1
|
Tian Y, Zhang X, Hou B, Jarlöv A, Du C, Zhou K. Programmable heterogeneous lamellar lattice architecture for dual mechanical protection. Proc Natl Acad Sci U S A 2024; 121:e2407362121. [PMID: 39401355 PMCID: PMC11513908 DOI: 10.1073/pnas.2407362121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/27/2024] [Indexed: 10/30/2024] Open
Abstract
Shear bands frequently appear in lattice architectures subjected to compression, leading to an unstable stress-strain curve and global deformation. This deformation mechanism reduces their energy absorption and loading-bearing capacity and causes the architectures to prioritize mechanical protection of external components at the expense of the entire structure. Here, we leverage the design freedom offered by additive manufacturing and the geometrical relation of dual-phase nanolamellar crystals to fabricate heterogeneous lamellar lattice architectures consisting of body-centered cubic (BCC) and face-centered cubic (FCC) unit cells in alternating lamella. The lamellar lattice demonstrates more than 10 and 9 times higher specific energy absorption and energy absorption efficiency, respectively, compared to the BCC lattice. The drastic improvement arises as the nucleation of shear bands is inhibited by the discrete energy threshold for plastic buckling of adjacent heterogeneous lattice lamella during loading. Despite its lower density than the FCC lattice, the lamellar lattice exhibits significant enhancement in plateau stress and crushing force efficiency, attributed to the strengthening effect induced by simultaneous deformation of unit cells in the BCC lattice lamella and the resulting cushion shielding effect. The design improves the global mechanical properties, making lamellar lattices compare favorably against numerous materials proposed for mechanical protection. Additionally, it provides opportunities to program the local mechanical response, achieving programmable internal protection alongside overall external protection. This work provides a different route to design lattice architecture by combining internal and external dual mechanical protection, enabling a generation of multiple mechanical protectors in aerospace, automotive, and transportation fields.
Collapse
Affiliation(s)
- Yuanyuan Tian
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore639798, Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Xin Zhang
- School of Aeronautics, Northwestern Polytechnical University, Xian710072, China
| | - Boyuan Hou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Asker Jarlöv
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Chunyang Du
- Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha410073, China
| | - Kun Zhou
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore639798, Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore639798, Singapore
| |
Collapse
|
2
|
Li Y, Zhou C, Yin J. Geometric mechanics of kiri-origami-based bifurcated mechanical metamaterials. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20240010. [PMID: 39370801 PMCID: PMC11456820 DOI: 10.1098/rsta.2024.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 10/08/2024]
Abstract
We explore a new design strategy of leveraging kinematic bifurcation in creating origami/kirigami-based three-dimensional (3D) hierarchical, reconfigurable, mechanical metamaterials with tunable mechanical responses. We start from constructing three basic, thick, panel-based structural units composed of 4, 6 and 8 rigidly rotatable cubes in close-looped connections. They are modelled, respectively, as 4R, 6R and 8R (R stands for revolute joint) spatial looped kinematic mechanisms, and are used to create a library of reconfigurable hierarchical building blocks that exhibit kinematic bifurcations. We analytically investigate their reconfiguration kinematics and predict the occurrence and locations of kinematic bifurcations through a trial-correction modelling method. These building blocks are tessellated in 3D to create various 3D bifurcated hierarchical mechanical metamaterials that preserve the kinematic bifurcations in their building blocks to reconfigure into different 3D architectures. By combining the kinematics and considering the elastic torsional energy stored in the folds, we develop the geometric mechanics to predict their tunable anisotropic Poisson's ratios and stiffnesses. We find that kinematic bifurcation can significantly effect mechanical responses, including changing the sign of Poisson's ratios from negative to positive beyond bifurcation, tuning the anisotropy, and overcoming the polarity of structural stiffness and enhancing the number of deformation paths with more reconfigured shapes.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
Collapse
Affiliation(s)
- Yanbin Li
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27606, USA
| | - Caizhi Zhou
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27606, USA
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27606, USA
| |
Collapse
|
3
|
Kalogeropoulou M, Kracher A, Fucile P, Mihăilă SM, Moroni L. Blueprints of Architected Materials: A Guide to Metamaterial Design for Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408082. [PMID: 39370588 DOI: 10.1002/adma.202408082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Indexed: 10/08/2024]
Abstract
Mechanical metamaterials are rationally designed structures engineered to exhibit extraordinary properties, often surpassing those of their constituent materials. The geometry of metamaterials' building blocks, referred to as unit cells, plays an essential role in determining their macroscopic mechanical behavior. Due to their hierarchical design and remarkable properties, metamaterials hold significant potential for tissue engineering; however their implementation in the field remains limited. The major challenge hindering the broader use of metamaterials lies in the complexity of unit cell design and fabrication. To address this gap, a comprehensive guide is presented detailing the design principles of well-established metamaterials. The essential unit cell geometric parameters and design constraints, as well as their influence on mechanical behavior, are summarized highlighting essential points for effective fabrication. Moreover, the potential integration of artificial intelligence techniques is explored in meta-biomaterial design for patient- and application-specific design. Furthermore, a comprehensive overview of current applications of mechanical metamaterials is provided in tissue engineering, categorized by tissue type, thereby showcasing the versatility of different designs in matching the mechanical properties of the target tissue. This review aims to provide a valuable resource for tissue engineering researchers and aid in the broader use of metamaterials in the field.
Collapse
Affiliation(s)
- Maria Kalogeropoulou
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Anna Kracher
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Pierpaolo Fucile
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Silvia M Mihăilă
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
4
|
Lin W, Yan Y, Zhao S, Qin H, Liu Y. Digital Mechanical Metamaterial with Programmable Functionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2406263. [PMID: 39363684 DOI: 10.1002/adma.202406263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Indexed: 10/05/2024]
Abstract
Digitization has brought a new era to the world, liberating information from physical media. The material structure-property relation is high-dimensional and nonlinear, and the digitization of structure-property relations may bring unprecedented functional programmability and diversity. Here, a new concept of digital mechanical metamaterial (DMM) is presented, where property design is realized by programming the digital states of the DMM to decouple the design of the structure and property. Transforming the binary stable states of a curved beam to the digital bit, one unit cell of DMM manifests three distinct deformation responses under compression, i.e., compression-twist coupling (CTC), compression-shear coupling (CSC), and pure compression (PC). These deformation modes show notable differences in motion and stiffness, which, by digitally programming a series of DMM, can yield a spectrum of functionalities, including information encryption, stress-strain relation customization, energy absorption in cushioning, effective vibration isolation, and tunable force transmission. This study pioneers a versatile material design paradigm that provides much greater freedom for the property design of intelligent mechanical metamaterials.
Collapse
Affiliation(s)
- Wanqing Lin
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yingbo Yan
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Siwei Zhao
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huasong Qin
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yilun Liu
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
5
|
Liu W, Janbaz S, Dykstra D, Ennis B, Coulais C. Harnessing plasticity in sequential metamaterials for ideal shock absorption. Nature 2024; 634:842-847. [PMID: 39415014 DOI: 10.1038/s41586-024-08037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/10/2024] [Indexed: 10/18/2024]
Abstract
Mechanical metamaterials exhibit interesting properties such as high stiffness at low density1-3, enhanced energy absorption3,4, shape morphing5-7, sequential deformations8-11, auxeticity12-14 and robust waveguiding15,16. Until now, metamaterial design has primarily relied on geometry, and materials nonlinearities such as viscoelasticity, fracture and plasticity have been largely left out of the design rationale. In fact, plastic deformations have been traditionally seen as a failure mode and thereby carefully avoided1,3,17,18. Here we embrace plasticity instead and discover a delicate balance between plasticity and buckling instability, which we term 'yield buckling'. We exploit yield buckling to design metamaterials that buckle sequentially in an arbitrary large sequence of steps whilst keeping a load-bearing capacity. We make use of sequential yield buckling to create metamaterials that combine stiffness and dissipation-two properties that are usually incompatible-and that can be used several times. Hence, our metamaterials exhibit superior shock-absorption performance. Our findings add plasticity to the metamaterial toolbox and make mechanical metamaterials a burgeoning technology with serious potential for mass production.
Collapse
Affiliation(s)
- Wenfeng Liu
- Institute of Physics, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - Shahram Janbaz
- Institute of Physics, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - David Dykstra
- Institute of Physics, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | | | - Corentin Coulais
- Institute of Physics, Universiteit van Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Liu Q, Wang W, Sinhmar H, Griniasty I, Kim JZ, Pelster JT, Chaudhari P, Reynolds MF, Cao MC, Muller DA, Apsel AB, Abbott NL, Kress-Gazit H, McEuen PL, Cohen I. Electronically configurable microscopic metasheet robots. NATURE MATERIALS 2024:10.1038/s41563-024-02007-7. [PMID: 39261721 DOI: 10.1038/s41563-024-02007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
Shape morphing is vital to locomotion in microscopic organisms but has been challenging to achieve in sub-millimetre robots. By overcoming obstacles associated with miniaturization, we demonstrate microscopic electronically configurable morphing metasheet robots. These metabots expand locally using a kirigami structure spanning five decades in length, from 10 nm electrochemically actuated hinges to 100 μm splaying panels making up the ~1 mm robot. The panels are organized into unit cells that can expand and contract by 40% within 100 ms. These units are tiled to create metasheets with over 200 hinges and independent electronically actuating regions that enable the robot to switch between multiple target geometries with distinct curvature distributions. By electronically actuating independent regions with prescribed phase delays, we generate locomotory gaits. These results advance a metamaterial paradigm for microscopic, continuum, compliant, programmable robots and pave the way to a broad spectrum of applications, including reconfigurable micromachines, tunable optical metasurfaces and miniaturized biomedical devices.
Collapse
Affiliation(s)
- Qingkun Liu
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Himani Sinhmar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Itay Griniasty
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Jason Z Kim
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Jacob T Pelster
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | - Michael F Reynolds
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Michael C Cao
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Alyssa B Apsel
- Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Hadas Kress-Gazit
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Paul L McEuen
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
- Department of Physics, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| | - Itai Cohen
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
- Department of Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
7
|
An S, Li X, Guo Z, Huang Y, Zhang Y, Jiang H. Energy-efficient dynamic 3D metasurfaces via spatiotemporal jamming interleaved assemblies for tactile interfaces. Nat Commun 2024; 15:7340. [PMID: 39187536 PMCID: PMC11347642 DOI: 10.1038/s41467-024-51865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024] Open
Abstract
Inspired by the natural shape-morphing abilities of biological organisms, we introduce a strategy for creating energy-efficient dynamic 3D metasurfaces through spatiotemporal jamming of interleaved assemblies. Our approach, diverging from traditional shape-morphing techniques reliant on continuous energy inputs, utilizes strategically jammed, paper-based interleaved assemblies. By rapidly altering their stiffness at various spatial points and temporal phases during the relaxation of the soft substrate through jamming, we enable the formation of refreshable, intricate 3D shapes with a desirable load-bearing capability. This process, which does not require ongoing energy consumption, ensures energy-efficient and lasting shape displays. Our theoretical model, linking buckling deformation to residual pre-strain, underpins the inverse design process for an array of interleaved assemblies, facilitating the creation of diverse 3D configurations. This metasurface holds notable potential for tactile displays, particularly for the visually impaired, heralding possibilities in visual impaired education, haptic feedback, and virtual/augmented reality applications.
Collapse
Affiliation(s)
- Siqi An
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Xiaowen Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Zengrong Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Yi Huang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Yanlin Zhang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China.
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China.
| |
Collapse
|
8
|
Lee Y, Jang B, Song H, Kim S, Kwon YW, Kang HS, Kim MS, Park I, Kim TS, Jang J, Kim JH, Park JU, Bae BS. A seamless auxetic substrate with a negative Poisson's ratio of -1. Nat Commun 2024; 15:7146. [PMID: 39169009 PMCID: PMC11339428 DOI: 10.1038/s41467-024-51516-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Auxetic metamaterials are a unique class of materials or structures with a negative Poisson's ratio and a wide array of functionalities. However, their inherent porosity presents challenges in practical applications. Filling the inherent perforations while preserving their unique auxeticity is difficult because it demands the seamless integration of components that have highly distinct mechanical characteristics. Here we introduce a seamless auxetic substrate film capable of achieving a negative Poisson's ratio of -1, the theoretical limit of isotropic materials. This breakthrough is realized by incorporating a highly rigid auxetic structure reinforced by glass-fabric, with surface-flattening soft elastomers. We effectively optimize the mechanical properties of these components by systematic experimental and theoretical investigations into the effects of relative differences in the moduli of the constituents. Using the developed auxetic film we demonstrate an image distortion-free display having 25 PPI resolution of micro-LEDs that is capable of 25% stretching without performance degradation.
Collapse
Affiliation(s)
- Yung Lee
- Wearable Platform Materials Technology Center (WMC), KAIST, Daejeon, 34141, Republic of Korea
- Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Bongkyun Jang
- Department of Nano-Devices and Displays, Korea Institute of Machinery & Materials (KIMM) 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Hyunggwi Song
- Wearable Platform Materials Technology Center (WMC), KAIST, Daejeon, 34141, Republic of Korea
- Department of Mechanical Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Sumin Kim
- Wearable Platform Materials Technology Center (WMC), KAIST, Daejeon, 34141, Republic of Korea
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yong Won Kwon
- Wearable Platform Materials Technology Center (WMC), KAIST, Daejeon, 34141, Republic of Korea
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyun Seok Kang
- Wearable Platform Materials Technology Center (WMC), KAIST, Daejeon, 34141, Republic of Korea
- Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Min Seong Kim
- Department of Mechanical Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Taek-Soo Kim
- Wearable Platform Materials Technology Center (WMC), KAIST, Daejeon, 34141, Republic of Korea
- Department of Mechanical Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Junho Jang
- Wearable Platform Materials Technology Center (WMC), KAIST, Daejeon, 34141, Republic of Korea
- Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Jae-Hyun Kim
- Department of Nano-Devices and Displays, Korea Institute of Machinery & Materials (KIMM) 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Jang-Ung Park
- Wearable Platform Materials Technology Center (WMC), KAIST, Daejeon, 34141, Republic of Korea
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Byeong-Soo Bae
- Wearable Platform Materials Technology Center (WMC), KAIST, Daejeon, 34141, Republic of Korea.
- Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Tanaka M, Song Y, Nomura T. Fabric soft pneumatic actuators with programmable turing pattern textures. Sci Rep 2024; 14:19175. [PMID: 39160199 PMCID: PMC11333703 DOI: 10.1038/s41598-024-69450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
This paper presents a novel computational design and fabrication method for fabric-based soft pneumatic actuators (FSPAs) that use Turing patterns, inspired by Alan Turing's morphogenesis theory. These inflatable structures can adapt their shapes with simple pressure changes and are applicable in areas like soft robotics, airbags, and temporary shelters. Traditionally, the design of such structures relies on isotropic materials and the designer's expertise, often requiring a trial-and-error approach. The present study introduces a method to automate this process using advanced numerical optimization to design and manufacture fabric-based inflatable structures with programmable shape-morphing capabilities. Initially, an optimized distribution of the material orientation field on the surface membrane is achieved through gradient-based orientation optimization. This involves a comprehensive physical deployment simulation using the nonlinear shell finite element method, which is integrated into the inner loop of the optimization algorithm. This continuous adjustment of material orientations enhances the design objectives. These material orientation fields are transformed into discretized texture patterns that replicate the same anisotropic deformations. Anisotropic reaction-diffusion equations, using diffusion coefficients determined by local orientations from the optimization step, are then utilized to create space-filling Turing pattern textures. Furthermore, the fabrication methods of these optimized Turing pattern textures are explored using fabrics through heat bonding and embroidery. The performance of the fabricated FSPAs is evaluated through three different deformation shapes: C-shaped bending, S-shaped bending, and twisting.
Collapse
Affiliation(s)
- Masato Tanaka
- Toyota Central R&D Laboratories, Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.
- Toyota Research Institute of North America, Toyota Motor North America, Ann Arbor, MI, 48105, USA.
| | - Yuyang Song
- Toyota Research Institute of North America, Toyota Motor North America, Ann Arbor, MI, 48105, USA.
| | - Tsuyoshi Nomura
- Toyota Central R&D Laboratories, Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan
| |
Collapse
|
10
|
Choi GPT. Computational design of art-inspired metamaterials. NATURE COMPUTATIONAL SCIENCE 2024; 4:549-552. [PMID: 39191971 DOI: 10.1038/s43588-024-00671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Gary P T Choi
- Department of Mathematics, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
An S, Cao Y, Jiang H. A mechanically robust and facile shape morphing using tensile-induced buckling. SCIENCE ADVANCES 2024; 10:eado8431. [PMID: 38781341 PMCID: PMC11114219 DOI: 10.1126/sciadv.ado8431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Inspired by the adaptive mechanisms observed in biological organisms, shape-morphing soft structures have emerged as promising platforms for many applications. In this study, we present a shape-morphing strategy to overcome existing limitations of the intricate fabrication process and the lack of mechanical robustness against mechanical perturbations. Our method uses tensile-induced buckling, achieved by attaching restraining strips to a stretchable substrate. When the substrate is stretched, the stiffness mismatch between the restraining strips and the substrate, and the Poisson's effect on the substrate cause the restraining strips to buckle, thereby transforming initially flat shapes into intricate three-dimensional (3D) configurations. Guided by an inverse design method, we demonstrate the capability to achieve complicated and diverse 3D shapes. Leveraging shape morphing, we further develop soft grippers exhibiting outstanding universality, high grasping efficiencies, and exceptional durability. Our proposed shape-morphing strategy is scalable and material-independent, holding notable potential for applications in soft robotics, haptics, and biomedical devices.
Collapse
Affiliation(s)
- Siqi An
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yajun Cao
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
12
|
Huang X, Bu T, Zheng Q, Liu S, Li Y, Fang H, Qiu Y, Xie B, Yin Z, Wu H. Flexible sensors with zero Poisson's ratio. Natl Sci Rev 2024; 11:nwae027. [PMID: 38577662 PMCID: PMC10989663 DOI: 10.1093/nsr/nwae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Accepted: 01/14/2024] [Indexed: 04/06/2024] Open
Abstract
Flexible sensors have been developed for the perception of various stimuli. However, complex deformation, usually resulting from forces or strains from multi-axes, can be challenging to measure due to the lack of independent perception of multiaxial stimuli. Herein, flexible sensors based on the metamaterial membrane with zero Poisson's ratio (ZPR) are proposed to achieve independent detection of biaxial stimuli. By deliberately designing the geometric dimensions and arrangement parameters of elements, the Poisson's ratio of an elastomer membrane can be modulated from negative to positive, and the ZPR membrane can maintain a constant transverse dimension under longitudinal stimuli. Due to the accurate monitoring of grasping force by ZPR sensors that are insensitive to curvatures of contact surfaces, rigid robotic manipulators can be guided to safely grasp deformable objects. Meanwhile, the ZPR sensor can also precisely distinguish different states of manipulators. When ZPR sensors are attached to a thermal-actuation soft robot, they can accurately detect the moving distance and direction. This work presents a new strategy for independent biaxial stimuli perception through the design of mechanical metamaterials, and may inspire the future development of advanced flexible sensors for healthcare, human-machine interfaces and robotic tactile sensing.
Collapse
Affiliation(s)
- Xin Huang
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tianzhao Bu
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingyang Zheng
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoyu Liu
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yangyang Li
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Han Fang
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuqi Qiu
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bin Xie
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhouping Yin
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Wu
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Electronic Science and Technology, School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
Hong X, Xu B, Li G, Nan F, Wang X, Liang Q, Dong W, Dong W, Sun H, Zhang Y, Li C, Fu R, Wang Z, Shen G, Wang Y, Yao Y, Zhang S, Li J. Optoelectronically navigated nano-kirigami microrotors. SCIENCE ADVANCES 2024; 10:eadn7582. [PMID: 38657056 PMCID: PMC11042735 DOI: 10.1126/sciadv.adn7582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
With the rapid development of micro/nanofabrication technologies, the concept of transformable kirigami has been applied for device fabrication in the microscopic world. However, most nano-kirigami structures and devices were typically fabricated or transformed at fixed positions and restricted to limited mechanical motion along a single axis due to their small sizes, which significantly limits their functionalities and applications. Here, we demonstrate the precise shaping and position control of nano-kirigami microrotors. Metallic microrotors with size of ~10 micrometers were deliberately released from the substrates and readily manipulated through the multimode actuation with controllable speed and direction using an advanced optoelectronic tweezers technique. The underlying mechanisms of versatile interactions between the microrotors and electric field are uncovered by theoretical modeling and systematic analysis. This work reports a novel methodology to fabricate and manipulate micro/nanorotors with well-designed and sophisticated kirigami morphologies, providing new solutions for future advanced optoelectronic micro/nanomachinery.
Collapse
Affiliation(s)
- Xiaorong Hong
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Bingrui Xu
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Gong Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fan Nan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Qinghua Liang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Wenbo Dong
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Weikang Dong
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Haozhe Sun
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yongyue Zhang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Chongrui Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhuoran Wang
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Yugui Yao
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Shuailong Zhang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Jiafang Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
14
|
Nakagawa D, Hanasaki I. Adaptive plasticity of auxetic Kirigami hydrogel fabricated from anisotropic swelling of cellulose nanofiber film. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2331959. [PMID: 38572411 PMCID: PMC10989208 DOI: 10.1080/14686996.2024.2331959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Hydrogels are flexible materials that typically accommodate elongation with positive Poisson's ratios. Auxetic property, i.e., the negative Poisson's ratio, of elastic materials can be macroscopically implemented by the structural design of the continuum. We realize it without mold for hydrogel made of cellulose nanofibers (CNFs). The complex structural design of auxetic Kirigami is first implemented on the dry CNF film, i.e., so-called nanopaper, by laser processing, and the CNF hydrogel is formed by dipping the film in liquid water. The CNF films show anisotropic swelling where drastic volumetric change mainly originates from increase in the thickness. This anisotropy makes the design and fabrication of the emergent Kirigami hydrogel straightforward. We characterize the flexibility of this mechanical metamaterial made of hydrogel by cyclic tensile loading starting from the initial end-to-end distance of dry sample. The tensile load at the maximum strain decreases with the increasing number of cycles. Furthermore, the necessary work up to the maximum strain even decreases to the negative value, while the work of restoration to the original end-to-end distance increases from the negative value to the positive. The equilibrium strain where the force changes the sign increases to reach a plateau. This plastic deformation due to the cyclic loading can be regarded as the adaptive response without fracture to the applied dynamic loading input.
Collapse
Affiliation(s)
- Daisuke Nakagawa
- Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Japan
| | - Itsuo Hanasaki
- Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Japan
| |
Collapse
|
15
|
Jin L, Yang S. Engineering Kirigami Frameworks Toward Real-World Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308560. [PMID: 37983878 DOI: 10.1002/adma.202308560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/05/2023] [Indexed: 11/22/2023]
Abstract
The surge in advanced manufacturing techniques has led to a paradigm shift in the realm of material design from developing completely new chemistry to tailoring geometry within existing materials. Kirigami, evolved from a traditional cultural and artistic craft of cutting and folding, has emerged as a powerful framework that endows simple 2D sheets with unique mechanical, thermal, optical, and acoustic properties, as well as shape-shifting capabilities. Given its flexibility, versatility, and ease of fabrication, there are significant efforts in developing kirigami algorithms to create various architectured materials for a wide range of applications. This review summarizes the fundamental mechanisms that govern the transformation of kirigami structures and elucidates how these mechanisms contribute to their distinctive properties, including high stretchability and adaptability, tunable surface topography, programmable shape morphing, and characteristics of bistability and multistability. It then highlights several promising applications enabled by the unique kirigami designs and concludes with an outlook on the future challenges and perspectives of kirigami-inspired metamaterials toward real-world applications.
Collapse
Affiliation(s)
- Lishuai Jin
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
16
|
Qiao C, Agnelli F, Pokkalla DK, D'Ambrosio N, Pasini D. Anisotropic Morphing in Bistable Kirigami through Symmetry Breaking and Geometric Frustration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313198. [PMID: 38413013 DOI: 10.1002/adma.202313198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/24/2024] [Indexed: 02/29/2024]
Abstract
Shape morphing in bistable kirigami enables remarkable functionalities appealing to a diverse range of applications across the spectrum of length scale. At the core of their shape shifting lies the architecture of their repeating unit, where highly deformable slits and quasi-rigid rotating units often exhibit multiple symmetries that confer isotropic deployment obeying uniform scaling transformation. In this work, symmetry breaking in bistable kirigami is investigated to access geometric frustration and anisotropic morphing, enabling arbitrarily scaled deployment in planar and spatial bistable domains. With an analysis on their symmetry properties complemented by a systematic investigation integrating semi-analytical derivations, numerical simulations, and experiments on elastic kirigami sheets, this work unveils the fundamental relations between slit symmetry, geometric frustration, and anisotropic bistable deployment. Furthermore, asymmetric kirigami units are leveraged in planar and flat-to-3D demonstrations to showcase the pivotal role of shear deformation in achieving target shapes and functions so far unattainable with uniformly stretchable kirigami. The insights provided in this work unveil the role of slit symmetry breaking in controlling the anisotropic bistable deployment of soft kirigami metamaterials, enriching the range of achievable functionalities for applications spanning deployable space structures, wearable technologies, and soft machines.
Collapse
Affiliation(s)
- Chuan Qiao
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, McGill University, Montréal, Québec, H3A 0C3, Canada
| | - Filippo Agnelli
- Department of Mechanical Engineering, McGill University, Montréal, Québec, H3A 0C3, Canada
| | - Deepak Kumar Pokkalla
- Department of Mechanical Engineering, McGill University, Montréal, Québec, H3A 0C3, Canada
| | - Nicholas D'Ambrosio
- Department of Mechanical Engineering, McGill University, Montréal, Québec, H3A 0C3, Canada
| | - Damiano Pasini
- Department of Mechanical Engineering, McGill University, Montréal, Québec, H3A 0C3, Canada
| |
Collapse
|
17
|
Janbaz S, Coulais C. Diffusive kinks turn kirigami into machines. Nat Commun 2024; 15:1255. [PMID: 38341411 PMCID: PMC10858914 DOI: 10.1038/s41467-024-45602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Kinks define boundaries between distinct configurations of a material. In the context of mechanical metamaterials, kinks have recently been shown to underpin logic, shape-changing and locomotion functionalities. So far such kinks propagate by virtue of inertia or of an external load. Here, we discover the emergence of propagating kinks in purely dissipative kirigami. To this end, we create kirigami that shape-change into different textures depending on how fast they are stretched. We find that if we stretch fast and wait, the viscoelastic kirigami can eventually snap from one texture to another. Crucially, such a snapping instability occurs in a sequence and a propagating diffusive kink emerges. As such, it mimics the slow sequential folding observed in biological systems, e.g., Mimosa Pudica. We finally demonstrate that diffusive kinks can be harnessed for basic machine-like functionalities, such as sensing, dynamic shape morphing, transport and manipulation of objects.
Collapse
Affiliation(s)
- Shahram Janbaz
- Institute of Physics, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - Corentin Coulais
- Institute of Physics, Universiteit van Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Czajkowski M, Rocklin DZ. Duality and Sheared Analytic Response in Mechanism-Based Metamaterials. PHYSICAL REVIEW LETTERS 2024; 132:068201. [PMID: 38394578 DOI: 10.1103/physrevlett.132.068201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 02/25/2024]
Abstract
Mechanical metamaterials designed around a zero-energy pathway of deformation known as a mechanism, challenge the conventional picture of elasticity and generate complex spatial response that remains largely uncharted. Here, we present a unified theoretical framework to showing that the presence of a unimode in a 2D structure generates a space of anomalous zero-energy sheared analytic modes. The spatial profiles of these stress-free strain patterns is dual to equilibrium stress configurations. We show a transition at an exceptional point between bulk modes in structures with conventional Poisson ratios (anauxetic) and evanescent surface modes for negative Poisson ratios (auxetic). We suggest a first application of these unusual response properties as a switchable signal amplifier and filter for use in mechanical circuitry and computation.
Collapse
Affiliation(s)
- Michael Czajkowski
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - D Zeb Rocklin
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
19
|
Liu C, Pham MS. Spatially Programmable Architected Materials Inspired by the Metallurgical Phase Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305846. [PMID: 37714519 DOI: 10.1002/adma.202305846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 09/17/2023]
Abstract
Programmable architected materials with the capabilities of precisely storing predefined mechanical behaviors and adaptive deformation responses upon external stimulations are desirable to help increase the performance and the organic integration of materials with surrounding environments. Here, a new approach inspired by the physical metallurgical principles is proposed to allow the materials designers to not only enhance the global strength but also precisely tune mechanical properties (such as strength, modulus, and plastic deformation) locally in architected materials to create a new class of intelligent mechanical metamaterials. Such programmable materials not only have high strength and plastic deformation stability but also the ability to regulate the local deformation states and spatially control the internal propagation of deformation. This innovative approach also provides new and effective ways to enhance the adaptivity of the materials thanks to responsive strengths that not only make the materials increasingly stronger but also allow threshold-based adaptive responses to external loading.
Collapse
Affiliation(s)
- Chen Liu
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Minh-Son Pham
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
20
|
Zhou Y, Wang S, Yin J, Wang J, Manshaii F, Xiao X, Zhang T, Bao H, Jiang S, Chen J. Flexible Metasurfaces for Multifunctional Interfaces. ACS NANO 2024; 18:2685-2707. [PMID: 38241491 DOI: 10.1021/acsnano.3c09310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical devices. However, most existing optical metasurfaces are confined to planar and rigid designs, functions, and technologies, which greatly impede their evolution toward practical applications that often involve complex surfaces. The disconnect between two-dimensional (2D) planar structures and three-dimensional (3D) curved surfaces is becoming increasingly pronounced. In the past two decades, the emergence of flexible electronics has ushered in an emerging era for metasurfaces. This review delves into this cutting-edge field, with a focus on both flexible and conformal design and fabrication techniques. Initially, we reflect on the milestones and trajectories in modern research of optical metasurfaces, complemented by a brief overview of their theoretical underpinnings and primary classifications. We then showcase four advanced applications of optical metasurfaces, emphasizing their promising prospects and relevance in areas such as imaging, biosensing, cloaking, and multifunctionality. Subsequently, we explore three key trends in optical metasurfaces, including mechanically reconfigurable metasurfaces, digitally controlled metasurfaces, and conformal metasurfaces. Finally, we summarize our insights on the ongoing challenges and opportunities in this field.
Collapse
Affiliation(s)
- Yunlei Zhou
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Shaolei Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Junyi Yin
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jianjun Wang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tianqi Zhang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Hong Bao
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Shan Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
21
|
Liu F, Terakawa T, Long S, Komori M. Rigid-foldable cylindrical origami with tunable mechanical behaviors. Sci Rep 2024; 14:145. [PMID: 38168539 PMCID: PMC10762141 DOI: 10.1038/s41598-023-50353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Rigid-foldable origami shows significant promise in advanced engineering applications including deployable structures, aerospace engineering, and robotics. It undergoes deformation solely at the creases during the folding process while maintaining rigidity throughout all facets. However, most types of cylindrical origami, such as Kresling origami, water-bomb origami, and twisted tower origami, lack rigid-foldability. Although shape transformation can be achieved through elastic folding, their limited rigid foldability constrains their engineering applications. To address this limitation, we proposed a type of cylindrical origami inspired by Kresling origami, named foldable prism origami (FP-ori), in this paper. FP-ori possesses not only rigid-foldability but also several tunable properties, including flat-foldability, self-locking, and bistability. The geometric properties of FP-ori were analyzed and the relationship between different parameters and tunable mechanical behaviors were verified through finite element method simulations, as well as experiments using paper models. Furthermore, we proposed stacked structures composed of multiple cubic FP-ori units, the rotation directions of which could be controlled through the combination arrangement. And drawing inspiration from kirigami, a negative Poisson's ratio tessellation structure was created. These results indicated that FP-ori has substantial potential for broad application in engineering fields.
Collapse
Affiliation(s)
- Fengrui Liu
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Tatsuro Terakawa
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.
| | - Siying Long
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Masaharu Komori
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| |
Collapse
|
22
|
Wang L, Chang Y, Wu S, Zhao RR, Chen W. Physics-aware differentiable design of magnetically actuated kirigami for shape morphing. Nat Commun 2023; 14:8516. [PMID: 38129420 PMCID: PMC10739944 DOI: 10.1038/s41467-023-44303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Shape morphing that transforms morphologies in response to stimuli is crucial for future multifunctional systems. While kirigami holds great promise in enhancing shape-morphing, existing designs primarily focus on kinematics and overlook the underlying physics. This study introduces a differentiable inverse design framework that considers the physical interplay between geometry, materials, and stimuli of active kirigami, made by soft material embedded with magnetic particles, to realize target shape-morphing upon magnetic excitation. We achieve this by combining differentiable kinematics and energy models into a constrained optimization, simultaneously designing the cuts and magnetization orientations to ensure kinematic and physical feasibility. Complex kirigami designs are obtained automatically with unparalleled efficiency, which can be remotely controlled to morph into intricate target shapes and even multiple states. The proposed framework can be extended to accommodate various active systems, bridging geometry and physics to push the frontiers in shape-morphing applications, like flexible electronics and minimally invasive surgery.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yilong Chang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Wei Chen
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
23
|
van Mastrigt R, Coulais C, van Hecke M. Emergent nonlocal combinatorial design rules for multimodal metamaterials. Phys Rev E 2023; 108:065002. [PMID: 38243469 DOI: 10.1103/physreve.108.065002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/27/2023] [Indexed: 01/21/2024]
Abstract
Combinatorial mechanical metamaterials feature spatially textured soft modes that yield exotic and useful mechanical properties. While a single soft mode often can be rationally designed by following a set of tiling rules for the building blocks of the metamaterial, it is an open question what design rules are required to realize multiple soft modes. Multimodal metamaterials would allow for advanced mechanical functionalities that can be selected on the fly. Here we introduce a transfer matrix-like framework to design multiple soft modes in combinatorial metamaterials composed of aperiodic tilings of building blocks. We use this framework to derive rules for multimodal designs for a specific family of building blocks. We show that such designs require a large number of degeneracies between constraints, and find precise rules on the real space configuration that allow such degeneracies. These rules are significantly more complex than the simple tiling rules that emerge for single-mode metamaterials. For the specific example studied here, they can be expressed as local rules for tiles composed of pairs of building blocks in combination with a nonlocal rule in the form of a global constraint on the type of tiles that are allowed to appear together anywhere in the configuration. This nonlocal rule is exclusive to multimodal metamaterials and exemplifies the complexity of rational design of multimode metamaterials. Our framework is a first step towards a systematic design strategy of multimodal metamaterials with spatially textured soft modes.
Collapse
Affiliation(s)
- Ryan van Mastrigt
- Institute of Physics, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Corentin Coulais
- Institute of Physics, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Martin van Hecke
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
- Huygens-Kamerling Onnes Lab, Universiteit Leiden, Postbus 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|
24
|
Hu H, Zhang C, Ding Y, Chen F, Huang Q, Zheng Z. A Review of Structure Engineering of Strain-Tolerant Architectures for Stretchable Electronics. SMALL METHODS 2023; 7:e2300671. [PMID: 37661591 DOI: 10.1002/smtd.202300671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Stretchable electronics possess significant advantages over their conventional rigid counterparts and boost game-changing applications such as bioelectronics, flexible displays, wearable health monitors, etc. It is, nevertheless, a formidable task to impart stretchability to brittle electronic materials such as silicon. This review provides a concise but critical discussion of the prevailing structural engineering strategies for achieving strain-tolerant electronic devices. Not only the more commonly discussed lateral designs of structures such as island-bridge, wavy structures, fractals, and kirigami, but also the less discussed vertical architectures such as strain isolation and elastoplastic principle are reviewed. Future opportunities are envisaged at the end of the paper.
Collapse
Affiliation(s)
- Hong Hu
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Chi Zhang
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yichun Ding
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Fan Chen
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Qiyao Huang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
25
|
Yao H, Zhao X, Mi S. Modular design of curved beam-based recyclable architected materials. Heliyon 2023; 9:e21557. [PMID: 38053863 PMCID: PMC10694173 DOI: 10.1016/j.heliyon.2023.e21557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023] Open
Abstract
Advances in manufacturing technologies have enabled architected materials with unprecedented properties. These materials are typically irreversibly designed and fabricated with characteristic geometries and specific mechanical properties, thus rendering them suitable for pre-specified requests. However, these materials cannot be recycled or reconstructed into different shapes and functionalities to economically adapt to various environments. Hence, we present a modular design strategy to create a category of recyclable architected materials comprising elastic initially curved beams and rigid cylindrical magnets. Based on numerical analyses and physical prototypes, we introduce an arc-serpentine curved beam (ASCB) and systematically investigate its mechanical properties. Subsequently, we develop two sets of hierarchical modules for the ASCB, thus expanding the constructable shape of architected materials from regular cuboids to complex curved surfaces. Furthermore, we demonstrate that the magnets attached to the centers of specific serpentine patterns of the modules allows the effective in-situ recycling of the designed materials, including sheet materials for non-damage storage, bulk materials for tunable stiffness, and protective package boxes for reshaping into decorative lampshades. We expect our approach to improve the flexibility of architected materials for multifunctional implementation in resource-limited scenarios.
Collapse
Affiliation(s)
- Hongyi Yao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Xiaoyu Zhao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Shengli Mi
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
26
|
Hu X, Tan T, Wang B, Yan Z. A reprogrammable mechanical metamaterial with origami functional-group transformation and ring reconfiguration. Nat Commun 2023; 14:6709. [PMID: 37872137 PMCID: PMC10593812 DOI: 10.1038/s41467-023-42323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Recent advancements in reprogrammable metamaterials have enabled the development of intelligent matters with variable special properties in situ. These metamaterials employ intra-element physical reconfiguration and inter-element structural transformation. However, existing mono-characteristic homo-element mechanical metamaterials have limited reprogramming functions. Here, we introduce a reprogrammable mechanical metamaterial composed of origami elements with heterogeneous mechanical properties, which achieves various mechanical behavior patterns by functional group transformations and ring reconfigurations. Through the anisotropic assembly of two heterogeneous elements into a functional group, we enable mechanical behavior switching between positive and negative stiffness. The resulting polygonal ring exhibits rotational deformation, zero Poisson's ratio stretching/compression deformation, and negative Poisson's ratio auxetic deformation. Arranging these rings periodically yields homogeneous metamaterials. The reconfiguration of quadrilateral rings allows for continuous fine-tunability of the mechanical response and negative Poisson's ratio. This mechanical metamaterial could provide a versatile material platform for reprogrammable mechanical computing, multi-purpose robots, transformable vehicles and architectures at different scales.
Collapse
Affiliation(s)
- Xinyu Hu
- State Key Laboratory of Ocean Engineering, Department of Mechanics, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Ting Tan
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Benlong Wang
- State Key Laboratory of Ocean Engineering, Department of Mechanics, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhimiao Yan
- State Key Laboratory of Ocean Engineering, Department of Mechanics, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
27
|
Huang F, Liu C, Hsiao KW, Kuo YM, Chu HK, Yang YL. Image-Based OA-Style Paper Pop-Up Design via Mixed-Integer Programming. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:4269-4283. [PMID: 35802544 DOI: 10.1109/tvcg.2022.3189569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Origami architecture (OA) is a fascinating papercraft that involves only a piece of paper with cuts and folds. Interesting geometric structures 'pop up' when the paper is opened. However, manually designing such a physically valid 2D paper pop-up plan is challenging since fold lines must jointly satisfy hard spatial constraints. Existing works on automatic OA-style paper pop-up design all focused on how to generate a pop-up structure that approximates a given target 3D model. This article presents the first OA-style paper pop-up design framework that takes 2D images instead of 3D models as input. Our work is inspired by the fact that artists often use 2D profiles to guide the design process, thus benefited from the high availability of 2D image resources. Due to the lack of 3D geometry information, we perform novel theoretic analysis to ensure the foldability and stability of the resultant design. Based on a novel graph representation of the paper pop-up plan, we further propose a practical optimization algorithm via mixed-integer programming that jointly optimizes the topology and geometry of the 2D plan. We also allow the user to interactively explore the design space by specifying constraints on fold lines. Finally, we evaluate our framework on various images with interesting 2D shapes. Experiments and comparisons exhibit both the efficacy and efficiency of our framework.
Collapse
|
28
|
Zhang M, Pal A, Zheng Z, Gardi G, Yildiz E, Sitti M. Hydrogel muscles powering reconfigurable micro-metastructures with wide-spectrum programmability. NATURE MATERIALS 2023; 22:1243-1252. [PMID: 37604911 PMCID: PMC10533409 DOI: 10.1038/s41563-023-01649-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
Stimuli-responsive geometric transformations endow metamaterials with dynamic properties and functionalities. However, using existing transformation mechanisms to program a single geometry to transform into diverse final configurations remains challenging, imposing crucial design restrictions on achieving versatile functionalities. Here, we present a programmable strategy for wide-spectrum reconfigurable micro-metastructures using linearly responsive transparent hydrogels as artificial muscles. Actuated by the hydrogel, the transformation of micro-metastructures arises from the collaborative buckling of their building blocks. Rationally designing the three-dimensional printing parameters and geometry features of the metastructures enables their locally isotropic or anisotropic deformation, allowing controllable wide-spectrum pattern transformation with programmable chirality and optical anisotropy. This reconfiguration mechanism can be applied to various materials with a wide range of mechanical properties. Our strategy enables a thermally reconfigurable printed metalattice with pixel-by-pixel mapping of different printing powers and angles for displaying or hiding complex information, providing opportunities for encryption, miniature robotics, photonics and phononics applications.
Collapse
Affiliation(s)
- Mingchao Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Aniket Pal
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Zhiqiang Zheng
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Gaurav Gardi
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Erdost Yildiz
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey.
| |
Collapse
|
29
|
Gao T, Bico J, Roman B. Pneumatic cells toward absolute Gaussian morphing. Science 2023; 381:862-867. [PMID: 37616347 DOI: 10.1126/science.adi2997] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
On a flat map of the Earth, continents are inevitably distorted. Reciprocally, curving a plate simultaneously in two directions requires a modification of in-plane distances, as Gauss stated in his seminal theorem. Although emerging architectured materials with programmed in-plane distortions are capable of such shape morphing, an additional control of local bending is required to precisely set the final shape of the resulting three-dimensional surface. Inspired by bulliform cells in leaves of monocotyledon plants, we show how the internal structure of flat panels can be designed to program bending and in-plane distortions simultaneously when pressurized, leading to a targeted shell shape. These surfaces with controlled stiffness and fast actuation are manufactured using consumer-grade materials and open a route to large-scale shape-morphing robotics applications.
Collapse
Affiliation(s)
- Tian Gao
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - José Bico
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Benoît Roman
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| |
Collapse
|
30
|
Tomita S, Shimanuki K, Oyama S, Nishigaki H, Nakagawa T, Tsutsui M, Emura Y, Chino M, Tanaka H, Itou Y, Umemoto K. Transition of deformation modes from bending to auxetic compression in origami-based metamaterials for head protection from impact. Sci Rep 2023; 13:12221. [PMID: 37500726 PMCID: PMC10374913 DOI: 10.1038/s41598-023-39200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
For the protection of the human head by energy absorption structures, a soft mechanical response upon contact with the head is required to mitigate the effect of impact, while a hard mechanical response for highly efficient energy absorption is required to stop the movement of the head. This study realized the opposite mechanical properties during head protection by transitioning the deformation mode from bending to auxetic compression. First, non-linear finite element (FE) models were constructed to numerically reproduce the bending behavior. The calculated force responses agreed well with forces in bending tests. Using the FE models, the EA structures with proper transition of deformation modes were designed and installed in the seat headrests of real vehicles. Head protection was evaluated by dynamic loading in sled testing, in which the force on the head of the crash test dummy was measured. The head injury criterion improved from 274 to 155, indicating the superior performance of the tested structures compared to that achieved by energy absorption structures based on steel plates. Moreover, the deformation of auxetic structures prevented neck bending by holding the head. These findings present new possibilities for effectively protecting the human body by mitigating impact, facilitating energy absorption, and ensuring head stability.
Collapse
Affiliation(s)
- Sunao Tomita
- Toyota Central R&D Labs., Inc., Nagakute, 480-1192, Japan.
| | | | - Shin Oyama
- Toyota Central R&D Labs., Inc., Nagakute, 480-1192, Japan
| | | | | | - Masakazu Tsutsui
- Vehicle Structure & Performance Development Division, TOYOTA AUTO BODY CO.,LTD., Kariya, 448-8666, Japan
| | - Youhei Emura
- Vehicle Structure & Performance Development Division, TOYOTA AUTO BODY CO.,LTD., Kariya, 448-8666, Japan
| | - Masahiko Chino
- Vehicle Structure & Performance Development Division, TOYOTA AUTO BODY CO.,LTD., Kariya, 448-8666, Japan
| | - Hirokazu Tanaka
- Vehicle Structure & Performance Development Division, TOYOTA AUTO BODY CO.,LTD., Kariya, 448-8666, Japan
| | - Yoshinobu Itou
- Vehicle Architecture Engineering Division, TOYOTA AUTO BODY CO., LTD., Kariya, 448-8666, Japan
| | | |
Collapse
|
31
|
Wang J, Sotzing M, Lee M, Chortos A. Passively addressed robotic morphing surface (PARMS) based on machine learning. SCIENCE ADVANCES 2023; 9:eadg8019. [PMID: 37478174 PMCID: PMC10361599 DOI: 10.1126/sciadv.adg8019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Reconfigurable morphing surfaces provide new opportunities for advanced human-machine interfaces and bio-inspired robotics. Morphing into arbitrary surfaces on demand requires a device with a sufficiently large number of actuators and an inverse control strategy. Developing compact, efficient control interfaces and algorithms is vital for broader adoption. In this work, we describe a passively addressed robotic morphing surface (PARMS) composed of matrix-arranged ionic actuators. To reduce the complexity of the physical control interface, we introduce passive matrix addressing. Matrix addressing allows the control of N2 independent actuators using only 2N control inputs, which is substantially lower than traditional direct addressing (N2 control inputs). Using machine learning with finite element simulations for training, our control algorithm enables real-time, high-precision forward and inverse control, allowing PARMS to dynamically morph into arbitrary achievable predefined surfaces on demand. These innovations may enable the future implementation of PARMS in wearables, haptics, and augmented reality/virtual reality.
Collapse
Affiliation(s)
- Jue Wang
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| | - Michael Sotzing
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| | - Mina Lee
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| | - Alex Chortos
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| |
Collapse
|
32
|
Guo X, Guzmán M, Carpentier D, Bartolo D, Coulais C. Non-orientable order and non-commutative response in frustrated metamaterials. Nature 2023; 618:506-512. [PMID: 37316720 DOI: 10.1038/s41586-023-06022-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/27/2023] [Indexed: 06/16/2023]
Abstract
From atomic crystals to animal flocks, the emergence of order in nature is captured by the concept of spontaneous symmetry breaking1-4. However, this cornerstone of physics is challenged when broken symmetry phases are frustrated by geometrical constraints. Such frustration dictates the behaviour of systems as diverse as spin ices5-8, confined colloidal suspensions9 and crumpled paper sheets10. These systems typically exhibit strongly degenerated and heterogeneous ground states and hence escape the Ginzburg-Landau paradigm of phase ordering. Here, combining experiments, simulations and theory we uncover an unanticipated form of topological order in globally frustrated matter: non-orientable order. We demonstrate this concept by designing globally frustrated metamaterials that spontaneously break a discrete [Formula: see text] symmetry. We observe that their equilibria are necessarily heteregeneous and extensively degenerated. We explain our observations by generalizing the theory of elasticity to non-orientable order-parameter bundles. We show that non-orientable equilibria are extensively degenerated due to the arbitrary location of topologically protected nodes and lines where the order parameter must vanish. We further show that non-orientable order applies more broadly to objects that are non-orientable themselves, such as buckled Möbius strips and Klein bottles. Finally, by applying time-dependent local perturbations to metamaterials with non-orientable order, we engineer topologically protected mechanical memories11-19, achieve non-commutative responses and show that they carry an imprint of the braiding of the loads' trajectories. Beyond mechanics, we envision non-orientability as a robust design principle for metamaterials that can effectively store information across scales, in fields as diverse as colloidal science8, photonics20, magnetism7 and atomic physics21.
Collapse
Affiliation(s)
- Xiaofei Guo
- Institute of Physics, Universiteit van Amsterdam, Amsterdam, the Netherlands.
- Harbin Institute of Technology, Harbin, China.
| | - Marcelo Guzmán
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France
| | - David Carpentier
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France.
| | - Denis Bartolo
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France.
| | - Corentin Coulais
- Institute of Physics, Universiteit van Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
33
|
Dudte LH, Choi GPT, Becker KP, Mahadevan L. An additive framework for kirigami design. NATURE COMPUTATIONAL SCIENCE 2023; 3:443-454. [PMID: 38177849 DOI: 10.1038/s43588-023-00448-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/10/2023] [Indexed: 01/06/2024]
Abstract
We present an additive approach for the inverse design of kirigami-based mechanical metamaterials by focusing on the empty (negative) spaces instead of the solid tiles. By considering each negative space as a four-bar linkage, we identify a simple recursive relationship between adjacent linkages, yielding an efficient method for creating kirigami patterns. This allows us to solve the kirigami design problem using elementary linear algebra, with compatibility, reconfigurability and rigid-deployability encoded into an iterative procedure involving simple matrix multiplications. The resulting linear design strategy circumvents the solution of a non-convex global optimization problem and allows us to control the degrees of freedom in the deployment angle field, linkage offsets and boundary conditions. We demonstrate this by creating a large variety of rigid-deployable, compact, reconfigurable kirigami patterns. We then realize our kirigami designs physically using two simple but effective fabrication strategies with very different materials. Altogether, our additive approaches present routes for efficient mechanical metamaterial design and fabrication based on ori/kirigami art forms.
Collapse
Affiliation(s)
- Levi H Dudte
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Gary P T Choi
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaitlyn P Becker
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - L Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Departments of Physics, and Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
34
|
Du C, Wang Y, Kang Z. Auxetic Kirigami Metamaterials upon Large Stretching. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19190-19198. [PMID: 37026970 DOI: 10.1021/acsami.3c00946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Auxetic kirigami metamaterials (KMs) attain negative Poisson's ratios with periodic slender cuts on thin sheets. The existing thin auxetic KMs forfeit auxeticity under large tensions because their auxeticity mainly arises from in-plane deformation, but out-of-plane buckling could arise to cause large deviations, and thicker KMs would suffer from stress failure. This paper proposes a novel family of KMs that can realize and retain auxeticity for up to 0.50 applied strains by fully exploiting out-of-plane buckling in the design model. Numerical and experimental results show that the designed KMs possess unique properties that are not exhibited by existing KMs, including a wide range of negative Poisson's ratios with designable variation modes under different applied strains, sheet thickness-insensitive auxeticity, and excellent shape recoverability. A potential application is exemplified with a scenario that they are designed as a stretchable display without image distortions under large tensions. The proposed auxetic KMs open new opportunities for the design of specific functional devices in areas of compliant robotics, bio-medical devices, and flexible electronics.
Collapse
Affiliation(s)
- Chen Du
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
| | - Yiqiang Wang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
| | - Zhan Kang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
35
|
Yin H, Zhou X, Zhou Z, Liu R, Mo X, Chen Z, Yang E, Huang Z, Li H, Wu H, Zhou J, Long Y, Hu B. Switchable Kirigami Structures as Window Envelopes for Energy-Efficient Buildings. RESEARCH (WASHINGTON, D.C.) 2023; 6:0103. [PMID: 37223463 PMCID: PMC10202178 DOI: 10.34133/research.0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/10/2023] [Indexed: 05/25/2023]
Abstract
Efficient regulation of thermal radiation is an effective way to conserve energy consumption of buildings. Because windows are the least energy-efficient part of buildings, their thermal radiation regulation is highly demanded, especially in the changing environment, but is still a challenge. Here, by employing a kirigami structure, we design a variable-angle thermal reflector as a transparent envelope of windows for their thermal radiation modulation. The envelope can be easily switched between heating and cooling modes by loading different pre-stresses, which endow the envelope windows with the ability of temperature regulation, and the interior temperature of a building model can be reduced by ~3.3 °C under cooling mode and increased by ~3.9 °C under heating mode in the outdoor test. The improved thermal management of windows by the adaptive envelope provides an extra heating, ventilation, and air-conditioning energy savings percentage of 13% to 29% per year for buildings located in different climate zones around the world, making the kirigami envelope windows a promising way for energy-saving utilization.
Collapse
Affiliation(s)
- Hanzhi Yin
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Xishu Zhou
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Zhengui Zhou
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Rong Liu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Xiwei Mo
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Zewen Chen
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Erqi Yang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Zhen Huang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Hao Li
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Hao Wu
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jun Zhou
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Yi Long
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Bin Hu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
36
|
Cheng X, Fan Z, Yao S, Jin T, Lv Z, Lan Y, Bo R, Chen Y, Zhang F, Shen Z, Wan H, Huang Y, Zhang Y. Programming 3D curved mesosurfaces using microlattice designs. Science 2023; 379:1225-1232. [PMID: 36952411 DOI: 10.1126/science.adf3824] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Cellular microstructures form naturally in many living organisms (e.g., flowers and leaves) to provide vital functions in synthesis, transport of nutrients, and regulation of growth. Although heterogeneous cellular microstructures are believed to play pivotal roles in their three-dimensional (3D) shape formation, programming 3D curved mesosurfaces with cellular designs remains elusive in man-made systems. We report a rational microlattice design that allows transformation of 2D films into programmable 3D curved mesosurfaces through mechanically guided assembly. Analytical modeling and a machine learning-based computational approach serve as the basis for shape programming and determine the heterogeneous 2D microlattice patterns required for target 3D curved surfaces. About 30 geometries are presented, including both regular and biological mesosurfaces. Demonstrations include a conformable cardiac electronic device, a stingray-like dual mode actuator, and a 3D electronic cell scaffold.
Collapse
Affiliation(s)
- Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Zhichao Fan
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P.R. China
| | - Shenglian Yao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Tianqi Jin
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Zengyao Lv
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yu Lan
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Renheng Bo
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yitong Chen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Department of Automation, Tsinghua University, Beijing 100084, P.R. China
| | - Fan Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Zhangming Shen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Huanhuan Wan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P.R. China
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Departments of Civil & Environmental Engineering, Mechanical Engineering, and Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
37
|
Choi GPT, Liu L, Mahadevan L. Explosive rigidity percolation in kirigami. Proc Math Phys Eng Sci 2023. [DOI: 10.1098/rspa.2022.0798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Controlling the connectivity and rigidity of kirigami, i.e. the process of cutting paper to deploy it into an articulated system, is critical in the manifestations of kirigami in art, science and technology, as it provides the resulting metamaterial with a range of mechanical and geometric properties. Here, we combine deterministic and stochastic approaches for the control of rigidity in kirigami using the power of
k
choices, an approach borrowed from the statistical mechanics of explosive percolation transitions. We show that several methods for rigidifying a kirigami system by incrementally changing either the connectivity or the rigidity of individual components allow us to control the nature of the explosive transition by a choice of selection rules. Our results suggest simple lessons for the design of mechanical metamaterials.
Collapse
|
38
|
Lee YJ, Kanchwala SK, Cho H, Jolly JC, Jablonka E, Tanis M, Kamien RD, Yang S. Natural Shaping of Acellular Dermal Matrices for Implant-Based Breast Reconstruction via Expansile Kirigami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208088. [PMID: 36394177 DOI: 10.1002/adma.202208088] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/29/2022] [Indexed: 06/16/2023]
Abstract
To complete a successful and aesthetic breast reconstruction for breast cancer survivors, tissue reinforcing acellular dermal matrices (ADMs) are widely utilized to create slings/pockets to keep breast implants or autologous tissue transfer secured against the chest wall in the desired location. However, ADM sheets are 2D and cannot completely cover the entire implant without wrinkles. Here, guided by finite element modeling, a kirigami strategy is presented to cut the ADM sheets with locally and precisely controlled stretchability, curvature, and elasticity. Upon expansion, a single kirigami ADM sheet can conformably wrap the implant regardless of the shape and size, forming a natural teardrop shape; contour cuts prescribe the topographical height and fractal cuts in the center ensures horizontal expandability and thus conformability. This kirigami ADM can provide support to the reconstructed breast in the desired regions, potentially offering optimal outcomes and patient-specific reconstruction, while minimizing operative time and cost.
Collapse
Affiliation(s)
- Young-Joo Lee
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Suhail K Kanchwala
- University of Pennsylvania, Division of Plastic and Reconstructive Surgery, Perelman Center of Advanced Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Hyesung Cho
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Jason Christopher Jolly
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Eric Jablonka
- University of Pennsylvania, Division of Plastic and Reconstructive Surgery, Perelman Center of Advanced Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Michael Tanis
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Randall D Kamien
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
39
|
Xiao K, Liang Z, Zou B, Zhou X, Ju J. Inverse design of 3D reconfigurable curvilinear modular origami structures using geometric and topological reconstructions. Nat Commun 2022; 13:7474. [PMID: 36463271 PMCID: PMC9719498 DOI: 10.1038/s41467-022-35224-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
The recent development of modular origami structures has ushered in an era for active metamaterials with multiple degrees of freedom (multi-DOF). Notably, no systematic inverse design approach for 3D curvilinear modular origami structures has been reported. Moreover, very few modular origami topologies have been studied to design active metamaterials with multi-DOF. Herein, we develop an inverse design method for constructing 3D reconfigurable architected structures - we synthesize modular origami structures whose unit cells can be volumetrically mapped into a prescribed 3D curvilinear shape followed by volumetric shrinkage to construct modules. After modification of the tubular geometry, we search through all the possible geometric and topological combinations of the modular origami structures to attain the target mobility using a topological reconstruction of modules. Our inverse design using geometric and topological reconstructions can provide an effective solution to construct 3D curvilinear reconfigurable structures with multi-DOF. Our work opens a path toward 3D reconfigurable systems based on volumetric inverse design, such as 3D active metamaterials and 3D morphing devices for automotive, aerospace, and biomedical engineering applications.
Collapse
Affiliation(s)
- Kai Xiao
- grid.16821.3c0000 0004 0368 8293UM-SJTU Joint Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Zihe Liang
- grid.16821.3c0000 0004 0368 8293UM-SJTU Joint Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Bihui Zou
- grid.16821.3c0000 0004 0368 8293UM-SJTU Joint Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Xiang Zhou
- grid.16821.3c0000 0004 0368 8293School of Aeronautics and Astronautics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Jaehyung Ju
- grid.16821.3c0000 0004 0368 8293UM-SJTU Joint Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| |
Collapse
|
40
|
Jiang S, Liu X, Liu J, Ye D, Duan Y, Li K, Yin Z, Huang Y. Flexible Metamaterial Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200070. [PMID: 35325478 DOI: 10.1002/adma.202200070] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Over the last decade, extensive efforts have been made on utilizing advanced materials and structures to improve the properties and functionalities of flexible electronics. While the conventional ways are approaching their natural limits, a revolutionary strategy, namely metamaterials, is emerging toward engineering structural materials to break the existing fetters. Metamaterials exhibit supernatural physical behaviors, in aspects of mechanical, optical, thermal, acoustic, and electronic properties that are inaccessible in natural materials, such as tunable stiffness or Poisson's ratio, manipulating electromagnetic or elastic waves, and topological and programmable morphability. These salient merits motivate metamaterials as a brand-new research direction and have inspired extensive innovative applications in flexible electronics. Here, such a groundbreaking interdisciplinary field is first coined as "flexible metamaterial electronics," focusing on enhancing and innovating functionalities of flexible electronics via the design of metamaterials. Herein, the latest progress and trends in this infant field are reviewed while highlighting their potential value. First, a brief overview starts with introducing the combination of metamaterials and flexible electronics. Then, the developed applications are discussed, such as self-adaptive deformability, ultrahigh sensitivity, and multidisciplinary functionality, followed by the discussion of potential prospects. Finally, the challenges and opportunities facing flexible metamaterial electronics to advance this cutting-edge field are summarized.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuejun Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianpeng Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dong Ye
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yongqing Duan
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kan Li
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhouping Yin
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - YongAn Huang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
41
|
Zhu H, Wang Y, Ge Y, Zhao Y, Jiang C. Kirigami-Inspired Programmable Soft Magnetoresponsive Actuators with Versatile Morphing Modes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203711. [PMID: 36180420 PMCID: PMC9661843 DOI: 10.1002/advs.202203711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/12/2022] [Indexed: 05/31/2023]
Abstract
Untethered soft magnetoresponsive actuators (SMRAs), which can realize rapid shape transformation, have attracted widespread attention for their strategic applications in exploration, transportation, and minimally invasive medicine. It remains a challenge to fabricate SMRAs with complicated morphing modes (more than bending and folding), limiting their applications to simple shape-morphing and locomotion. Herein, a method integrating the ancient kirigami art and an advanced mechanical assembly method is proposed, which realizes 2D-to-3D and 3D-to-3D complicated shape-morphing and precise magnetization programming through cut-guided deformation. The kirigami-inspired SMRAs exhibit good robustness after actuating more than 10000 times. An integrated finite element analysis method is developed to quantitatively predict the shape transformation of SMRAs under magnetic actuation. By leveraging this method, a set of 3D curved responsive morphologies with programmed Gaussian curvature are fabricated (e.g., ellipsoid and saddle structures), specifically 3D multilayer structures and face-like shapes with different expressions, which are difficult to realize using previous approaches. Furthermore, a bionic-scaled soft crawling robot with significant obstacle surmounting ability is fabricated using the kirigami-inspired method. The ability of the method to achieve programmable SMRAs with versatile morphing modes may broaden its applications in soft robotics, color-switchable devices, and clinical treatments.
Collapse
Affiliation(s)
- Hanlin Zhu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyCollege of Mechanical and Vehicle EngineeringHunan UniversityChangsha410082P. R. China
| | - Yuan Wang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyCollege of Mechanical and Vehicle EngineeringHunan UniversityChangsha410082P. R. China
| | - Yangwen Ge
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyCollege of Mechanical and Vehicle EngineeringHunan UniversityChangsha410082P. R. China
| | - Yan Zhao
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyCollege of Mechanical and Vehicle EngineeringHunan UniversityChangsha410082P. R. China
| | - Chao Jiang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyCollege of Mechanical and Vehicle EngineeringHunan UniversityChangsha410082P. R. China
| |
Collapse
|
42
|
Tao J, Khosravi H, Deshpande V, Li S. Engineering by Cuts: How Kirigami Principle Enables Unique Mechanical Properties and Functionalities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204733. [PMID: 36310142 PMCID: PMC9811446 DOI: 10.1002/advs.202204733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Kirigami, the ancient art of paper cutting, has evolved into a design and fabrication framework to engineer multi-functional materials and structures at vastly different scales. By slit cutting with carefully designed geometries, desirable mechanical behaviors-such as accurate shape morphing, tunable auxetics, super-stretchability, buckling, and multistability-can be imparted to otherwise inflexible sheet materials. In addition, the kirigami sheet provides a versatile platform for embedding different electronic and responsive components, opening up avenues for building the next generations of metamaterials, sensors, and soft robotics. These promising potentials of kirigami-based engineering have inspired vigorous research activities over the past few years, generating many academic publications. Therefore, this review aims to provide insights into the recent advance in this vibrant field. In particular, this paper offers the first comprehensive survey of unique mechanical properties induced by kirigami cutting, their underlying physical principles, and their corresponding applications. The synergies between design methodologies, mechanics modeling, advanced fabrication, and material science will continue to mature this promising discipline.
Collapse
Affiliation(s)
- Jiayue Tao
- Department of Mechanical EngineeringClemson University224 Fluor Daniel Building, 216 South Palmetto BoulevardClemsonSC29631USA
| | - Hesameddin Khosravi
- Department of Mechanical EngineeringClemson University224 Fluor Daniel Building, 216 South Palmetto BoulevardClemsonSC29631USA
| | - Vishrut Deshpande
- Department of Mechanical EngineeringVirginia Tech153 Durham Hall, 1145 Perry StreetBlacksburgVA24060USA
| | - Suyi Li
- Department of Mechanical EngineeringVirginia Tech153 Durham Hall, 1145 Perry StreetBlacksburgVA24060USA
| |
Collapse
|
43
|
Jin L, Yeager M, Lee YJ, O’Brien DJ, Yang S. Shape-morphing into 3D curved surfaces with nacre-like composite architectures. SCIENCE ADVANCES 2022; 8:eabq3248. [PMID: 36223460 PMCID: PMC9555776 DOI: 10.1126/sciadv.abq3248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Inhomogeneous in-plane deformation of soft materials or cutting and folding of inextensible flat sheets enables shape-morphing from two dimensional (2D) to three-dimensional (3D), while the resulting structures often have weakened mechanical strength. Shells like nacre are known for the superior fracture toughness due to the "brick and mortar" composite layers, enabling stress redistribution and crack stopping. Here, we report an optimal and universal cutting and stacking strategy that transforms composite plies into 3D doubly curved shapes with nacre-like architectures. The multilayered laminate exhibits staggered cut distributions, while the interlaminar shear mitigates the cut-induced mechanical weakness. The experimentally consolidated hemispherical shells exhibit, on average, 37 and 69% increases of compression peak forces, versus those with random cut distributions, when compressed in different directions. Our approach opens a previously unidentified paradigm for shape-conforming arbitrarily curved surfaces while achieving high mechanical performance.
Collapse
Affiliation(s)
- Lishuai Jin
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA
| | - Michael Yeager
- DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Young-Joo Lee
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA
| | - Daniel J. O’Brien
- DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Bai Y, Wang H, Xue Y, Pan Y, Kim JT, Ni X, Liu TL, Yang Y, Han M, Huang Y, Rogers JA, Ni X. A dynamically reprogrammable surface with self-evolving shape morphing. Nature 2022; 609:701-708. [PMID: 36131035 DOI: 10.1038/s41586-022-05061-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Dynamic shape-morphing soft materials systems are ubiquitous in living organisms; they are also of rapidly increasing relevance to emerging technologies in soft machines1-3, flexible electronics4,5 and smart medicines6. Soft matter equipped with responsive components can switch between designed shapes or structures, but cannot support the types of dynamic morphing capabilities needed to reproduce natural, continuous processes of interest for many applications7-24. Challenges lie in the development of schemes to reprogram target shapes after fabrication, especially when complexities associated with the operating physics and disturbances from the environment can stop the use of deterministic theoretical models to guide inverse design and control strategies25-30. Here we present a mechanical metasurface constructed from a matrix of filamentary metal traces, driven by reprogrammable, distributed Lorentz forces that follow from the passage of electrical currents in the presence of a static magnetic field. The resulting system demonstrates complex, dynamic morphing capabilities with response times within 0.1 second. Implementing an in situ stereo-imaging feedback strategy with a digitally controlled actuation scheme guided by an optimization algorithm yields surfaces that can follow a self-evolving inverse design to morph into a wide range of three-dimensional target shapes with high precision, including an ability to morph against extrinsic or intrinsic perturbations. These concepts support a data-driven approach to the design of dynamic soft matter, with many unique characteristics.
Collapse
Affiliation(s)
- Yun Bai
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Heling Wang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA. .,Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA. .,Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, China. .,Institute of Flexible Electronics Technology of THU Jiaxing, Zhejiang, China.
| | - Yeguang Xue
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.,Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Yuxin Pan
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Jin-Tae Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Xinchen Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Tzu-Li Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Yiyuan Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Mengdi Han
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.,Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Yonggang Huang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA. .,Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA. .,Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
| | - John A Rogers
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA. .,Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA. .,Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA. .,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. .,Department of Chemistry, Northwestern University, Evanston, IL, USA. .,Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
| | - Xiaoyue Ni
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA. .,Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA. .,Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
| |
Collapse
|
45
|
Jiang S, Liu J, Xiong W, Yang Z, Yin L, Li K, Huang Y. A Snakeskin-Inspired, Soft-Hinge Kirigami Metamaterial for Self-Adaptive Conformal Electronic Armor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204091. [PMID: 35680159 DOI: 10.1002/adma.202204091] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/03/2022] [Indexed: 06/15/2023]
Abstract
A majority of soft-body creatures evolve armor or shells to protect themselves. Similar protection demand is for flexible electronics working in complex environments. Existing works mainly focus on improving the sensing capabilities such as electronic skin (E-skin). Inspired by snakeskin, a novel electronic armor (E-armor) is proposed, which not only possesses mechanical flexibility and electronic functions similar to E-skin, but is also able to protect itself and the underlying soft body from external physical damage. The geometry of the kirigami mechanical metamaterial (Kiri-MM) ensures auxetic stretchability and meanwhile large areal coverage for sufficient protection. Moreover, to suppress the inherent but undesired out-of-plane buckling of conventional Kiri-MMs for conformal applications, soft hinges are used to form a distinct soft (hinges)-rigid (tiles) configuration. Analytical, computational, and experimental studies of the mechanical behaviors of the soft-hinge Kiri-MM E-armor demonstrate the merits of this design, i.e., stretchability, conformability, and protectability, as applied to flexible electronics. Deploying a conductive soft material at the hinges enables facile wiring strategies for large-scale circuit arrays. Functional E-armor systems for controllable display and sensing purposes provide simple examples of a wide spectrum of applications of this concept.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianpeng Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wennan Xiong
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhaoxi Yang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liting Yin
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kan Li
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - YongAn Huang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
46
|
Meng Z, Liu M, Yan H, Genin GM, Chen CQ. Deployable mechanical metamaterials with multistep programmable transformation. SCIENCE ADVANCES 2022; 8:eabn5460. [PMID: 35675398 PMCID: PMC9176747 DOI: 10.1126/sciadv.abn5460] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Transformations in shape are critical to actuation in engineered metamaterials. Existing engineering metamaterials are typically limited to a small number of shape transformations that must be built-in during material synthesis. Here, inspired by the multistability and programmability of kirigami-based self-folding elements, a robust framework is introduced for the construction of sequentially programmable and reprogrammable mechanical metamaterials. The materials can be locked into multiple stable deployed configurations and then, using tunable bistability enabled by temperature-responsive constituent materials, return to their original reference configurations or undergo mode bifurcation. The framework provides a platform to design metamaterials with multiple deployable and reversible configurations in response to external stimuli.
Collapse
Affiliation(s)
- Zhiqiang Meng
- Department of Engineering Mechanics, CNMM and AML, Tsinghua University, Beijing 100084, PR China
| | - Mingchao Liu
- Mathematical Institute, University of Oxford, Woodstock Rd., Oxford OX2 6GG, UK
| | - Hujie Yan
- Department of Engineering Mechanics, CNMM and AML, Tsinghua University, Beijing 100084, PR China
| | - Guy M. Genin
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA
- NSF Science and Technology Center for Engineering Mechanobiology, St. Louis, MO 63130, USA
| | - Chang Qing Chen
- Department of Engineering Mechanics, CNMM and AML, Tsinghua University, Beijing 100084, PR China
- Corresponding author.
| |
Collapse
|
47
|
Always-on photocatalytic antibacterial facemask with mini UV-LED array. MATERIALS TODAY SUSTAINABILITY 2022; 18. [PMCID: PMC8828298 DOI: 10.1016/j.mtsust.2022.100117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The facemask is a device to protect yourself and others against pandemics, such as coronavirus disease 2019 (COVID-19), and adding a functional filter to the facemask could offer extra protection against infectious microbes (such as bacteria and viruses) to the wearer. Here, we designed and fabricated an always-on photocatalytic antibacterial facemask, which comprised a reusable polypropylene filter layer coated with the photocatalytic laminated ZnO/TiO2 bilayer and a separate UV-LEDs layer to supply UV whenever necessary. The fabricated photocatalytic filter was able to be directly inserted into the reusable facemask together with the UV-LEDs layer. This facemask could be used repeatedly and sustainably anytime and anywhere regardless of solar illumination. The photocatalytic filter exhibited an excellent photocatalytic antibacterial effect likely due to recombination suppression of electrons and holes of ZnO/TiO2 bilayer and wetting transition from hydrophilic to superhydrophilic state on the surface of the filter. Thanks to the kirigami pattern in both photocatalytic filter and UV-LEDs layer, full-face covering, breathability, flexibility, and the snug fit are believed to be improved. Although further in-depth studies are still needed and there is a long way to go, we expect our design idea on the facemask to be considered in various fields.
Collapse
|
48
|
Zheng Y, Niloy I, Celli P, Tobasco I, Plucinsky P. Continuum Field Theory for the Deformations of Planar Kirigami. PHYSICAL REVIEW LETTERS 2022; 128:208003. [PMID: 35657884 DOI: 10.1103/physrevlett.128.208003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Mechanical metamaterials exhibit exotic properties that emerge from the interactions of many nearly rigid building blocks. Determining these properties theoretically has remained an open challenge outside a few select examples. Here, for a large class of periodic and planar kirigami, we provide a coarse-graining rule linking the design of the panels and slits to the kirigami's macroscale deformations. The procedure gives a system of nonlinear partial differential equations expressing geometric compatibility of angle functions related to the motion of individual slits. Leveraging known solutions of the partial differential equations, we present an illuminating agreement between theory and experiment across kirigami designs. The results reveal a dichotomy of designs that deform with persistent versus decaying slit actuation, which we explain using the Poisson's ratio of the unit cell.
Collapse
Affiliation(s)
- Yue Zheng
- Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90014, USA
| | - Imtiar Niloy
- Civil Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Paolo Celli
- Civil Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Ian Tobasco
- Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Paul Plucinsky
- Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90014, USA
| |
Collapse
|
49
|
Brooks AK, Chakravarty S, Ali M, Yadavalli VK. Kirigami-Inspired Biodesign for Applications in Healthcare. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109550. [PMID: 35073433 DOI: 10.1002/adma.202109550] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Mechanically flexible and conformable materials and integrated devices have found diverse applications in personalized healthcare as diagnostics and therapeutics, tissue engineering and regenerative medicine constructs, surgical tools, secure systems, and assistive technologies. In order to impart optimal mechanical properties to the (bio)materials used in these applications, various strategies have been explored-from composites to structural engineering. In recent years, geometric cuts inspired by the art of paper-cutting, referred to as kirigami, have provided innovative opportunities for conferring precise mechanical properties via material removal. Kirigami-based approaches have been used for device design in areas ranging from soft bioelectronics to energy storage. In this review, the principles of kirigami-inspired engineering specifically for biomedical applications are discussed. Factors pertinent to their design, including cut geometry, materials, and fabrication, and the effect these parameters have on their properties and configurations are covered. Examples of kirigami designs in healthcare are presented, such as, various form factors of sensors (on skin, wearable), implantable devices, therapeutics, surgical procedures, and cellular scaffolds for regenerative medicine. Finally, the challenges and future scope for the successful translation of these biodesign concepts to broader deployment are discussed.
Collapse
Affiliation(s)
- Anne Katherine Brooks
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Sudesna Chakravarty
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Maryam Ali
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
50
|
Rigidly flat-foldable class of lockable origami-inspired metamaterials with topological stiff states. Nat Commun 2022; 13:1816. [PMID: 35383167 PMCID: PMC8983707 DOI: 10.1038/s41467-022-29484-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
Origami crease patterns have inspired the design of reconfigurable materials that can transform their shape and properties through folding. Unfortunately, most designs cannot provide load-bearing capacity, and those that can, do so in certain directions but collapse along the direction of deployment, limiting their use as structural materials. Here, we merge notions of kirigami and origami to introduce a rigidly foldable class of cellular metamaterials that can flat-fold and lock into several states that are stiff across multiple directions, including the deployment direction. Our metamaterials rigidly fold with one degree of freedom and can reconfigure into several flat-foldable and spatially-lockable folding paths due to face contact. Locking under compression yields topology and symmetry changes that impart multidirectional stiffness. Additionally, folding paths and mixed-mode configurations can be activated in situ to modulate their properties. Their load-bearing capacity, flat-foldability, and reprogrammability can be harnessed for deployable structures, reconfigurable robots, and low-volume packaging. While origami-inspired metamaterials can spatially fold, they usually collapse along the deployment direction limiting applicability. Here authors introduce a cellular structure that can be reprogrammed in-situ to not only deploy and rigidly flat-fold but also lock and offer rigidity across all directions.
Collapse
|