomposition with elevation, where greatest weight loss occurred between 600 and 700 m, but no effects of local temperature, land use, or insects. In contrast to dung, carrion decomposition was continuously faster with both increasing elevation and local temperature. Carrion reached the final decomposition stage six days earlier when insect access was allowed, and this did not depend on land-use effect. Our experiment identified different major drivers of decomposition on each necromass form. The results show that dung and carrion decomposition are rather robust to local and regional land use, but future climate change and decline of insects could alter decomposition processes and the self-regulation of ecosystems.
Collapse
|
16
|
Lettenmaier L, Seibold S, Bässler C, Brandl R, Gruppe A, Müller J, Hagge J. Beetle diversity is higher in sunny forests due to higher microclimatic heterogeneity in deadwood. Oecologia 2022; 198:825-834. [PMID: 35246751 DOI: 10.1007/s00442-022-05141-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/09/2022] [Indexed: 11/26/2022]
Abstract
Microclimate is a crucial driver of saproxylic beetle assemblages, with more species often found in sunny forests than in shady ones. Whether this pattern is caused by a higher detectability due to increased beetle activity under sunny conditions or a greater diversity of beetles emerging from sun-exposed deadwood remains unclear. This study examined whether sun exposure leads to higher microclimatic heterogeneity in deadwood and whether this drives beetle diversity in deadwood logs and at forest stand scale. Saproxylic beetles were sampled at the stand scale using flight-interception traps and at object scale using stem-emergence traps on deadwood logs at the same site. The variability in wood surface temperature was measured on single logs and between logs as a proxy for microclimatic heterogeneity in deadwood. Abundance in sunny forests was higher at the stand scale, and in shady forests at the object scale. The estimated number of species was higher in sunny forests at both scales and correlated positively with temperature variability on single logs and between logs at the stand scale and, albeit weakly, with temperature variability on single logs at the object scale. Gamma-diversity, and thus beta-diversity, across logs at the object scale was higher in sunny forests. These findings indicate that sun exposure promotes saproxylic beetle diversity due to higher microclimatic heterogeneity within and between deadwood logs. Our study therefore corroborates previous research demonstrating the importance of canopy cover and microclimate for forest biodiversity.
Collapse
Affiliation(s)
- Ludwig Lettenmaier
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic.
| | - Sebastian Seibold
- Ecosystem Dynamics and Forest Management Group, Department of Ecology and Ecosystem Management, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
- Berchtesgaden National Park, Doktorberg 6, 83471, Berchtesgaden, Germany
| | - Claus Bässler
- Bavarian Forest National Park, Freyunger Str. 2, 94481, Grafenau, Germany
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Roland Brandl
- Department of Ecology, Animal Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - Axel Gruppe
- Department of Animal Sciences, Chair of Zoology, Entomology Research Group, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Jörg Müller
- Bavarian Forest National Park, Freyunger Str. 2, 94481, Grafenau, Germany
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstraße 5, 96181, Rauhenebrach, Germany
| | - Jonas Hagge
- Forest Nature Conservation, Georg-August-University Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
- Forest Nature Conservation, Northwest German Forest Research Institute, Prof.-Oelkers-Str. 6, 34346, Hann. Münden, Germany
| |
Collapse
|
17
|
Compositional Attributes of Invaded Forests Drive the Diversity of Insect Functional Groups. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
18
|
Kortmann M, Roth N, Buse J, Hilszczański J, Jaworski T, Morinière J, Seidl R, Thorn S, Müller JC. Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2516. [PMID: 34918844 DOI: 10.1002/eap.2516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/24/2021] [Accepted: 08/05/2021] [Indexed: 06/14/2023]
Abstract
Natural disturbances are increasing around the globe, also impacting protected areas. Although previous studies have indicated that natural disturbances result in mainly positive effects on biodiversity, these analyses mostly focused on a few well established taxonomic groups, and thus uncertainty remains regarding the comprehensive impact of natural disturbances on biodiversity. Using Malaise traps and meta-barcoding, we studied a broad range of arthropod taxa, including dark and cryptic taxa, along a gradient of bark beetle disturbance severities in five European national parks. We identified order-level community thresholds of disturbance severity and classified barcode index numbers (BINs; a cluster system for DNA sequences, where each cluster corresponds to a species) as negative or positive disturbance indicators. Negative indicator BINs decreased above thresholds of low to medium disturbance severity (20%-30% of trees killed), whereas positive indicator BINs benefited from high disturbance severity (76%-98%). BINs allocated to a species name contained nearly as many positive as negative disturbance indicators, but dark and cryptic taxa, particularly Diptera and Hymenoptera in our data, contained higher numbers of negative disturbance indicator BINs. Analyses of changes in the richness of BINs showed variable responses of arthropods to disturbance severity at lower taxonomic levels, whereas no significant signal was detected at the order level due to the compensatory responses of the underlying taxa. We conclude that the analyses of dark taxa can offer new insights into biodiversity responses to disturbances. Our results suggest considerable potential for forest management to foster arthropod diversity, for example by maintaining both closed-canopy forests (>70% cover) and open forests (<30% cover) on the landscape.
Collapse
Affiliation(s)
- Mareike Kortmann
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology (Zoology III), Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Nicolas Roth
- Bern University of Applied Sciences, School of Agricultural Forest and Food Sciences, Zollikofen, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jörn Buse
- Department for Ecological Monitoring, Research and Species Protection, Black Forest National Park, Seebach, Germany
| | - Jacek Hilszczański
- Department of Forest Protection, Forest Research Institute, Raszyn, Poland
| | - Tomasz Jaworski
- Department of Forest Protection, Forest Research Institute, Raszyn, Poland
| | | | - Rupert Seidl
- Ecosystem Dynamics and Forest Management, Technical University of Munich, Freising, Germany
- Berchtesgaden National Park, Berchtesgaden, Germany
| | - Simon Thorn
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology (Zoology III), Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Jörg C Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology (Zoology III), Biocenter, University of Würzburg, Rauhenebrach, Germany
- Bavarian Forest National Park, Grafenau, Germany
| |
Collapse
|
19
|
Widespread extinction debts and colonization credits in United States breeding bird communities. Nat Ecol Evol 2022; 6:324-331. [PMID: 35145265 PMCID: PMC8913367 DOI: 10.1038/s41559-021-01653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022]
Abstract
Species extinctions and colonizations in response to land cover change often occur with time lags rather than instantaneously, leading to extinction debts and colonization credits. These debts and credits can lead to erroneous predictions of future biodiversity. Recent attempts to measure debts and credits have been limited to small geographical areas and have not considered multiple land cover types, or the directionality of land cover change. Here we quantify the relative contribution of past and current landscapes on the current effective number of species of 2,880 US bird communities, explicitly measuring the response of biodiversity to increases and decreases in five land cover types. We find that the current effective number of species is still largely explained by the past landscape composition (legacy effect), depending on the type, magnitude and directionality of recent land cover change. This legacy effect leads to widespread extinction debts and colonization credits. Specifically, we reveal debts across 52% of the United States, particularly in recently urbanized areas, and colonization credits in the remaining 48%, which are primarily associated with grassland decrease. We conclude that biodiversity policy targets risk becoming rapidly obsolete unless past landscapes are considered and debts and credits accounted for. The authors use US Breeding Bird Survey data to quantify the losses and gains in bird species richness that have not yet been realized owing to ecological time lags following past land use changes.
Collapse
|
20
|
Helbach J, Frey J, Messier C, Mörsdorf M, Scherer‐Lorenzen M. Light heterogeneity affects understory plant species richness in temperate forests supporting the heterogeneity-diversity hypothesis. Ecol Evol 2022; 12:e8534. [PMID: 35222947 PMCID: PMC8858222 DOI: 10.1002/ece3.8534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
One of the most important drivers for the coexistence of plant species is the resource heterogeneity of a certain environment, and several studies in different ecosystems have supported this resource heterogeneity-diversity hypothesis. However, to date, only a few studies have measured heterogeneity of light and soil resources below forest canopies to investigate their influence on understory plant species richness. Here, we aim to determine (1) the influence of forest stand structural complexity on the heterogeneity of light and soil resources below the forest canopy and (2) whether heterogeneity of resources increases understory plant species richness. Measures of stand structural complexity were obtained through inventories and remote sensing techniques in 135 1-ha study plots of temperate forests, established along a gradient of forest structural complexity. We measured light intensity and soil chemical properties on six 25 m² subplots on each of these 135 plots and surveyed understory vegetation. We calculated the coefficient of variation of light and soil parameters to obtain measures of resource heterogeneity and determined understory plant species richness at plot level. Spatial heterogeneity of light and of soil pH increased with higher stand structural complexity, although heterogeneity of soil pH did not increase in conditions of generally high levels of light availability. Increasing light heterogeneity was also associated with increasing understory plant species richness. However, light heterogeneity had no such effects in conditions where soil resource heterogeneity (variation in soil C:N ratios) was low. Our results support the resource heterogeneity-diversity hypothesis for temperate forest understory at the stand scale. Our results also highlight the importance of interaction effects between the heterogeneity of both light and soil resources in determining plant species richness.
Collapse
Affiliation(s)
- Jan Helbach
- Geobotany, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Julian Frey
- Chair of Remote Sensing and Landscape Information SystemsFaculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
- Present address:
Chair of Forest GrowthFaculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
| | - Christian Messier
- CEF, ISFORTUniversité du Québec en Outaouais et à MontréalMontréalCanada
| | - Martin Mörsdorf
- Geobotany, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | | |
Collapse
|
21
|
Thomsen MS, Altieri AH, Angelini C, Bishop MJ, Bulleri F, Farhan R, Frühling VMM, Gribben PE, Harrison SB, He Q, Klinghardt M, Langeneck J, Lanham BS, Mondardini L, Mulders Y, Oleksyn S, Ramus AP, Schiel DR, Schneider T, Siciliano A, Silliman BR, Smale DA, South PM, Wernberg T, Zhang S, Zotz G. Heterogeneity within and among co-occurring foundation species increases biodiversity. Nat Commun 2022; 13:581. [PMID: 35102155 PMCID: PMC8803935 DOI: 10.1038/s41467-022-28194-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Habitat heterogeneity is considered a primary causal driver underpinning patterns of diversity, yet the universal role of heterogeneity in structuring biodiversity is unclear due to a lack of coordinated experiments testing its effects across geographic scales and habitat types. Furthermore, key species interactions that can enhance heterogeneity, such as facilitation cascades of foundation species, have been largely overlooked in general biodiversity models. Here, we performed 22 geographically distributed experiments in different ecosystems and biogeographical regions to assess the extent to which variation in biodiversity is explained by three axes of habitat heterogeneity: the amount of habitat, its morphological complexity, and capacity to provide ecological resources (e.g. food) within and between co-occurring foundation species. We show that positive and additive effects across the three axes of heterogeneity are common, providing a compelling mechanistic insight into the universal importance of habitat heterogeneity in promoting biodiversity via cascades of facilitative interactions. Because many aspects of habitat heterogeneity can be controlled through restoration and management interventions, our findings are directly relevant to biodiversity conservation. Species interactions that can enhance habitat heterogeneity such as facilitation cascades of foundation species have been overlooked in biodiversity models. This study conducted 22 geographically distributed experiments in different ecosystems and biogeographical regions to assess the extent to which biodiversity is explained by three axes of habitat heterogeneity in facilitation cascades.
Collapse
|
22
|
Sire L, Yáñez PS, Wang C, Bézier A, Courtial B, Cours J, Fontaneto D, Larrieu L, Bouget C, Thorn S, Müller J, Yu DW, Monaghan MT, Herniou EA, Lopez-Vaamonde C. Climate-induced forest dieback drives compositional changes in insect communities that are more pronounced for rare species. Commun Biol 2022; 5:57. [PMID: 35042989 PMCID: PMC8766456 DOI: 10.1038/s42003-021-02968-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 12/07/2021] [Indexed: 12/26/2022] Open
Abstract
Species richness, abundance and biomass of insects have recently undergone marked declines in Europe. We metabarcoded 211 Malaise-trap samples to investigate whether drought-induced forest dieback and subsequent salvage logging had an impact on ca. 3000 species of flying insects in silver fir Pyrenean forests. While forest dieback had no measurable impact on species richness, there were significant changes in community composition that were consistent with those observed during natural forest succession. Importantly, most observed changes were driven by rare species. Variation was explained primarily by canopy openness at the local scale, and the tree-related microhabitat diversity and deadwood amount at landscape scales. The levels of salvage logging in our study did not explain compositional changes. We conclude that forest dieback drives changes in species assemblages that mimic natural forest succession, and markedly increases the risk of catastrophic loss of rare species through homogenization of environmental conditions.
Collapse
Affiliation(s)
- Lucas Sire
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS-Université de Tours, Tours, France.
| | - Paul Schmidt Yáñez
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Cai Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS-Université de Tours, Tours, France
| | | | - Jérémy Cours
- INRAE 'Forest Ecosystems' Research Unit - Biodiversity team Domaine des Barres, F-45290, Nogent-sur-Vernisson, France
| | - Diego Fontaneto
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Largo Tonolli 50, 28922, Verbania Pallanza, Italy
| | - Laurent Larrieu
- Université de Toulouse, INRAE, UMR DYNAFOR, Castanet-Tolosan, France
- CRPF Occitanie, Tarbes, France
| | - Christophe Bouget
- INRAE 'Forest Ecosystems' Research Unit - Biodiversity team Domaine des Barres, F-45290, Nogent-sur-Vernisson, France
| | - Simon Thorn
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstraße 5, 96181, Rauhenebrach, Germany
| | - Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstraße 5, 96181, Rauhenebrach, Germany
- Bavarian Forest National Park, Freyunger Str. 2, 94481, Grafenau, Germany
| | - Douglas W Yu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR47TJ, UK
| | - Michael T Monaghan
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Königin-Luise-Straße. 1-3, 12489, Berlin, Germany
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS-Université de Tours, Tours, France
| | - Carlos Lopez-Vaamonde
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS-Université de Tours, Tours, France
- INRAE, Zoologie Forestière, F-45075, Orléans, France
| |
Collapse
|
23
|
Poorter L, Craven D, Jakovac CC, van der Sande MT, Amissah L, Bongers F, Chazdon RL, Farrior CE, Kambach S, Meave JA, Muñoz R, Norden N, Rüger N, van Breugel M, Almeyda Zambrano AM, Amani B, Andrade JL, Brancalion PHS, Broadbent EN, de Foresta H, Dent DH, Derroire G, DeWalt SJ, Dupuy JM, Durán SM, Fantini AC, Finegan B, Hernández-Jaramillo A, Hernández-Stefanoni JL, Hietz P, Junqueira AB, N'dja JK, Letcher SG, Lohbeck M, López-Camacho R, Martínez-Ramos M, Melo FPL, Mora F, Müller SC, N'Guessan AE, Oberleitner F, Ortiz-Malavassi E, Pérez-García EA, Pinho BX, Piotto D, Powers JS, Rodríguez-Buriticá S, Rozendaal DMA, Ruíz J, Tabarelli M, Teixeira HM, Valadares de Sá Barretto Sampaio E, van der Wal H, Villa PM, Fernandes GW, Santos BA, Aguilar-Cano J, de Almeida-Cortez JS, Alvarez-Davila E, Arreola-Villa F, Balvanera P, Becknell JM, Cabral GAL, Castellanos-Castro C, de Jong BHJ, Nieto JE, Espírito-Santo MM, Fandino MC, García H, García-Villalobos D, Hall JS, Idárraga A, Jiménez-Montoya J, Kennard D, Marín-Spiotta E, Mesquita R, Nunes YRF, Ochoa-Gaona S, Peña-Claros M, Pérez-Cárdenas N, Rodríguez-Velázquez J, Villanueva LS, Schwartz NB, Steininger MK, Veloso MDM, Vester HFM, Vieira ICG, Williamson GB, Zanini K, Hérault B. Multidimensional tropical forest recovery. Science 2021; 374:1370-1376. [PMID: 34882461 DOI: 10.1126/science.abh3629] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, Netherlands
| | - Dylan Craven
- Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile
| | - Catarina C Jakovac
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, Netherlands.,Departamento de Fitotecnia, Universidade Federal de Santa Catarina. Rod. Admar Gonzaga, Florianópolis, SC, Brazil
| | - Masha T van der Sande
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, Netherlands
| | - Lucy Amissah
- CSIR-Forestry Research Institute of Ghana, KNUST, Kumasi, Ghana
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, Netherlands
| | - Robin L Chazdon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.,Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | | | - Stephan Kambach
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, Mexico
| | - Rodrigo Muñoz
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, Netherlands.,Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, Mexico
| | - Natalia Norden
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Nadja Rüger
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Economics, University of Leipzig, Leipzig, Germany.,Smithsonian Tropical Research Institute, Ancón, Balboa, Panama
| | - Michiel van Breugel
- SI ForestGEO, Smithsonian Tropical Research Institute, Ancón, Balboa, Panama.,Yale-NUS College, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | - Bienvenu Amani
- UFR Agroforesterie, Université Jean Lorougnon Guédé Daloa, Daloa, Côte d'Ivoire
| | - José Luis Andrade
- Centro de Investigación Científica de Yucatán A.C. Unidad de Recursos Naturales, Colonia Chuburná de Hidalgo, Mérida, Yucatán, Mexico
| | - Pedro H S Brancalion
- Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Eben N Broadbent
- Spatial Ecology and Conservation Lab, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Hubert de Foresta
- UMR AMAP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Daisy H Dent
- Smithsonian Tropical Research Institute, Ancón, Balboa, Panama.,Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - Géraldine Derroire
- CIRAD, UMR EcoFoG (AgroParistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | - Saara J DeWalt
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Juan M Dupuy
- Centro de Investigación Científica de Yucatán A.C. Unidad de Recursos Naturales, Colonia Chuburná de Hidalgo, Mérida, Yucatán, Mexico
| | - Sandra M Durán
- Earth and Atmospheric Sciences Department, University of Alberta, Edmonton, AB, Canada.,Department of Ecology and Evolutionary Biology, University of Minnesota, St. Paul, MN, USA
| | | | - Bryan Finegan
- CATIE-Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica
| | | | - José Luis Hernández-Stefanoni
- Centro de Investigación Científica de Yucatán A.C. Unidad de Recursos Naturales, Colonia Chuburná de Hidalgo, Mérida, Yucatán, Mexico
| | - Peter Hietz
- Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - André B Junqueira
- Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Justin Kassi N'dja
- Departement of Bioscience, University Felix Houphouet-Boigny, Abidjan, Côte d'Ivoire
| | | | - Madelon Lohbeck
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, Netherlands.,World Agroforestry Centre, ICRAF, United Nations Avenue, Gigiri, Nairobi, Kenya
| | - René López-Camacho
- Universidad Distrital Francisco José de Caldas, Facultad de Medio Ambiente y Recursos Naturales, Bogotá, Colombia
| | - Miguel Martínez-Ramos
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - Felipe P L Melo
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Brazil
| | - Francisco Mora
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - Sandra C Müller
- Departamento de Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Anny E N'Guessan
- Departement of Bioscience, University Felix Houphouet-Boigny, Abidjan, Côte d'Ivoire
| | | | - Edgar Ortiz-Malavassi
- Instituto Tecnológico de Costa Rica, Escuela de Ingeniería Forestal, Cartago, Costa Rica
| | - Eduardo A Pérez-García
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, Mexico
| | - Bruno X Pinho
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Brazil
| | - Daniel Piotto
- Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, BA, Brazil
| | - Jennifer S Powers
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA.,Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | | | - Danaë M A Rozendaal
- Plant Production Systems Group, Wageningen University and Research, Wageningen, Netherlands.,Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, Netherlands
| | - Jorge Ruíz
- Programa de Estudios de Posgrado en Geografia, Convenio Universidad Pedagogica y Tecnológica de Colombia-Instituto Geografico Agustin Codazzi, Bogotá, Colombia
| | - Marcelo Tabarelli
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Brazil
| | - Heitor Mancini Teixeira
- Plant Production Systems Group, Wageningen University and Research, Wageningen, Netherlands.,Farming Systems Ecology, Wageningen University, Wageningen, Netherlands.,Copernicus Institute, Utrecht University, Utrecht, Netherlands
| | | | - Hans van der Wal
- Departamento de Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur - Unidad Villahermosa, Centro, Tabasco, México
| | - Pedro M Villa
- Program of Botany, Departamento de Biologia Vegetal, Laboratório de Ecologia e Evolução de Plantas, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Fundación para la Conservación de la Biodiversidad (PROBIODIVERSA), Mérida, Mérida, Venezuela
| | - Geraldo W Fernandes
- Ecologia Evolutiva e Biodiversidade/DBG, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - José Aguilar-Cano
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | | | | | - Felipe Arreola-Villa
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - Patricia Balvanera
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | | | - George A L Cabral
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Ben H J de Jong
- Department of Sustainability Science, El Colegio de la Frontera Sur, Lerma, Campeche, Mexico
| | - Jhon Edison Nieto
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Mário M Espírito-Santo
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Maria C Fandino
- Fondo Patrimonio Natural para la Biodiversidad y Areas Protegidas, Bogota, Colombia
| | - Hernando García
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | | | - Jefferson S Hall
- SI ForestGEO, Smithsonian Tropical Research Institute, Ancón, Balboa, Panama
| | - Alvaro Idárraga
- Fundación Jardín Botánico de Medellín, Herbario JAUM, Medellín, Colombia
| | | | - Deborah Kennard
- Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USA
| | | | - Rita Mesquita
- Biological Dynamics of Forest Fragments Project, Environmental Dynamics Research Coordination, Instituto Nacional de Pesquisas da Amazonia, Manaus, Amazonas, Brazil
| | - Yule R F Nunes
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Susana Ochoa-Gaona
- Department of Sustainability Science, El Colegio de la Frontera Sur, Lerma, Campeche, Mexico
| | - Marielos Peña-Claros
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, Netherlands
| | - Nathalia Pérez-Cárdenas
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - Jorge Rodríguez-Velázquez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - Lucía Sanaphre Villanueva
- Centro de Investigación Científica de Yucatán A.C. Unidad de Recursos Naturales, Colonia Chuburná de Hidalgo, Mérida, Yucatán, Mexico.,Consejo Nacional de Ciencia y Tecnologia, Centro del Cambio Global y la Sustentabilidad, Tabasco, Mexico
| | - Naomi B Schwartz
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
| | - Marc K Steininger
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA
| | - Maria D M Veloso
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Henricus F M Vester
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, Netherlands
| | | | - G Bruce Williamson
- Biological Dynamics of Forest Fragments Project, Environmental Dynamics Research Coordination, Instituto Nacional de Pesquisas da Amazonia, Manaus, Amazonas, Brazil.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Kátia Zanini
- Departamento de Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruno Hérault
- CIRAD, UPR Forêts et Sociétés, Yamoussoukro, Côte d'Ivoire.,Forêts et Sociétés, Université Montpellier, CIRAD, Montpellier, France.,Institut National Polytechnique Félix Houphouët-Boigny, INP-HB, Yamoussoukro, Côte d'Ivoire
| |
Collapse
|
24
|
Poorter L, Rozendaal DMA, Bongers F, Almeida DJS, Álvarez FS, Andrade JL, Arreola Villa LF, Becknell JM, Bhaskar R, Boukili V, Brancalion PHS, César RG, Chave J, Chazdon RL, Dalla Colletta G, Craven D, de Jong BHJ, Denslow JS, Dent DH, DeWalt SJ, Díaz García E, Dupuy JM, Durán SM, Espírito Santo MM, Fernandes GW, Finegan B, Granda Moser V, Hall JS, Hernández-Stefanoni JL, Jakovac CC, Kennard D, Lebrija-Trejos E, Letcher SG, Lohbeck M, Lopez OR, Marín-Spiotta E, Martínez-Ramos M, Meave JA, Mora F, de Souza Moreno V, Müller SC, Muñoz R, Muscarella R, Nunes YRF, Ochoa-Gaona S, Oliveira RS, Paz H, Sanchez-Azofeifa A, Sanaphre-Villanueva L, Toledo M, Uriarte M, Utrera LP, van Breugel M, van der Sande MT, Veloso MDM, Wright SJ, Zanini KJ, Zimmerman JK, Westoby M. Functional recovery of secondary tropical forests. Proc Natl Acad Sci U S A 2021; 118:e2003405118. [PMID: 34845017 PMCID: PMC8670493 DOI: 10.1073/pnas.2003405118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 11/18/2022] Open
Abstract
One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits, we enhance understanding of the mechanisms of succession, assess ecosystem recovery, and use these insights to propose successful forest restoration strategies. Wet and dry forests diverged markedly for several traits that increase growth rate in wet forests but come at the expense of reduced drought tolerance, delay, or avoidance, which is important in seasonally dry forests. Dry and wet forests showed different successional pathways for several traits. In dry forests, species turnover is driven by drought tolerance traits that are important early in succession and in wet forests by shade tolerance traits that are important later in succession. In both forests, deciduous and compound-leaved trees decreased with forest age, probably because microclimatic conditions became less hot and dry. Our results suggest that climatic water availability drives functional recovery by influencing the start and trajectory of succession, resulting in a convergence of community trait values with forest age when vegetation cover builds up. Within plots, the range in functional trait values increased with age. Based on the observed successional trait changes, we indicate the consequences for carbon and nutrient cycling and propose an ecologically sound strategy to improve forest restoration success.
Collapse
Affiliation(s)
- Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen 6700 AA, The Netherlands;
| | - Danaë M A Rozendaal
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen 6700 AA, The Netherlands
- Plant Production Systems Group, Wageningen University & Research, Wageningen 6700 AK, The Netherlands
- Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen 6700 AK, The Netherlands
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen 6700 AA, The Netherlands
| | - de Jarcilene S Almeida
- Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Francisco S Álvarez
- Forests, Biodiversity and Climate Change Programme, Centro Agronómico Tropical de Investigación y Enseñanza, 30501 Turrialba, Costa Rica
| | - José Luís Andrade
- Centro de Investigación Científica de Yucatán A.C., Unidad de Recursos Naturales 97205 Mérida, México
| | - Luis Felipe Arreola Villa
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México 58089 Morelia, México
| | | | - Radika Bhaskar
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México 58089 Morelia, México
- College of Design, Engineering, and Commerce, Philadelphia University, Philadelphia, PA 19144
| | | | - Pedro H S Brancalion
- Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, Brazil
| | - Ricardo G César
- Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, Brazil
| | - Jerome Chave
- Laboratoire Evolution et Diversité Biologique, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse F-31062, France
| | - Robin L Chazdon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Sippy Downs QLD 4556, Australia
- International Institute for Sustainability, Rio de Janeiro 22460-320, Brazil
| | - Gabriel Dalla Colletta
- Institute of Biology, University of Campinas, Cidade Universitária Zeferino Vaz, Campinas 13083-970, Brazil
| | - Dylan Craven
- Centro de Modelacion y Monitoreo, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Ben H J de Jong
- Department of Sustainability Science, El Colegio de la Frontera Sur 24500 Campeche, Mexico
| | - Julie S Denslow
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118
| | - Daisy H Dent
- Smithsonian Tropical Research Institute, Ancon 0843-03092, Panamá
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Saara J DeWalt
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
| | - Elisa Díaz García
- Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, Brazil
| | - Juan Manuel Dupuy
- Centro de Investigación Científica de Yucatán A.C., Unidad de Recursos Naturales 97205 Mérida, México
| | - Sandra M Durán
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55104
| | - Mário M Espírito Santo
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros 39401-089, Brazil
| | | | - Bryan Finegan
- Forests, Biodiversity and Climate Change Programme, Centro Agronómico Tropical de Investigación y Enseñanza, 30501 Turrialba, Costa Rica
| | - Vanessa Granda Moser
- Forests, Biodiversity and Climate Change Programme, Centro Agronómico Tropical de Investigación y Enseñanza, 30501 Turrialba, Costa Rica
| | - Jefferson S Hall
- Smithsonian Institute Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Ancon 0843-03092, Panamá
| | | | - Catarina C Jakovac
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen 6700 AA, The Netherlands
- Departamento de Fitotecnia, Universidade Federal de Santa Catarina, Florianópolis 88034-000, Brazil
| | - Deborah Kennard
- Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO 81501
| | - Edwin Lebrija-Trejos
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Tivon 36006, Israel
| | | | - Madelon Lohbeck
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen 6700 AA, The Netherlands
- World Agroforestry, Nairobi 00100, Kenya
| | - Omar R Lopez
- Smithsonian Tropical Research Institute, Ancon 0843-03092, Panamá
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Panama City 0843-01103, Panamá
| | | | - Miguel Martínez-Ramos
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México 58089 Morelia, México
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México 04510 Ciudad de México, Mexico
| | - Francisco Mora
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México 58089 Morelia, México
| | - Vanessa de Souza Moreno
- Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, Brazil
| | - Sandra C Müller
- Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Brazil
| | - Rodrigo Muñoz
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen 6700 AA, The Netherlands
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México 04510 Ciudad de México, Mexico
| | - Robert Muscarella
- Department of Plant Ecology and Evolution, Uppsala University SE-752 36 Uppsala, Sweden
| | - Yule R F Nunes
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros 39401-089, Brazil
| | - Susana Ochoa-Gaona
- Department of Sustainability Science, El Colegio de la Frontera Sur 24500 Campeche, Mexico
| | - Rafael S Oliveira
- Department of Plant Biology, Instituto de Biologia, University of Campinas, Campinas 13083-970, Brazil
| | - Horacio Paz
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México 58089 Morelia, México
| | - Arturo Sanchez-Azofeifa
- Earth and Atmospheric Sciences Department, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Lucía Sanaphre-Villanueva
- Centro de Investigación Científica de Yucatán A.C., Unidad de Recursos Naturales 97205 Mérida, México
- Consejo Nacional de Ciencia y Tecnologia, Centro del Cambio Global y la Sustentabilidad A.C. 86080 Villahermosa, Mexico
| | - Marisol Toledo
- Facultad de Ciencias Agrícolas, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - Maria Uriarte
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027
| | - Luis P Utrera
- Forests, Biodiversity and Climate Change Programme, Centro Agronómico Tropical de Investigación y Enseñanza, 30501 Turrialba, Costa Rica
| | - Michiel van Breugel
- Smithsonian Institute Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Ancon 0843-03092, Panamá
- Yale-NUS College, Singapore 138610
- Department of Biological Sciences, National University of Singapore 117543 Singapore
| | - Masha T van der Sande
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen 6700 AA, The Netherlands
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL 32901
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam 1012 WX Amsterdam, The Netherlands
| | - Maria D M Veloso
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros 39401-089, Brazil
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Ancon 0843-03092, Panamá
| | - Kátia J Zanini
- Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Brazil
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, San Juan, Puerto Rico 00936
| | - Mark Westoby
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
25
|
Cervellini M, Di Musciano M, Zannini P, Fattorini S, Jiménez‐Alfaro B, Agrillo E, Attorre F, Angelini P, Beierkuhnlein C, Casella L, Field R, Fischer J, Genovesi P, Hoffmann S, Irl SDH, Nascimbene J, Rocchini D, Steinbauer M, Vetaas OR, Chiarucci A. Diversity of European habitat types is correlated with geography more than climate and human pressure. Ecol Evol 2021; 11:18111-18124. [PMID: 35003661 PMCID: PMC8717275 DOI: 10.1002/ece3.8409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 11/06/2022] Open
Abstract
Habitat richness, that is, the diversity of ecosystem types, is a complex, spatially explicit aspect of biodiversity, which is affected by bioclimatic, geographic, and anthropogenic variables. The distribution of habitat types is a key component for understanding broad-scale biodiversity and for developing conservation strategies. We used data on the distribution of European Union (EU) habitats to answer the following questions: (i) how do bioclimatic, geographic, and anthropogenic variables affect habitat richness? (ii) Which of those factors is the most important? (iii) How do interactions among these variables influence habitat richness and which combinations produce the strongest interactions? The distribution maps of 222 terrestrial habitat types as defined by the Natura 2000 network were used to calculate habitat richness for the 10 km × 10 km EU grid map. We then investigated how environmental variables affect habitat richness, using generalized linear models, generalized additive models, and boosted regression trees. The main factors associated with habitat richness were geographic variables, with negative relationships observed for both latitude and longitude, and a positive relationship for terrain ruggedness. Bioclimatic variables played a secondary role, with habitat richness increasing slightly with annual mean temperature and overall annual precipitation. We also found an interaction between anthropogenic variables, with the combination of increased landscape fragmentation and increased population density strongly decreasing habitat richness. This is the first attempt to disentangle spatial patterns of habitat richness at the continental scale, as a key tool for protecting biodiversity. The number of European habitats is related to geography more than climate and human pressure, reflecting a major component of biogeographical patterns similar to the drivers observed at the species level. The interaction between anthropogenic variables highlights the need for coordinated, continental-scale management plans for biodiversity conservation.
Collapse
Affiliation(s)
- Marco Cervellini
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Michele Di Musciano
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater StudiorumUniversity of BolognaBolognaItaly
- Department of Life, Health and Environmental SciencesUniversity of L’AquilaL’AquilaItaly
| | - Piero Zannini
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Simone Fattorini
- Department of Life, Health and Environmental SciencesUniversity of L’AquilaL’AquilaItaly
| | | | - Emiliano Agrillo
- Institute for Environmental Protection and Research (ISPRA)RomeItaly
| | - Fabio Attorre
- Department of Environmental BiologySapienza University of RomeRomaItaly
| | | | - Carl Beierkuhnlein
- Biogeography, Bayreuth Center of Ecology and Environmental Research (BayCEER), Geographical Institute Bayreuth (GIB)University of BayreuthBayreuthGermany
| | - Laura Casella
- Institute for Environmental Protection and Research (ISPRA)RomeItaly
| | - Richard Field
- School of GeographyUniversity of NottinghamNottinghamUK
| | - Jan‐Christopher Fischer
- Biogeography, Bayreuth Center of Ecology and Environmental Research (BayCEER), Geographical Institute Bayreuth (GIB)University of BayreuthBayreuthGermany
- School of Earth SciencesUniversity of BristolBristolUK
| | - Piero Genovesi
- Institute for Environmental Protection and Research (ISPRA)RomeItaly
| | - Samuel Hoffmann
- Biogeography, Bayreuth Center of Ecology and Environmental Research (BayCEER), Geographical Institute Bayreuth (GIB)University of BayreuthBayreuthGermany
| | - Severin D. H. Irl
- Biogeography and Biodiversity Lab, Institute of Physical GeographyGoethe‐UniversityFrankfurtGermany
| | - Juri Nascimbene
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Duccio Rocchini
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater StudiorumUniversity of BolognaBolognaItaly
- Department of Spatial Sciences, Faculty of Environmental SciencesCzech University of Life Sciences PraguePrahaCzech Republic
| | - Manuel Steinbauer
- Sport Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER) & Department of Sport ScienceUniversity of BayreuthBayreuthGermany
| | - Ole R. Vetaas
- Department of GeographyUniversity of BergenBergenNorway
| | - Alessandro Chiarucci
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater StudiorumUniversity of BolognaBolognaItaly
| |
Collapse
|
26
|
Vertical Stratification of Beetles in Deciduous Forest Communities in the Centre of European Russia. DIVERSITY 2021. [DOI: 10.3390/d13110508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Studies on the vertical distribution of arthropods in temperate forests have revealed the uneven vertical distribution of communities. Many factors influence these patterns simultaneously. However, there are still many questions related to the vertical distribution of Coleoptera in deciduous forests of the temperate zone. The research was carried out within the territory of the Republic of Mordovia (the center of the European part of Russia). Fermental traps with a bait made of fermenting beer with sugar were used to collect Coleoptera. The collections were carried out from May to September 2020 at five sites in a deciduous forest. We set traps at a height of 1.5, 3.5, 7.5 and 12 m above the ground) on the branches of trees. Ninety-two species were identified at the end of studies at different heights. The families Nitidulidae (15 species), Cerambycidae (14 species), Elateridae (7 species), Curculionidae (7 species) and Scarabaeidae (7 species) had the greatest species diversity. The greatest species diversity was recorded at a height of 1.5 m, while the smallest one was recorded at a height of 7.5 m. The minimum number of specimens was recorded at a height of 12 m. The largest differences in the Jaccard similarity index were obtained between samples from a height of 1.5 and 12 m. The Shannon’s diversity index was higher near the ground than in the tree crowns (at heights of 7.5 and 12 m), and the Simpson index had the opposite tendency. Glischrochilus hortensis and to a lesser extent Cychramus luteus preferred to live in the lowest layers of deciduous forest (1.5 m). Cryptarcha strigata was mainly found with relatively high numbers at heights of 3.5 m and 7.5 m. The abundance and occurrence of Protaetia marmorata and Quedius dilatatus were higher in the uppermost layers of the crowns. The number of saproxylic beetle species at heights of 3.5–12 m was almost the same, while in the surface layer it decreased. The number of anthophilic beetle species was also lower at a low altitude. Our data confirm the relevance of sampling in forest ecosystems at different altitudes while studying arthropod biodiversity.
Collapse
|
27
|
Uhler J, Redlich S, Zhang J, Hothorn T, Tobisch C, Ewald J, Thorn S, Seibold S, Mitesser O, Morinière J, Bozicevic V, Benjamin CS, Englmeier J, Fricke U, Ganuza C, Haensel M, Riebl R, Rojas-Botero S, Rummler T, Uphus L, Schmidt S, Steffan-Dewenter I, Müller J. Relationship of insect biomass and richness with land use along a climate gradient. Nat Commun 2021; 12:5946. [PMID: 34642336 PMCID: PMC8511018 DOI: 10.1038/s41467-021-26181-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass between semi-natural and urban environments (-42%), whereas differences in total richness (-29%) and the richness of threatened species (-56%) were largest from semi-natural to agricultural environments. These results point to urbanization and agriculture as major drivers of decline. We also found that richness and biomass increase monotonously with increasing temperature, independent of habitat. The contrasting patterns of insect biomass and richness question the use of these indicators as mutual surrogates. Our study provides support for the implementation of more comprehensive measures aimed at habitat restoration in order to halt insect declines.
Collapse
Affiliation(s)
- Johannes Uhler
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Sarah Redlich
- Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Jie Zhang
- Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Torsten Hothorn
- Epidemiology, Biostatistics and Prevention Institute, University Zürich, Zürich, Switzerland
| | - Cynthia Tobisch
- Institute of Ecology and Landscape, Weihenstephan-Triesdorf University of Applied Sciences, Freising, Germany
| | - Jörg Ewald
- Botany & Vegetation Science, Faculty of Forestry, Weihenstephan-Triesdorf University of Applied Sciences, Freising, Germany
| | - Simon Thorn
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Sebastian Seibold
- Ecosystem Dynamics and Forest management Group, Technical University of Munich, Freising, Germany.,Berchtesgaden National Park, Berchtesgaden, Germany
| | - Oliver Mitesser
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | | | - Caryl S Benjamin
- TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Freising, Germany
| | - Jana Englmeier
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Ute Fricke
- Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Cristina Ganuza
- Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Maria Haensel
- Professorship of Ecological Services, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Rebekka Riebl
- Professorship of Ecological Services, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Sandra Rojas-Botero
- Chair of Restoration Ecology, Technical University of Munich, Freising, Germany
| | - Thomas Rummler
- Institute of Geography, University of Augsburg, Augsburg, Germany
| | - Lars Uphus
- TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Freising, Germany
| | - Stefan Schmidt
- SNSB-Zoologische Staatssammlung Muenchen, Munich, Germany
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany. .,Bavarian Forest National Park, Grafenau, Germany.
| |
Collapse
|
28
|
Monge‐González ML, Guerrero‐Ramírez N, Krömer T, Kreft H, Craven D. Functional diversity and redundancy of tropical forests shift with elevation and forest‐use intensity. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13955] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | - Thorsten Krömer
- Centro de Investigaciones Tropicales Universidad Veracruzana Xalapa Mexico
| | - Holger Kreft
- Biodiversity, Macroecology and Biogeography University of Goettingen Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use (CBL) University of Goettingen Göttingen Germany
| | - Dylan Craven
- Biodiversity, Macroecology and Biogeography University of Goettingen Göttingen Germany
- Centro de Modelación y Monitoreo de Ecosistemas Facultad de Ciencias Universidad Mayor Santiago Chile
| |
Collapse
|
29
|
Michalko R, Košulič O, Martinek P, Birkhofer K. Disturbance by invasive pathogenic fungus alters arthropod predator-prey food-webs in ash plantations. J Anim Ecol 2021; 90:2213-2226. [PMID: 34013522 DOI: 10.1111/1365-2656.13537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022]
Abstract
According to the disturbance-succession theory, natural disturbances support biodiversity and are expected to increase the complexity of food-webs in forest ecosystems by opening canopies and creating a heterogeneous environment. However, a limited number of studies have investigated the impact of disturbance by invasive pathogenic species and succession on arthropod predator-prey food-webs in forest ecosystems. Hymenoscyphus fraxineus is a pathogenic fungus of ash trees that is invasive in Europe and causes massive dieback, mainly of the common ash Fraxinus excelsior across its native range. Here we investigated how this pathogenic fungus affects food-webs of web-building spiders and their prey in understorey vegetation of ash plantations. In 23 young and middle-aged ash plantations that were distributed along a gradient of infestation by H. fraxineus (29%-86% infestation), we measured the vegetation structure (canopy openness, shrub coverage, herb/grass coverage), the trait composition of local spider communities (web type, body size), the prey availability and the prey intercepted by spider webs. We then evaluated the multivariate prey composition (prey type, body size) and network properties. Hymenoscyphus fraxineus opened the ash tree canopy, which resulted in denser shrub coverage. The dense shrub vegetation changed the composition of web types in local spider communities and increasing fungus infestation resulted in reduced mean body size of spiders. Infestation by H. fraxineus reduced the availability of predaceous Coleoptera and increased the availability of herbivorous Coleoptera as potential prey. The mean body size of captured prey and the per capita capture rates of most prey groups decreased with increasing fungus infestation. Hymenoscyphus fraxineus infestation indirectly reduced the complexity in bipartite networks and the trophic functional complementarity in local web-building spider communities. The plantation age affected the vegetation structure but did not affect the studied food-webs. Forest disturbance by the invasive pathogen affected four trophic levels (plant-herbivore-coleopteran intermediate predator-top predator web-building spiders) and, contrary to the disturbance-succession theory, disturbance by the fungus simplified the web-building spider-prey food-webs. The results support the view that H. fraxineus represents a threat to the biodiversity and ecosystem functioning in the simplified ecosystems of ash plantations.
Collapse
Affiliation(s)
- Radek Michalko
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Ondřej Košulič
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Petr Martinek
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Klaus Birkhofer
- Department of Ecology, Brandenburg University of Technology, Cottbus, Germany
| |
Collapse
|