1
|
Liu X, Yang H, Harb H, Samajdar R, Woods TJ, Lin O, Chen Q, Romo AIB, Rodríguez-López J, Assary RS, Moore JS, Schroeder CM. Shape-persistent ladder molecules exhibit nanogap-independent conductance in single-molecule junctions. Nat Chem 2024; 16:1772-1780. [PMID: 39187723 DOI: 10.1038/s41557-024-01619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Molecular electronic devices require precise control over the flow of current in single molecules. However, the electron transport properties of single molecules critically depend on dynamic molecular conformations in nanoscale junctions. Here we report a unique strategy for controlling molecular conductance using shape-persistent molecules. Chemically diverse, charged ladder molecules, synthesized via a one-pot multicomponent ladderization strategy, show a molecular conductance (d[log(G/G0)]/dx ≈ -0.1 nm-1) that is nearly independent of junction displacement, in stark contrast to the nanogap-dependent conductance (d[log(G/G0)]/dx ≈ -7 nm-1) observed for non-ladder analogues. Ladder molecules show an unusually narrow distribution of molecular conductance during dynamic junction displacement, which is attributed to the shape-persistent backbone and restricted rotation of terminal anchor groups. These principles are further extended to a butterfly-like molecule, thereby demonstrating the strategy's generality for achieving gap-independent conductance. Overall, our work provides important avenues for controlling molecular conductance using shape-persistent molecules.
Collapse
Affiliation(s)
- Xiaolin Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Hao Yang
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Hassan Harb
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Rajarshi Samajdar
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Toby J Woods
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Oliver Lin
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Qian Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Adolfo I B Romo
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Joaquín Rodríguez-López
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rajeev S Assary
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA.
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Charles M Schroeder
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Yang C, Cao J, Lin JL, Wu H, Zhang HL, Guo X. Exceptional Field Effect and Negative Differential Conductance in Spiro-Conjugated Single-Molecule Junctions. J Am Chem Soc 2024; 146:29703-29711. [PMID: 39425785 DOI: 10.1021/jacs.4c10924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The advancement of molecular electronics endeavors to build miniaturized electronic devices using molecules as the key building blocks by harnessing their internal structures and electronic orbitals. To date, linear planar conjugated or cross-conjugated molecules have been extensively employed in the fabrication of single-molecule devices, benefiting from their good conductivity and compatibility with electrode architectures. However, the development of multifunctional single-molecule devices, particularly those with unique charge transport properties, necessitates a more rigorous selection of molecular materials. Among different assortments of molecules suited for the construction of molecular circuits, Spiro-conjugated structures, specifically spirobifluorene derivatives, stand out as promising candidates due to their distinctive electronic properties. In this work, we focus on the charge transport characteristics of Spiro-conjugated molecules sandwiched between graphene nanogaps. Experiments reveal significant Coulomb blockade and distinct negative differential conductance effects. Beyond two-terminal device measurements, solid-state gate electrodes are utilized to create single-molecule transistors, successfully modulating the molecular energy levels to achieve an on/off ratio exceeding 1000. This endeavor not only offers valuable insights into the design and fabrication of future practical molecular devices, blessed with enhanced performance and functionality, but also presents a new paradigm for the investigation of fundamental physical phenomena.
Collapse
Affiliation(s)
- Caiyao Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Jiawen Cao
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Jin-Liang Lin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hao Wu
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|
3
|
Yan C, Fang C, Gan J, Wang J, Zhao X, Wang X, Li J, Zhang Y, Liu H, Li X, Bai J, Liu J, Hong W. From Molecular Electronics to Molecular Intelligence. ACS NANO 2024; 18:28531-28556. [PMID: 39395180 DOI: 10.1021/acsnano.4c10389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Molecular electronics is a field that explores the ultimate limits of electronic device dimensions by using individual molecules as operable electronic devices. Over the past five decades since the proposal of a molecular rectifier by Aviram and Ratner in 1974 ( Chem. Phys. Lett.1974,29, 277-283), researchers have developed various fabrication and characterization techniques to explore the electrical properties of molecules. With the push of electrical characterizations and data analysis methodologies, the reproducibility issues of the single-molecule conductance measurement have been chiefly resolved, and the origins of conductance variation among different devices have been investigated. Numerous prototypical molecular electronic devices with external physical and chemical stimuli have been demonstrated based on the advances of instrumental and methodological developments. These devices enable functions such as switching, logic computing, and synaptic-like computing. However, as the goal of molecular electronics, how can molecular-based intelligence be achieved through single-molecule electronic devices? At the fiftieth anniversary of molecular electronics, we try to answer this question by summarizing recent progress and providing an outlook on single-molecule electronics. First, we review the fabrication methodologies for molecular junctions, which provide the foundation of molecular electronics. Second, the preliminary efforts of molecular logic devices toward integration circuits are discussed for future potential intelligent applications. Third, some molecular devices with sensing applications through physical and chemical stimuli are introduced, demonstrating phenomena at a single-molecule scale beyond conventional macroscopic devices. From this perspective, we summarize the current challenges and outlook prospects by describing the concepts of "AI for single-molecule electronics" and "single-molecule electronics for AI".
Collapse
Affiliation(s)
- Chenshuai Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Chao Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jinyu Gan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jia Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xin Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xiaojing Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jing Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Yanxi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Haojie Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Han L, Wang M, Zhang Y, Cui B, Liu D. Rational Design of High-Performance Photocontrolled Molecular Switches Based on Chiroptical Dimethylcethrene: A Theoretical Study. Molecules 2024; 29:4912. [PMID: 39459280 PMCID: PMC11510373 DOI: 10.3390/molecules29204912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The reversible photo-induced conformation transition of a single molecule with a [5]helicene backbone has garnered considerable interest in recent studies. Based on such a switching process, one can build molecular photo-driven switches for potential applications of nanoelectronics. But the achievement of high-performance reversible single-molecule photoswitches is still rare. Here, we theoretically propose a 13,14-dimethylcethrene switch whose photoisomerization between the ring-closed and ring-open forms can be triggered by ultraviolet (UV) and visible light irradiation. The electronic structure transitions and charge transport characteristics, concurrent with the photo-driven electrocyclization of the molecule, are calculated by the non-equilibrium Green's function (NEGF) in combination with density functional theory (DFT). The electrical conductivity bears great diversity between the closed and open configurations, certifying the switching behavior and leading to a maximum on-off ratio of up to 103, which is considerable in organic junctions. Further analysis confirms the evident switching behaviors affected by the molecule-electrode interfaces in molecular junctions. Our findings are helpful for the rational design of organic photoswitches at the single-molecule level based on cethrene and analogous organic molecules.
Collapse
Affiliation(s)
- Li Han
- School of Physics, Shandong University, Jinan 250100, China;
- School of Physics and Electronic Engineering, Jining University, Qufu 273155, China;
| | - Mei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China;
| | - Yifan Zhang
- School of Physics and Electronic Engineering, Jining University, Qufu 273155, China;
| | - Bin Cui
- School of Physics, Shandong University, Jinan 250100, China;
| | - Desheng Liu
- School of Physics, Shandong University, Jinan 250100, China;
| |
Collapse
|
5
|
Yang ZX, Albalawi S, Zhao S, Li YG, Zhang H, Zou YL, Hou S, Chen LC, Shi J, Yang Y, Wu Q, Lambert C, Hong W. Single-Molecule Cross-Plane Conductance of Polycyclic Aromatic Hydrocarbon Derivatives. Chemistry 2024; 30:e202402095. [PMID: 38943462 DOI: 10.1002/chem.202402095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
In the cross-plane single-molecule junctions, the correlation between molecular aromaticity and conductance remained puzzling. Cross-plane break junction (XPBJ) provides new insight into understanding the role of aromaticity and conjugation to molecules on charge transport through the planar molecules. In this work, we investigated the modulation of cross-plane charge transport in pyrene derivatives by hydrogenation and substituents based on the XPBJ method that differs from those used in-plane transport. We measured the electrical conductance of the hydrogenated derivatives of the pyrenes and found that hydrogenation reduces conductance, and the fully hydrogenated molecule has the lowest conductance. Conductance of pyrene derivatives increased after substitution by both electron-donating and electron-withdrawing groups. By calculating, the trend in decreased conductance of hydrogenated pyrene was found to be consistent with the change in aromaticity. Electron-withdrawing substituents reduce the aromaticity of the molecule and narrow the HOMO-LUMO gap, while electron-donating groups increase the aromaticity but also narrow the gap. Our work reveals the potential of fine-tuning the structure of the pyrene molecule to control the cross-plane charge transport through the single-molecule junctions.
Collapse
Affiliation(s)
- Zi-Xian Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Shadiah Albalawi
- Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk, Saudi Arabia
| | - Shiqiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Yao-Guang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Hewei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Yu-Ling Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Songjun Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Li-Chuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Colin Lambert
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| |
Collapse
|
6
|
Tang C, Su M, Lu T, Zheng J, Wang J, Zhou Y, Zou YL, Liu W, Huang R, Xu W, Chen L, Zhang Y, Bai J, Yang Y, Shi J, Liu J, Hong W. Massive acceleration of S N2 reaction using the oriented external electric field. Chem Sci 2024; 15:13486-13494. [PMID: 39183916 PMCID: PMC11339978 DOI: 10.1039/d4sc03759f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Nucleophilic substitution is one of the most fundamental chemical reactions, and the pursuit of high reaction rates of the reaction is one of the ultimate goals in catalytic and organic chemistry. The reaction barrier of the nucleophilic substitution originates from the highly polar nature of the transition state that can be stabilized under the electric field created by the solvent environment. However, the intensity of the induced solvent-electric field is relatively small due to the random orientation of solvent molecules, which hinders the catalytic effects and restricts the reaction rates. This work shows that oriented external electric fields applied within a confined nanogap between two nanoscopic tips could accelerate the Menshutkin reaction by more than four orders of magnitude (over 39 000 times). The theoretical calculations reveal that the electric field inside the nanogap reduces the energy barrier to increase the reaction rate. Our work suggests the great potential of electrostatic catalysis for green synthesis in the future.
Collapse
Affiliation(s)
- Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Meiling Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Taige Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Juejun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Yu-Ling Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Wenqing Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Ruiyun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Wei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Yanxi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| |
Collapse
|
7
|
Sen S, Mitchell AK. Many-Body Quantum Interference Route to the Two-Channel Kondo Effect: Inverse Design for Molecular Junctions and Quantum Dot Devices. PHYSICAL REVIEW LETTERS 2024; 133:076501. [PMID: 39213568 DOI: 10.1103/physrevlett.133.076501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/22/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Molecular junctions-whether actual single molecules in nanowire break junctions or artificial molecules realized in coupled quantum dot devices-offer unique functionality due to their orbital complexity, strong electron interactions, gate control, and many-body effects from hybridization with the external electronic circuit. Inverse design involves finding candidate structures that perform a desired function optimally. Here we develop an inverse design strategy for generalized quantum impurity models describing molecular junctions, and as an example, use it to demonstrate that many-body quantum interference can be leveraged to realize the two-channel Kondo critical point in simple 4- or 5-site molecular moieties. We show that remarkably high Kondo temperatures can be achieved, meaning that entropy and transport signatures should be experimentally accessible.
Collapse
|
8
|
Liu LY, Li J, Liu SQ, Du SH, Siddique MBA, Zhang L, Bu Y, Cheng SB. Beyond Shell-Filling: Strong Enhancement of Electron Affinity of Metal Clusters through a Noninvasive Oriented External Electric Field. J Phys Chem Lett 2024; 15:7028-7035. [PMID: 38949686 DOI: 10.1021/acs.jpclett.4c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Traditional electron counting rules, like the Jellium model, have long been successfully utilized in designing superhalogens by modifying clusters to have one electron less than a filled electronic shell. However, this shell-filling approach, which involves altering the intrinsic properties of the clusters, can be complex and challenging to control, especially in experiments. In this letter, we theoretically establish that the oriented external electric field (OEEF) can substantially enhance the electron affinity (EA) of diverse aluminum-based metal clusters with varying valence electron configurations, leading to the creation of superhalogen species without altering their shell arrangements. This OEEF approach offers a noninvasive alternative to traditional superatom design strategies, as it does not disrupt the clusters' geometrical structures and superatomic states. These findings contribute a vital piece to the puzzle of constructing superalkalis and superhalogens, extending beyond conventional shell-filling strategies and potentially expanding the range of applications for functional clusters.
Collapse
Affiliation(s)
- Li-Ye Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Si-Qi Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Hu Du
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | | | - Lei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
9
|
Vázquez H. Graphene edge interference improves single-molecule transistors. NATURE NANOTECHNOLOGY 2024; 19:885-886. [PMID: 38528110 DOI: 10.1038/s41565-024-01634-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Affiliation(s)
- Héctor Vázquez
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
10
|
Chen Z, Grace IM, Woltering SL, Chen L, Gee A, Baugh J, Briggs GAD, Bogani L, Mol JA, Lambert CJ, Anderson HL, Thomas JO. Quantum interference enhances the performance of single-molecule transistors. NATURE NANOTECHNOLOGY 2024; 19:986-992. [PMID: 38528108 PMCID: PMC11286519 DOI: 10.1038/s41565-024-01633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/13/2024] [Indexed: 03/27/2024]
Abstract
Quantum effects in nanoscale electronic devices promise to lead to new types of functionality not achievable using classical electronic components. However, quantum behaviour also presents an unresolved challenge facing electronics at the few-nanometre scale: resistive channels start leaking owing to quantum tunnelling. This affects the performance of nanoscale transistors, with direct source-drain tunnelling degrading switching ratios and subthreshold swings, and ultimately limiting operating frequency due to increased static power dissipation. The usual strategy to mitigate quantum effects has been to increase device complexity, but theory shows that if quantum effects can be exploited in molecular-scale electronics, this could provide a route to lower energy consumption and boost device performance. Here we demonstrate these effects experimentally, showing how the performance of molecular transistors is improved when the resistive channel contains two destructively interfering waves. We use a zinc-porphyrin coupled to graphene electrodes in a three-terminal transistor to demonstrate a >104 conductance-switching ratio, a subthreshold swing at the thermionic limit, a >7 kHz operating frequency and stability over >105 cycles. We fully map the anti-resonance interference features in conductance, reproduce the behaviour by density functional theory calculations and trace back the high performance to the coupling between molecular orbitals and graphene edge states. These results demonstrate how the quantum nature of electron transmission at the nanoscale can enhance, rather than degrade, device performance, and highlight directions for future development of miniaturized electronics.
Collapse
Affiliation(s)
- Zhixin Chen
- Department of Materials, University of Oxford, Oxford, UK.
| | - Iain M Grace
- Department of Physics, Lancaster University, Lancaster, UK
| | - Steffen L Woltering
- Department of Materials, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Lina Chen
- Department of Materials, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Alex Gee
- Department of Materials, University of Oxford, Oxford, UK
| | - Jonathan Baugh
- Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Lapo Bogani
- Department of Materials, University of Oxford, Oxford, UK
- Departments of Chemistry and Physics, University of Florence, Sesto Fiorentino, Italy
| | - Jan A Mol
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | | | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK.
| | - James O Thomas
- Department of Materials, University of Oxford, Oxford, UK.
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
11
|
Li L, Louie S, Orchanian NM, Nuckolls C, Venkataraman L. Long-Range Gating in Single-Molecule One-Dimensional Topological Insulators. J Am Chem Soc 2024. [PMID: 38832840 DOI: 10.1021/jacs.4c05699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Single-molecule one-dimensional topological insulator (1D TI) is a class of molecular wires that exhibit increasing conductance with wire length. This unique trend is due to the coupling between the two low-lying topological edge states of 1D TIs described by the Su-Schrieffer-Heeger model. In principle, this quantum phenomenon within 1D TIs can be utilized to achieve long-range gating in molecular conductors. Here, we study electron transport through a single-edge state of doubly oxidized oligophenylene bis(triarylamine) to understand the effect of the edge state coupling on conductance. We find that conductance is elevated by approximately 1 order of magnitude compared to a control molecule with the same conductance pathway. Density function theory calculations further support that the increase in conductance is due to the interaction between the edge states of 1D TIs. This work demonstrates a new gating paradigm in molecular electronics, while also providing a deeper understanding of how edge states interact and affect electron transport within 1D TIs.
Collapse
Affiliation(s)
- Liang Li
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Shayan Louie
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Nicholas M Orchanian
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Latha Venkataraman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
12
|
Guo HY, Pei LQ, Cai ZY, Sun N, Zheng JF, Shao Y, Wang YH, Wu DY, Jin S, Zhou XS. Effects of Connectivity Isomerization on Electron Transport Through Thiophene Heterocyclic Molecular Junction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9717-9724. [PMID: 38712354 DOI: 10.1021/acs.langmuir.4c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Connectivity isomerization of the same aromatic molecular core with different substitution positions profoundly affects electron transport pathways and single-molecule conductance. Herein, we designed and synthesized all connectivity isomers of a thiophene (TP) aromatic ring substituted by two dihydrobenzo[b]thiophene (BT) groups with ethynyl spacers (m,n-TP-BT, (m,n = 2,3; 2,4; 2,5; 3,4)), to systematically probe how connectivity contributes to single-molecule conductance. Single-molecule conductance measurements using a scanning tunneling microscopy break junction (STM-BJ) technique show ∼12-fold change in conductance values, which follow an order of 10-4.83 G0 (2,4-TP-BT) < 10-4.78 G0 (3,4-TP-BT) < 10-4.06 G0 (2,3-TP-BT) < 10-3.75 G0 (2,5-TP-BT). Electronic structure analysis and theoretical simulations show that the connectivity isomerization significantly changes electron delocalization and HOMO-LUMO energy gaps. Moreover, the connectivity-dependent molecular structures lead to different quantum interference (QI) effects in electron transport, e.g., a strong destructive QI near E = EF leads the smallest conductance value for 2,4-TP-BT. This work proves a clear relationship between the connectivity isomerization and single-molecule conductance of thiophene heterocyclic molecular junctions for the future design of molecular devices.
Collapse
Affiliation(s)
- Hong-Yang Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Lin-Qi Pei
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Zhuan-Yun Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nan Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shan Jin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
13
|
Zhang X, Li Z, Ji S, Xu W, Chen L, Xiao Z, Liu J, Hong W. Plasmon-Molecule Interactions in Single-Molecule Junctions. Chempluschem 2024; 89:e202300556. [PMID: 38050755 DOI: 10.1002/cplu.202300556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Single-molecule optoelectronics offers opportunities for advancing integrated photonics and electronics, which also serves as a tool to elucidate the underlying mechanism of light-matter interaction. Plasmonics, which plays pivotal role in the interaction of photons and matter, have became an emerging area. A comprehensive understanding of the plasmonic excitation and modulation mechanisms within single-molecule junctions (SMJs) lays the foundation for optoelectronic devices. Consequently, this review primarily concentrates on illuminating the fundamental principles of plasmonics within SMJs, delving into their research methods and modulation factors of plasmon-exciton. Moreover, we underscore the interaction phenomena within SMJs, including the enhancement of molecular fluorescence by plasmonics, Fano resonance and Rabi splitting caused by the interaction of plasmon-exciton. Finally, by emphasizing the potential applications of plasmonics within SMJs, such as their roles in optical tweezers, single-photon sources, super-resolution imaging, and chemical reactions, we elucidate the future prospects and current challenges in this domain.
Collapse
Affiliation(s)
- Xiangui Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhengyu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Shurui Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Wei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Zongyuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
14
|
Guo Y, Li M, Zhao C, Zhang Y, Jia C, Guo X. Understanding Emergent Complexity from a Single-Molecule Perspective. JACS AU 2024; 4:1278-1294. [PMID: 38665639 PMCID: PMC11040556 DOI: 10.1021/jacsau.3c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/28/2024]
Abstract
Molecules, with structural, scaling, and interaction diversities, are crucial for the emergence of complex behaviors. Interactions are essential prerequisites for complex systems to exhibit emergent properties that surpass the sum of individual component characteristics. Tracing the origin of complex molecular behaviors from interactions is critical to understanding ensemble emergence, and requires insights at the single-molecule level. Electrical signals from single-molecule junctions enable the observation of individual molecular behaviors, as well as intramolecular and intermolecular interactions. This technique provides a foundation for bottom-up explorations of emergent complexity. This Perspective highlights investigations of various interactions via single-molecule junctions, including intramolecular orbital and weak intermolecular interactions and interactions in chemical reactions. It also provides potential directions for future single-molecule junctions in complex system research.
Collapse
Affiliation(s)
- Yilin Guo
- Beijing
National Laboratory for Molecular Sciences, National Biomedical Imaging
Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Mingyao Li
- School
of Materials Science and Engineering, Peking
University, No.5 Yiheyuan
Road, Haidian District, Beijing 100871, P. R. China
| | - Cong Zhao
- Center
of Single-Molecule Sciences, Institute of Modern Optics, Frontiers
Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale
Optical Information Science and Technology, College of Electronic
Information and Optical Engineering, Nankai
University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Yanfeng Zhang
- School
of Materials Science and Engineering, Peking
University, No.5 Yiheyuan
Road, Haidian District, Beijing 100871, P. R. China
| | - Chuancheng Jia
- Center
of Single-Molecule Sciences, Institute of Modern Optics, Frontiers
Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale
Optical Information Science and Technology, College of Electronic
Information and Optical Engineering, Nankai
University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Xuefeng Guo
- Beijing
National Laboratory for Molecular Sciences, National Biomedical Imaging
Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center
of Single-Molecule Sciences, Institute of Modern Optics, Frontiers
Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale
Optical Information Science and Technology, College of Electronic
Information and Optical Engineering, Nankai
University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|
15
|
Chen Z, Woltering SL, Limburg B, Tsang MY, Baugh J, Briggs GAD, Mol JA, Anderson HL, Thomas JO. Connections to the Electrodes Control the Transport Mechanism in Single-Molecule Transistors. Angew Chem Int Ed Engl 2024; 63:e202401323. [PMID: 38410064 DOI: 10.1002/anie.202401323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
When designing a molecular electronic device for a specific function, it is necessary to control whether the charge-transport mechanism is phase-coherent transmission or particle-like hopping. Here we report a systematic study of charge transport through single zinc-porphyrin molecules embedded in graphene nanogaps to form transistors, and show that the transport mechanism depends on the chemistry of the molecule-electrode interfaces. We show that van der Waals interactions between molecular anchoring groups and graphene yield transport characteristic of Coulomb blockade with incoherent sequential hopping, whereas covalent molecule-electrode amide bonds give intermediately or strongly coupled single-molecule devices that display coherent transmission. These findings demonstrate the importance of interfacial engineering in molecular electronic circuits.
Collapse
Affiliation(s)
- Zhixin Chen
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK
| | - Steffen L Woltering
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Bart Limburg
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Ming-Yee Tsang
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK
| | - Jonathan Baugh
- Institute for Quantum Computing, University of Waterloo, 200 University Avenue West, N2 L 3G1, Waterloo, ON, Canada
| | - G Andrew D Briggs
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK
| | - Jan A Mol
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Harry L Anderson
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - James O Thomas
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
16
|
Almughathawi R, Hou S, Wu Q, Lambert CJ. Signatures of Topological States in Conjugated Macrocycles. NANO LETTERS 2024; 24. [PMID: 38591962 PMCID: PMC11057032 DOI: 10.1021/acs.nanolett.3c04796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Single-molecule electrical junctions possess a molecular core connected to source and drain electrodes via anchor groups, which feed and extract electricity from specific atoms within the core. As the distance between electrodes increases, the electrical conductance typically decreases, which is a feature shared by classical Ohmic conductors. Here we analyze the electrical conductance of cycloparaphenylene (CPP) macrocycles and demonstrate that they can exhibit a highly nonclassical increase in their electrical conductance as the distance between electrodes increases. We demonstrate that this is due to the topological nature of the de Broglie wave created by electrons injected into the macrocycle from the source. Although such topological states do not exist in isolated macrocycles, they are created when the molecule is in contact with the source. They are predicted to be a generic feature of conjugated macrocycles and open a new avenue to implementing highly nonclassical transport behavior in molecular junctions.
Collapse
Affiliation(s)
- Renad Almughathawi
- Physics
Department, Lancaster University, LA1 4YB Lancaster, United Kingdom
- Physics
Department, Faculty of science, Taibah University, Medina 42353, Saudi Arabia
| | - Songjun Hou
- Physics
Department, Lancaster University, LA1 4YB Lancaster, United Kingdom
| | - Qingqing Wu
- Physics
Department, Lancaster University, LA1 4YB Lancaster, United Kingdom
| | - Colin J. Lambert
- Physics
Department, Lancaster University, LA1 4YB Lancaster, United Kingdom
| |
Collapse
|
17
|
Muñoz J. Rational Design of Stimuli-Responsive Inorganic 2D Materials via Molecular Engineering: Toward Molecule-Programmable Nanoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305546. [PMID: 37906953 DOI: 10.1002/adma.202305546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/10/2023] [Indexed: 11/02/2023]
Abstract
The ability of electronic devices to act as switches makes digital information processing possible. Succeeding graphene, emerging inorganic 2D materials (i2DMs) have been identified as alternative 2D materials to harbor a variety of active molecular components to move the current silicon-based semiconductor technology forward to a post-Moore era focused on molecule-based information processing components. In this regard, i2DMs benefits are not only for their prominent physiochemical properties (e.g., the existence of bandgap), but also for their high surface-to-volume ratio rich in reactive sites. Nonetheless, since this field is still in an early stage, having knowledge of both i) the different strategies for molecularly functionalizing the current library of i2DMs, and ii) the different types of active molecular components is a sine qua non condition for a rational design of stimuli-responsive i2DMs capable of performing logical operations at the molecular level. Consequently, this Review provides a comprehensive tutorial for covalently anchoring ad hoc molecular components-as active units triggered by different external inputs-onto pivotal i2DMs to assess their role in the expanding field of molecule-programmable nanoelectronics for electrically monitoring bistable molecular switches. Limitations, challenges, and future perspectives of this emerging field which crosses materials chemistry with computation are critically discussed.
Collapse
Affiliation(s)
- Jose Muñoz
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| |
Collapse
|
18
|
Chen LC, Shi J, Lu ZX, Lin RJ, Lu TG, Zou YL, Liang QM, Huang R, Shi J, Xiao ZY, Zhang Y, Liu J, Yang Y, Hong W. Highly Reversible Molecular Photoswitches with Transition Metal Dichalcogenides Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305607. [PMID: 37817357 DOI: 10.1002/smll.202305607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Indexed: 10/12/2023]
Abstract
The molecule-electrode coupling plays an essential role in photoresponsive devices with photochromic molecules, and the strong coupling between the molecule and the conventional electrodes leads to/ the quenching effect and limits the reversibility of molecular photoswitches. In this work, we developed a strategy of using transition metal dichalcogenides (TMDCs) electrodes to fabricate the thiol azobenzene (TAB) self-assembled monolayers (SAMs) junctions with the eutectic gallium-indium (EGaIn) technique. The current-voltage characteristics of the EGaIn/GaOx //TAB/TMDCs photoswitches showed an almost 100% reversible photoswitching behavior, which increased by ∼28% compared to EGaIn/GaOx //TAB/AuTS photoswitches. Density functional theory (DFT) calculations showed the coupling strength of the TAB-TMDCs electrode decreased by 42% compared to that of the TAB-AuTS electrode, giving rise to improved reversibility. our work demonstrated the feasibility of 2D TMDCs for fabricating SAMs-based photoswitches with unprecedentedly high reversibility.
Collapse
Affiliation(s)
- Li-Chuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jie Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Zhi-Xing Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Rong-Jian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Tai-Ge Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yu-Ling Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Qing-Man Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Ruiyun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Zong-Yuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yanxi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
19
|
Jago D, Liu C, Daaoub AHS, Gaschk E, Walkey MC, Pulbrook T, Qiao X, Sobolev AN, Moggach SA, Costa‐Milan D, Higgins SJ, Piggott MJ, Sadeghi H, Nichols RJ, Sangtarash S, Vezzoli A, Koutsantonis GA. An Orthogonal Conductance Pathway in Spiropyrans for Well-Defined Electrosteric Switching Single-Molecule Junctions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306334. [PMID: 37817372 PMCID: PMC11475379 DOI: 10.1002/smll.202306334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 10/12/2023]
Abstract
While a multitude of studies have appeared touting the use of molecules as electronic components, the design of molecular switches is crucial for the next steps in molecular electronics. In this work, single-molecule devices incorporating spiropyrans, made using break junction techniques, are described. Linear spiropyrans with electrode-contacting groups linked by alkynyl spacers to both the indoline and chromenone moieties have previously provided very low conductance values, and removing the alkynyl spacer has resulted in a total loss of conductance. An orthogonal T-shaped approach to single-molecule junctions incorporating spiropyran moieties in which the conducting pathway lies orthogonal to the molecule backbone is described and characterized. This approach has provided singlemolecule conductance features with good correlation to molecular length. Additional higher conducting states are accessible using switching induced by UV light or protonation. Theoretical modeling demonstrates that upon (photo)chemical isomerization to the merocyanine, two cooperating phenomena increase conductance: release of steric hindrance allows the conductance pathway to become more planar (raising the mid-bandgap transmission) and a bound state introduces sharp interference near the Fermi level of the electrodes similarly responding to the change in state. This design step paves the way for future use of spiropyrans in single-molecule devices and electrosteric switches.
Collapse
Affiliation(s)
- David Jago
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Chongguang Liu
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | | | - Emma Gaschk
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Mark C. Walkey
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Thea Pulbrook
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Xiaohang Qiao
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | - Alexandre N. Sobolev
- Centre for MicroscopyCharacterisation and AnalysisUniversity of Western AustraliaStirling HighwayCrawleyWestern Australia6009Australia
| | - Stephen A. Moggach
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - David Costa‐Milan
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | - Simon J. Higgins
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | - Matthew J. Piggott
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Hatef Sadeghi
- School of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| | - Richard J. Nichols
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | | | - Andrea Vezzoli
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | - George A. Koutsantonis
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| |
Collapse
|
20
|
Fan Y, Tao S, Pitié S, Liu C, Zhao C, Seydou M, Dappe YJ, Low PJ, Nichols RJ, Yang L. Destructive quantum interference in meta-oligo(phenyleneethynylene) molecular wires with gold-graphene heterojunctions. NANOSCALE 2023; 16:195-204. [PMID: 38050747 DOI: 10.1039/d3nr04012g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Quantum interference (QI) is well recognised as a significant contributing factor to the magnitude of molecular conductance values in both single-molecule and large area junctions. Numerous structure-property relationship studies have shown that para-connected oligo(phenyleneethynylene) (OPE) based molecular wires exemplify the impact of constructive quantum interference (CQI), whilst destructive quantum interference (DQI) effects are responsible for the orders of magnitude lower conductance of analogous meta-contacted OPE derivatives, despite the somewhat shorter effective tunnelling distance. Since molecular conductance is related to the value of the transmission function, evaluated at the electrode Fermi energy, T(EF), which in turn is influenced by the presence and relative energy of (anti)resonances, it follows that the relative single-molecule conductance of para- and meta-contacted OPE-type molecules is tuned both by the anchor group and the nature of the electrode materials used in the construction of molecular junctions (gold|molecule|gold vs. gold|molecule|graphene). It is shown here that whilst amine-contacted junctions show little influence of the electrode material on molecular conductance due to the similar electrode-molecule coupling through this anchor group to both types of electrodes, the weaker coupling between thiomethyl and ethynyl anchors and the graphene substrate electrode results in a relative enhancement of the DQI effect. This work highlights an additional parameter space to explore QI effects and establishes a new working model based on the electrode materials and anchor groups in modulating QI effects beyond the chemical structure of the molecular backbone.
Collapse
Affiliation(s)
- Yinqi Fan
- Department of Chemistry, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China.
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Shuhui Tao
- Department of Chemistry, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China.
- NUS (Chongqing) Research Institute, Chongqing, China
| | - Sylvain Pitié
- Applied Quantum Chemistry Group, E4, IC2MP, UMR 7285 Poitiers University CNRS, 86073 Poitiers, France
| | - Chenguang Liu
- Department of Electrical and Electronic Engineering, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China
| | - Chun Zhao
- Department of Electrical and Electronic Engineering, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China
| | | | - Yannick J Dappe
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Paul J Low
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, 6009 Crawley, Australia
| | - Richard J Nichols
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Li Yang
- Department of Chemistry, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China.
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| |
Collapse
|
21
|
Erpenbeck A, Gull E, Cohen G. Shaping Electronic Flows with Strongly Correlated Physics. NANO LETTERS 2023; 23:10480-10489. [PMID: 37955307 DOI: 10.1021/acs.nanolett.3c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Nonequilibrium quantum transport is of central importance in nanotechnology. Its description requires the understanding of strong electronic correlations that couple atomic-scale phenomena to the nanoscale. So far, research in correlated transport has focused predominantly on few-channel transport, precluding the investigation of cross-scale effects. Recent theoretical advances enable the solution of models that capture the interplay between quantum correlations and confinement beyond a few channels. This problem is the focus of this study. We consider an atomic impurity embedded in a metallic nanosheet spanning two leads, showing that transport is significantly altered by tuning only the phase of a single local hopping parameter. Furthermore─depending on this phase─correlations reshape the electronic flow throughout the sheet, either funneling it through the impurity or scattering it away from a much larger region. This demonstrates the potential for quantum correlations to bridge length scales in the design of nanoelectronic devices and sensors.
Collapse
Affiliation(s)
- Andre Erpenbeck
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Emanuel Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Guy Cohen
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
22
|
Xu H, Fan H, Luan Y, Yan S, Martin L, Miao R, Pauly F, Meyhofer E, Reddy P, Linke H, Wärnmark K. Electrical Conductance and Thermopower of β-Substituted Porphyrin Molecular Junctions─Synthesis and Transport. J Am Chem Soc 2023; 145:23541-23555. [PMID: 37874166 PMCID: PMC10623571 DOI: 10.1021/jacs.3c07258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Indexed: 10/25/2023]
Abstract
Molecular junctions offer significant potential for enhancing thermoelectric power generation. Quantum interference effects and associated sharp features in electron transmission are expected to enable the tuning and enhancement of thermoelectric properties in molecular junctions. To systematically explore the effect of quantum interferences, we designed and synthesized two new classes of porphyrins, P1 and P2, with two methylthio anchoring groups in the 2,13- and 2,12-positions, respectively, and their Zn complexes, Zn-P1 and Zn-P2. Past theory suggests that P1 and Zn-P1 feature destructive quantum interference in single-molecule junctions with gold electrodes and may thus show high thermopower, while P2 and Zn-P2 do not. Our detailed experimental single-molecule break-junction studies of conductance and thermopower, the latter being the first ever performed on porphyrin molecular junctions, revealed that the electrical conductance of the P1 and Zn-P1 junctions is relatively close, and the same holds for P2 and Zn-P2, while there is a 6 times reduction in the electrical conductance between P1 and P2 type junctions. Further, we observed that the thermopower of P1 junctions is slightly larger than for P2 junctions, while Zn-P1 junctions show the largest thermopower and Zn-P2 junctions show the lowest. We relate the experimental results to quantum transport theory using first-principles approaches. While the conductance of P1 and Zn-P1 junctions is robustly predicted to be larger than those of P2 and Zn-P2, computed thermopowers depend sensitively on the level of theory and the single-molecule junction geometry. However, the predicted large difference in conductance and thermopower values between Zn-P1 and Zn-P2 derivatives, suggested in previous model calculations, is not supported by our experimental and theoretical findings.
Collapse
Affiliation(s)
- Hailiang Xu
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
- Department
of Chemistry, Centre of Analysis and Synthesis, Lund University, Box 121, 22100 Lund, Sweden
| | - Hao Fan
- Department
of Chemistry, Centre of Analysis and Synthesis, Lund University, Box 121, 22100 Lund, Sweden
| | - Yuxuan Luan
- Department
of Mechanical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Shen Yan
- Department
of Mechanical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - León Martin
- Institute
of Physics and Centre for Advanced Analytics and Predictive Sciences, University of Augsburg, 86159 Augsburg, Germany
| | - Ruijiao Miao
- Department
of Mechanical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Fabian Pauly
- Institute
of Physics and Centre for Advanced Analytics and Predictive Sciences, University of Augsburg, 86159 Augsburg, Germany
| | - Edgar Meyhofer
- Department
of Mechanical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Pramod Reddy
- Department
of Mechanical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Heiner Linke
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
- Solid State
Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Kenneth Wärnmark
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
- Department
of Chemistry, Centre of Analysis and Synthesis, Lund University, Box 121, 22100 Lund, Sweden
| |
Collapse
|
23
|
Chen N, Li S, Zhao P, Liu R, Xie Y, Lin JL, Nijhuis CA, Xu B, Zhang L, Xu H, Li Y. Extreme long-lifetime self-assembled monolayer for air-stable molecular junctions. SCIENCE ADVANCES 2023; 9:eadh3412. [PMID: 37851815 PMCID: PMC10584343 DOI: 10.1126/sciadv.adh3412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
The molecular electronic devices based on self-assembled monolayer (SAM) on metal surfaces demonstrate novel electronic functions for device minimization yet are unable to realize in practical applications, due to their instability against oxidation of the sulfur-metal bond. This paper describes an alternative to the thiolate anchoring group to form stable SAMs on gold by selenides anchoring group. Because of the formation of strong selenium-gold bonds, these stable SAMs allow us to incorporate them in molecular tunnel junctions to yield extremely stable junctions for over 200 days. A detailed structural characterization supported by spectroscopy and first-principles modeling shows that the oxidation process is much slower with the selenium-gold bond than the sulfur-gold bond, and the selenium-gold bond is strong enough to avoid bond breaking even when it is eventually oxidized. This proof of concept demonstrates that the extraordinarily stable SAMs derived from selenides are useful for long-lived molecular electronic devices and can possibly become important in many air-stable applications involving SAMs.
Collapse
Affiliation(s)
- Ningyue Chen
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuwei Li
- Center for Combustion Energy, Tsinghua University, Beijing 100084, China
- School of Vehicle and Mobility, and State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Peng Zhao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ran Liu
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - Yu Xie
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Liang Lin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Christian A. Nijhuis
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Centre and Centre for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, Netherlands
| | - Bingqian Xu
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - Liang Zhang
- Center for Combustion Energy, Tsinghua University, Beijing 100084, China
- School of Vehicle and Mobility, and State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Huaping Xu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Wu Z, Cui P, Deng M. Rational Design of Photocontrolled Rectifier Switches in Single-Molecule Junctions Based on Diarylethene. Molecules 2023; 28:7158. [PMID: 37894637 PMCID: PMC10609135 DOI: 10.3390/molecules28207158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The construction of multifunctional, single-molecule nanocircuits to achieve the miniaturization of active electronic devices is a challenging goal in molecular electronics. In this paper, we present an effective strategy for enhancing the multifunctionality and switching performance of diarylethene-based molecular devices, which exhibit photoswitchable rectification properties. Through a molecular engineering design, we systematically investigate a series of electron donor/acceptor-substituted diarylethene molecules to modulate the electronic properties and investigate the transport behaviors of the molecular junctions using the non-equilibrium Green's function combined with the density functional theory. Our results demonstrate that the asymmetric configuration, substituted by both the donor and acceptor on the diarylethene molecule, exhibits the highest switching ratio and rectification ratio. Importantly, this rectification function can be switched on/off through the photoisomerization of the diarylethene unit. These modulations in the transport properties of these molecular junctions with different substituents were obtained with molecule-projected self-consistent Hamiltonian and bias-dependent transmission spectra. Furthermore, the current-voltage characteristics of these molecular junctions can be explained by the molecular energy level structure, showing the significance of energy level regulation. These findings have practical implications for constructing high-performance, multifunctional molecular-integrated circuits.
Collapse
Affiliation(s)
- Ziye Wu
- School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China; (Z.W.); (P.C.)
| | - Peng Cui
- School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China; (Z.W.); (P.C.)
| | - Mingsen Deng
- School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China; (Z.W.); (P.C.)
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
25
|
Li J, Shen P, Zhuang Z, Wu J, Tang BZ, Zhao Z. In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements. Nat Commun 2023; 14:6250. [PMID: 37802995 PMCID: PMC10558558 DOI: 10.1038/s41467-023-42028-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
Voltage-gated processing units are fundamental components for non-von Neumann architectures like memristor and electric synapses, on which nanoscale molecular electronics have possessed great potentials. Here, tailored foldamers with furan‒benzene stacking (f-Fu) and thiophene‒benzene stacking (f-Th) are designed to decipher electro-responsive through-space interaction, which achieve volatile memory behaviors via quantum interference switching in single-molecule junctions. f-Fu exhibits volatile turn-on feature while f-Th performs stochastic turn-off feature with low voltages as 0.2 V. The weakened orbital through-space mixing induced by electro-polarization dominates stacking malposition and quantum interference switching. f-Fu possesses higher switching probability and faster responsive time, while f-Th suffers incomplete switching and longer responsive time. High switching ratios of up to 91 for f-Fu is realized by electrochemical gating. These findings provide evidence and interpretation of the electro-responsiveness of non-covalent interaction at single-molecule level and offer design strategies of molecular non-von Neumann architectures like true random number generator.
Collapse
Affiliation(s)
- Jinshi Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Junqi Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
26
|
Li X, Zheng Y, Zhou Y, Zhu Z, Wu J, Ge W, Zhang Y, Ye Y, Chen L, Shi J, Liu J, Bai J, Liu Z, Hong W. Supramolecular Transistors with Quantum Interference Effect. J Am Chem Soc 2023; 145:21679-21686. [PMID: 37747934 DOI: 10.1021/jacs.3c08615] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The charge transport through supramolecular junctions exhibits unique quantum interference (QI) effects, which provide an opportunity for the design of supramolecular transistors. Benefiting from the configuration dependence of QI, configuration control of the supramolecular assemblies to demonstrate the QI features is a key but challenging step. In this work, we fabricated the supramolecular transistors and investigated the charge transport through the conducting channel of the individual π-stacked thiophene/phenylene co-oligomers (TPCOs) using the electrochemically gated scanning tunneling microscope break junction technique. We controlled the configuration of the supramolecular channel and switched the QI features between the anti-resonance and resonance states of the supramolecular channels. We observed the supramolecular transistor with its on/off ratio above 103 (∼1300), a high gating efficiency of ∼165 mV/dec, a low off-state leakage current of ∼30 pA, and the channel length scaled down to <2.0 nm. Density functional theory calculations suggested that the QI features in π-stacked TPCOs vary depending on the supramolecular architecture and can be manipulated efficiently by fine-tuning the supramolecular configurations. This work reveals the potential of the supramolecular channels for molecular electronics and provides a fundamental understanding of intermolecular charge transport.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Yan Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Zhiyu Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Jiayi Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Wenhui Ge
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Yuxuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Yuqing Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
27
|
Kumar R, Seth C, Venkatramani R, Kaliginedi V. Do quantum interference effects manifest in acyclic aliphatic molecules with anchoring groups? NANOSCALE 2023; 15:15050-15058. [PMID: 37671581 DOI: 10.1039/d3nr02140h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The ability to control single molecule electronic conductance is imperative for achieving functional molecular electronics applications such as insulation, switching, and energy conversion. Quantum interference (QI) effects are generally used to control electronic transmission through single molecular junctions by tuning the molecular structure or the position of the anchoring group(s) in the molecule. While previous studies focussed on the QI between σ and/or π channels of the molecular backbone, here, we show that single molecule electronic devices can be designed based on QI effects originating from the interactions of anchoring groups. Furthermore, while previous studies have concentrated on the QI mostly in conjugated/cyclic systems, our study showcases that QI effects can be harnessed even in the simplest acyclic aliphatic systems-alkanedithiols, alkanediamines, and alkanediselenols. We identify band gap state resonances in the transmission spectrum of these molecules whose positions and intensities depend on the chain length, and anchoring group sensitive QI between the nearly degenerate molecular orbitals localized on the anchoring groups. We predict that these QI features can be harnessed through an external mechanical stimulus to tune the charge transport properties of single molecules in the break-junction experiments.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India.
| | - Charu Seth
- Department of Inorganic and Physical Chemistry, Indian Institute of Science (IISc), Bangalore 560012, India.
| | - Ravindra Venkatramani
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India.
| | - Veerabhadrarao Kaliginedi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science (IISc), Bangalore 560012, India.
| |
Collapse
|
28
|
Li L, Prindle CR, Shi W, Nuckolls C, Venkataraman L. Radical Single-Molecule Junctions. J Am Chem Soc 2023; 145:18182-18204. [PMID: 37555594 DOI: 10.1021/jacs.3c04487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Radicals are unique molecular systems for applications in electronic devices due to their open-shell electronic structures. Radicals can function as good electrical conductors and switches in molecular circuits while also holding great promise in the field of molecular spintronics. However, it is both challenging to create stable, persistent radicals and to understand their properties in molecular junctions. The goal of this Perspective is to address this dual challenge by providing design principles for the synthesis of stable radicals relevant to molecular junctions, as well as offering current insight into the electronic properties of radicals in single-molecule devices. By exploring both the chemical and physical properties of established radical systems, we will facilitate increased exploration and development of radical-based molecular systems.
Collapse
Affiliation(s)
- Liang Li
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Claudia R Prindle
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Wanzhuo Shi
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Latha Venkataraman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
29
|
Skipper HE, Lawson B, Pan X, Degtiareva V, Kamenetska M. Manipulating Quantum Interference between σ and π Orbitals in Single-Molecule Junctions via Chemical Substitution and Environmental Control. ACS NANO 2023; 17:16107-16114. [PMID: 37540771 DOI: 10.1021/acsnano.3c04963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Understanding and manipulating quantum interference (QI) effects in single molecule junction conductance can enable the design of molecular-scale devices. Here we demonstrate QI between σ and π molecular orbitals in an ∼4 Å molecule, pyrazine, bridging source and drain electrodes. Using single molecule conductance measurements, first-principles analysis, and electronic transport calculations, we show that this phenomenon leads to distinct patterns of electron transport in nanoscale junctions, such as destructive interference through the para position of a six-membered ring. These QI effects can be tuned to allow conductance switching using environmental pH control. Our work lays out a conceptual framework for engineering QI features in short molecular systems through synthetic and external manipulation that tunes the energies and symmetries of the σ and π channels.
Collapse
Affiliation(s)
- Hannah E Skipper
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Brent Lawson
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - Xiaoyun Pan
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Vera Degtiareva
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - Maria Kamenetska
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
- Division of Material Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
30
|
Gao T, Daaoub A, Pan Z, Hu Y, Yuan S, Li Y, Dong G, Huang R, Liu J, Sangtarash S, Shi J, Yang Y, Sadeghi H, Hong W. Supramolecular Radical Electronics. J Am Chem Soc 2023; 145:17232-17241. [PMID: 37493612 DOI: 10.1021/jacs.3c04323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Supramolecular radical chemistry is an emerging area bridging supramolecular chemistry and radical chemistry, and the integration of radicals into the supramolecular architecture offers a new dimension for tuning their structures and functions. Although various efforts have been devoted to the fabrication of supramolecular junctions, the charge transport characterization through the supramolecular radicals remained unexplored due to the challenges in creating supramolecular radicals at the single-molecule level. Here, we demonstrate the fabrication and charge transport investigation of a supramolecular radical junction using the electrochemical scanning tunneling microscope-based break junction (EC-STM-BJ) technique. We found that the conductance of a supramolecular radical junction was more than 1 order of magnitude higher than that of a supramolecular junction without a radical and even higher than that of a fully conjugated oligophenylenediamine molecule with a similar length. The combined experimental and theoretical investigations revealed that the radical increased the binding energy and decreased the energy gap in the supramolecular radical junction, which leads to the near-resonant transport through the supramolecular radical. Our work demonstrated that the supramolecular radical can provide not only strong binding but also efficient electrical coupling between building blocks, which provides new insights into supramolecular radical chemistry and new materials with supramolecular radicals.
Collapse
Affiliation(s)
- Tengyang Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China
| | - Abdalghani Daaoub
- Device Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Zhichao Pan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China
| | - Yong Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China
| | - Saisai Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China
| | - Yaoguang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China
| | - Gang Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China
| | - Ruiyun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China
| | - Sara Sangtarash
- Device Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China
| | - Hatef Sadeghi
- Device Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China
| |
Collapse
|
31
|
Feng Z, Li M, Ma A, Wei Y, Huang L, Kong L, Kang Y, Wang Z, Xiao F, Zhang W. Intermedin (adrenomedullin 2) plays a protective role in sepsis by regulating T- and B-cell proliferation and activity. Int Immunopharmacol 2023; 121:110488. [PMID: 37352568 DOI: 10.1016/j.intimp.2023.110488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Sepsis is the major cause of death in intensive care units. We previously found that intermedin (IMD), a calcitonin family peptide, can protect against sepsis by dynamically repairing vascular endothelial junctions and can ameliorate the inflammatory response by inhibiting the infiltration of macrophages in peripheral tissues. The effects of IMD on inflammatory and immune responses indicate that IMD may play a role in immunity. However, whether IMD affects immune cell development, differentiation and response to infection remains unclear. METHODS IMD-knockout (Adm2-/-) mice were generated in our previous work. Wild-type and IMD-KO mice were subjected to sham or cecal ligation and puncture (CLP) surgery, and bone marrow cells were obtained for RNA sequencing (RNA-Seq) analysis. The RNA-Seq results were verified by real-time RT-PCR. The effect of IMD KO or IMD rescue on the septic mice was explored using mild and severe infection models induced by CLP surgery at different levels of severity, and the survival outcomes were analyzed using Kaplan-Meier curves and the log-rank test. The mechanism underlying the effects of IMD in T/B cell proliferation and differentiation were investigated by PCR, Western blot (WB), and cell proliferation assays and flow cytometry analysis. RESULTS RNA-Seq showed that IMD-KO mice exhibited a primary immunosuppression phenotype characterized by a marked decrease in the expression of T- and B-cell function-related genes. This immunosuppression made the IMD-KO mice vulnerable to pathogenic invasion, and even mild infection killed nearly half of the IMD-KO mice. Supplementation with the IMD peptide restored the expression of T/B-cell-related genes and significantly reduced the mortality rate of the IMD-KO mice. IMD is likely to directly promote T- and B-cell proliferation through ERK1/2 phosphorylation, stimulate T-cell differentiation via Ilr7/Rag1/2-controled T cell receptor (TCR) recombination, and activate B cells via Pax5, a transcription factor that activates at least 170 genes needed for B-cell functions. CONCLUSION Together with previous findings, our results indicate that IMD may play a protective role in sepsis via three mechanisms: protecting the vascular endothelium, reducing the inflammatory response, and activating T/B-cell proliferation and differentiation. Our study may provide the first identification of IMD as a calcitonin peptide that plays an important role in the adaptive immune response by activating T/B cells and provides translational opportunities for the design of immunotherapies for sepsis and other diseases associated with primary immunodeficiency.
Collapse
Affiliation(s)
- Zhongxue Feng
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Min Li
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Aijia Ma
- Department of Critical Care Medicine, West China Hospital, Sichuan University, China
| | - Yong'gang Wei
- Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, China
| | - Luping Huang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Lingmiao Kong
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, China
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, China
| | - Fei Xiao
- Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, China.
| | - Wei Zhang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China.
| |
Collapse
|
32
|
Liu H, Chen L, Zhang H, Yang Z, Ye J, Zhou P, Fang C, Xu W, Shi J, Liu J, Yang Y, Hong W. Single-molecule photoelectron tunnelling spectroscopy. NATURE MATERIALS 2023; 22:1007-1012. [PMID: 37349394 DOI: 10.1038/s41563-023-01591-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Experimental mapping of transmission is essential for understanding and controlling charge transport through molecular devices and materials. Here we developed a single-molecule photoelectron tunnelling spectroscopy approach for mapping transmission beyond the HOMO-LUMO gap of the single diketopyrrolopyrrole molecule junction using an ultrafast-laser combined scanning tunnelling microscope-based break junction set-up at room temperature. Two resonant transport channels of ultrafast photocurrent are found by our photoelectron tunnelling spectroscopy, ranging from 1.31 eV to 1.77 eV, consistent with the LUMO + 1 and LUMO + 2 in the transmission spectrum obtained by density functional theory calculations. Moreover, we observed the modulation of resonant peaks by varying bias voltages, which demonstrates the ability to quantitatively characterize the effect of the electric field on frontier molecular orbitals. Our single-molecule photoelectron tunnelling spectroscopy offers an avenue that allows us to explore the nature of energy-dependent charge transport through single-molecule junctions.
Collapse
Affiliation(s)
- Haojie Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Hao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Zhangqiang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Jingyao Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Ping Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Chao Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Wei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Ye Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China.
| |
Collapse
|
33
|
Yang C, Li Y, Zhou S, Guo Y, Jia C, Liu Z, Houk KN, Dubi Y, Guo X. Real-time monitoring of reaction stereochemistry through single-molecule observations of chirality-induced spin selectivity. Nat Chem 2023; 15:972-979. [PMID: 37188972 DOI: 10.1038/s41557-023-01212-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Stereochemistry has an essential role in organic synthesis, biological catalysis and physical processes. In situ chirality identification and asymmetric synthesis are non-trivial tasks, especially for single-molecule systems. However, going beyond the chiral characterization of a large number of molecules (which inevitably leads to ensemble averaging) is crucial for elucidating the different properties induced by the chiral nature of the molecules. Here we report direct monitoring of chirality variations during a Michael addition followed by proton transfer and keto-enol tautomerism in a single molecule. Taking advantage of the chirality-induced spin selectivity effect, continuous current measurements through a single-molecule junction revealed in situ chirality variations during the reaction. Chirality identification at a high sensitivity level provides a promising tool for the study of symmetry-breaking reactions and sheds light on the origin of the chirality-induced spin selectivity effect itself.
Collapse
Affiliation(s)
- Chen Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao, People's Republic of China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shuyao Zhou
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Yilin Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, People's Republic of China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Yonatan Dubi
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China.
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
34
|
Tang C, Stuyver T, Lu T, Liu J, Ye Y, Gao T, Lin L, Zheng J, Liu W, Shi J, Shaik S, Xia H, Hong W. Voltage-driven control of single-molecule keto-enol equilibrium in a two-terminal junction system. Nat Commun 2023; 14:3657. [PMID: 37339947 DOI: 10.1038/s41467-023-39198-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023] Open
Abstract
Keto-enol tautomerism, describing an equilibrium involving two tautomers with distinctive structures, provides a promising platform for modulating nanoscale charge transport. However, such equilibria are generally dominated by the keto form, while a high isomerization barrier limits the transformation to the enol form, suggesting a considerable challenge to control the tautomerism. Here, we achieve single-molecule control of a keto-enol equilibrium at room temperature by using a strategy that combines redox control and electric field modulation. Based on the control of charge injection in the single-molecule junction, we could access charged potential energy surfaces with opposite thermodynamic driving forces, i.e., exhibiting a preference for the conducting enol form, while the isomerization barrier is also significantly reduced. Thus, we could selectively obtain desired and stable tautomers, which leads to significant modulation of the single-molecule conductance. This work highlights the concept of single-molecule control of chemical reactions on more than one potential energy surface.
Collapse
Affiliation(s)
- Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Thijs Stuyver
- Institute of Chemistry, Edmond J. Safra Campus at Givat Ram, The Hebrew University, Jerusalem, 91904, Israel
- Ecole Nationale Supérieure de Chimie de Paris, Université PSL, CNRS, Institute of Chemistry for Life and Health Sciences, 75 005, Paris, France
| | - Taige Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yiling Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Tengyang Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Luchun Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wenqing Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Sason Shaik
- Institute of Chemistry, Edmond J. Safra Campus at Givat Ram, The Hebrew University, Jerusalem, 91904, Israel.
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| |
Collapse
|
35
|
Daaoub A, Morris JMF, Béland VA, Demay‐Drouhard P, Hussein A, Higgins SJ, Sadeghi H, Nichols RJ, Vezzoli A, Baumgartner T, Sangtarash S. Not So Innocent After All: Interfacial Chemistry Determines Charge-Transport Efficiency in Single-Molecule Junctions. Angew Chem Int Ed Engl 2023; 62:e202302150. [PMID: 37029093 PMCID: PMC10953449 DOI: 10.1002/anie.202302150] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/09/2023]
Abstract
Most studies in molecular electronics focus on altering the molecular wire backbone to tune the electrical properties of the whole junction. However, it is often overlooked that the chemical structure of the groups anchoring the molecule to the metallic electrodes influences the electronic structure of the whole system and, therefore, its conductance. We synthesised electron-accepting dithienophosphole oxide derivatives and fabricated their single-molecule junctions. We found that the anchor group has a dramatic effect on charge-transport efficiency: in our case, electron-deficient 4-pyridyl contacts suppress conductance, while electron-rich 4-thioanisole termini promote efficient transport. Our calculations show that this is due to minute changes in charge distribution, probed at the electrode interface. Our findings provide a framework for efficient molecular junction design, especially valuable for compounds with strong electron withdrawing/donating backbones.
Collapse
Affiliation(s)
- Abdalghani Daaoub
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| | - James M. F. Morris
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Vanessa A. Béland
- Department of ChemistryYork University4700 Keele StreetTorontoON, M3J 1P3Canada
| | - Paul Demay‐Drouhard
- Department of ChemistryYork University4700 Keele StreetTorontoON, M3J 1P3Canada
| | - Amaar Hussein
- Department of ChemistryYork University4700 Keele StreetTorontoON, M3J 1P3Canada
| | - Simon J. Higgins
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Hatef Sadeghi
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| | - Richard J. Nichols
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Andrea Vezzoli
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Thomas Baumgartner
- Department of ChemistryYork University4700 Keele StreetTorontoON, M3J 1P3Canada
| | - Sara Sangtarash
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
36
|
Tong L, Yu Z, Gao YJ, Li XC, Zheng JF, Shao Y, Wang YH, Zhou XS. Local cation-tuned reversible single-molecule switch in electric double layer. Nat Commun 2023; 14:3397. [PMID: 37296181 DOI: 10.1038/s41467-023-39206-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The nature of molecule-electrode interface is critical for the integration of atomically precise molecules as functional components into circuits. Herein, we demonstrate that the electric field localized metal cations in outer Helmholtz plane can modulate interfacial Au-carboxyl contacts, realizing a reversible single-molecule switch. STM break junction and I-V measurements show the electrochemical gating of aliphatic and aromatic carboxylic acids have a conductance ON/OFF behavior in electrolyte solution containing metal cations (i.e., Na+, K+, Mg2+ and Ca2+), compared to almost no change in conductance without metal cations. In situ Raman spectra reveal strong molecular carboxyl-metal cation coordination at the negatively charged electrode surface, hindering the formation of molecular junctions for electron tunnelling. This work validates the critical role of localized cations in the electric double layer to regulate electron transport at the single-molecule level.
Collapse
Affiliation(s)
- Ling Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Yi-Jing Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004, Jinhua, China
| | - Xiao-Chong Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China.
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China.
| |
Collapse
|
37
|
Li T, Bandari VK, Schmidt OG. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209088. [PMID: 36512432 DOI: 10.1002/adma.202209088] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Indexed: 06/02/2023]
Abstract
Molecular electronics is driven by the dream of expanding Moore's law to the molecular level for next-generation electronics through incorporating individual or ensemble molecules into electronic circuits. For nearly 50 years, numerous efforts have been made to explore the intrinsic properties of molecules and develop diverse fascinating molecular electronic devices with the desired functionalities. The flourishing of molecular electronics is inseparable from the development of various elegant methodologies for creating nanogap electrodes and bridging the nanogap with molecules. This review first focuses on the techniques for making lateral and vertical nanogap electrodes by breaking, narrowing, and fixed modes, and highlights their capabilities, applications, merits, and shortcomings. After summarizing the approaches of growing single molecules or molecular layers on the electrodes, the methods of constructing a complete molecular circuit are comprehensively grouped into three categories: 1) directly bridging one-molecule-electrode component with another electrode, 2) physically bridging two-molecule-electrode components, and 3) chemically bridging two-molecule-electrode components. Finally, the current state of molecular circuit integration and commercialization is discussed and perspectives are provided, hoping to encourage the community to accelerate the realization of fully scalable molecular electronics for a new era of integrated microsystems and applications.
Collapse
Affiliation(s)
- Tianming Li
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Vineeth Kumar Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
- Nanophysics, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
38
|
Chelli Y, Sandhu S, Daaoub AHS, Sangtarash S, Sadeghi H. Controlling Spin Interference in Single Radical Molecules. NANO LETTERS 2023; 23:3748-3753. [PMID: 37071608 PMCID: PMC10176569 DOI: 10.1021/acs.nanolett.2c05068] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/13/2023] [Indexed: 05/11/2023]
Abstract
Quantum interference (QI) dominates the electronic properties of single molecules even at room temperature and can lead to a large change in their electrical conductance. To take advantage of this for nanoelectronic applications, a mechanism to electronically control QI in single molecules needs to be developed. In this paper, we demonstrate that controlling the quantum interference of each spin in a stable open-shell organic radical with a large π-system is possible by changing the spin state of the radical. We show that the counterintuitive constructive spin interference in a meta-connected radical changes to destructive interference by changing the spin state of the radical from a doublet to a singlet. This results in a significant change in the room temperature electrical conductance by several orders of magnitude, opening up new possibilities for spin interference based molecular switches for energy storage and conversion applications.
Collapse
Affiliation(s)
- Yahia Chelli
- Device Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Serena Sandhu
- Device Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Abdalghani H. S. Daaoub
- Device Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sara Sangtarash
- Device Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Hatef Sadeghi
- Device Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
39
|
Gu MW, Chen CH. Effects of Electrode Materials on Electron Transport for Single-Molecule Junctions. Int J Mol Sci 2023; 24:ijms24087277. [PMID: 37108439 PMCID: PMC10139062 DOI: 10.3390/ijms24087277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The contact at the molecule-electrode interface is a key component for a range of molecule-based devices involving electron transport. An electrode-molecule-electrode configuration is a prototypical testbed for quantitatively studying the underlying physical chemistry. Rather than the molecular side of the interface, this review focuses on examples of electrode materials in the literature. The basic concepts and relevant experimental techniques are introduced.
Collapse
Affiliation(s)
- Mong-Wen Gu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Hsien Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
40
|
O'Driscoll LJ, Jay M, Robinson BJ, Sadeghi H, Wang X, Penhale-Jones B, Bryce MR, Lambert CJ. Planar aromatic anchors control the electrical conductance of gold|molecule|graphene junctions. NANOSCALE ADVANCES 2023; 5:2299-2306. [PMID: 37056609 PMCID: PMC10089101 DOI: 10.1039/d2na00873d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
The synthesis of a family of alkanethiol molecules with planar aromatic head groups, designed to anchor molecules effectively to graphene electrodes, is reported. Characterisation of self-assembled monolayers of these molecules on a gold surface via conductive atomic force microscopy shows that when an aromatic head group is present, the conductance G graphene obtained using a graphene coated probe is higher than the conductance G Pt obtained using a platinum (Pt) probe. For Pt probe and graphene probe junctions, the tunnelling decay constant of benzyl ether derivatives with an alkanethiol molecular backbone is determined as β = 5.6 nm-1 and 3.5 nm-1, respectively. The conductance ratio G graphene/G Pt increases as the number of rings present in the aromatic head unit, n, increases. However, as the number of rings increases, the conductance path length increases because the planar head groups lie at an angle to the plane of the electrodes. This means that overall conductance decreases as n increases. Density functional theory-based charge transport calculations support these experimental findings. This study confirms that planar aromatic head groups can function as effective anchoring units for graphene electrodes in large area molecular junctions. However, the results also indicate that the size and geometry of these head groups must be considered in order to produce effective molecular designs.
Collapse
Affiliation(s)
| | - Michael Jay
- Dept. of Physics, Lancaster University Lancaster LA1 4YB UK
| | | | - Hatef Sadeghi
- Dept. of Engineering, Warwick University Coventry CV4 7AL UK
| | - Xintai Wang
- School of Information Science and Technology, Dalian Maritime University Dalian China
| | | | | | | |
Collapse
|
41
|
Chen X, Reichardt S, Lin ML, Leng YC, Lu Y, Wu H, Mei R, Wirtz L, Zhang X, Ferrari AC, Tan PH. Control of Raman Scattering Quantum Interference Pathways in Graphene. ACS NANO 2023; 17:5956-5962. [PMID: 36897053 PMCID: PMC10062028 DOI: 10.1021/acsnano.3c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Graphene is an ideal platform to study the coherence of quantum interference pathways by tuning doping or laser excitation energy. The latter produces a Raman excitation profile that provides direct insight into the lifetimes of intermediate electronic excitations and, therefore, on quantum interference, which has so far remained elusive. Here, we control the Raman scattering pathways by tuning the laser excitation energy in graphene doped up to 1.05 eV. The Raman excitation profile of the G mode indicates its position and full width at half-maximum are linearly dependent on doping. Doping-enhanced electron-electron interactions dominate the lifetimes of Raman scattering pathways and reduce Raman interference. This will provide guidance for engineering quantum pathways for doped graphene, nanotubes, and topological insulators.
Collapse
Affiliation(s)
- Xue Chen
- State
Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center
of Materials Science and Optoelectronics Engineering and CAS Center
of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sven Reichardt
- Department
of Physics and Materials Science, University
of Luxembourg, Luxembourg 1511, Luxembourg
| | - Miao-Ling Lin
- State
Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Yu-Chen Leng
- State
Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Yan Lu
- State
Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Heng Wu
- State
Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center
of Materials Science and Optoelectronics Engineering and CAS Center
of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Mei
- State
Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center
of Materials Science and Optoelectronics Engineering and CAS Center
of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ludger Wirtz
- Department
of Physics and Materials Science, University
of Luxembourg, Luxembourg 1511, Luxembourg
| | - Xin Zhang
- State
Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center
of Materials Science and Optoelectronics Engineering and CAS Center
of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrea C. Ferrari
- Cambridge
Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Ping-Heng Tan
- State
Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center
of Materials Science and Optoelectronics Engineering and CAS Center
of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Li Y, Root SE, Belding L, Park J, Yoon HJ, Huang C, Baghbanzadeh M, Whitesides GM. Charge Transport Measured Using the EGaIn Junction through Self-Assembled Monolayers Immersed in Organic Liquids. J Phys Chem B 2023; 127:407-424. [PMID: 36580625 DOI: 10.1021/acs.jpcb.2c07901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper describes measurements of charge transport by tunneling through molecular junctions comprising a self-assembled monolayer (SAM) supported by a template-stripped metal bottom electrode (MTS), which has been immersed in an organic liquid and contacted by a conical Ga2O3/EGaIn top electrode. These junctions formed in organic liquids are robust; they show stabilities and yields similar to those formed in air. We formed junctions under seven external environments: (I) air, (II) perfluorocarbons, (III) linear hydrocarbons, (IV) cyclic hydrocarbons, (V) aromatic compounds, (VI) large, irregularly shaped hydrocarbons, and (VII) dimethyl siloxanes. Several different lengths of SAMs of n-alkanethiolates, S(CH2)n-1CH3 with n = 4-18, and two different kinds of bottom electrodes (AgTS or AuTS) are employed to assess the mechanism underlying the observed changes in tunneling currents. Measurements of current density through junctions immersed in perfluorocarbons (II) are comparable to junctions measured in air. Junctions immersed in other organic liquids show reductions in the values of current density, compared to the values in air, ranging from 1 (III) to 5 orders of magnitude (IV). We interpret the most plausible mechanism for these reductions in current densities to be an increase in the length of the tunneling pathway, reflecting the formation of thin (0.5-1.5 nm) liquid films at the interface between the SAM and the Ga2O3/EGaIn electrode. Remarkably, the thickness of the liquid film─estimated by the simplified Simmons model, measurements of electrical breakdown of the junction, and simulations of molecular dynamics─is consistent with the existing observations of structured liquid layers that form between two flat interfaces from measurements obtained by the surface force apparatus. These results suggest the use of the EGaIn junction and measurements of charge transport by tunneling as a new form of surface analysis, with the applications in the study of near-surface, weak, molecular interactions and the behavior of liquid films adjacent to non-polar interfaces.
Collapse
Affiliation(s)
- Yuan Li
- Department of Chemistry, Tsinghua University, Beijing100086, China.,Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Samuel E Root
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Lee Belding
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Junwoo Park
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States.,Department of Chemistry, Sogang University, Seoul04107, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul02841, Korea
| | - Cancan Huang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Mostafa Baghbanzadeh
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - George M Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| |
Collapse
|
43
|
Xu X, Wang J, Blankevoort N, Daaoub A, Sangtarash S, Shi J, Fang C, Yuan S, Chen L, Liu J, Yang Y, Sadeghi H, Hong W. Scaling of quantum interference from single molecules to molecular cages and their monolayers. Proc Natl Acad Sci U S A 2022; 119:e2211786119. [PMID: 36343232 PMCID: PMC9674264 DOI: 10.1073/pnas.2211786119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
The discovery of quantum interference (QI) is widely considered as an important advance in molecular electronics since it provides unique opportunities for achieving single-molecule devices with unprecedented performance. Although some pioneering studies suggested the presence of spin qubit coherence and QI in collective systems such as thin films, it remains unclear whether the QI can be transferred step-by-step from single molecules to different length scales, which hinders the application of QI in fabricating active molecular devices. Here, we found that QI can be transferred from a single molecule to their assemblies. We synthesized and investigated the charge transport through the molecular cages using 1,3-dipyridylbenzene (DPB) as a ligand block with a destructive quantum interference (DQI) effect and 2,5-dipyridylfuran (DPF) as a control building block with a constructive quantum interference (CQI) effect using both single-molecule break junction and large area junction techniques. Combined experiments and calculations revealed that both DQI and CQI had been transferred from the ligand blocks to the molecular cages and the monolayer thin film of the cages. Our work introduced QI effects from a ligand to the molecular cage comprising 732 atoms and even their monolayers, suggesting that the quantum interference could be scaled up within the phase-coherent distance.
Collapse
Affiliation(s)
- Xiaohui Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Juejun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Nickel Blankevoort
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Abdalghani Daaoub
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Sara Sangtarash
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Jie Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Chao Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Saisai Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Hatef Sadeghi
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| |
Collapse
|
44
|
Zheng Y, Duan P, Zhou Y, Li C, Zhou D, Wang Y, Chen L, Zhu Z, Li X, Bai J, Qu K, Gao T, Shi J, Liu J, Zhang Q, Chen Z, Hong W. Fano Resonance in Single‐Molecule Junctions. Angew Chem Int Ed Engl 2022; 61:e202210097. [DOI: 10.1002/anie.202210097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Ping Duan
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Chuan Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Dahai Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Yaping Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Li‐Chuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Zhiyu Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Kai Qu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tengyang Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Qian‐Chong Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Zhong‐Ning Chen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| |
Collapse
|
45
|
Wang Z, Palma JL, Wang H, Liu J, Zhou G, Ajayakumar MR, Feng X, Wang W, Ulstrup J, Kornyshev AA, Li Y, Tao N. Electrochemically controlled rectification in symmetric single-molecule junctions. Proc Natl Acad Sci U S A 2022; 119:e2122183119. [PMID: 36136968 PMCID: PMC9522371 DOI: 10.1073/pnas.2122183119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule electrochemical science has advanced over the past decades and now extends well beyond molecular imaging, to molecular electronics functions such as rectification and amplification. Rectification is conceptually the simplest but has involved mostly challenging chemical synthesis of asymmetric molecular structures or asymmetric materials and geometry of the two enclosing electrodes. Here we propose an experimental and theoretical strategy for building and tuning in situ (in operando) rectification in two symmetric molecular structures in electrochemical environment. The molecules were designed to conduct electronically via either their lowest unoccupied molecular orbital (LUMO; electron transfer) or highest occupied molecular orbital (HOMO; "hole transfer"). We used a bipotentiostat to control separately the electrochemical potential of the tip and substrate electrodes of an electrochemical scanning tunneling microscope (EC-STM), which leads to independent energy alignment of the STM tip, the molecule, and the STM substrate. By creating an asymmetric energy alignment, we observed single-molecule rectification of each molecule within a voltage range of ±0.5 V. By varying both the dominating charge transporting LUMO or HOMO energy and the electrolyte concentration, we achieved tuning of the polarity as well as the amplitude of the rectification. We have extended an earlier proposed theory that predicts electrolyte-controlled rectification to rationalize all the observed in situ rectification features and found excellent agreement between theory and experiments. Our study thus offers a way toward building controllable single-molecule rectifying devices without involving asymmetric molecular structures.
Collapse
Affiliation(s)
- Zixiao Wang
- aState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- 1To whom correspondence may be addressed. or or or
| | - Julio L. Palma
- bDepartment of Chemistry, Pennsylvania State University, Fayette, The Eberly Campus, Lemont Furnace, PA 15456
| | - Hui Wang
- aState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junzhi Liu
- cDepartment of Chemistry and State Key Laboratory of Synthetic Chemistry, the University of Hong Kong, Hong Kong, China
| | - Gang Zhou
- dLaboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - M. R. Ajayakumar
- eCentre for Advancing Electronics Dresden, Faculty of Chemistry and Food Chemistry, Technische University Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- eCentre for Advancing Electronics Dresden, Faculty of Chemistry and Food Chemistry, Technische University Dresden, 01062 Dresden, Germany
| | - Wei Wang
- aState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jens Ulstrup
- fDepartment of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- 1To whom correspondence may be addressed. or or or
| | - Alexei A. Kornyshev
- gDepartment of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London W12 0BZ, United Kingdom
- 1To whom correspondence may be addressed. or or or
| | - Yueqi Li
- hCenter for Bioanalytical Chemistry, University of Science and Technology of China, Hefei 230026, China
- 1To whom correspondence may be addressed. or or or
| | - Nongjian Tao
- aState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- iCenter for Bioelectronics and Biosensors, Biodesign Institute and School of Electrical, Energy and Computer Engineering, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
46
|
Guo Y, Yang C, Zhou S, Liu Z, Guo X. A Single-Molecule Memristor based on an Electric-Field-Driven Dynamical Structure Reconfiguration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204827. [PMID: 35862243 DOI: 10.1002/adma.202204827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
A robust single-molecule memristor is prepared by covalently integrating one phenol molecule with multiple binding sites into nanogapped graphene electrodes. Multilevel resistance switching is realized by the electric-field-manipulated reconfiguration of the acyl moiety on the phenol center, that is, the Fries rearrangement. In situ measurements of the reaction trajectories with an initial single substrate and an intermediate break through the limitation of macroscopic experiments, therefore unveiling both intramolecular and intermolecular mechanistic pathways (a long-term controversy) as well as comprehensive dynamic information. Based on this advance, high-performance single-molecule memristors in both the solution and solid states are achieved successively, providing a new understanding of memristive systems and neural network computing.
Collapse
Affiliation(s)
- Yilin Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Chen Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Shuyao Zhou
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| |
Collapse
|
47
|
Feng A, Hou S, Yan J, Wu Q, Tang Y, Yang Y, Shi J, Xiao ZY, Lambert CJ, Zheng N, Hong W. Conductance Growth of Single-Cluster Junctions with Increasing Sizes. J Am Chem Soc 2022; 144:15680-15688. [PMID: 35984293 DOI: 10.1021/jacs.2c05856] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantum-tunneling-based nanoelectronics has the potential for the miniaturization of electronics toward the sub-5 nm scale. However, the nature of phase-coherent quantum tunneling leads to the rapid decays of the electrical conductance with tunneling transport distance, especially in organic molecule-based nanodevices. In this work, we investigated the conductance of the single-cluster junctions of a series of atomically well-defined silver nanoclusters, with varying sizes from 0.9 to 3.0 nm, using the mechanically controllable break junction (MCBJ) technique combined with quantum transport theory. Our charge transport investigations of these single-cluster junctions revealed that the conductance grows with increasing cluster size. The conductance decay constant was determined to be ∼-0.4 nm-1, which is of opposite sign to that of organic molecules. Comparison between experiment and theory reveals that although charge transport through the silver single-cluster junctions occurs via phase-coherent tunneling, this is compensated by a rapid decrease in the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO gap) with size and the increase in the electrode-cluster coupling, which results in their conductance increase up to lengths of ∼3.0 nm. These results demonstrate that such families of nanoclusters provide unique bottom-up building blocks for the fabrication of nanodevices in the sub-5 nm size range.
Collapse
Affiliation(s)
- Anni Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005 Xiamen, China
| | - Songjun Hou
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Juanzhu Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005 Xiamen, China
| | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Yongxiang Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005 Xiamen, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005 Xiamen, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005 Xiamen, China
| | - Zong-Yuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005 Xiamen, China
| | - Colin J Lambert
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Nanfeng Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005 Xiamen, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005 Xiamen, China
| |
Collapse
|
48
|
Zheng Y, Duan P, Zhou Y, Li C, Zhou D, Wang Y, Chen LC, Zhu Z, Li X, Bai J, Qu K, Gao T, Shi J, Liu J, Zhang QC, Chen ZN, Hong W. Fano Resonance in Single‐molecule Junctions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Zheng
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Ping Duan
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Yu Zhou
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Chuan Li
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry Fuzhou CHINA
| | - Dahai Zhou
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Yaping Wang
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Li-Chuan Chen
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Zhiyu Zhu
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Xiaohui Li
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Jie Bai
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Kai Qu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry Fuzhou CHINA
| | - Tengyang Gao
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Jia Shi
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Junyang Liu
- Xiamen University College of Chemistry and Chemical Engineering Xiamen CHINA
| | - Qian-Chong Zhang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry Fuzhou CHINA
| | - Zhong-Ning Chen
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry Fuzhou CHINA
| | - Wenjing Hong
- Xiamen University College of Chemistry and Chemical Engineering Siming south road 422 3012 Xiamen CHINA
| |
Collapse
|
49
|
Li P, Hou S, Alharbi B, Wu Q, Chen Y, Zhou L, Gao T, Li R, Yang L, Chang X, Dong G, Liu X, Decurtins S, Liu SX, Hong W, Lambert CJ, Jia C, Guo X. Quantum Interference-Controlled Conductance Enhancement in Stacked Graphene-like Dimers. J Am Chem Soc 2022; 144:15689-15697. [PMID: 35930760 DOI: 10.1021/jacs.2c05909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stacking interactions are of significant importance in the fields of chemistry, biology, and material optoelectronics because they determine the efficiency of charge transfer between molecules and their quantum states. Previous studies have proven that when two monomers are π-stacked in series to form a dimer, the electrical conductance of the dimer is significantly lower than that of the monomer. Here, we present a strong opposite case that when two anthanthrene monomers are π-stacked to form a dimer in a scanning tunneling microscopic break junction, the conductance increases by as much as 25 in comparison with a monomer, which originates from a room-temperature quantum interference. Remarkably, both theory and experiment consistently reveal that this effect can be reversed by changing the connectivity of external electrodes to the monomer core. These results demonstrate that synthetic control of connectivity to molecular cores can be combined with stacking interactions between their π systems to modify and optimize charge transfer between molecules, opening up a wide variety of potential applications ranging from organic optoelectronics and photovoltaics to nanoelectronics and single-molecule electronics.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Songjun Hou
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Bader Alharbi
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK.,Department of Physics, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia
| | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Yijian Chen
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Li Zhou
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Tengyang Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Ruihao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Lan Yang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Xinyue Chang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Gang Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xunshan Liu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.,Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Silvio Decurtins
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Shi-Xia Liu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Colin J Lambert
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China.,Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China.,Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| |
Collapse
|
50
|
Li J, Hou S, Yao YR, Zhang C, Wu Q, Wang HC, Zhang H, Liu X, Tang C, Wei M, Xu W, Wang Y, Zheng J, Pan Z, Kang L, Liu J, Shi J, Yang Y, Lambert CJ, Xie SY, Hong W. Room-temperature logic-in-memory operations in single-metallofullerene devices. NATURE MATERIALS 2022; 21:917-923. [PMID: 35835820 DOI: 10.1038/s41563-022-01309-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
In-memory computing provides an opportunity to meet the growing demands of large data-driven applications such as machine learning, by colocating logic operations and data storage. Despite being regarded as the ultimate solution for high-density integration and low-power manipulation, the use of spin or electric dipole at the single-molecule level to realize in-memory logic functions has yet to be realized at room temperature, due to their random orientation. Here, we demonstrate logic-in-memory operations, based on single electric dipole flipping in a two-terminal single-metallofullerene (Sc2C2@Cs(hept)-C88) device at room temperature. By applying a low voltage of ±0.8 V to the single-metallofullerene junction, we found that the digital information recorded among the different dipole states could be reversibly encoded in situ and stored. As a consequence, 14 types of Boolean logic operation were shown from a single-metallofullerene device. Density functional theory calculations reveal that the non-volatile memory behaviour comes from dipole reorientation of the [Sc2C2] group in the fullerene cage. This proof-of-concept represents a major step towards room-temperature electrically manipulated, low-power, two-terminal in-memory logic devices and a direction for in-memory computing using nanoelectronic devices.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Songjun Hou
- Department of Physics, Lancaster University, Lancaster, UK
| | - Yang-Rong Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Chengyang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster, UK
| | - Hai-Chuan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Hewei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Xinyuan Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Mengxi Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Wei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Yaping Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Zhichao Pan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Lixing Kang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | | | - Su-Yuan Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China.
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China.
| |
Collapse
|