1
|
Lei H, Xu Y, Zhang Y, Feng Q, Zhou H, Tang W, Wang J, Li L, Nan G, Xu W, Zhu H. Persistent Exciton Dressed by Weak Polaronic Effect in Rigid and Harmonic Lattice Dion-Jacobson 2D Perovskites. ACS NANO 2024; 18:31485-31494. [PMID: 39480169 DOI: 10.1021/acsnano.4c12132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
The emerging two-dimensional (2D) Dion-Jacobson (DJ) perovskites with bidentate ligands have attracted significant attention due to enhanced structural stability compared with conventional Ruddlesden-Popper (RP) perovskites with monodentate ligands linked by van der Waals interactions. However, how the pure chemical bond lattice interacts with excited state excitons and its impact on the exciton nature and dynamics in 2D DJ-perovskites, particularly in comparison to RP-perovskites, remains unexplored. Herein, by a combined spectroscopy study on excitonic and structural dynamics, we reveal a persistent exciton dressed by a weak polaronic effect in DJ-perovskite due to their rigid and harmonic lattice, in striking contrast to significantly screened exciton polaron observed in RP-perovskites. Despite the similar exciton binding energy (∼0.3 eV) in both n = 1 DJ- and RP-perovskites with near-identical crystal structure, photoexcitation results in a slightly screened exciton with minimal structural relaxation and a retained binding energy of ∼0.29 eV in DJ-perovskites but strongly screened exciton polaron with a binding energy of ∼0.13 eV in RP-perovskites. Structural dynamics further highlight the rigid and harmonic lattice motion in DJ-perovskites, as opposed to the thermally activated anharmonic lattice in RP-perovskites, arising from their distinct bonding modes. Our study offers insights into modulating excited state properties in 2D perovskites, simulating the rational design of hybrid semiconductors with tailored properties and functionalities.
Collapse
Affiliation(s)
- Haixin Lei
- State Key Laboratory of Modern Optical Instrument, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Yu Xu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yao Zhang
- State Key Laboratory of Modern Optical Instrument, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Qingjie Feng
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hongzhi Zhou
- State Key Laboratory of Modern Optical Instrument, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Wei Tang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiaoyang Wang
- State Key Laboratory of Modern Optical Instrument, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Linjun Li
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guangjun Nan
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Weigao Xu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrument, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| |
Collapse
|
2
|
Xiao S, Zou J, Hou Z, Guan J, Yu Z, Zheng J. Vibronic coherent quantum beat in four-layer platinum carbonyl cluster. J Chem Phys 2024; 161:174305. [PMID: 39494795 DOI: 10.1063/5.0231100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
Vibronic coherence has been studied for years, but direct comparisons between the rich experimental features and theory remain rare. In this work, we investigate the vibronic coherent quantum beat of a four-layer platinum carbonyl cluster [Pt3(CO)6]42- in a solution utilizing femtosecond vis-pump/vis-probe transient absorption spectroscopy. By varying the excitational wavelength, quantum beats coupled to either the electronic ground state or the excited state are selectively prepared. A 41 cm-1 beat at the ground state with a phase flip at 615 nm and a 28 cm-1 beat at the excited state with a phase node at 735 nm are observed. The beat amplitudes are asymmetric, stronger on the red side for ground state beats but weaker for excited state beats. Quantum chemistry calculations suggest that these beats result from coupling between the [Pt3(CO)6] layer motions and the electronic excitation. Theoretical model calculations for quantum beats at both electronic states are performed following the doorway-window approach. The calculations explain the oscillation frequency difference, the node positions, and the asymmetry. The beats with different frequencies result from vibronic coupling with different electronic states with the Herzberg-Teller (ground) or Franck-Condon term (excited) involved. The theoretical nodes occur at absorption and fluorescence centers, respectively, although experimental results show a slight blueshift. Quantum window operator calculations link the beat amplitude asymmetry to the Franck-Condon factor matrix imbalances, with the number of nodes dependent on the electronic dephasing rate. The theoretical insights for quantum beats are expected to be general, potentially helpful for the interpretation of observations in other systems.
Collapse
Affiliation(s)
- Shufan Xiao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jianwei Zou
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zhuowei Hou
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jianxin Guan
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zhihao Yu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Junrong Zheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
3
|
Zhou H, Feng Q, Sun C, Li Y, Tao W, Tang W, Li L, Shi E, Nan G, Zhu H. Robust excitonic light emission in 2D tin halide perovskites by weak excited state polaronic effect. Nat Commun 2024; 15:8541. [PMID: 39358359 PMCID: PMC11447268 DOI: 10.1038/s41467-024-52952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
2D perovskites hold immense promise in optoelectronics due to their strongly bound electron-hole pairs (i.e., excitons). While exciton polaron from interplay between exciton and lattice has been established in 2D lead-based perovskites, the exciton nature and behavior in the emerging 2D tin-based perovskites remains unclear. By combining spin-resolved ultrafast spectroscopy and sophisticated theoretical calculations, we reveal 2D tin-based perovskites as genuine excitonic semiconductors with weak polaronic screening effect and persistent Coulomb interaction, thanks to weak exciton-phonon coupling. We determine an excited state exciton binding energy of ~0.18 eV in n = 2 tin iodide perovskites, nearly twice of that in lead counterpart, despite of same large value of ~0.2 eV from steady state measurement. This finding emphasizes the pivotal role of excited state polaronic effect in these materials. The robust excitons in 2D tin-based perovskites exhibit excitation power-insensitive, high-efficiency and color-purity emission, rendering them superior for light-emitting applications.
Collapse
Affiliation(s)
- Hongzhi Zhou
- Department of Chemistry, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Key Laboratory of Excited State Energy Conversion and Storage, Zhejiang University, Hangzhou, China
| | - Qingjie Feng
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Cheng Sun
- Department of Chemistry, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Key Laboratory of Excited State Energy Conversion and Storage, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, China
| | - Yahui Li
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, China
| | - Weijian Tao
- Department of Chemistry, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Key Laboratory of Excited State Energy Conversion and Storage, Zhejiang University, Hangzhou, China
| | - Wei Tang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Linjun Li
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Enzheng Shi
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, China
| | - Guangjun Nan
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Haiming Zhu
- Department of Chemistry, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Key Laboratory of Excited State Energy Conversion and Storage, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Ren Z, Shi Z, Feng H, Xu Z, Hao W. Recent Progresses of Polarons: Fundamentals and Roles in Photocatalysis and Photoelectrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305139. [PMID: 37949811 PMCID: PMC11462309 DOI: 10.1002/advs.202305139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Indexed: 11/12/2023]
Abstract
Photocatalysis and photoelectrocatalysis are promising ways in the utilization of solar energy. To address the low efficiency of photocatalysts and photoelectrodes, in-depth understanding of their catalytic mechanism is in urgent need. Recently, polaron is considered as an influential factor in catalysis, which brings researchers a new approach to modify photocatalysts and photoelectrodes. In this review, brief introduction of polaron is given first, followed by which models and recent experimentally observations of polarons are reviewed. Studies about roles of polarons in photocatalysis and photoelectrocatalysis are listed in order to provide some inspiration in exploring the mechanism and improving the efficiency of photocatalysis and photoelectrocatalysis.
Collapse
Affiliation(s)
- Zhizhen Ren
- School of PhysicsBeihang UniversityBeijing100191China
| | - Zhijian Shi
- School of PhysicsBeihang UniversityBeijing100191China
| | - Haifeng Feng
- School of PhysicsBeihang UniversityBeijing100191China
| | - Zhongfei Xu
- College of Environmental Science and EngineeringNorth China Electric Power UniversityBeijing102206China
| | - Weichang Hao
- School of PhysicsBeihang UniversityBeijing100191China
| |
Collapse
|
5
|
Krahne R, Schleusener A, Faraji M, Li LH, Lin ML, Tan PH. Phonon Directionality Impacts Electron-Phonon Coupling and Polarization of the Band-Edge Emission in Two-Dimensional Metal Halide Perovskites. NANO LETTERS 2024; 24:11124-11131. [PMID: 39171793 PMCID: PMC11378763 DOI: 10.1021/acs.nanolett.4c03543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Two-dimensional metal halide perovskites are highly versatile for light-driven applications due to their exceptional variety in material composition, which can be exploited for the tunability of mechanical and optoelectronic properties. The band-edge emission is defined by the structure and composition of both organic and inorganic layers, and electron-phonon coupling plays a crucial role in the recombination dynamics. However, the nature of the electron-phonon coupling and what kind of phonons are involved are still under debate. Here we investigate the emission, reflectance, and phonon response from single two-dimensional lead iodide microcrystals with angle-resolved polarized spectroscopy. We find an intricate dependence of the emission polarization with the vibrational directionality in the materials, which reveals that several bands of low-frequency phonons with nonorthogonal directionality contribute to the band-edge emission. Such complex electron-phonon coupling requires adequate models to predict the thermal broadening of the emission and provides opportunities to design polarization properties.
Collapse
Affiliation(s)
- Roman Krahne
- Optoelectronics Research Line, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| | - Alexander Schleusener
- Optoelectronics Research Line, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| | - Mehrdad Faraji
- Optoelectronics Research Line, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso, 31, 16146 Genova, Italy
| | - Lin-Han Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- Center of Materials Science and Optoelectronics Engineering & CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Miao-Ling Lin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- Center of Materials Science and Optoelectronics Engineering & CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ping-Heng Tan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- Center of Materials Science and Optoelectronics Engineering & CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
6
|
Krahne R, Lin ML, Tan PH. Interplay of Phonon Directionality and Emission Polarization in Two-Dimensional Layered Metal Halide Perovskites. Acc Chem Res 2024; 57:2476-2489. [PMID: 39167606 PMCID: PMC11376265 DOI: 10.1021/acs.accounts.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
ConspectusLayered metal halide perovskites represent a natural quantum well system for charge carriers that provides rich physics, and the organic encapsulation of the inorganic metal halide layers not only increases their stability in devices but also provides an immense freedom to design their functionality. Intriguingly, these organic moieties strongly impact the optical, electrical, and mechanical properties, not only through their dielectric, elastic, and chemical properties but also because of induced mechanical distortions in the inorganic lattice. This tunability makes two-dimensional layered perovskites (2DLPs) highly attractive as light emitters. Common consensus is that exciton-phonon coupling plays an important role in radiative recombination. For bulk and some two-dimensional (2D) materials, the band edge emission broadening can be described by the classic models for polar inorganic semiconductors, while for the temperature dependence of the self-trapped exciton emission, an analysis developed for color centers has been successfully applied. For many 2DLPs these approaches do not work because of the complexity of their vibrational spectra. However, their emission is still strongly determined by phonons, and therefore, an adequate understanding of the electron-phonon coupling needs to be developed.With polarized and angle-resolved Raman spectroscopy studies on single 2DLP flakes based on different ammonium molecules as organic cations, in 2020 we revealed very rich phonon spectra in the low-frequency regime. Although the phonon bands at low frequency can generally be attributed to the vibrations of the inorganic lattice, we found very different responses by only changing the type of organic cations. In addition, the intensity of the different phonon modes depended strongly on the angle of the linearly polarized excitation beam with respect to the in-plane axes of the octahedron lattice. In 2022, we mapped this angular dependence of the phonon modes, which allowed identification of the directionality of the different lattice vibrations. By correlating the phonon spectra with the temperature-dependent emission for a set of 2DLPs that featured very different self-trapped exciton (STE) emission, we demonstrated that the exciton relaxation cannot be related to coupling with a single (longitudinal-optical) phonon band and that several phonon bands should be involved in the emission process. To gain insights into the exciton-phonon coupling effects on the band edge emission, we performed both angle-resolved polarized emission and Raman spectroscopy on single 2D lead iodide perovskite microcrystals. These experiments revealed the impact of the organic cations on the linear polarization of the emission and corroborated that multiple phonon bands should be involved in the radiative recombination process. Analysis of the temperature-dependent line width broadening of the band edge emission showed that for many systems, the behavior cannot be described by assuming the involvement of only one phonon mode in the electron-phonon coupling process. Our studies revealed a wealth of highly directional low-frequency phonons in 2DLPs from which several bands are involved in the emission process, which leads to diverse optical and vibrational properties depending on the type of organic cation in the material.
Collapse
Affiliation(s)
- Roman Krahne
- Optoelectronics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| | - Miao-Ling Lin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering and CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping-Heng Tan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering and CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Gan Z, Gloor CJ, Yan L, Zhong X, You W, Moran AM. Elucidating phonon dephasing mechanisms in layered perovskites with coherent Raman spectroscopies. J Chem Phys 2024; 161:074202. [PMID: 39158047 DOI: 10.1063/5.0216472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024] Open
Abstract
Organic-inorganic hybrid perovskite quantum wells exhibit electronic structures with properties intermediate between those of inorganic semiconductors and molecular crystals. In these systems, periodic layers of organic spacer molecules occupy the interstitial spaces between perovskite sheets, thereby confining electronic excitations to two dimensions. Here, we investigate spectroscopic line broadening mechanisms for phonons coupled to excitons in lead-iodide layered perovskites with phenyl ethyl ammonium (PEA) and azobenzene ethyl ammonium (AzoEA) spacer cations. Using a modified Elliot line shape analysis for the absorbance and photoluminescence spectra, polaron binding energies of 11.2 and 17.5 meV are calculated for (PEA)2PbI4 and (AzoEA)2PbI4, respectively. To determine whether the polaron stabilization processes influence the dephasing mechanisms of coupled phonons, five-pulse coherent Raman spectroscopies are applied to the two systems under electronically resonant conditions. The prominence of inhomogeneous line broadening mechanisms detected in (AzoEA)2PbI4 suggests that thermal fluctuations involving the deformable organic phase broaden the distributions of phonon frequencies within the quantum wells. In addition, our data indicate that polaron stabilization primarily involves photoinduced reorganization of the organic phases for both systems, whereas the impulsively excited phonons represent less than 10% of the total polaron binding energy. The signal generation mechanisms associated with our fifth-order coherent Raman experiments are explored with a perturbative model in which cumulant expansions are used to account for time-coincident vibrational dephasing and polaron stabilization processes.
Collapse
Affiliation(s)
- Zijian Gan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Camryn J Gloor
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Liang Yan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Xiaowei Zhong
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
8
|
Kambhampati P. Unraveling the excitonics of light emission from metal-halide perovskite quantum dots. NANOSCALE 2024; 16:15033-15058. [PMID: 39052235 DOI: 10.1039/d4nr01481b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Metal halide semicondictor perovskites have been under intense investigation for their promise in light absorptive applications like photovoltaics. They have more recently experienced interest for their promise in light emissive applications. A key aspect of perovskites is their glassy, ionic lattice that exhibits dynamical disorder. One possible result of this dynamical disorder is their strong coupling between electronic and lattice degrees of freedom which may confer remarkable properties for light emission such as defect tolerance. How does the system, comprised of excitons, couple to the bath, comprised of lattice modes? How does this system-bath interaction give rise to novel light emissive properties and how do these properties give insight into the nature of these materials? We review recent work from this group in which time-resolved photoluminescence spectroscopy is used to reveal such insights. Based upon a fast time resolution of 3 ps, energy resolution, and temperature dependence, a wide variety of insights are gleaned. These insights include: lattice contributions to the emission linewidths, multiexciton formation, hot carrier cooling, excitonic fine structure, single dot superradiance, and a breakdown of the Condon approximation, all due to complex structural dynamics in these materials.
Collapse
|
9
|
Zhu J, Li Y, Lin X, Han Y, Wu K. Coherent phenomena and dynamics of lead halide perovskite nanocrystals for quantum information technologies. NATURE MATERIALS 2024; 23:1027-1040. [PMID: 38951651 DOI: 10.1038/s41563-024-01922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/15/2024] [Indexed: 07/03/2024]
Abstract
Solution-processed colloidal nanocrystals of lead halide perovskites have been intensively investigated in recent years in the context of optoelectronic devices, during which time their quantum properties have also begun to attract attention. Their unmatched ease of synthetic tunability and unique structural, optical and electronic properties, in conjunction with the confinement of carriers in three dimensions, have motivated studies on observing and controlling coherent light-matter interaction in these materials for quantum information technologies. This Review outlines the recent efforts and achievements in this direction. Particularly notable examples are the observation of coherent single-photon emission, evidence for superfluorescence and the realization of room-temperature coherent spin manipulation for ensemble samples, which have not been achieved for prototypical colloidal CdSe nanocrystals that have been under investigation for decades. This Review aims to highlight these results, point out the challenges ahead towards realistic applications and bring together the efforts of multidisciplinary communities in this nascent field.
Collapse
Affiliation(s)
- Jingyi Zhu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yuxuan Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuyang Lin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaoyao Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Climente JI, Movilla JL, Planelles J. Electronic Structure of Biexcitons in Metal Halide Perovskite Nanoplatelets. J Phys Chem Lett 2024; 15:7379-7386. [PMID: 38995267 DOI: 10.1021/acs.jpclett.4c01719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A theoretical description of biexcitons in metal halide perovskite nanoplatelets is presented. The description is based on a variational effective mass model, including polaronic effects by means of a Haken potential. The strong quantum and dielectric confinements are shown to squeeze the biexciton under the polaronic radius, which greatly enhances Coulomb attractions and (to a lesser extent) repulsions. This explains the need for effective dielectric constants approaching the high-frequency limit in previous simulations, and the binding energies exceeding 40 meV observed in single-monolayer nanoplatelets. Biexcitons are formed by a pair of weakly interacting excitons, with a roughly rectangular geometry. This translates into a constant ratio between biexciton and exciton binding energies (2D Haynes rule) well below the ideal value of ΔBX/ΔX = 0.228 proposed for squared biexcitons. The ratio is independent of the number of monolayers in the platelet, but it does depend on the lateral and dielectric confinement.
Collapse
Affiliation(s)
- Juan I Climente
- Departament de Química Física i Analítica, Universitat Jaume I, E-12080, Castelló de la Plana, Spain
| | - José L Movilla
- Dept. d'Educació i Didàctiques Específiques, Universitat Jaume I, 12080, Castelló, Spain
| | - Josep Planelles
- Departament de Química Física i Analítica, Universitat Jaume I, E-12080, Castelló de la Plana, Spain
| |
Collapse
|
11
|
Chen EY, Monserrat B. Lattice Dynamics of Quasi-2D Perovskites from First Principles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:12194-12205. [PMID: 39081556 PMCID: PMC11284783 DOI: 10.1021/acs.jpcc.4c01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
We present the vibrational properties and phonon dispersion for quasi-2D hybrid organic-inorganic perovskites (BA)2CsPb2I7, (HA)2CsPb2I7, (BA)2(MA)Pb2I7, and (HA)2(MA)Pb2I7 calculated from first principles. Given the highly complex nature of these compounds, we first perform careful benchmarking and convergence testing to identify suitable parameters to describe their structural features and vibrational properties. We find that the inclusion of van der Waals corrections on top of generalized gradient approximation (GGA) exchange-correlation functionals provides the best agreement for the equilibrium structure relative to experimental data. We also investigate the impact of the molecular orientation on the equilibrium structure of these layered perovskite systems. Our results suggest ground state ferroelectric alignment of molecular dipoles in the out-of-plane direction is unlikely and support the assignment of the centrosymmetric space group for the low-temperature phase of (HA)2(MA)Pb2I7. Finally, we compute vibrational properties under the harmonic approximation. We find that stringent energy cut-offs are required to obtain well-converged phonon properties, and once converged, the harmonic approximation can capture key physics for such a large, hybrid inorganic-organic system with vastly different atom types, masses, and interatomic interactions. We discuss the obtained phonon modes and dispersion behavior in the context of known properties for bulk 3D perovskites and ligand molecular crystals. While many vibrational properties are inherited from the parent systems, we also observe unique coupled vibrations that cannot be associated with vibrations of the pure constituent perovskite and ligand subphases. Energy dispersion of the low energy phonon branches primarily occurs in the in-plane direction and within the perovskite subphase and arises from bending and breathing modes of the equatorial Pb-I network within the perovskite octahedral plane. The analysis herein provides the foundation for future investigations on this class of materials, such as exciton-phonon coupling, phase transitions, and general temperature-dependent properties.
Collapse
Affiliation(s)
- Emily Y. Chen
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Materials Science and Engineering, Stanford
University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Bartomeu Monserrat
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles
Babbage Road, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|
12
|
Wang X, Niu G, Jiang J, Sui L, Zeng X, Liu X, Zhang Y, Wu G, Yuan K, Yang X. Modulating Carrier Dynamics in PdSe 2: The Role of Pressure in Electronic and Phononic Interactions. NANO LETTERS 2024; 24:9058-9064. [PMID: 39007901 DOI: 10.1021/acs.nanolett.4c02300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
PdSe2 is a puckered transition metal dichalcogenide that has been reported to undergo a two-dimensional to three-dimensional structural transition under pressure. Here, we investigated the electronic and phononic evolution of PdSe2 under high pressure using pump-probe spectroscopy. We observed the electronic intraband and interband transitions occurring in the d orbitals of Pd, revealing the disappearance of the Jahn-Teller effect under high pressure. Furthermore, we found that the decay rates of interband recombination and intraband relaxation lifetimes change at 3 and 7 GPa, respectively. First-principles calculations suggest that the bandgap closure slows the decay rate of interband recombination after 3 GPa, while the saturation of phonon-phonon scattering is the main reason for the relatively constant intraband relaxation lifetime. Our work provides a novel perspective for understanding the evolution of the electron and modulation of the carrier dynamics by phonons under pressure.
Collapse
Affiliation(s)
- Xiaowei Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Guangming Niu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Jutao Jiang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Laizhi Sui
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiangyu Zeng
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xin Liu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Science College, Dalian Maritime University, Dalian 116026, China
| | - Yutong Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
13
|
Geuchies JJ, Klarbring J, Virgilio LD, Fu S, Qu S, Liu G, Wang H, Frost JM, Walsh A, Bonn M, Kim H. Anisotropic Electron-Phonon Interactions in 2D Lead-Halide Perovskites. NANO LETTERS 2024; 24:8642-8649. [PMID: 38976834 PMCID: PMC11261630 DOI: 10.1021/acs.nanolett.4c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Two-dimensional (2D) hybrid organic-inorganic metal halide perovskites offer enhanced stability for perovskite-based applications. Their crystal structure's soft and ionic nature gives rise to strong interaction between charge carriers and ionic rearrangements. Here, we investigate the interaction of photogenerated electrons and ionic polarizations in single-crystal 2D perovskite butylammonium lead iodide (BAPI), varying the inorganic lamellae thickness in the 2D single crystals. We determine the directionality of the transition dipole moments (TDMs) of the relevant phonon modes (in the 0.3-3 THz range) by the angle- and polarization-dependent THz transmission measurements. We find a clear anisotropy of the in-plane photoconductivity, with a ∼10% reduction along the axis parallel with the transition dipole moment of the most strongly coupled phonon. Detailed calculations, based on Feynman polaron theory, indicate that the anisotropy originates from directional electron-phonon interactions.
Collapse
Affiliation(s)
| | - Johan Klarbring
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | | | - Shuai Fu
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Sheng Qu
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Guangyu Liu
- Department
of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hai Wang
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Jarvist M. Frost
- Department
of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Aron Walsh
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Heejae Kim
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- Department
of Physics, Pohang University of Science
and Technology, 37673 Pohang, Korea
| |
Collapse
|
14
|
Biswas S, Zhao R, Alowa F, Zacharias M, Sharifzadeh S, Coker DF, Seferos DS, Scholes GD. Exciton polaron formation and hot-carrier relaxation in rigid Dion-Jacobson-type two-dimensional perovskites. NATURE MATERIALS 2024; 23:937-943. [PMID: 38755291 DOI: 10.1038/s41563-024-01895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
The efficiency of two-dimensional Dion-Jacobson-type materials relies on the complex interplay between electronic and lattice dynamics; however, questions remain about the functional role of exciton-phonon interactions. Here we establish the robust polaronic nature of the excitons in these materials at room temperature by combining ultrafast spectroscopy and electronic structure calculations. We show that polaronic distortion is associated with low-frequency (30-60 cm-1) lead iodide octahedral lattice motions. More importantly, we discover how targeted ligand modification of this two-dimensional perovskite structure manipulates exciton-phonon coupling, exciton polaron population and carrier cooling. At high excitation density, stronger exciton-phonon coupling increases the hot-carrier lifetime, forming a hot-phonon bottleneck. Our study provides detailed insight into the exciton-phonon coupling and its role in carrier cooling in two-dimensional perovskites relevant for developing emerging hybrid semiconductor materials with tailored properties.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton Uiversity, Princeton, NJ, USA
| | - Ruyan Zhao
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Fatimah Alowa
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA
| | - Marios Zacharias
- Université de Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, F-35000, Rennes, France
| | - Sahar Sharifzadeh
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - David F Coker
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
15
|
Duan J, Li J, Divitini G, Cortecchia D, Yuan F, You J, Liu SF, Petrozza A, Wu Z, Xi J. 2D Hybrid Perovskites: From Static and Dynamic Structures to Potential Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403455. [PMID: 38723249 DOI: 10.1002/adma.202403455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Indexed: 05/22/2024]
Abstract
2D perovskites have received great attention recently due to their structural tunability and environmental stability, making them highly promising candidates for various applications by breaking property bottlenecks that affect established materials. However, in 2D perovskites, the complicated interplay between organic spacers and inorganic slabs makes structural analysis challenging to interpret. A deeper understanding of the structure-property relationship in these systems is urgently needed to enable high-performance tunable optoelectronic devices. Herein, this study examines how structural changes, from constant lattice distortion and variable structural evolution, modeled with both static and dynamic structural descriptors, affect macroscopic properties and ultimately device performance. The effect of chemical composition, crystallographic inhomogeneity, and mechanical-stress-induced static structural changes and corresponding electronic band variations is reported. In addition, the structure dynamics are described from the viewpoint of anharmonic vibrations, which impact electron-phonon coupling and the carriers' dynamic processes. Correlated carrier-matter interactions, known as polarons and acting on fine electronic structures, are then discussed. Finally, reliable guidelines to facilitate design to exploit structural features and rationally achieve breakthroughs in 2D perovskite applications are proposed. This review provides a global structural landscape of 2D perovskites, expected to promote the prosperity of these materials in emerging device applications.
Collapse
Affiliation(s)
- Jianing Duan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingrui Li
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering & International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Giorgio Divitini
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Daniele Cortecchia
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, Bologna, 40129, Italy
- Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, via Rubattino 81, Milano, 20134, Italy
| | - Fang Yuan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxue You
- Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Annamaria Petrozza
- Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, via Rubattino 81, Milano, 20134, Italy
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jun Xi
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
16
|
Fu J, Bian T, Yin J, Feng M, Xu Q, Wang Y, Sum TC. Organic and inorganic sublattice coupling in two-dimensional lead halide perovskites. Nat Commun 2024; 15:4562. [PMID: 38811539 PMCID: PMC11136976 DOI: 10.1038/s41467-024-48707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
Two-dimensional layered organic-inorganic halide perovskites have successfully spread to diverse optoelectronic applications. Nevertheless, there remain gaps in our understanding of the interactions between organic and inorganic sublattices that form the foundation of their remarkable properties. Here, we examine these interactions using pump-probe spectroscopy and ab initio molecular dynamics simulations. Unlike off-resonant pumping, resonant excitation of the organic sublattice alters both the electronic and lattice degrees of freedom within the inorganic sublattice, indicating the existence of electronic coupling. Theoretical simulations verify that the reduced bandgap is likely due to the enhanced distortion index of the inorganic octahedra. Further evidence of the mechanical coupling between these two sublattices is revealed through the slow heat transfer process, where the resultant lattice tensile strain launches coherent longitudinal acoustic phonons. Our findings explicate the intimate electronic and mechanical couplings between the organic and inorganic sublattices, crucial for tailoring the optoelectronic properties of two-dimensional halide perovskites.
Collapse
Affiliation(s)
- Jianhui Fu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tieyuan Bian
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, PR China
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, PR China.
| | - Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Qiang Xu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yue Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
17
|
Ou Z, Wang C, Tao ZG, Li Y, Li Z, Zeng Y, Li Y, Shi E, Chu W, Wang T, Xu H. Organic Ligand Engineering for Tailoring Electron-Phonon Coupling in 2D Hybrid Perovskites. NANO LETTERS 2024; 24:5975-5983. [PMID: 38726841 DOI: 10.1021/acs.nanolett.4c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
In the emerging two-dimensional organic-inorganic hybrid perovskites, the electronic structures and carrier behaviors are strongly impacted by intrinsic electron-phonon interactions, which have received inadequate attention. In this study, we report an intriguing phenomenon of negative carrier diffusion induced by electron-phonon coupling in (2T)2PbI4. Theoretical calculations reveal that the electron-phonon coupling drives the band alignment in (2T)2PbI4 to alternate between type I and type II heterostructures. As a consequence, photoexcited holes undergo transitions between the organic ligands and inorganic layers, resulting in abnormal carrier transport behavior compared to other two-dimensional hybrid perovskites. These findings provide valuable insights into the role of electron-phonon coupling in shaping the band alignments and carrier behaviors in two-dimensional hybrid perovskites. They also open up exciting avenues for designing and fabricating functional semiconductor heterostructures with tailored properties.
Collapse
Affiliation(s)
- Zhenwei Ou
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Cheng Wang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
| | - Zhi-Guo Tao
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
| | - Yahui Li
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou 310030, China
| | - Zhe Li
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yan Zeng
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yan Li
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Enzheng Shi
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou 310030, China
| | - Weibin Chu
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
| | - Ti Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| |
Collapse
|
18
|
Guo J, Zhang J, Di Y, Gan Z. Research Progress on Rashba Effect in Two-Dimensional Organic-Inorganic Hybrid Lead Halide Perovskites. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:683. [PMID: 38668177 PMCID: PMC11054462 DOI: 10.3390/nano14080683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
The Rashba effect appears in the semiconductors with an inversion-asymmetric structure and strong spin-orbit coupling, which splits the spin-degenerated band into two sub-bands with opposite spin states. The Rashba effect can not only be used to regulate carrier relaxations, thereby improving the performance of photoelectric devices, but also used to expand the applications of semiconductors in spintronics. In this mini-review, recent research progress on the Rashba effect of two-dimensional (2D) organic-inorganic hybrid perovskites is summarized. The origin and magnitude of Rashba spin splitting, layer-dependent Rashba band splitting of 2D perovskites, the Rashba effect in 2D perovskite quantum dots, a 2D/3D perovskite composite, and 2D-perovskites-based van der Waals heterostructures are discussed. Moreover, applications of the 2D Rashba effect in circularly polarized light detection are reviewed. Finally, future research to modulate the Rashba strength in 2D perovskites is prospected, which is conceived to promote the optoelectronic and spintronic applications of 2D perovskites.
Collapse
Affiliation(s)
- Junhong Guo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Wenyuan Road 9, Nanjing 210023, China;
| | - Jinlei Zhang
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China;
| | - Yunsong Di
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China
| | - Zhixing Gan
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
19
|
Jin L, Mora Perez C, Gao Y, Ma K, Park JY, Li S, Guo P, Dou L, Prezhdo O, Huang L. Superior Phonon-Limited Exciton Mobility in Lead-Free Two-Dimensional Perovskites. NANO LETTERS 2024; 24:3638-3646. [PMID: 38498912 DOI: 10.1021/acs.nanolett.3c04895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Tin-based two-dimensional (2D) perovskites are emerging as lead-free alternatives in halide perovskite materials, yet their exciton dynamics and transport remain less understood due to defect scattering. Addressing this, we employed temperature-dependent transient photoluminescence (PL) microscopy to investigate intrinsic exciton transport in three structurally analogous Sn- and Pb-based 2D perovskites. Employing conjugated ligands, we synthesized high-quality crystals with enhanced phase stability at various temperatures. Our results revealed phonon-limited exciton transport in Sn perovskites, with diffusion constants increasing from 0.2 cm2 s-1 at room temperature to 0.6 cm2 s-1 at 40 K, and a narrowing PL line width. Notably, Sn-based perovskites exhibited greater exciton mobility than their Pb-based equivalents, which is attributed to lighter effective masses. Thermally activated optical phonon scattering was observed in Sn-based compounds but was absent in Pb-based materials. These findings, supported by molecular dynamics simulations, demonstrate that the phonon scattering mechanism in Sn-based halide perovskites can be distinct from their Pb counterparts.
Collapse
Affiliation(s)
- Linrui Jin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carlos Mora Perez
- Departments of Chemistry and Physics and Astronomy, University of Southern California, Los Angeles, California 90007, United States
| | - Yao Gao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Letian Dou
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Oleg Prezhdo
- Departments of Chemistry and Physics and Astronomy, University of Southern California, Los Angeles, California 90007, United States
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
20
|
Cai R, Feng M, Kanwat A, Furuhashi T, Wang B, Sum TC. Floquet Engineering of Excitons in Two-Dimensional Halide Perovskites via Biexciton States. NANO LETTERS 2024; 24:3441-3447. [PMID: 38457695 DOI: 10.1021/acs.nanolett.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Layered two-dimensional halide perovskites (2DHPs) exhibit exciting non-equilibrium properties that allow the manipulation of energy levels through coherent light-matter interactions. Under the Floquet picture, novel quantum states manifest through the optical Stark effect (OSE) following intense subresonant photoexcitation. Nevertheless, a detailed understanding of the influence of strong many-body interactions between excitons on the OSE in 2DHPs remains unclear. Herein, we uncover the crucial role of biexcitons in photon-dressed states and demonstrate precise optical control of the excitonic states via the biexcitonic OSE in 2DHPs. With fine step tuning of the driven energy, we fully parametrize the evolution of exciton resonance modulation. The biexcitonic OSE enables Floquet engineering of the exciton resonance with either a blue-shift or a red-shift of the energy levels. Our findings shed new light on the intricate nature of coherent light-matter interactions in 2DHPs and extend the degree of freedom for ultrafast coherent optical control over excitonic states.
Collapse
Affiliation(s)
- Rui Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Anil Kanwat
- Energy Research Institute@NTU (ERI@N), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
| | - Tomoki Furuhashi
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Bo Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
21
|
Gong Y, Yue S, Liang Y, Du W, Bian T, Jiang C, Bao X, Zhang S, Long M, Zhou G, Yin J, Deng S, Zhang Q, Wu B, Liu X. Boosting exciton mobility approaching Mott-Ioffe-Regel limit in Ruddlesden-Popper perovskites by anchoring the organic cation. Nat Commun 2024; 15:1893. [PMID: 38424438 PMCID: PMC10904778 DOI: 10.1038/s41467-024-45740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Exciton transport in two-dimensional Ruddlesden-Popper perovskite plays a pivotal role for their optoelectronic performance. However, a clear photophysical picture of exciton transport is still lacking due to strong confinement effects and intricate exciton-phonon interactions in an organic-inorganic hybrid lattice. Herein, we present a systematical study on exciton transport in (BA)2(MA)n-1PbnI3n+1 Ruddlesden-Popper perovskites using time-resolved photoluminescence microscopy. We reveal that the free exciton mobilities in exfoliated thin flakes can be improved from around 8 cm2 V-1 s-1 to 280 cm2V-1s-1 by anchoring the soft butyl ammonium cation with a polymethyl methacrylate network at the surface. The mobility of the latter is close to the theoretical limit of Mott-Ioffe-Regel criterion. Combining optical measurements and theoretical studies, it is unveiled that the polymethyl methacrylate network significantly improve the lattice rigidity resulting in the decrease of deformation potential scattering and lattice fluctuation at the surface few layers. Our work elucidates the origin of high exciton mobility in Ruddlesden-Popper perovskites and opens up avenues to regulate exciton transport in two-dimensional materials.
Collapse
Affiliation(s)
- Yiyang Gong
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P.R. China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Shuai Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yin Liang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Wenna Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tieyuan Bian
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P.R. China
| | - Chuanxiu Jiang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xiaotian Bao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
| | - Shuai Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Mingzhu Long
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P.R. China
| | - Guofu Zhou
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P.R. China
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P.R. China
| | - Shibin Deng
- Ultrafast Electron Microscopy Laboratory, School of Physics, Nankai University, Tianjin, 300071, P.R. China
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, 300071, P.R. China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China.
| | - Bo Wu
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P.R. China.
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China.
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
22
|
Mann JG, He F, Akkerman QA, Debnath T, Feldmann J. A Bound Exciton Resonance Modulated by Bulk and Localized Coherent Phonons in Double Perovskites. J Phys Chem Lett 2024; 15:2169-2176. [PMID: 38373052 DOI: 10.1021/acs.jpclett.3c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Optically excited electronic excitations are coupled to the soft and polar halide perovskite lattice, generating coherent phonons after subpicosecond interband laser-excitation. In Ag-based halide double perovskites, Ag-vacancies can bind free excitons, resulting in a pronounced bound exciton resonance. Here, we report the detection of three modulation frequencies corresponding to coherent phonons in Ag-based double perovskite nanocrystals at distinct spectral positions at the bound exciton resonance. Two of them are found in oscillatory spectral shifts of the bound exciton resonance and are identified as Cs- and Br-related bulk phonons. Surprisingly, a third frequency is observed as an intensity modulation. We argue that this amplitude oscillation is a consequence of an optically generated vibronic wave packet localized at a Ag-vacancy. Consequently, the localized coherent phonon modulates the giant oscillator strength of the bound exciton. This optically induced and spatially localized lattice shaking could potentially be useful for initiating photochemical reactions with atomic precision.
Collapse
Affiliation(s)
- Julian G Mann
- Chair for Photonics and Optoelectronics, Nano-Institute Munich and Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstr. 10, 80539 Munich, Germany
| | - Fei He
- Chair for Photonics and Optoelectronics, Nano-Institute Munich and Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstr. 10, 80539 Munich, Germany
| | - Quinten A Akkerman
- Chair for Photonics and Optoelectronics, Nano-Institute Munich and Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstr. 10, 80539 Munich, Germany
| | - Tushar Debnath
- Chair for Photonics and Optoelectronics, Nano-Institute Munich and Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstr. 10, 80539 Munich, Germany
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Nano Physical Spectroscopy Group, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, Uttar Pradesh 201314, India
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Nano-Institute Munich and Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstr. 10, 80539 Munich, Germany
| |
Collapse
|
23
|
Wang L, Nughays R, Rossi TC, Oppermann M, Ogieglo W, Bian T, Shih CH, Guo TF, Pinnau I, Yin J, Bakr OM, Mohammed OF, Chergui M. Disentangling Thermal from Electronic Contributions in the Spectral Response of Photoexcited Perovskite Materials. J Am Chem Soc 2024; 146:5393-5401. [PMID: 38359303 PMCID: PMC10910496 DOI: 10.1021/jacs.3c12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Disentangling electronic and thermal effects in photoexcited perovskite materials is crucial for photovoltaic and optoelectronic applications but remains a challenge due to their intertwined nature in both the time and energy domains. In this study, we employed temperature-dependent variable-angle spectroscopic ellipsometry, density functional theory calculations, and broadband transient absorption spectroscopy spanning the visible to mid-to-deep-ultraviolet (UV) ranges on MAPbBr3 thin films. The use of deep-UV detection opens a new spectral window that enables the exploration of high-energy excitations at various symmetry points within the Brillouin zone, facilitating an understanding of the ultrafast responses of the UV bands and the underlying mechanisms governing them. Our investigation reveals that the photoinduced spectral features remarkably resemble those generated by pure lattice heating, and we disentangle the relative thermal and electronic contributions and their evolutions at different delay times using combinations of decay-associated spectra and temperature-induced differential absorption. The results demonstrate that the photoinduced transients possess a significant thermal origin and cannot be attributed solely to electronic effects. Following photoexcitation, as carriers (electrons and holes) transfer their energy to the lattice, the thermal contribution increases from ∼15% at 1 ps to ∼55% at 500 ps and subsequently decreases to ∼35-50% at 1 ns. These findings elucidate the intricate energy exchange between charge carriers and the lattice in photoexcited perovskite materials and provide insights into the limited utilization efficiency of photogenerated charge carriers.
Collapse
Affiliation(s)
- Lijie Wang
- Laboratory
of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Razan Nughays
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Thomas C. Rossi
- Laboratory
of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Malte Oppermann
- Laboratory
of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Wojciech Ogieglo
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Tieyuan Bian
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Kowloon 999077, Hong Kong, P. R. China
| | - Chun-Hua Shih
- Department
of Photonics, National Cheng Kung University, Tainan 701, Taiwan ROC
| | - Tzung-Fang Guo
- Department
of Photonics, National Cheng Kung University, Tainan 701, Taiwan ROC
| | - Ingo Pinnau
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Kowloon 999077, Hong Kong, P. R. China
| | - Osman M. Bakr
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Majed Chergui
- Laboratory
of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
24
|
Wan MY, Wang ZY, Li QL, Wang FX, Liao J, Wang LJ, Tang YZ, Tan YH. Investigating the Structure-property Relationships of Two Cd-based Hybrid Multifunctional Compounds with High Tc, Bright Fluorescence and Wide Band-gap. Chemistry 2024; 30:e202303717. [PMID: 38072903 DOI: 10.1002/chem.202303717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 01/09/2024]
Abstract
Organic-inorganic hybrid multifunctional materials have shown significant application in lighting and sensor fields, owing to their prominent performance and diversity structures. Herein, we synthesized two multifunctional compounds: (propyl-quinuclidone)2 CdBr4 (1) and (F-butyl-quinuclidone)2 CdBr4 (2). By introducing light-emitting organic cation with flexible long chain, 1 and 2 exhibit excellent transition properties and bright blue-white fluorescence. Then, combine fluorescence lifetime and first-principal calculation, providing evidence for the electron transfer emission. Subsequently, investigated the impact of substituent carbon chain length (methyl to butyl), structural rigidity (C-C to C-F) and halide framework (Cl to I) on the fluorescence properties. Results indicate that Cd⋅⋅⋅Cd distance and structural rigidity play an important role in fluorescence. Overall, our research provides valuable insight and example for chemical modifications enhance compound performance.
Collapse
Affiliation(s)
- Ming-Yang Wan
- Key Laboratory of Development and Application of Ionic Rare Earth Resource, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Zhi-Ying Wang
- Key Laboratory of Development and Application of Ionic Rare Earth Resource, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Qing-Lian Li
- Key Laboratory of Development and Application of Ionic Rare Earth Resource, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Fang Xin Wang
- Key Laboratory of Development and Application of Ionic Rare Earth Resource, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Juan Liao
- Key Laboratory of Development and Application of Ionic Rare Earth Resource, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Li-Juan Wang
- Key Laboratory of Development and Application of Ionic Rare Earth Resource, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Yun-Zhi Tang
- Key Laboratory of Development and Application of Ionic Rare Earth Resource, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Yu-Hui Tan
- Key Laboratory of Development and Application of Ionic Rare Earth Resource, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| |
Collapse
|
25
|
Niu G, Jiang J, Wang X, Che L, Sui L, Wu G, Yuan K, Yang X. Time-Resolved Dynamics of Metal Halide Perovskite under High Pressure: Recent Progress and Challenges. J Phys Chem Lett 2024; 15:1623-1635. [PMID: 38306470 DOI: 10.1021/acs.jpclett.3c03548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Metal halide perovskites have garnered significant attention in the scientific community for their promising applications in optoelectronic devices. The application of pressure engineering, a viable technique, has played a crucial role in substantially improving the optoelectronic characteristics of perovskites. Despite notable progress in understanding ground-state structural changes under high pressure, a comprehensive exploration of excited-state dynamics influencing luminescence remains incomplete. This Perspective delves into recent advances in time-resolved dynamics studies of photoexcited metal halide perovskites under high pressure. With a focus on the intricate interplay between structural alterations and electronic properties, we investigate electron-phonon interactions, carrier transport mechanisms, and the influential roles of self-trapped excitons (STEs) and coherent phonons in luminescence. However, significant challenges persist, notably the need for more advanced measurement techniques and a deeper understanding of the phenomena induced by high pressure in perovskites.
Collapse
Affiliation(s)
- Guangming Niu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Jutao Jiang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xiaowei Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Li Che
- Department of Physics School of Science, Dalian Maritime University, Dalian 116026, P. R. China
| | - Laizhi Sui
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
- Hefei National Laboratory, Hefei 230088, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, P. R. China
- Hefei National Laboratory, Hefei 230088, China
- Department of Chemistry College of Science, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
26
|
Dyksik M, Beret D, Baranowski M, Duim H, Moyano S, Posmyk K, Mlayah A, Adjokatse S, Maude DK, Loi MA, Puech P, Plochocka P. Polaron Vibronic Progression Shapes the Optical Response of 2D Perovskites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305182. [PMID: 38072637 PMCID: PMC10870061 DOI: 10.1002/advs.202305182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Indexed: 02/17/2024]
Abstract
The optical response of 2D layered perovskites is composed of multiple equally-spaced spectral features, often interpreted as phonon replicas, separated by an energy Δ ≃ 12 - 40 meV, depending upon the compound. Here the authors show that the characteristic energy spacing, seen in both absorption and emission, is correlated with a substantial scattering response above ≃ 200 cm-1 (≃ 25 meV) observed in resonant Raman. This peculiar high-frequency signal, which dominates both Stokes and anti-Stokes regions of the scattering spectra, possesses the characteristic spectral fingerprints of polarons. Notably, its spectral position is shifted away from the Rayleigh line, with a tail on the high energy side. The internal structure of the polaron consists of a series of equidistant signals separated by 25-32 cm-1 (3-4 meV), depending upon the compound, forming a polaron vibronic progression. The observed progression is characterized by a large Huang-Rhys factor (S > 6) for all of the 2D layered perovskites investigated here, indicative of a strong charge carrier - lattice coupling. The polaron binding energy spans a range ≃ 20-35 meV, which is corroborated by the temperature-dependent Raman scattering data. The investigation provides a complete understanding of the optical response of 2D layered perovskites via the direct observation of polaron vibronic progression. The understanding of polaronic effects in perovskites is essential, as it directly influences the suitability of these materials for future opto-electronic applications.
Collapse
Affiliation(s)
- Mateusz Dyksik
- Department of Experimental PhysicsFaculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWroclaw50370Poland
| | - Dorian Beret
- CEMES‐UPR8011CNRSUniversity of Toulouse29 rue Jeanne MarvigToulouse31500France
| | - Michal Baranowski
- Department of Experimental PhysicsFaculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWroclaw50370Poland
| | - Herman Duim
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Sébastien Moyano
- CEMES‐UPR8011CNRSUniversity of Toulouse29 rue Jeanne MarvigToulouse31500France
| | - Katarzyna Posmyk
- Department of Experimental PhysicsFaculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWroclaw50370Poland
- Laboratoire National des Champs Magnétiques IntensesEMFL, CNRS UPR 3228University Toulouse, University Toulouse 3, INSA‐T, University Grenoble AlpesGrenoble and ToulouseFrance
| | - Adnen Mlayah
- LAASUniversity of ToulouseCNRS, UPS, 7 Avenue du Colonel RocheToulouse31031France
| | - Sampson Adjokatse
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Duncan K. Maude
- Laboratoire National des Champs Magnétiques IntensesEMFL, CNRS UPR 3228University Toulouse, University Toulouse 3, INSA‐T, University Grenoble AlpesGrenoble and ToulouseFrance
| | - Maria Antonietta Loi
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Pascal Puech
- CEMES‐UPR8011CNRSUniversity of Toulouse29 rue Jeanne MarvigToulouse31500France
| | - Paulina Plochocka
- Department of Experimental PhysicsFaculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWroclaw50370Poland
- Laboratoire National des Champs Magnétiques IntensesEMFL, CNRS UPR 3228University Toulouse, University Toulouse 3, INSA‐T, University Grenoble AlpesGrenoble and ToulouseFrance
| |
Collapse
|
27
|
Li W, Giannini S, Quarti C, Hou Z, Prezhdo OV, Beljonne D. Interlayer Charge Transport in 2D Lead Halide Perovskites from First Principles. J Chem Theory Comput 2023; 19:9403-9415. [PMID: 38048307 DOI: 10.1021/acs.jctc.3c00904] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
We report on the implementation of a versatile projection-operator diabatization approach to calculate electronic coupling integrals in layered periodic systems. The approach is applied to model charge transport across the saturated organic spacers in two-dimensional (2D) lead halide perovskites. The calculations yield out-of-plane charge transfer rates that decay exponentially with the increasing length of the alkyl chain, range from a few nanoseconds to milliseconds, and are supportive of a hopping mechanism. Most importantly, we show that the charge carriers strongly couple to distortions of the Pb-I framework and that accounting for the associated nonlocal dynamic disorder increases the thermally averaged interlayer rates by a few orders of magnitude compared to the frozen-ion 0 K-optimized structure. Our formalism provides the first comprehensive insight into the role of the organic spacer cation on vertical transport in 2D lead halide perovskites and can be readily extended to functional π-conjugated spacers, where we expect the improved energy alignment with the inorganic layout to speed up the charge transfer between the semiconducting layers.
Collapse
Affiliation(s)
- Wei Li
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, B-7000 Mons, Belgium
| | - Samuele Giannini
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, B-7000 Mons, Belgium
| | - Claudio Quarti
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, B-7000 Mons, Belgium
| | - Zhufeng Hou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, B-7000 Mons, Belgium
| |
Collapse
|
28
|
Kim J, Xu Y, Bain D, Li M, Cotlet M, Yu Q, Musser AJ. Small to Large Polaron Behavior Induced by Controlled Interactions in Perovskite Quantum Dot Solids. ACS NANO 2023; 17:23079-23093. [PMID: 37934023 DOI: 10.1021/acsnano.3c08748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The polaron is an essential photoexcitation that governs the unique optoelectronic properties of organic-inorganic hybrid halide perovskites, and it has been subject to extensive spectroscopic and theoretical investigation over the past decade. A crucial but underexplored question is how the nature of the photogenerated polarons is impacted by the microscopic perovskite structure and what functional properties this affects. To tackle this question, we chemically tuned the interactions between perovskite quantum dots (QDs) to rationally manipulate the polaron properties. Through a suite of time-resolved spectroscopies, we find that inter-QD interactions open an excited-state channel to form large polaron species, which exhibit enhanced spatial diffusion, slower hot polaron cooling, and a longer intrinsic lifetime. At the same time, polaronic excitons are formed in competition via localized band-edge states, exhibiting strong photoluminescence but are limited by shorter intrinsic lifetimes. This control of polaron type and function through tunable inter-QD interactions not only provides design principles for QD-based materials but also experimentally disentangles polaronic species in hybrid perovskite materials.
Collapse
Affiliation(s)
- Juno Kim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yuanze Xu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - David Bain
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mingxing Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Mircea Cotlet
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Qiuming Yu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Andrew J Musser
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
29
|
Ravali V, Ghosh T. Charge carrier dynamics and transient spectral evolutions in lead halide perovskites. Chem Commun (Camb) 2023; 59:13939-13950. [PMID: 37934456 DOI: 10.1039/d3cc04297a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Lead halide perovskites (LHPs) have emerged as promising materials for solar cell applications due to their unique photophysical properties. Most of the crucial properties related to solar cell performance such as carrier mobility, diffusion length, recombination rates, etc. have been estimated using ultrafast spectroscopic methods. While various methods have been developed to prepare and fabricate high-quality perovskite films for photovoltaic applications, understanding the charge carrier dynamics is also crucial at each stage of the charge generation, cooling, and recombination processes. Using femtosecond (fs) transient absorption (TA) spectroscopy, various stages of charge carrier dynamics in perovskite materials could be monitored. In this article, we focus on some of the recent experimental developments related to charge carrier dynamics in perovskites and discuss the current understanding of (1) exciton dissociation, (2) charge carrier thermalization, (3) hot carrier cooling, and (4) electron-phonon coupling along with some of the crucial spectral emergence in the pump-probe experiments of LHP materials.
Collapse
Affiliation(s)
- Vanga Ravali
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh, 522237, India.
| | - Tufan Ghosh
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh, 522237, India.
| |
Collapse
|
30
|
Brosseau P, Ghosh A, Seiler H, Strandell D, Kambhampati P. Exciton-polaron interactions in metal halide perovskite nanocrystals revealed via two-dimensional electronic spectroscopy. J Chem Phys 2023; 159:184711. [PMID: 37962451 DOI: 10.1063/5.0173369] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Metal halide perovskite nanocrystals have been under intense investigation for their promise in optoelectronic devices due to their remarkable physics, such as liquid/solid duality. This liquid/solid duality may give rise to their defect tolerance and other such useful properties. This duality means that the electronic states are fluctuating in time, on a distribution of timescales from femtoseconds to picoseconds. Hence, these lattice induced energy fluctuations that are connected to polaron formation are also connected to exciton formation and dynamics. We observe these correlations and dynamics in metal halide perovskite nanocrystals of CsPbI3 and CsPbBr3 using two-dimensional electronic (2DE) spectroscopy, with its unique ability to resolve dynamics in heterogeneously broadened systems. The 2DE spectra immediately reveal a previously unobserved excitonic splitting in these 15 nm NCs that may have a coarse excitonic structure. 2D lineshape dynamics reveal a glassy response on the 300 fs timescale due to polaron formation. The lighter Br system shows larger amplitude and faster timescale fluctuations that give rise to dynamic line broadening. The 2DE signals enable 1D transient absorption analysis of exciton cooling dynamics. Exciton cooling within this doublet is shown to take place on a slower timescale than within the excitonic continuum. The energy dissipation rates are the same for the I and Br systems for incoherent exciton cooling but are very different for the coherent dynamics that give rise to line broadening. Exciton cooling is shown to take place on the same timescale as polaron formation, revealing both as coupled many-body excitation.
Collapse
Affiliation(s)
- Patrick Brosseau
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Arnab Ghosh
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Helene Seiler
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Dallas Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | |
Collapse
|
31
|
Yang C, Wei Q, Gong Y, Long M, Zhou G, Xing G, Wu B. Correlated Self-Trapped Excitons and Free Excitons with Intermediate Exciton-Phonon Coupling in 2D Mixed-Halide Perovskites. J Phys Chem Lett 2023; 14:10046-10053. [PMID: 37910791 DOI: 10.1021/acs.jpclett.3c02346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Low-dimensional lead halides have attracted increasing attention due to their potential application as single-component white-light emitters. These materials exhibit a complex emission spectral structure, ranging from free exciton narrowband emissions to self-trapped exciton broadband emissions. However, there is still no consensus for the underlying physical mechanism, especially in the spectrum with both narrowband and broadband emissions. Here we aim to elucidate the correlation between the emission spectrum and the exciton-phonon coupling in the mixed halide perovskite BA2Pb(BrxCl1-x)4. Our findings reveal that the interplay between exciton localization and delocalization results in an intermediate exciton-phonon coupling, leading to line shapes beyond the Huang-Rhys model for the self-trapped exciton. By incorporating the exciton motional effect, we establish a unified photophysical model describing the emission spectrum from the self-trapped exciton type to the free exciton type. These results provide essential insights into the mechanisms governing exciton-phonon interactions and offer ways to control white-light emission in two-dimensional perovskites.
Collapse
Affiliation(s)
- Cheng Yang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Qi Wei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China
| | - Yiyang Gong
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Mingzhu Long
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
32
|
Yazdani N, Bodnarchuk MI, Bertolotti F, Masciocchi N, Fureraj I, Guzelturk B, Cotts BL, Zajac M, Rainò G, Jansen M, Boehme SC, Yarema M, Lin MF, Kozina M, Reid A, Shen X, Weathersby S, Wang X, Vauthey E, Guagliardi A, Kovalenko MV, Wood V, Lindenberg AM. Coupling to octahedral tilts in halide perovskite nanocrystals induces phonon-mediated attractive interactions between excitons. NATURE PHYSICS 2023; 20:47-53. [PMID: 38261834 PMCID: PMC10791581 DOI: 10.1038/s41567-023-02253-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/15/2023] [Indexed: 01/25/2024]
Abstract
Understanding the origin of electron-phonon coupling in lead halide perovskites is key to interpreting and leveraging their optical and electronic properties. Here we show that photoexcitation drives a reduction of the lead-halide-lead bond angles, a result of deformation potential coupling to low-energy optical phonons. We accomplish this by performing femtosecond-resolved, optical-pump-electron-diffraction-probe measurements to quantify the lattice reorganization occurring as a result of photoexcitation in nanocrystals of FAPbBr3. Our results indicate a stronger coupling in FAPbBr3 than CsPbBr3. We attribute the enhanced coupling in FAPbBr3 to its disordered crystal structure, which persists down to cryogenic temperatures. We find the reorganizations induced by each exciton in a multi-excitonic state constructively interfere, giving rise to a coupling strength that scales quadratically with the exciton number. This superlinear scaling induces phonon-mediated attractive interactions between excitations in lead halide perovskites.
Collapse
Affiliation(s)
- Nuri Yazdani
- Department of Materials Science and Engineering, Stanford University, Stanford, CA USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA USA
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
| | - Maryna I. Bodnarchuk
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Federica Bertolotti
- Dipartimento di Scienza e Alta Tecnologia & To.Sca.Lab, Università dell’Insubria, Como, Italy
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia & To.Sca.Lab, Università dell’Insubria, Como, Italy
| | - Ina Fureraj
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Burak Guzelturk
- X-ray Science Division, Argonne National Laboratory, Lemont, IL USA
| | - Benjamin L. Cotts
- Department of Materials Science and Engineering, Stanford University, Stanford, CA USA
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT USA
| | - Marc Zajac
- X-ray Science Division, Argonne National Laboratory, Lemont, IL USA
| | - Gabriele Rainò
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Maximilian Jansen
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
| | - Simon C. Boehme
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Maksym Yarema
- Chemistry and Materials Design Group, Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Michael Kozina
- SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Alexander Reid
- SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Xiaozhe Shen
- SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | | | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Antonietta Guagliardi
- Istituto di Cristallografia & To.Sca.Lab, Consiglio Nazionale delle Ricerche, Como, Italy
| | - Maksym V. Kovalenko
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Vanessa Wood
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
| | - Aaron M. Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, CA USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA USA
- Department of Photon Science, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, CA USA
| |
Collapse
|
33
|
Movilla JL, Planelles J, Climente JI. Excitons in metal halide perovskite nanoplatelets: an effective mass description of polaronic, dielectric and quantum confinement effects. NANOSCALE ADVANCES 2023; 5:6093-6101. [PMID: 37941960 PMCID: PMC10628976 DOI: 10.1039/d3na00592e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
A theoretical model for excitons confined in metal halide perovskite nanoplatelets is presented. The model accounts for quantum confinement, dielectric confinement, short and long range polaron interactions by means of effective mass theory, image charges and Haken potentials. We use it to describe the band edge exciton of MAPbI3 structures surrounded by organic ligands. It is shown that the quasi-2D quantum and dielectric confinement squeezes the exciton radius, and this in turn enhances short-range polaron effects as compared to 3D structures. Dielectric screening is then weaker than expected from the static dielectric constant. This boosts the binding energies and radiative recombination probabilities, which is a requisite to match experimental data in related systems. The thickness dependence of Coulomb polarization and self-energy potentials is in fair agreement with sophisticated atomistic models.
Collapse
Affiliation(s)
- Jose L Movilla
- Departament d'Educació i Didàctiques Específiques, Universitat Jaume I Av. Sos Baynat, s/n 12071 Castelló Spain
| | - Josep Planelles
- Departament de Química Física i Analítica, Universitat Jaume I Av. Sos Baynat, s/n 12071 Castelló Spain
| | - Juan I Climente
- Departament de Química Física i Analítica, Universitat Jaume I Av. Sos Baynat, s/n 12071 Castelló Spain
| |
Collapse
|
34
|
Rojas-Gatjens E, Li H, Vega-Flick A, Cortecchia D, Petrozza A, Bittner ER, Srimath Kandada AR, Silva-Acuña C. Many-Exciton Quantum Dynamics in a Ruddlesden-Popper Tin Iodide. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:21194-21203. [PMID: 37937156 PMCID: PMC10626601 DOI: 10.1021/acs.jpcc.3c04896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/01/2023] [Indexed: 11/09/2023]
Abstract
We present a study on the many-body exciton interactions in a Ruddlesden-Popper tin halide, namely, (PEA)2SnI4 (PEA = phenylethylammonium), using coherent two-dimensional electronic spectroscopy. The optical dephasing times of the third-order polarization observed in these systems are determined by exciton many-body interactions and lattice fluctuations. We investigate the excitation-induced dephasing (EID) and observe a significant reduction of the dephasing time with increasing excitation density as compared to its lead counterpart (PEA)2PbI4, which we have previously reported in a separate publication [J. Chem. Phys.2020, 153, 164706]. Surprisingly, we find that the EID interaction parameter is four orders of magnitude higher in (PEA)2SnI4 than that in (PEA)2PbI4. This increase in the EID rate may be due to exciton localization arising from a more statically disordered lattice in the tin derivative. This is supported by the observation of multiple closely spaced exciton states and the broadening of the linewidth with increasing population time (spectral diffusion), which suggests a static disordered structure relative to the highly dynamic lead-halide. Additionally, we find that the exciton nonlinear coherent lineshape shows evidence of a biexcitonic state with low binding energy (<10 meV) not observed in the lead system. We model the lineshapes based on a stochastic scattering theory that accounts for the interaction with a nonstationary population of dark background excitations. Our study provides evidence of differences in the exciton quantum dynamics between tin- and lead-based Ruddlesden-Popper metal halides (RPMHs) and links them to the exciton-exciton interaction strength and the static disorder aspect of the crystalline structure.
Collapse
Affiliation(s)
- Esteban Rojas-Gatjens
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, United
States
| | - Hao Li
- Department
of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Alejandro Vega-Flick
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
| | - Daniele Cortecchia
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan 20133, Italy
| | - Annamaria Petrozza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan 20133, Italy
| | - Eric R. Bittner
- Department
of Chemistry, University of Houston, Houston, Texas 77204, United States
- Center
for Nonlinear Studies, Los Alamos National
Laboratory, Los Alamos, New Mexico 87544, United States
| | - Ajay Ram Srimath Kandada
- Department
of Physics, Wake Forest University, Winston–Salem, North
Carolina 27587, United States
- Center
for Functional Materials, Wake Forest University, Winston–Salem, North
Carolina 27109, United States
| | - Carlos Silva-Acuña
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, United
States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia, 30332, United States
| |
Collapse
|
35
|
Wu B, Wang A, Fu J, Zhang Y, Yang C, Gong Y, Jiang C, Long M, Zhou G, Yue S, Ma W, Liu X. Uncovering the mechanisms of efficient upconversion in two-dimensional perovskites with anti-Stokes shift up to 220 meV. SCIENCE ADVANCES 2023; 9:eadi9347. [PMID: 37774031 PMCID: PMC10541006 DOI: 10.1126/sciadv.adi9347] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
Phonon-assisted photon upconversion holds great potential for numerous applications, e.g., optical refrigeration. However, traditional semiconductors face energy gain limitations due to thermal energy, typically achieving only ~25 milli-electron volts at room temperature. Here, we demonstrate that quasi-two-dimensional perovskites, with a soft hybrid organic-inorganic lattice, can efficiently upconvert photons with an anti-Stokes shift exceeding 200 milli-electron volts. By using microscopic transient absorption measurements and density functional theory calculations, we explicate that the giant energy gain stems from strong lattice fluctuation leading to a picosecond timescale transient band energy renormalization with a large energy variation of around ±180 milli-electron volts at room temperature. The motion of organic molecules drives the deformation of inorganic framework, providing energy and local states necessary for efficient upconversion within a time constant of around 1 ps. These results establish a deep understanding of perovskite-based photon upconversion and offer previously unknown insights into the development of various upconversion applications.
Collapse
Affiliation(s)
- Bo Wu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P.R. China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Aocheng Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jing Fu
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, P.R. China
| | - Yutong Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Cheng Yang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P.R. China
| | - Yiyang Gong
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P.R. China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Chuanxiu Jiang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Mingzhu Long
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P.R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P.R. China
| | - Shuai Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wei Ma
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, P.R. China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
36
|
Song M, Wang H, Hu Z, Zhang Y, Liu T, Wang H. The Role of Polaronic States on the Spin Dynamics in Solution-Processed Two-Dimensional Layered Perovskite with Different Layer Thickness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302554. [PMID: 37395386 PMCID: PMC10502664 DOI: 10.1002/advs.202302554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Indexed: 07/04/2023]
Abstract
2D lead halide perovskites (LHPs) show strong excitonic and spin-orbit coupling effects, generating a facile spin injection. Besides, they possess a polaron character due to the soft crystal lattice, which can prolong the spin lifetime, making them favorable materials for spintronic applications. Here, the spin dynamics of 2D PEA2 PbI4 (MAPbI3 )n -l thin films with different layers by temperature- and pump fluence-dependent circularly polarization-resolved transient absorption (TA) measurements is studied. These results indicate that the spin depolarization mechanism is gradually converted from the Maialle-Silva-Sham (MSS) mechanism to the polaronic states protection mechanism with the layer number increasing from = 1 to 3, which is determined by the interplay between the strength of Coulomb exchange interaction and the strength of polaronic effect. While for ≥ 4, the Elliot-Yafet (EY) impurities mechanism is proposed, in which the formed polaronic states with free charge carriers no longer play the protective role.
Collapse
Affiliation(s)
- Mu‐Sen Song
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University2699 Qianjin StreetChangchun130012China
| | - Hai Wang
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University2699 Qianjin StreetChangchun130012China
| | - Zi‐Fan Hu
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University2699 Qianjin StreetChangchun130012China
| | - Yu‐Peng Zhang
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University2699 Qianjin StreetChangchun130012China
| | - Tian‐Yu Liu
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University2699 Qianjin StreetChangchun130012China
| | - Hai‐Yu Wang
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University2699 Qianjin StreetChangchun130012China
| |
Collapse
|
37
|
Armstrong ZT, Forlano KM, Roy CR, Bohlmann Kunz M, Farrell K, Pan D, Wright JC, Jin S, Zanni MT. Spatial Heterogeneity of Biexcitons in Two-Dimensional Ruddlesden-Popper Lead Iodide Perovskites. J Am Chem Soc 2023; 145:18568-18577. [PMID: 37565990 DOI: 10.1021/jacs.3c05533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Quantum confinement in two-dimensional (2D) Ruddlesden-Popper (RP) perovskites leads to the formation of stable quasi-particles, including excitons and biexcitons, the latter of which may enable lasing in these materials. Due to their hybrid organic-inorganic structures and the solution phase synthesis, microcrystals of 2D RP perovskites can be quite heterogeneous, with variations in excitonic and biexcitonic properties between crystals from the same synthesis and even within individual crystals. Here, we employ one- and two-quantum two-dimensional white-light microscopy to systematically study the spatial variations of excitons and biexcitons in microcrystals of a series of 2D RP perovskites BA2MAn-1PbnI3n+1 (n = 2-4, BA= butylammonium, MA = methylammonium). We find that the average biexciton binding energy of around 60 meV is essentially independent of the perovskite layer thickness (n). We also resolve spatial variations of the exciton and biexciton energies on micron length scales within individual crystals. By comparing the one-quantum and two-quantum spectra at each pixel, we conclude that biexcitons are more sensitive to their environments than excitons. These results shed new light on the ways disorder can modify the energetic landscape of excitons and biexcitons in RP perovskites and how biexcitons can be used as a sensitive probe of the microscopic environment of a semiconductor.
Collapse
Affiliation(s)
- Zachary T Armstrong
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kristel M Forlano
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Chris R Roy
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Miriam Bohlmann Kunz
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kieran Farrell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Dongxu Pan
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - John C Wright
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
38
|
Zhang Z, Zhang J, Liu ZJ, Dahod NS, Paritmongkol W, Brown N, Stollmann A, Lee WS, Chien YC, Dai Z, Nelson KA, Tisdale WA, Rappe AM, Baldini E. Discovery of enhanced lattice dynamics in a single-layered hybrid perovskite. SCIENCE ADVANCES 2023; 9:eadg4417. [PMID: 37585532 PMCID: PMC10431705 DOI: 10.1126/sciadv.adg4417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Layered hybrid perovskites exhibit emergent physical properties and exceptional functional performances, but the coexistence of lattice order and structural disorder severely hinders our understanding of these materials. One unsolved problem regards how the lattice dynamics are affected by the dimensional engineering of the inorganic frameworks and their interaction with the molecular moieties. Here, we address this question by using a combination of spontaneous Raman scattering, terahertz spectroscopy, and molecular dynamics simulations. This approach reveals the structural dynamics in and out of equilibrium and provides unexpected observables that differentiate single- and double-layered perovskites. While no distinct vibrational coherence is observed in double-layered perovskites, an off-resonant terahertz pulse can drive a long-lived coherent phonon mode in the single-layered system. This difference highlights the dramatic change in the lattice environment as the dimension is reduced, and the findings pave the way for ultrafast structural engineering and high-speed optical modulators based on layered perovskites.
Collapse
Affiliation(s)
- Zhuquan Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiahao Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zi-Jie Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nabeel S. Dahod
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Watcharaphol Paritmongkol
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Niamh Brown
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexia Stollmann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Woo Seok Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yu-Che Chien
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhenbang Dai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith A. Nelson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William A. Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew M. Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edoardo Baldini
- Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
39
|
Kutkan S, Dhanabalan B, Lin ML, Tan PH, Schleusener A, Arciniegas MP, Krahne R. Impact of the organic cation on the band-edge emission of two-dimensional lead-bromide perovskites. NANOSCALE 2023; 15:12880-12888. [PMID: 37477377 DOI: 10.1039/d3nr02172f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Organic-inorganic low-dimensional layered metal-halide perovskites are semiconductors in which the optoelectronic properties can be tuned by the material composition and the design of the layered architecture. While the electronic band structure is mainly determined by the inorganic octahedra lattice, the binding and conformation of the organic cations induces related lattice distortions that can break the symmetry and lead to the splitting of the exciton energy levels, and influence the dielectric confinement. Furthermore, organic-induced lattice deformations lead to offsets in k-space (where k is the wavevector) that go along with the exciton energy level splitting. Hence, the electronic transitions between these levels require the momentum contribution of phonons, and contributions of phonons in the exciton recombination dynamics result in thermal broadening of the emission linewidth. In this work, we investigate the band-edge emission of two-dimensional Ruddlesden-Popper lead-bromide perovskites synthesized with different organic cations that vary in their binding head group and their alkyl chain length. We find several peaks in the low-temperature photoluminescence spectra, and the number of peaks in the band-edge emission and their decay dynamics depend strongly on the type of organic cation in the material, which we relate to the difference in the inorganic lattice distortions that the cations induce. For two-dimensional layered perovskites with mainly in-plane distortions, induced by short primary ammonium molecules, we find a two-fold splitting of the band edge emission at low temperatures. If also out-of-plane distortions are present, as for the long-chain primary ammoniums, a three-fold splitting is observed. Interestingly, the low-energy peaks of the split series merge into the highest energy peak with increasing temperature. Thermal broadening analysis of the temperature-dependent photoluminescence linewidth in the structures with out-of-plane distortions yields energies that are larger than those reported for the inorganic lattice phonons. This indicates the involvement of either high-frequency oscillations involving the organic cations, or the broadening might be related to higher order phonon scattering processes in the excitonic recombination process. The strong directionality of the phonon modes in the octahedral lattice could promote the involvement of multiple electron-phonon scattering processes in the exciton relaxation dynamics, for example involving modes with orthogonal directionality.
Collapse
Affiliation(s)
- Seda Kutkan
- Italian Institute of Technology (IIT), Via Morego 30, 16163 Genoa, Italy.
| | - Balaji Dhanabalan
- Italian Institute of Technology (IIT), Via Morego 30, 16163 Genoa, Italy.
| | - Miao-Ling Lin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
| | - Ping-Heng Tan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
| | | | | | - Roman Krahne
- Italian Institute of Technology (IIT), Via Morego 30, 16163 Genoa, Italy.
| |
Collapse
|
40
|
Metcalf I, Sidhik S, Zhang H, Agrawal A, Persaud J, Hou J, Even J, Mohite AD. Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chem Rev 2023; 123:9565-9652. [PMID: 37428563 DOI: 10.1021/acs.chemrev.3c00214] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Three-dimensional (3D) organic-inorganic lead halide perovskites have emerged in the past few years as a promising material for low-cost, high-efficiency optoelectronic devices. Spurred by this recent interest, several subclasses of halide perovskites such as two-dimensional (2D) halide perovskites have begun to play a significant role in advancing the fundamental understanding of the structural, chemical, and physical properties of halide perovskites, which are technologically relevant. While the chemistry of these 2D materials is similar to that of the 3D halide perovskites, their layered structure with a hybrid organic-inorganic interface induces new emergent properties that can significantly or sometimes subtly be important. Synergistic properties can be realized in systems that combine different materials exhibiting different dimensionalities by exploiting their intrinsic compatibility. In many cases, the weaknesses of each material can be alleviated in heteroarchitectures. For example, 3D-2D halide perovskites can demonstrate novel behavior that neither material would be capable of separately. This review describes how the structural differences between 3D halide perovskites and 2D halide perovskites give rise to their disparate materials properties, discusses strategies for realizing mixed-dimensional systems of various architectures through solution-processing techniques, and presents a comprehensive outlook for the use of 3D-2D systems in solar cells. Finally, we investigate applications of 3D-2D systems beyond photovoltaics and offer our perspective on mixed-dimensional perovskite systems as semiconductor materials with unrivaled tunability, efficiency, and technologically relevant durability.
Collapse
Affiliation(s)
- Isaac Metcalf
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Siraj Sidhik
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Hao Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Ayush Agrawal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jessica Persaud
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jin Hou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Jacky Even
- Université de Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, 35708 Rennes, France
| | - Aditya D Mohite
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
41
|
Simbula A, Wu L, Pitzalis F, Pau R, Lai S, Liu F, Matta S, Marongiu D, Quochi F, Saba M, Mura A, Bongiovanni G. Exciton dissociation in 2D layered metal-halide perovskites. Nat Commun 2023; 14:4125. [PMID: 37433858 DOI: 10.1038/s41467-023-39831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
Layered 2D perovskites are making inroads as materials for photovoltaics and light emitting diodes, but their photophysics is still lively debated. Although their large exciton binding energies should hinder charge separation, significant evidence has been uncovered for an abundance of free carriers among optical excitations. Several explanations have been proposed, like exciton dissociation at grain boundaries or polaron formation, without clarifying yet if excitons form and then dissociate, or if the formation is prevented by competing relaxation processes. Here we address exciton stability in layered Ruddlesden-Popper PEA2PbI4 (PEA stands for phenethylammonium) both in form of thin film and single crystal, by resonant injection of cold excitons, whose dissociation is then probed with femtosecond differential transmission. We show the intrinsic nature of exciton dissociation in 2D layered perovskites, demonstrating that both 2D and 3D perovskites are free carrier semiconductors and their photophysics is described by a unique and universal framework.
Collapse
Affiliation(s)
- Angelica Simbula
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy.
| | - Luyan Wu
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Federico Pitzalis
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Riccardo Pau
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 09747, AG, Groningen, The Netherlands
| | - Stefano Lai
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Fang Liu
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Selene Matta
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Daniela Marongiu
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Francesco Quochi
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Michele Saba
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy.
| | - Andrea Mura
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Giovanni Bongiovanni
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| |
Collapse
|
42
|
Ji S, Yuan X, Liu Z, Zhao L, Zhao K, Zheng J, Zhao J, Wang J. Photo- and Thermal-Induced Ion Migration and Phase Separation in Mn-Doped Two-Dimensional PEA 2PbX 4 Perovskite. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37364060 DOI: 10.1021/acsami.3c04776] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Ion migration and phase separation in perovskite materials have negatively affected the solid-state lighting and display. Studying photo- and thermal-induced degradation is considered as a promising approach to understanding the luminescence mechanism and promoting practical applications. Herein, the Mn-doped two-dimensional PEA2PbX4 (X = Cl, Br, I) microcrystals with changing halogen composition were synthesized by an acid-assisted post-processing strategy. Then, photo- and thermal-induced degradation was studied by using steady-state and time-resolved photoluminescence (PL) spectroscopy. The band edge exciton PL peak of Mn-doped 2D PEA2PbX4 microcrystals was adjusted from 397 to 500 nm. The reduced Mn PL lifetime (1.37 to 0.21 ms) was monitored under ion exchange from Cl to Br to I. The degradation mechanism could be divided into two cases: (i) The halide ion migration in Mn-doped 2D perovskite under continuous illumination was revealed, suggesting that the migration of Cl ions was more accessible than that of Br and I. (ii) The PL redshift and lifetime reduction were observed after annealing at 420 K, which means that thermally induced aggregation of Mn ions resulted in the formation of Mn2+-Mn2+ dimers. In addition, the experimental results indicated that the induced B-site phase separation at high temperature annealing made the mixed perovskite phase of Pb and Mn ultimately transform into pure PEA2PbBr4 and PEA2MnBr4.
Collapse
Affiliation(s)
- Sihang Ji
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping, Jilin 136000, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Xi Yuan
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping, Jilin 136000, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Zixuan Liu
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping, Jilin 136000, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Lijia Zhao
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping, Jilin 136000, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Ke Zhao
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping, Jilin 136000, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Jinju Zheng
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, China
| | - Jialong Zhao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Jin Wang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping, Jilin 136000, China
| |
Collapse
|
43
|
Liu H, Wang A, Zhang P, Ma C, Chen C, Liu Z, Zhang YQ, Feng B, Cheng P, Zhao J, Chen L, Wu K. Atomic-scale manipulation of single-polaron in a two-dimensional semiconductor. Nat Commun 2023; 14:3690. [PMID: 37344475 DOI: 10.1038/s41467-023-39361-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Polaron is a composite quasiparticle derived from an excess carrier trapped by local lattice distortion, and it has been studied extensively for decades both theoretically and experimentally. However, atomic-scale creation and manipulation of single-polarons in real space have still not been achieved so far, which precludes the atomistic understanding of the properties of polarons as well as their applications. Herein, using scanning tunneling microscopy, we succeeded to create single polarons in a monolayer two-dimensional (2D) semiconductor, CoCl2. Combined with first-principles calculations, two stable polaron configurations, centered at atop and hollow sites, respectively, have been revealed. Remarkably, a series of manipulation progresses - from creation, erasure, to transition - can be accurately implemented on individual polarons. Our results pave the way to understand the physics of polaron at atomic level, and the easy control of single polarons in 2D semiconductor may open the door to 2D polaronics including the data storage.
Collapse
Affiliation(s)
- Huiru Liu
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Aolei Wang
- Department of Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Ping Zhang
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Chen Ma
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Caiyun Chen
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Zijia Liu
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China
| | - Yi-Qi Zhang
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Baojie Feng
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, 100871, Beijing, China
| | - Peng Cheng
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Jin Zhao
- Department of Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, 15260, PA, USA.
- Hefei National Laboratory, University of Science and Technology of China, 230088, Hefei, Anhui, China.
| | - Lan Chen
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China.
| | - Kehui Wu
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, 100871, Beijing, China.
| |
Collapse
|
44
|
Fu J, Ramesh S, Melvin Lim JW, Sum TC. Carriers, Quasi-particles, and Collective Excitations in Halide Perovskites. Chem Rev 2023. [PMID: 37276018 DOI: 10.1021/acs.chemrev.2c00843] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Halide perovskites (HPs) are potential game-changing materials for a broad spectrum of optoelectronic applications ranging from photovoltaics, light-emitting devices, lasers to radiation detectors, ferroelectrics, thermoelectrics, etc. Underpinning this spectacular expansion is their fascinating photophysics involving a complex interplay of carrier, lattice, and quasi-particle interactions spanning several temporal orders that give rise to their remarkable optical and electronic properties. Herein, we critically examine and distill their dynamical behavior, collective interactions, and underlying mechanisms in conjunction with the experimental approaches. This review aims to provide a unified photophysical picture fundamental to understanding the outstanding light-harvesting and light-emitting properties of HPs. The hotbed of carrier and quasi-particle interactions uncovered in HPs underscores the critical role of ultrafast spectroscopy and fundamental photophysics studies in advancing perovskite optoelectronics.
Collapse
Affiliation(s)
- Jianhui Fu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Sankaran Ramesh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
45
|
Jagt RA, Bravić I, Eyre L, Gałkowski K, Borowiec J, Dudipala KR, Baranowski M, Dyksik M, van de Goor TWJ, Kreouzis T, Xiao M, Bevan A, Płochocka P, Stranks SD, Deschler F, Monserrat B, MacManus-Driscoll JL, Hoye RLZ. Layered BiOI single crystals capable of detecting low dose rates of X-rays. Nat Commun 2023; 14:2452. [PMID: 37117174 PMCID: PMC10147687 DOI: 10.1038/s41467-023-38008-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/11/2023] [Indexed: 04/30/2023] Open
Abstract
Detecting low dose rates of X-rays is critical for making safer radiology instruments, but is limited by the absorber materials available. Here, we develop bismuth oxyiodide (BiOI) single crystals into effective X-ray detectors. BiOI features complex lattice dynamics, owing to the ionic character of the lattice and weak van der Waals interactions between layers. Through use of ultrafast spectroscopy, first-principles computations and detailed optical and structural characterisation, we show that photoexcited charge-carriers in BiOI couple to intralayer breathing phonon modes, forming large polarons, thus enabling longer drift lengths for the photoexcited carriers than would be expected if self-trapping occurred. This, combined with the low and stable dark currents and high linear X-ray attenuation coefficients, leads to strong detector performance. High sensitivities reaching 1.1 × 103 μC Gyair-1 cm-2 are achieved, and the lowest dose rate directly measured by the detectors was 22 nGyair s-1. The photophysical principles discussed herein offer new design avenues for novel materials with heavy elements and low-dimensional electronic structures for (opto)electronic applications.
Collapse
Affiliation(s)
- Robert A Jagt
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Ivona Bravić
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Lissa Eyre
- Department of Physics, Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, Garching, D-85748, Germany
| | - Krzysztof Gałkowski
- Department of Physics, Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Joanna Borowiec
- School of Physical and Chemical Sciences, Queen Mary University London, London, E1 4NS, UK
- College of Physics, Sichuan University, Chengdu, 610064, China
| | - Kavya Reddy Dudipala
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Michał Baranowski
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA, UPR 3228, Toulouse, France
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Mateusz Dyksik
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA, UPR 3228, Toulouse, France
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Tim W J van de Goor
- Department of Physics, Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Theo Kreouzis
- School of Physical and Chemical Sciences, Queen Mary University London, London, E1 4NS, UK
| | - Ming Xiao
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
- School of Microelectronics Science and Technology, Sun Yat-sen University, Guangdong Province, 519082, Zhuhai, China
| | - Adrian Bevan
- School of Physical and Chemical Sciences, Queen Mary University London, London, E1 4NS, UK
| | - Paulina Płochocka
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA, UPR 3228, Toulouse, France
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Samuel D Stranks
- Department of Physics, Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Felix Deschler
- Department of Physics, Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, Garching, D-85748, Germany
- Physikalisch-Chemisches-Institut, Universität Heidelberg, Im Neunheimer Feld 229, 69120, Heidelberg, Germany
| | - Bartomeu Monserrat
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Physics, Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Judith L MacManus-Driscoll
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
46
|
Folpini G, Palummo M, Cortecchia D, Moretti L, Cerullo G, Petrozza A, Giorgi G, Srimath Kandada AR. Plurality of excitons in Ruddlesden-Popper metal halides and the role of the B-site metal cation. MATERIALS ADVANCES 2023; 4:1720-1730. [PMID: 37026040 PMCID: PMC10068426 DOI: 10.1039/d2ma00136e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
We investigate the effect of metal cation substition on the excitonic structure and dynamics in a prototypical Ruddlesden-Popper metal halide. Through an in-depth spectroscopic and theoretical analysis, we identify the presence of multiple resonances in the optical spectra of a phenethyl ammonium tin iodide, a tin-based RPMH. Based on ab initio calculations, we assign these resonances to distinct exciton series that originate from the splitting of the conduction band due to spin-orbit coupling. While the splitting energy in the tin based system is low enough to enable the observation of the higher lying exciton in the visible-range spectrum of the material, the higher splitting energy in the lead counterpart prevents the emergence of such a feature. We elucidate the critical role played by the higher lying excitonic state in the ultrafast carrier thermalization dynamics.
Collapse
Affiliation(s)
- Giulia Folpini
- CNST@Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3 Milano Italy
| | - Maurizia Palummo
- Dipartimento di Fisica and INFN, Universitá di Roma "Tor Vergata", Via della Ricerca Scientifica 1 Roma Italy
| | - Daniele Cortecchia
- CNST@Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3 Milano Italy
| | - Luca Moretti
- Dipartimento di Fisica, Politecnico di Milano Milano Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano Milano Italy
| | - Annamaria Petrozza
- CNST@Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3 Milano Italy
| | - Giacomo Giorgi
- Department of Civil and Environmental Engineering (DICA), University of Perugia, Via G. Duranti, 93 06125 Perugia Italy
- CNR-SCITEC I-06123 Perugia Italy
- CIRIAF - Interuniversity Research Centre, University of Perugia, Via G. Duranti 93 06125 Perugia Italy
| | - Ajay Ram Srimath Kandada
- Department of Physics and Center for Functional Materials 1834 Wake Forest Road Winston-Salem NC 27109 USA
| |
Collapse
|
47
|
Posmyk K, Dyksik M, Surrente A, Zalewska K, Śmiertka M, Cybula E, Paritmongkol W, Tisdale WA, Plochocka P, Baranowski M. Fine Structure Splitting of Phonon-Assisted Excitonic Transition in (PEA) 2PbI 4 Two-Dimensional Perovskites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1119. [PMID: 36986013 PMCID: PMC10053047 DOI: 10.3390/nano13061119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional van der Waals materials exhibit particularly strong excitonic effects, which causes them to be an exceptionally interesting platform for the investigation of exciton physics. A notable example is the two-dimensional Ruddlesden-Popper perovskites, where quantum and dielectric confinement together with soft, polar, and low symmetry lattice create a unique background for electron and hole interaction. Here, with the use of polarization-resolved optical spectroscopy, we have demonstrated that the simultaneous presence of tightly bound excitons, together with strong exciton-phonon coupling, allows for observing the exciton fine structure splitting of the phonon-assisted transitions of two-dimensional perovskite (PEA)2PbI4, where PEA stands for phenylethylammonium. We demonstrate that the phonon-assisted sidebands characteristic for (PEA)2PbI4 are split and linearly polarized, mimicking the characteristics of the corresponding zero-phonon lines. Interestingly, the splitting of differently polarized phonon-assisted transitions can be different from that of the zero-phonon lines. We attribute this effect to the selective coupling of linearly polarized exciton states to non-degenerate phonon modes of different symmetries resulting from the low symmetry of (PEA)2PbI4 lattice.
Collapse
Affiliation(s)
- Katarzyna Posmyk
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Mateusz Dyksik
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Alessandro Surrente
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Katarzyna Zalewska
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Maciej Śmiertka
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Ewelina Cybula
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | | | - William A. Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Paulina Plochocka
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
- Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Toulouse, Université Toulouse 3, INSA-T, 31400 Toulouse, France
| | - Michał Baranowski
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
48
|
Baker H, Perez CM, Sonnichsen C, Strandell D, Prezhdo OV, Kambhampati P. Breaking Phonon Bottlenecks through Efficient Auger Processes in Perovskite Nanocrystals. ACS NANO 2023; 17:3913-3920. [PMID: 36796027 DOI: 10.1021/acsnano.2c12220] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The hot phonon bottleneck has been under intense investigation in perovskites. In the case of perovskite nanocrystals, there may be hot phonon bottlenecks as well as quantum phonon bottlenecks. While they are widely assumed to exist, evidence is growing for the breaking of potential phonon bottlenecks of both forms. Here, we perform state-resolved pump/probe spectroscopy (SRPP) and time-resolved photoluminescence spectroscopy (t-PL) to unravel hot exciton relaxation dynamics in model systems of bulk-like 15 nm nanocrystals of CsPbBr3 and FAPbBr3, with FA being formamidinium. The SRPP data can be misinterpreted to reveal a phonon bottleneck even at low exciton concentrations, where there should be none. We circumvent that spectroscopic problem with a state-resolved method that reveals an order of magnitude faster cooling and breaking of the quantum phonon bottleneck that might be expected in nanocrystals. Since the prior pump/probe methods of analysis are shown to be ambiguous, we perform t-PL experiments to unambiguously confirm the existence of hot phonon bottlenecks as well. The t-PL experiments reveal there is no hot phonon bottleneck in these perovskite nanocrystals. Ab initio molecular dynamics simulations reproduce experiments by inclusion of efficient Auger processes. This experimental and theoretical work reveals insight on hot exciton dynamics, how they are precisely measured, and ultimately how they may be exploited in these materials.
Collapse
Affiliation(s)
- Harry Baker
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Carlos Mora Perez
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Colin Sonnichsen
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Dallas Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | | |
Collapse
|
49
|
Phonon-driven intra-exciton Rabi oscillations in CsPbBr 3 halide perovskites. Nat Commun 2023; 14:1047. [PMID: 36828818 PMCID: PMC9958027 DOI: 10.1038/s41467-023-36654-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Coupling electromagnetic radiation with matter, e.g., by resonant light fields in external optical cavities, is highly promising for tailoring the optoelectronic properties of functional materials on the nanoscale. Here, we demonstrate that even internal fields induced by coherent lattice motions can be used to control the transient excitonic optical response in CsPbBr3 halide perovskite crystals. Upon resonant photoexcitation, two-dimensional electronic spectroscopy reveals an excitonic peak structure oscillating persistently with a 100-fs period for up to ~2 ps which does not match the frequency of any phonon modes of the crystals. Only at later times, beyond 2 ps, two low-frequency phonons of the lead-bromide lattice dominate the dynamics. We rationalize these findings by an unusual exciton-phonon coupling inducing off-resonant 100-fs Rabi oscillations between 1s and 2p excitons driven by the low-frequency phonons. As such, prevailing models for the electron-phonon coupling in halide perovskites are insufficient to explain these results. We propose the coupling of characteristic low-frequency phonon fields to intra-excitonic transitions in halide perovskites as the key to control the anharmonic response of these materials in order to establish new routes for enhancing their optoelectronic properties.
Collapse
|
50
|
Seiler H, Zahn D, Taylor VCA, Bodnarchuk MI, Windsor YW, Kovalenko MV, Ernstorfer R. Direct Observation of Ultrafast Lattice Distortions during Exciton-Polaron Formation in Lead Halide Perovskite Nanocrystals. ACS NANO 2023; 17:1979-1988. [PMID: 36651873 PMCID: PMC9933605 DOI: 10.1021/acsnano.2c06727] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/10/2023] [Indexed: 05/31/2023]
Abstract
The microscopic origin of slow hot-carrier cooling in lead halide perovskites remains debated and has direct implications for applications. Slow hot-carrier cooling of several picoseconds has been attributed to either polaron formation or a hot-phonon bottleneck effect at high excited carrier densities (>1018 cm-3). These effects cannot be unambiguously disentangled with optical experiments alone. However, they can be distinguished by direct observations of ultrafast lattice dynamics, as these effects are expected to create qualitatively distinct fingerprints. To this end, we employ femtosecond electron diffraction and directly measure the sub-picosecond lattice dynamics of weakly confined CsPbBr3 nanocrystals following above-gap photoexcitation. While we do not observe signatures of a hot-phonon bottleneck lasting several picoseconds, the data reveal a light-induced structural distortion appearing on a time scale varying between 380 and 1200 fs depending on the excitation fluence. We attribute these dynamics to the effect of exciton-polarons on the lattice and the slower dynamics at high fluences to slower sub-picosecond hot-carrier cooling, which slows down the establishment of the exciton-polaron population. Further analysis and simulations show that the distortion is consistent with motions of the [PbBr3]- octahedral ionic cage, and closest agreement with the data is obtained for Pb-Br bond lengthening. Our work demonstrates how direct studies of lattice dynamics on the sub-picosecond time scale can discriminate between competing scenarios proposed in the literature to explain the origin of slow hot-carrier cooling in lead halide perovskites.
Collapse
Affiliation(s)
- Hélène Seiler
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Physics
Department, Free University of Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Daniela Zahn
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Victoria C. A. Taylor
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Maryna I. Bodnarchuk
- Laboratory
for Thin Films and Photovoltaics, Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Yoav William Windsor
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Institut
für Optik und Atomare Physik, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Maksym V. Kovalenko
- Laboratory
for Thin Films and Photovoltaics, Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Ralph Ernstorfer
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Institut
für Optik und Atomare Physik, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|