1
|
Mojumder MRH, Kim S, Yu C. Soft Artificial Synapse Electronics. RESEARCH (WASHINGTON, D.C.) 2025; 8:0582. [PMID: 39877465 PMCID: PMC11772661 DOI: 10.34133/research.0582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/07/2024] [Accepted: 12/22/2024] [Indexed: 01/31/2025]
Abstract
Soft electronics, known for their bendable, stretchable, and flexible properties, are revolutionizing fields such as biomedical sensing, consumer electronics, and robotics. A primary challenge in this domain is achieving low power consumption, often hampered by the limitations of the conventional von Neumann architecture. In response, the development of soft artificial synapses (SASs) has gained substantial attention. These synapses seek to replicate the signal transmission properties of biological synapses, offering an innovative solution to this challenge. This review explores the materials and device architectures integral to SAS fabrication, emphasizing flexibility and stability under mechanical deformation. Various architectures, including floating-gate dielectric, ferroelectric-gate dielectric, and electrolyte-gate dielectric, are analyzed for effective weight control in SASs. The utilization of organic and low-dimensional materials is highlighted, showcasing their plasticity and energy-efficient operation. Furthermore, the paper investigates the integration of functionality into SASs, particularly focusing on devices that autonomously sense external stimuli. Functionalized SASs, capable of recognizing optical, mechanical, chemical, olfactory, and auditory cues, demonstrate promising applications in computing and sensing. A detailed examination of photo-functionalized, tactile-functionalized, and chemoreception-functionalized SASs reveals their potential in image recognition, tactile sensing, and chemosensory applications, respectively. This study highlights that SASs and functionalized SAS devices hold transformative potential for bioelectronics and sensing for soft-robotics applications; however, further research is necessary to address scalability, long-time stability, and utilizing functionalized SASs for prosthetics and in vivo applications through clinical adoption. By providing a comprehensive overview, this paper contributes to the understanding of SASs, bridging research gaps and paving the way toward transformative developments in soft electronics, biomimicking and biointegrated synapse devices, and integrated systems.
Collapse
Affiliation(s)
- Md. Rayid Hasan Mojumder
- Department of Electrical Engineering,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Seongchan Kim
- Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cunjiang Yu
- Department of Electrical and Computer Engineering,
University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Materials Science and Engineering,
University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Mechanical Science and Engineering,
University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering,
University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Materials Research Laboratory,
University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology,
University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Micro and Nanotechnology Laboratory,
University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Sun H, Xue X, Robilotto GL, Zhang X, Son C, Chen X, Cao Y, Nan K, Yang Y, Fennell G, Jung J, Song Y, Li H, Lu SH, Liu Y, Li Y, Zhang W, He J, Wang X, Li Y, Mickle AD, Zhang Y. Liquid-based encapsulation for implantable bioelectronics across broad pH environments. Nat Commun 2025; 16:1019. [PMID: 39863617 PMCID: PMC11762702 DOI: 10.1038/s41467-025-55992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Wearable and implantable bioelectronics that can interface for extended periods with highly mobile organs and tissues across a broad pH range would be useful for various applications in basic biomedical research and clinical medicine. The encapsulation of these systems, however, presents a major challenge, as such devices require superior barrier performance against water and ion penetration in challenging pH environments while also maintaining flexibility and stretchability to match the physical properties of the surrounding tissue. Current encapsulation materials are often limited to near-neutral pH conditions, restricting their application range. In this work, we report a liquid-based encapsulation approach for bioelectronics under extreme pH environments. This approach achieves high optical transparency, stretchability, and mechanical durability. When applied to implantable wireless optoelectronic devices, our encapsulation method demonstrates outstanding water resistance in vitro, ranging from extremely acidic environments (pH = 1.5 and 4.5) to alkaline conditions (pH = 9). We also demonstrate the in vivo biocompatibility of our encapsulation approach and show that encapsulated wireless optoelectronics maintain robust operation throughout 3 months of implantation in freely moving mice. These results indicate that our encapsulation strategy has the potential to protect implantable bioelectronic devices in a wide range of research and clinical applications.
Collapse
Affiliation(s)
- He Sun
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Xiaoting Xue
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
| | - Gabriella L Robilotto
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32603, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xincheng Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - ChangHee Son
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32306, USA
| | - Yue Cao
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Kewang Nan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yiyuan Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Gavin Fennell
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Jaewook Jung
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Yang Song
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Huijie Li
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Shao-Hao Lu
- Department of Materials Science and Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Yizhou Liu
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Yi Li
- Department of Materials Science and Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Weiyi Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Jie He
- Department of Chemistry and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Xueju Wang
- Department of Materials Science and Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32306, USA
| | - Aaron D Mickle
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32603, USA.
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Urology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Yi Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
3
|
Belay AN, Guo R, Ahmadian Koudakan P, Pan S. Biointerface engineering of flexible and wearable electronics. Chem Commun (Camb) 2025. [PMID: 39838849 DOI: 10.1039/d4cc06078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Biointerface sensing is a cutting-edge interdisciplinary field that merges conceptual and practical aspects. Wearable bioelectronics enable efficient interaction and close contact with biological components such as tissues and organs, paving the way for a wide range of medical applications, including personal health monitoring and medical intervention. To be applicable in real-world settings, the patches must be stable and adhere to the skin without causing discomfort or allergies in both wet and dry conditions, as well as other desirable features such as being ultra-soft, thin, flexible, and stretchable. Biosensors have emerged as promising tools primarily used to directly detect biological and electrophysiological signals, enhancing the efficacy of personalized medical treatments and enabling accurate tracking of human well-being. This review highlights the engineering of skin-tissue surfaces/interfaces and their interactions with wearable patches, aiming for both a broad and in-depth understanding of the mechanical and physicochemical properties required for the advancement of flexible and wearable skin patches. Specifically, the advantages of flexible bioelectronics and sensors with optimized surface geometry for long-term diagnosis are discussed. This insight aims to guide the future development of functional materials that can interact with human tissue in a controlled manner. Finally, we provide perspectives on the challenges and potential applications of biointerface engineering in wearable devices.
Collapse
Affiliation(s)
- Alebel Nibret Belay
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Rui Guo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | | | - Shuaijun Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
4
|
Liu Z, Hua Y, Xu J, Zhao W, Long G, Yang J, Zhang Q, Zhang G, Wang C. Synthesis, Structures and Air-stable N-type Organic Field-effect Transistor (OFET) Properties of Functionalized-phenanthrene Conjugated Asymmetric N-heteroacenes. Chemistry 2025; 31:e202403373. [PMID: 39535512 DOI: 10.1002/chem.202403373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/14/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
The development of stable high-performance n-type organic semiconductors for applications in organic field-effect transistors (OFETs) under ambient conditions is desirable but challenging. To address this issue, we here synthesized a series of functionalized-phenanthrene conjugated asymmetric N-heteroacenes, where the phenanthrene moiety was modified by N substitution or Br functionalization at different positions to induce various degrees of asymmetry in their structures. The photophysical and electrochemical properties of these molecules were studied, and their packing patterns were analysed. The OFETs based on these materials were fabricated through simple spin-coating method, and the as-resulted thin films were treated with different conditions. The devices exhibit typical n-type performances under ambient conditions with charge carrier mobilities up to 4.27×10-3 cm2 V-1 s-1. The crystallinities and morphologies of these thin films were studied to investigate the correlations between the device performances and thin-film characteristics. Our study suggests that phenanthrene conjugated N-heteroacenes can be developed as promising air-stable solution-processable n-type semiconducting materials, and Br modification at certain positions of phenanthrene is beneficial in adjusting the thin-film properties for the improvement of OFET performances.
Collapse
Affiliation(s)
- Zepeng Liu
- School of Chemistry and Chemical Engineering, Anhui University, 111 Jiulong Road, Hefei, Anhui, China
| | - Yu Hua
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei, China
| | - Jiqiang Xu
- School of Chemistry and Chemical Engineering, Anhui University, 111 Jiulong Road, Hefei, Anhui, China
| | - Wenkai Zhao
- School of Materials Science and Engineering, Smart Sensing, Interdisciplinary Science Center, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion andStorage Center (RECAST), National Institute for Advanced Materi-als, Nankai University, 300350, Tianjin, China
| | - Guankui Long
- School of Materials Science and Engineering, Smart Sensing, Interdisciplinary Science Center, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion andStorage Center (RECAST), National Institute for Advanced Materi-als, Nankai University, 300350, Tianjin, China
| | - Jiaxiang Yang
- School of Chemistry and Chemical Engineering, Anhui University, 111 Jiulong Road, Hefei, Anhui, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Guobing Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei, China
| | - Chengyuan Wang
- School of Chemistry and Chemical Engineering, Anhui University, 111 Jiulong Road, Hefei, Anhui, China
| |
Collapse
|
5
|
Truong TA, Huang X, Barton M, Ashok A, Al Abed A, Almasri R, Shivdasanic MN, Reshamwala R, Ingles J, Thai MT, Nguyen CC, Zhao S, Zhang X, Gu Z, Vasanth A, Peng S, Nguyen TK, Do N, Nguyen NT, Zhao H, Phan HP. Flexible Electrode Arrays Based on a Wide Bandgap Semiconductors for Chronic Implantable Multiplexed Sensing and Heart Pacemakers. ACS NANO 2025; 19:1642-1659. [PMID: 39752298 DOI: 10.1021/acsnano.4c15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals. This study introduces a multielectrode array featuring a wide bandgap (WBG) material as electrodes, demonstrating its suitability for chronic implantable applications. Our devices exhibit excellent flexibility and longevity, taking advantage of the low bending stiffness and chemical inertness in WBG nanomembranes and multimodalities for physical health monitoring, including temperature, strain, and impedance sensing. Our top-down manufacturing process enables the formation of distributed electrode arrays that can be seamlessly integrated onto the curvilinear surfaces of skins. As proof of concept for chronic cardiac pacing applications, we demonstrate the effective pacing functionality of our devices on rabbit hearts through a set of ex vivo experiments. The engineering approach proposed in this study overcomes the drawbacks of prior WBG material fabrication techniques, resulting in an implantable system with high bendability, effective pacing, and high-performance sensing.
Collapse
Affiliation(s)
- Thanh An Truong
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xinghao Huang
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Matthew Barton
- School of Nursing & Midwifery, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Aditya Ashok
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Amr Al Abed
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Reem Almasri
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mohit N Shivdasanic
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ronak Reshamwala
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Joshua Ingles
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Mai Thanh Thai
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- College of Engineering and Computer Science and VinUni-Illinois Smart Health Center, Vin University, Hanoi 100000, Vietnam
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Sinuo Zhao
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xiuwen Zhang
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine (ACN), University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Arya Vasanth
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Nho Do
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Hangbo Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
6
|
Xiang Z, Yang L, Yu B, Zeng Q, Huang T, Shi S, Yu H, Zhang Y, Wu J, Zhu M. Recent advances in polymer-based thin-film electrodes for ECoG applications. J Mater Chem B 2025; 13:454-471. [PMID: 39588722 DOI: 10.1039/d4tb02090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Electrocorticography (ECoG) has garnered widespread attention owing to its superior signal resolution compared to conventional electroencephalogram (EEG). While ECoG signal acquisition entails invasiveness, the invasive rigid electrode used inevitably inflicts damage on brain tissue. Polymer electrodes that combine conductivity and transparency have garnered great interest because they not only facilitate high-quality signal acquisition but also provide additional insights while preserving the health of the brain, positioning them as the future frontier in the brain-computer interface (BCI). This review summarizes the multifaceted functions of polymers in ECoG thin-film electrodes for the BCI. We present the abilities of sensitive and structural polymers focusing on impedance reduction, signal quality improvement, good flexibility, and transparency. Typically, two sensitive polymers and four structural polymers are analyzed in detail in terms of ECoG electrode properties. Moreover, the underlying mechanism of polymer-based electrodes in signal quality enhancement is revealed. Finally, the remaining challenges and perspectives are discussed.
Collapse
Affiliation(s)
- Zhengchen Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Liangtao Yang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Bin Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Qi Zeng
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Tao Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Shuo Shi
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong S.A.R, China
| | - Hao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yi Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Yang H, Zhu Z, Ni S, Wang X, Nie Y, Tao C, Zou D, Jiang W, Zhao Y, Zhou Z, Sun L, Li M, Tao TH, Liu K, Wei X. Silk fibroin-based bioelectronic devices for high-sensitivity, stable, and prolonged in vivo recording. Biosens Bioelectron 2025; 267:116853. [PMID: 39432989 DOI: 10.1016/j.bios.2024.116853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
Silk fibroin, recognized for its biocompatibility and modifiable properties, has significant potential in bioelectronics. Traditional silk bioelectronic devices, however, face rapid functional losses in aqueous or in vivo environments due to high water absorption of silk fibroin, which leads to expansion, structural damage, and conductive failure. In this study, we developed a novel approach by creating oriented crystallization (OC) silk fibroin through physical modification of the silk protein. This advancement enabled the fabrication of electronic interfaces for chronic biopotential recording. A pre-stretching treatment of the silk membrane allowed for tunable molecular orientation and crystallization, markedly enhancing its aqueous stability, biocompatibility, and electronic shielding capabilities. The OC devices demonstrated robust performance in sensitive detection and motion tracking of cutaneous electrical signals, long-term (over seven days) electromyographic signal acquisition in live mice with high signal-to-noise ratio (SNR >20), and accurate detection of high-frequency oscillations (HFO) in epileptic models (200-500 Hz). This work not only improves the structural and functional integrity of silk fibroin but also extends its application in durable bioelectronics and interfaces suited for long-term physiological environments.
Collapse
Affiliation(s)
- Huiran Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ziyi Zhu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Ni
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueying Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Nie
- Shanghai Laboratory Animal Research Center, Shanghai, 201203, China
| | - Chen Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Dujuan Zou
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China; 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Wanqi Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zhao
- Shanghai Laboratory Animal Research Center, Shanghai, 201203, China
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liuyang Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China; 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Meng Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Physical Science and Technology, Shanghai Tech University, Shanghai, China; 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; Neuroxess Co., Ltd. (Jiangxi), Nanchang, Jiangxi, 330029, China; Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China; Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, 200020, China.
| | - Keyin Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoling Wei
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Rodríguez-Meana B, del Valle J, Navarro X. A Combinatory Therapy of Metformin and Dexamethasone Reduces the Foreign Body Reaction to Intraneural Electrodes. Cells 2024; 13:2112. [PMID: 39768202 PMCID: PMC11726768 DOI: 10.3390/cells13242112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Neural electrodes used for bidirectional communication between the nervous system and external devices like prosthetic limbs have advanced in neuroprosthetic applications. However, their effectiveness is hindered by the foreign body reaction, a natural immune response causing inflammation and fibrosis around the implanted device. This process involves protein adsorption, immune cell recruitment, cytokine release, and fibroblast activation, leading to a fibrous capsule formation and a decrease in electrode functionality. Anti-inflammatory and antifibrotic strategies have the potential to diminish the impact of the foreign body response. In this work, we have evaluated long-term metformin administration and short-term dexamethasone administration as a combined therapy to modulate the foreign body reaction induced by a polyimide intraneural implant in the sciatic nerve of rats. After a 12-week implant, the foreign body reaction was significantly reduced only in the group administered both drugs.
Collapse
Affiliation(s)
- Bruno Rodríguez-Meana
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jaume del Valle
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - Xavier Navarro
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
9
|
Wang X, Xu M, Yang H, Jiang W, Jiang J, Zou D, Zhu Z, Tao C, Ni S, Zhou Z, Sun L, Li M, Nie Y, Zhao Y, He F, Tao TH, Wei X. Ultraflexible Neural Electrodes Enabled Synchronized Long-Term Dopamine Detection and Wideband Chronic Recording Deep in Brain. ACS NANO 2024; 18:34272-34287. [PMID: 39628388 DOI: 10.1021/acsnano.4c12429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Ultraflexible neural electrodes have shown superior stability compared with rigid electrodes in long-term in vivo recordings, owing to their low mechanical mismatch with brain tissue. It is desirable to detect neurotransmitters as well as electrophysiological signals for months in brain science. This work proposes a stable electronic interface that can simultaneously detect neural electrical activity and dopamine concentration deep in the brain. This ultraflexible electrode is modified by a nanocomposite of reduced graphene oxide (rGO) and poly(3,4-ethylenedioxythiophene):poly(sodium 4-styrenesulfonate) (rGO/PEDOT:PSS), enhancing the electrical stability of the coating and increasing its specific surface area, thereby improving the sensitivity to dopamine response with 15 pA/μM. This electrode can detect dopamine fluctuations and can conduct long-term, stable recordings of local field potentials (LFPs), spiking activities, and amplitudes with high spatial and temporal resolution across multiple regions, especially in deep brain areas. The electrodes were implanted into the brains of rodent models to monitor the changes in neural and electrochemical signals across different brain regions during the administration of nomifensine. Ten minutes after drug injection, enhanced neuronal firing activity and increased LFP power were detected in the motor cortex and deeper cortical layers, accompanied by a gradual rise in dopamine levels with 192 ± 29 nM. The in vivo recording consistently demonstrates chronic high-quality neural signal monitoring with electrochemical signal stability for up to 6 weeks. These findings highlight the high quality and stability of our electrophysiological/electrochemical codetection neural electrodes, underscoring their tremendous potential for applications in neuroscience research and brain-machine interfaces.
Collapse
Affiliation(s)
- Xueying Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Xu
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Huiran Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanqi Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dujuan Zou
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Ziyi Zhu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Siyuan Ni
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuyang Sun
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Meng Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Nie
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Ying Zhao
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Fei He
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Neuroxess Co., Ltd. (Jiangxi), Nanchang, Jiangxi 330029, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China
- Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai 200031, China
| | - Xiaoling Wei
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Liu J, Li Z, Sun M, Zhou L, Wu X, Lu Y, Shao Y, Liu C, Huang N, Hu B, Wu Z, You C, Li L, Wang M, Tao L, Di Z, Sheng X, Mei Y, Song E. Flexible bioelectronic systems with large-scale temperature sensor arrays for monitoring and treatments of localized wound inflammation. Proc Natl Acad Sci U S A 2024; 121:e2412423121. [PMID: 39589888 PMCID: PMC11626133 DOI: 10.1073/pnas.2412423121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Continuous monitoring and closed-loop therapy of soft wound tissues is of particular interest in biomedical research and clinical practices. An important focus is on the development of implantable bioelectronics that can measure time-dependent temperature distribution related to localized inflammation over large areas of wound and offer in situ treatment. Existing approaches such as thermometers/thermocouples provide limited spatial resolution, inapplicable to a wearable/implantable format. Here, we report a conformal, scalable device package that integrates a flexible amorphous silicon-based temperature sensor array and drug-loaded hydrogel for the healing process. This system can enable the spatial temperature mapping at submillimeter resolution and high sensitivity of 0.1 °C, for dynamically localizing the inflammation regions associated with temperature change, automatically followed with heat-triggered drug delivery from hydrogel triggered by wearable infrared light-emitting-diodes. We establish the operational principles experimentally and computationally and evaluate system functionalities with a wide range of targets including live animal models and human subjects. As an example of medical utility, this system can yield closed-loop monitoring/treatments by tracking of temperature distribution over wound areas of live rats, in designs that can be integrated with automated wireless control. These findings create broad utilities of these platforms for clinical diagnosis and advanced therapy for wound healthcare.
Collapse
Affiliation(s)
- Junhan Liu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Zhongzheng Li
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Mubai Sun
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun130033, China
| | - Lianjie Zhou
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Xiaojun Wu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
| | - Yifei Lu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Yuting Shao
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai200065, China
| | - Chang Liu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Ningge Huang
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Bofan Hu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Zhongyuan Wu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Chunyu You
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Lizhu Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Ming Wang
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai200438, China
| | - Ling Tao
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai200030, China
| | - Zengfeng Di
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing100084, China
- Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Yongfeng Mei
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Enming Song
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| |
Collapse
|
11
|
Wu Y, Liu Y, Li Y, Wei Z, Xing S, Wang Y, Zhu D, Guo Z, Zhang A, Yuan G, Zhang Z, Huang K, Wang Y, Wu G, Cheng K, Bai W. Symmetry engineering in 2D bioelectronics facilitating augmented biosensing interfaces. Proc Natl Acad Sci U S A 2024; 121:e2412684121. [PMID: 39556733 PMCID: PMC11621509 DOI: 10.1073/pnas.2412684121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/07/2024] [Indexed: 11/20/2024] Open
Abstract
Symmetry lies at the heart of two-dimensional (2D) bioelectronics, determining material properties at the fundamental level. Breaking the symmetry allows emergent functionalities and effects. However, symmetry modulation in 2D bioelectronics and the resultant applications have been largely overlooked. Here, we devise an oxidized architectural MXene, referred to as oxidized MXene (OXene), that couples orbit symmetric breaking with inverse symmetric breaking to entitle the optimized interfacial impedance and Schottky-induced piezoelectric effects. The resulting OXene validates applications ranging from microelectrode arrays, gait analysis, active transistor matrix, and wireless signaling transmission, which enables high-fidelity signal transmission and reconfigurable logic gates. Furthermore, OXene interfaces were investigated in both rodent and porcine myocardium, featuring high-quality and spatiotemporally resolved physiological recordings, while accurate differentiated predictions, enabled via various machine learning pipelines.
Collapse
Affiliation(s)
- Yizhang Wu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC27599
| | - Yihan Liu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC27599
| | - Yuan Li
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC27695
| | - Ziquan Wei
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Sicheng Xing
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC27599
| | - Yunlang Wang
- Department of Physics, Nanjing University, Nanjing, Jiangsu210000, China
| | - Dashuai Zhu
- Department of Biomedical Engineering, Columbia University, New York, NY10027
| | - Ziheng Guo
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC27599
| | - Anran Zhang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC27599
| | - Gongkai Yuan
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC27599
| | - Zhibo Zhang
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI48824
| | - Ke Huang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC27607
| | - Yong Wang
- Department of Physics, Nanjing University, Nanjing, Jiangsu210000, China
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, Department of Advanced Interdisciplinary Research, Xidian University, Xi’an710071, China
| | - Guorong Wu
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, NY10027
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC27599
| |
Collapse
|
12
|
Qiu Y, Ye H, Zhang S, Zhang H, Zheng Y. Hydrogel-Based Network Metamaterials with Biological Tissue-like Poisson's Ratio Behavior and Stress Response. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62371-62381. [PMID: 39473237 DOI: 10.1021/acsami.4c12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Soft network metamaterials are widely used in fields such as flexible electronics, tissue engineering, and biomedicine due to their superior properties including low density, high stretchability, and high breathability. However, the prediction and customization of the nonlinear mechanical behavior of soft network metamaterials remain a challenging problem. In this study, a family of hydrogel-based network metamaterials with biological tissue-like mechanical properties are developed based on a machine learning-driven optimization design method. Numerical and experimental results explain the relationship between the mechanical properties of the designed metamaterials and their microstructural features and stretching ratios. The results indicate that the hydrogel-based network metamaterials exhibit J-shaped stress-deformation (σ-λ) behavior similar to biological tissues. This phenomenon arises from the transition of the deformation mode of metamaterials from bending-dominated to stretching-dominated as the stretching ratio increases. Based on the proposed design scheme, the Poisson's ratio of metamaterials can be adjusted within a remarkably wide range of -1.06 to 1.34. Furthermore, through optimizing the design parameters of the metamaterial, the customization of network metamaterials with biological tissue-like zero Poisson's ratio behavior and stress response is achieved. The potential applications of hydrogel-based network metamaterials are demonstrated through artificial skin and LED integrated device. This research offers novel insights into predicting, designing, and fabricating the mechanical behavior of soft network metamaterials.
Collapse
Affiliation(s)
- Yisong Qiu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Hongfei Ye
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Shuaiqi Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Hongwu Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yonggang Zheng
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
13
|
Yang S, Yang S, Li P, Gou S, Cheng Y, Jia Q, Du Z. Advanced neuroprosthetic electrode design optimized by electromagnetic finite element simulation: innovations and applications. Front Bioeng Biotechnol 2024; 12:1476447. [PMID: 39574462 PMCID: PMC11579925 DOI: 10.3389/fbioe.2024.1476447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Based on electrophysiological activity, neuroprostheses can effectively monitor and control neural activity. Currently, electrophysiological neuroprostheses are widely utilized in treating neurological disorders, particularly in restoring motor, visual, auditory, and somatosensory functions after nervous system injuries. They also help alleviate inflammation, regulate blood pressure, provide analgesia, and treat conditions such as epilepsy and Alzheimer's disease, offering significant research, economic, and social value. Enhancing the targeting capabilities of neuroprostheses remains a key objective for researchers. Modeling and simulation techniques facilitate the theoretical analysis of interactions between neuroprostheses and the nervous system, allowing for quantitative assessments of targeting efficiency. Throughout the development of neuroprostheses, these modeling and simulation methods can save time, materials, and labor costs, thereby accelerating the rapid development of highly targeted neuroprostheses. This article introduces the fundamental principles of neuroprosthesis simulation technology and reviews how various simulation techniques assist in the design and performance enhancement of neuroprostheses. Finally, it discusses the limitations of modeling and simulation and outlines future directions for utilizing these approaches to guide neuroprosthesis design.
Collapse
Affiliation(s)
- Shu Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siyi Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peixuan Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuchun Gou
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuhang Cheng
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinggang Jia
- Institute of Applied Physics and Computational Mathematics, Beijing, China
| | - Zhanhong Du
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Hu Z, Liang Y, Fan S, Niu Q, Geng J, Huang Q, Hsiao BS, Chen H, Yao X, Zhang Y. Flexible Neural Interface From Non-Transient Silk Fibroin With Outstanding Conformality, Biocompatibility, and Bioelectric Conductivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410007. [PMID: 39308235 DOI: 10.1002/adma.202410007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Indexed: 11/16/2024]
Abstract
Silk fibroin (SF) with good biocompatibility can enable an efficient and safe implementation of neural interfaces. However, it has been difficult to achieve a robust integration of patterned conducting materials (multichannel electrodes) on flexible SF film substrates due to the absence of some enduring interactions. In this study, a thermo-assisted pattern-transfer technique is demonstrated that can facilely transfer a layer of pre-set poly(3,4-ethylenedioxythiophene) (PEDOT) onto the flexible SF substrate through an interpenetrating network of 2 polymer chains, achieving a desired substrate/conductor intertwined interface with good flexibility (≈33 MPa), conductivity (386 S cm-1) and stability in liquid state over 4 months simultaneously. Importantly, this technique can be combined with ink-jet printing to prepare a multichannel SF-based neural interface for the electrocorticogram (ECoG) recording and inflammation remission in rat models. The SF-based neural interface with satisfied tissue conformability, biocompatibility, and bioelectric conductivity is a promising ECoG acquisition tool, where the demonstrated approach can also be useful to develop other SF-based flexible bioelectronics.
Collapse
Affiliation(s)
- Zhanao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuqing Liang
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qianqian Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jingjing Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qimei Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA
| | - Hao Chen
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
15
|
Liu J, Lv S, Mu Y, Tong J, Liu L, He T, Zeng Q, Wei D. Applied research and recent advances in the development of flexible sensing hydrogels from cellulose: A review. Int J Biol Macromol 2024; 281:136100. [PMID: 39448288 DOI: 10.1016/j.ijbiomac.2024.136100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Flexible wearable smart sensing materials have gained immense momentum, and biomass-based hydrogel sensors for renewable and biologically safe wearable sensors have attracted significant attention in order to meet the growing demand for sustainability and ecological friendliness. Cellulose has been widely used in the field of biomass-based hydrogel sensing materials, being the most abundant biomass material in nature. This review mainly focuses on the types of cellulose hydrogels, the preparation methods and their applications in smart flexible sensing materials. The structure-functional properties-application relationship of cellulose hydrogels and the applications of various cellulose hydrogels in flexible sensing are described in detail. Then it focuses on the methods and mechanisms of cellulose hydrogel flexible sensors preparation, and then summarizes the research of cellulose hydrogel sensors for different types of stimulus response mechanisms to pressure, pH, biomolecules, ions, temperature, humidity, and light. The applications of cellulose hydrogels as flexible sensing materials in biomedical sensing, smart wearable and environmental monitoring are further summarized. Finally, the future development trend of cellulose hydrogels is briefly introduced and the future development of cellulose hydrogel sensing materials is envisioned.
Collapse
Affiliation(s)
- Jinru Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yanlu Mu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiahao Tong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Leipeng Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tingxiang He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiao Zeng
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Dequan Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
16
|
Li W, Li Y, Song Z, Wang YX, Hu W. PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem Soc Rev 2024; 53:10575-10603. [PMID: 39254255 DOI: 10.1039/d4cs00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The rapid development of wearable and implantable electronics has enabled the real-time transmission of electrophysiological signals in situ, thus allowing the precise monitoring and regulation of biological functions. Devices based on organic materials tend to have low moduli and intrinsic stretchability, making them ideal choices for the construction of seamless bioelectronic interfaces. In this case, as an organic ionic-electronic conductor, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has low impedance to offer a high signal-to-noise ratio for monitoring bioelectrical signals, which has become one of the most promising conductive polymers. However, the initial conductivity and stretchability of pristine PEDOT:PSS are insufficient to meet the application requirements, and there is a trade-off between their improvement. In addition, PEDOT:PSS has poor stability in aqueous environments due to the hygroscopicity of the PSS chains, which severely limits its long-term applications in water-rich bioelectronic interfaces. Considering the growing demands of multi-function integration, the high-resolution fabrication of electronic devices is urgent. It is a great challenge to maintain both electrical and mechanical performance after miniaturization, particularly at feature sizes below 100 μm. In this review, we focus on the combined improvement in the conductivity and stretchability of PEDOT:PSS, as well as the corresponding mechanisms in detail. Also, we summarize the effective strategies to improve the stability of PEDOT:PSS in aqueous environments, which plays a vital role in long-term applications. Finally, we introduce the reliable micropatterning technologies and PEDOT:PSS-based stretchable optoelectronic devices applied at bio-interfaces.
Collapse
Affiliation(s)
- Weizhen Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yiming Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Ziyu Song
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yi-Xuan Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
17
|
Habibollahi M, Jiang D, Lancashire HT, Demosthenous A. Active Neural Interface Circuits and Systems for Selective Control of Peripheral Nerves: A Review. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:954-975. [PMID: 39018210 DOI: 10.1109/tbcas.2024.3430038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Interfaces with peripheral nerves have been widely developed to enable bioelectronic control of neural activity. Peripheral nerve neuromodulation shows great potential in addressing motor dysfunctions, neurological disorders, and psychiatric conditions. The integration of high-density neural electrodes with stimulation and recording circuits poses a challenge in the design of neural interfaces. Recent advances in active electrode strategies have achieved improved reliability and performance by implementing in-situ control, stimulation, and recording of neural fibers. This paper presents an overview of state-of-the-art neural interface systems that comprise a range of neural electrodes, neurostimulators, and bio-amplifier circuits, with a special focus on interfaces for the peripheral nerves. A discussion on the efficacy of active electrode systems and recommendations for future directions conclude this paper.
Collapse
|
18
|
Wang S, Jiang Q, Liu H, Yu C, Li P, Pan G, Xu K, Xiao R, Hao Y, Wang C, Song J. Mechanically adaptive and deployable intracortical probes enable long-term neural electrophysiological recordings. Proc Natl Acad Sci U S A 2024; 121:e2403380121. [PMID: 39331412 PMCID: PMC11459173 DOI: 10.1073/pnas.2403380121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Flexible intracortical probes offer important opportunities for stable neural interfaces by reducing chronic immune responses, but their advances usually come with challenges of difficult implantation and limited recording span. Here, we reported a mechanically adaptive and deployable intracortical probe, which features a foldable fishbone-like structural design with branching electrodes on a temperature-responsive shape memory polymer (SMP) substrate. Leveraging the temperature-triggered soft-rigid phase transition and shape memory characteristic of SMP, this probe design enables direct insertion into brain tissue with minimal footprint in a folded configuration while automatically softening to reduce mechanical mismatches with brain tissue and deploying electrodes to a broader recording span under physiological conditions. Experimental and numerical studies on the material softening and structural folding-deploying behaviors provide insights into the design, fabrication, and operation of the intracortical probes. The chronically implanted neural probe in the rat cortex demonstrates that the proposed neural probe can reliably detect and track individual units for months with stable impedance and signal amplitude during long-term implantation. The work provides a tool for stable neural activity recording and creates engineering opportunities in basic neuroscience and clinical applications.
Collapse
Affiliation(s)
- Suhao Wang
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, China
- Nanhu Brain-Computer Interface Institute, Hangzhou311100, China
- State Key Laboratory of Brain Machine Intelligence, Zhejiang University, Hangzhou310027, China
| | - Qianqian Jiang
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Hang Liu
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Chaonan Yu
- Nanhu Brain-Computer Interface Institute, Hangzhou311100, China
| | - Pengxian Li
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Gang Pan
- State Key Laboratory of Brain Machine Intelligence, Zhejiang University, Hangzhou310027, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou310027, China
| | - Kedi Xu
- Nanhu Brain-Computer Interface Institute, Hangzhou311100, China
- State Key Laboratory of Brain Machine Intelligence, Zhejiang University, Hangzhou310027, China
- Department of Biomedical Engineering, Qiushi Academy for Advanced Studies, Key Laboratory of Biomedical Engineering of Education Ministry, and Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou310027, China
| | - Rui Xiao
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Yaoyao Hao
- Nanhu Brain-Computer Interface Institute, Hangzhou311100, China
- State Key Laboratory of Brain Machine Intelligence, Zhejiang University, Hangzhou310027, China
- Department of Biomedical Engineering, Qiushi Academy for Advanced Studies, Key Laboratory of Biomedical Engineering of Education Ministry, and Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou310027, China
| | | | - Jizhou Song
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, China
- Nanhu Brain-Computer Interface Institute, Hangzhou311100, China
- State Key Laboratory of Brain Machine Intelligence, Zhejiang University, Hangzhou310027, China
- Huanjiang Lab, Zhuji311800, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, China
| |
Collapse
|
19
|
Mirzajani H, Kraft M. Soft Bioelectronics for Heart Monitoring. ACS Sens 2024; 9:4328-4363. [PMID: 39239948 DOI: 10.1021/acssensors.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Cardiovascular diseases (CVDs) are a predominant global health concern, accounting for over 17.9 million deaths in 2019, representing approximately 32% of all global fatalities. In North America and Europe, over a million adults undergo cardiac surgeries annually. Despite the benefits, such surgeries pose risks and require precise postsurgery monitoring. However, during the postdischarge period, where monitoring infrastructures are limited, continuous monitoring of vital signals is hindered. In this area, the introduction of implantable electronics is altering medical practices by enabling real-time and out-of-hospital monitoring of physiological signals and biological information postsurgery. The multimodal implantable bioelectronic platforms have the capability of continuous heart sensing and stimulation, in both postsurgery and out-of-hospital settings. Furthermore, with the emergence of machine learning algorithms into healthcare devices, next-generation implantables will benefit artificial intelligence (AI) and connectivity with skin-interfaced electronics to provide more precise and user-specific results. This Review outlines recent advancements in implantable bioelectronics and their utilization in cardiovascular health monitoring, highlighting their transformative deployment in sensing and stimulation to the heart toward reaching truly personalized healthcare platforms compatible with the Sustainable Development Goal 3.4 of the WHO 2030 observatory roadmap. This Review also discusses the challenges and future prospects of these devices.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450 Turkey
| | - Michael Kraft
- Department of Electrical Engineering (ESAT-MNS), KU Leuven, 3000 Leuven, Belgium
- Leuven Institute for Micro- and Nanoscale Integration (LIMNI), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
20
|
Aerathupalathu Janardhanan J, Yu HH. Recent advances in PEDOT/PProDOT-derived nano biosensors: engineering nano assemblies for fostering advanced detection platforms for biomolecule detection. NANOSCALE 2024; 16:17202-17229. [PMID: 39229680 DOI: 10.1039/d4nr01449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the recent unprecedented emergence of a global pandemic, unknown diseases and new metabolic patterns expressing serious health issues, the requirement to develop new diagnostic tools, therapeutic solutions, and healthcare and environmental monitoring systems are significantly higher in the present situation. Considering that high sensitivity, selectivity, stability and a low limit of detection (LOD) are inevitable requirements for an ideal biosensor, the class of conducting polymers of poly(3,4-ethylenedioxythiophene) (PEDOT) and recently poly(3,4-propylenedioxythiophene) (PProDOT) materials have been demonstrated to be promising candidates for designing sensor devices. Nanostructure engineering of these polymeric materials with tunable surface properties and side chain functionalization to enable sensor probe conjugation combined with signal amplification devices such as OECTs and OFETs can fulfil the requirements of next-generation smart nano-biosensors. In this review, we analyze recent reports on PEDOT/PProDOT nanostructures and nanocomposites for developing nano-biosensors and their application in the detection of different biomarkers, environmental, toxicology, marine and aquatic monitoring, forensic and illicit drug detection, etc. In addition, we discuss the challenges associated with the design of PEDOT/PProDOT nano-biosensors and future perspectives on the exploration of novel sensor platforms, particularly PProDOT derivatives for bioelectronics and novel design strategies for next-generation smart nano-biosensors.
Collapse
Affiliation(s)
| | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory (SOML), Institute of Chemistry, Academia Sinica No. 128, Sec. 2, Nankang District, Taipei City 115201, Taiwan.
| |
Collapse
|
21
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
22
|
Chang H, Sun Y, Lu S, Lin D. A multistrategy differential evolution algorithm combined with Latin hypercube sampling applied to a brain-computer interface to improve the effect of node displacement. Sci Rep 2024; 14:20420. [PMID: 39227389 PMCID: PMC11372178 DOI: 10.1038/s41598-024-69222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Injection molding is a common plastic processing technique that allows melted plastic to be injected into a mold through pressure to form differently shaped plastic parts. In injection molding, in-mold electronics (IME) can include various circuit components, such as sensors, amplifiers, and filters. These components can be injected into the mold to form a whole within the melted plastic and can therefore be very easily integrated into the molded part. The brain-computer interface (BCI) is a direct connection pathway between a human or animal brain and an external device. Through BCIs, individuals can use their own brain signals to control these components, enabling more natural and intuitive interactions. In addition, brain-computer interfaces can also be used to assist in medical treatments, such as controlling prosthetic limbs or helping paralyzed patients regain mobility. Brain-computer interfaces can be realized in two ways: invasively and noninvasively, and in this paper, we adopt a noninvasive approach. First, a helmet model is designed according to head shape, and second, a printed circuit film is made to receive EEG signals and an IME injection mold for the helmet plastic parts. In the electronic film, conductive ink is printed to connect each component. However, improper parameterization during the injection molding process can lead to node displacements and residual stress changes in the molded part, which can damage the circuits in the electronic film and affect its performance. Therefore, in this paper, the use of the BCI molding process to ensure that the node displacement reaches the optimal value is studied. Second, the multistrategy differential evolutionary algorithm is used to optimize the injection molding parameters in the process of brain-computer interface formation. The relationship between the injection molding parameters and the actual target value is investigated through Latin hypercubic sampling, and the optimized parameters are compared with the target parameters to obtain the optimal parameter combination. Under the optimal parameters, the node displacement can be optimized from 0.585 to 0.027 mm, and the optimization rate can reach 95.38%. Ultimately, by detecting whether the voltage difference between the output inputs is within the permissible range, the reliability of the brain-computer interface after node displacement optimization can be evaluated.
Collapse
Affiliation(s)
- Hanjui Chang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou, 515063, China.
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, 515063, China.
| | - Yue Sun
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, 515063, China
| | - Shuzhou Lu
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, 515063, China
| | - Daiyao Lin
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, 515063, China
| |
Collapse
|
23
|
Oh JY, Lee Y, Lee TW. Skin-Mountable Functional Electronic Materials for Bio-Integrated Devices. Adv Healthc Mater 2024; 13:e2303797. [PMID: 38368254 DOI: 10.1002/adhm.202303797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Skin-mountable electronic materials are being intensively evaluated for use in bio-integrated devices that can mutually interact with the human body. Over the past decade, functional electronic materials inspired by the skin are developed with new functionalities to address the limitations of traditional electronic materials for bio-integrated devices. Herein, the recent progress in skin-mountable functional electronic materials for skin-like electronics is introduced with a focus on five perspectives that entail essential functionalities: stretchability, self-healing ability, biocompatibility, breathability, and biodegradability. All functionalities are advanced with each strategy through rational material designs. The skin-mountable functional materials enable the fabrication of bio-integrated electronic devices, which can lead to new paradigms of electronics combining with the human body.
Collapse
Affiliation(s)
- Jin Young Oh
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Yeongjun Lee
- Department of Brain and Cognitive Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Molecular Foundry, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
24
|
Wang L, Liu S, Zhao W, Li J, Zeng H, Kang S, Sheng X, Wang L, Fan Y, Yin L. Recent Advances in Implantable Neural Interfaces for Multimodal Electrical Neuromodulation. Adv Healthc Mater 2024; 13:e2303316. [PMID: 38323711 DOI: 10.1002/adhm.202303316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/29/2024] [Indexed: 02/08/2024]
Abstract
Electrical neuromodulation plays a pivotal role in enhancing patient outcomes among individuals suffering from neurological disorders. Implantable neural interfaces are vital components of the electrical neuromodulation system to ensure desirable performance; However, conventional devices are limited to a single function and are constructed with bulky and rigid materials, which often leads to mechanical incompatibility with soft tissue and an inability to adapt to the dynamic and complex 3D structures of biological systems. In addition, current implantable neural interfaces utilized in clinical settings primarily rely on wire-based techniques, which are associated with complications such as increased risk of infection, limited positioning options, and movement restrictions. Here, the state-of-art applications of electrical neuromodulation are presented. Material schemes and device structures that can be employed to develop robust and multifunctional neural interfaces, including flexibility, stretchability, biodegradability, self-healing, self-rolling, or morphing are discussed. Furthermore, multimodal wireless neuromodulation techniques, including optoelectronics, mechano-electrics, magnetoelectrics, inductive coupling, and electrochemically based self-powered devices are reviewed. In the end, future perspectives are given.
Collapse
Affiliation(s)
- Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shengnan Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Wentai Zhao
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Jiakun Li
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Haoxuan Zeng
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shaoyang Kang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
25
|
Ma J, Majmudar A, Tian B. Bridging the Gap-Thermofluidic Designs for Precision Bioelectronics. Adv Healthc Mater 2024; 13:e2302431. [PMID: 37975642 DOI: 10.1002/adhm.202302431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/22/2023] [Indexed: 11/19/2023]
Abstract
Bioelectronics, the merging of biology and electronics, can monitor and modulate biological behaviors across length and time scales with unprecedented capability. Current bioelectronics research largely focuses on devices' mechanical properties and electronic designs. However, the thermofluidic control is often overlooked, which is noteworthy given the discipline's importance in almost all bioelectronics processes. It is believed that integrating thermofluidic designs into bioelectronics is essential to align device precision with the complexity of biofluids and biological structures. This perspective serves as a mini roadmap for researchers in both fields to introduce key principles, applications, and challenges in both bioelectronics and thermofluids domains. Important interdisciplinary opportunities for the development of future healthcare devices and precise bioelectronics will also be discussed.
Collapse
Affiliation(s)
- Jingcheng Ma
- The James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Aman Majmudar
- The College, University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
26
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
Hu R, Yao B, Geng Y, Zhou S, Li M, Zhong W, Sun F, Zhao H, Wang J, Ge J, Wei R, Liu T, Jin J, Xu J, Fu J. High-Fidelity Bioelectrodes with Bidirectional Ion-Electron Transduction Capability by Integrating Multiple Charge-Transfer Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403111. [PMID: 38934213 DOI: 10.1002/adma.202403111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Bioelectronics is an exciting field that bridges the gap between physiological activities and external electronic devices, striving for high resolution, high conformability, scalability, and ease of integration. One crucial component in bioelectronics is bioelectrodes, designed to convert neural activity into electronic signals or vice versa. Previously reported bioelectrodes have struggled to meet several essential requirements simultaneously: high-fidelity signal transduction, high charge injection capability, strain resistance, and multifunctionality. This work introduces a novel strategy for fabricating superior bioelectrodes by merging multiple charge-transfer processes. The resulting bioelectrodes offer accurate ion-to-electron transduction for capturing electrophysiological signals, dependable charge injection capability for neuromodulation, consistent electrode potential for artifact rejection and biomolecule sensing, and high transparency for seamless integration with optoelectronics. Furthermore, the bioelectrode can be designed to be strain-insensitive by isolating signal transduction from electron transportation. The innovative concept presented in this work holds great promise for extending to other electrode materials and paves the way for the advancement of multimodal bioelectronics.
Collapse
Affiliation(s)
- Rongjian Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Bowen Yao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yuhao Geng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Shuai Zhou
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Mengfan Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Wei Zhong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Fuyao Sun
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Haojie Zhao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jingyu Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Jiahao Ge
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Ran Wei
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Tong Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajie Jin
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jianhua Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajun Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
28
|
Rodríguez‐Meana B, del Valle J, Viana D, Walston ST, Ria N, Masvidal‐Codina E, Garrido JA, Navarro X. Engineered Graphene Material Improves the Performance of Intraneural Peripheral Nerve Electrodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308689. [PMID: 38863325 PMCID: PMC11304253 DOI: 10.1002/advs.202308689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/09/2024] [Indexed: 06/13/2024]
Abstract
Limb neuroprostheses aim to restore motor and sensory functions in amputated or severely nerve-injured patients. These devices use neural interfaces to record and stimulate nerve action potentials, creating a bidirectional connection with the nervous system. Most neural interfaces are based on standard metal microelectrodes. In this work, a new generation of neural interfaces which replaces metals with engineered graphene, called EGNITE, is tested. In vitro and in vivo experiments are conducted to assess EGNITE biocompatibility. In vitro tests show that EGNITE does not impact cell viability. In vivo, no significant functional decrease or harmful effects are observed. Furthermore, the foreign body reaction to the intraneural implant is similar compared to other materials previously used in neural interfaces. Regarding functionality, EGNITE devices are able to stimulate nerve fascicles, during two months of implant, producing selective muscle activation with about three times less current compared to larger microelectrodes of standard materials. CNAP elicited by electrical stimuli and ENG evoked by mechanical stimuli are recorded with high resolution but are more affected by decreased functionality over time. This work constitutes further proof that graphene-derived materials, and specifically EGNITE, is a promising conductive material of neural electrodes for advanced neuroprostheses.
Collapse
Affiliation(s)
- Bruno Rodríguez‐Meana
- Institute of NeurosciencesDepartment of Cell BiologyPhysiology and ImmunologyUniversitat Autònoma de BarcelonaBellaterra08193Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadrid28031Spain
| | - Jaume del Valle
- Institute of NeurosciencesDepartment of Cell BiologyPhysiology and ImmunologyUniversitat Autònoma de BarcelonaBellaterra08193Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadrid28031Spain
- Department de Bioquímica i FisiologiaUniversitat de BarcelonaBarcelona08028Spain
| | - Damià Viana
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
| | - Steven T. Walston
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
| | - Nicola Ria
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
| | - Eduard Masvidal‐Codina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
| | - Jose A. Garrido
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
- ICREABarcelona08010Spain
| | - Xavier Navarro
- Institute of NeurosciencesDepartment of Cell BiologyPhysiology and ImmunologyUniversitat Autònoma de BarcelonaBellaterra08193Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadrid28031Spain
- Institut Guttmann of NeurorehabilitationBadalona08916Spain
| |
Collapse
|
29
|
Yao G, Gan X, Lin Y. Flexible self-powered bioelectronics enables personalized health management from diagnosis to therapy. Sci Bull (Beijing) 2024; 69:2289-2306. [PMID: 38821746 DOI: 10.1016/j.scib.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Flexible self-powered bioelectronics (FSPBs), incorporating flexible electronic features in biomedical applications, have revolutionized the human-machine interface since they hold the potential to offer natural and seamless human interactions while overcoming the limitations of battery-dependent power sources. Furthermore, as biosensors or actuators, FSPBs can dynamically monitor physiological signals to reveal real-time health abnormalities and provide timely and precise treatments. Therefore, FSPBs are increasingly shaping the landscape of health monitoring and disease treatment, weaving a sophisticated and personalized bond between humans and health management. Here, we examine the recent advanced progress of FSPBs in developing working mechanisms, design strategies, and structural configurations toward personalized health management, emphasizing its role in clinical medical scenarios from biophysical/biochemical sensors for sensing diagnosis to robust/biodegradable actuators for intervention therapy. Future perspectives on the challenges and opportunities in emerging multifunctional FSPBs for the next-generation health management systems are also forecasted.
Collapse
Affiliation(s)
- Guang Yao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
| | - Xingyi Gan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
30
|
Manero A, Rivera V, Fu Q, Schwartzman JD, Prock-Gibbs H, Shah N, Gandhi D, White E, Crawford KE, Coathup MJ. Emerging Medical Technologies and Their Use in Bionic Repair and Human Augmentation. Bioengineering (Basel) 2024; 11:695. [PMID: 39061777 PMCID: PMC11274085 DOI: 10.3390/bioengineering11070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
As both the proportion of older people and the length of life increases globally, a rise in age-related degenerative diseases, disability, and prolonged dependency is projected. However, more sophisticated biomedical materials, as well as an improved understanding of human disease, is forecast to revolutionize the diagnosis and treatment of conditions ranging from osteoarthritis to Alzheimer's disease as well as impact disease prevention. Another, albeit quieter, revolution is also taking place within society: human augmentation. In this context, humans seek to improve themselves, metamorphosing through self-discipline or more recently, through use of emerging medical technologies, with the goal of transcending aging and mortality. In this review, and in the pursuit of improved medical care following aging, disease, disability, or injury, we first highlight cutting-edge and emerging materials-based neuroprosthetic technologies designed to restore limb or organ function. We highlight the potential for these technologies to be utilized to augment human performance beyond the range of natural performance. We discuss and explore the growing social movement of human augmentation and the idea that it is possible and desirable to use emerging technologies to push the boundaries of what it means to be a healthy human into the realm of superhuman performance and intelligence. This potential future capability is contrasted with limitations in the right-to-repair legislation, which may create challenges for patients. Now is the time for continued discussion of the ethical strategies for research, implementation, and long-term device sustainability or repair.
Collapse
Affiliation(s)
- Albert Manero
- Limbitless Solutions, University of Central Florida, 12703 Research Parkway, Suite 100, Orlando, FL 32826, USA (V.R.)
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
| | - Viviana Rivera
- Limbitless Solutions, University of Central Florida, 12703 Research Parkway, Suite 100, Orlando, FL 32826, USA (V.R.)
| | - Qiushi Fu
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Jonathan D. Schwartzman
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Hannah Prock-Gibbs
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Neel Shah
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Deep Gandhi
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Evan White
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Kaitlyn E. Crawford
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| |
Collapse
|
31
|
Kong L, Li W, Zhang T, Ma H, Cao Y, Wang K, Zhou Y, Shamim A, Zheng L, Wang X, Huang W. Wireless Technologies in Flexible and Wearable Sensing: From Materials Design, System Integration to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400333. [PMID: 38652082 DOI: 10.1002/adma.202400333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Wireless and wearable sensors attract considerable interest in personalized healthcare by providing a unique approach for remote, noncontact, and continuous monitoring of various health-related signals without interference with daily life. Recent advances in wireless technologies and wearable sensors have promoted practical applications due to their significantly improved characteristics, such as reduction in size and thickness, enhancement in flexibility and stretchability, and improved conformability to the human body. Currently, most researches focus on active materials and structural designs for wearable sensors, with just a few exceptions reflecting on the technologies for wireless data transmission. This review provides a comprehensive overview of the state-of-the-art wireless technologies and related studies on empowering wearable sensors. The emerging functional nanomaterials utilized for designing unique wireless modules are highlighted, which include metals, carbons, and MXenes. Additionally, the review outlines the system-level integration of wireless modules with flexible sensors, spanning from novel design strategies for enhanced conformability to efficient transmitting data wirelessly. Furthermore, the review introduces representative applications for remote and noninvasive monitoring of physiological signals through on-skin and implantable wireless flexible sensing systems. Finally, the challenges, perspectives, and unprecedented opportunities for wireless and wearable sensors are discussed.
Collapse
Affiliation(s)
- Lingyan Kong
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Tinghao Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Huihui Ma
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yunqiang Cao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Kexin Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yilin Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Atif Shamim
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics(KLoFE)and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
32
|
Wang Z, Xiao M, Li Z, Wang X, Li F, Yang H, Chen Y, Zhu Z. Microneedle Patches-Integrated Transdermal Bioelectronics for Minimally Invasive Disease Theranostics. Adv Healthc Mater 2024; 13:e2303921. [PMID: 38341619 DOI: 10.1002/adhm.202303921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Wearable epidermal electronics with non- or minimally-invasive characteristics can collect, transduce, communicate, and interact with accessible physicochemical health indicators on the skin. However, due to the stratum corneum layer, rich information about body health is buried under the skin stratum corneum layer, for example, in the skin interstitial fluid. Microneedle patches are typically designed with arrays of special microsized needles of length within 1000 µm. Such characteristics potentially enable the access and sample of biomolecules under the skin or give therapeutical treatment painlessly and transdermally. Integrating microneedle patches with various electronics allows highly efficient transdermal bioelectronics, showing their great promise for biomedical and healthcare applications. This comprehensive review summarizes and highlights the recent progress on integrated transdermal bioelectronics based on microneedle patches. The design criteria and state-of-the-art fabrication techniques for such devices are initially discussed. Next, devices with different functions, including but not limited to health monitoring, drug delivery, and therapeutical treatment, are highlighted in detail. Finally, key issues associated with current technologies and future opportunities are elaborated to sort out the state of recent research, point out potential bottlenecks, and provide future research directions.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Fangjie Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- Health Industry Innovation Center, Xin-Huangpu Joint Innovation Institute of Chinese Medicine, 81 Xiangxue Middle Avenue, Huangpu District, Guangzhou, Guangdong Province, 510799, China
| |
Collapse
|
33
|
Choi W, Park H, Oh S, Seok S, Yoon DS, Kim J. High-Porosity Sieve-Type Neural Electrodes for Motor Function Recovery and Nerve Signal Acquisition. MICROMACHINES 2024; 15:862. [PMID: 39064373 PMCID: PMC11279187 DOI: 10.3390/mi15070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
In this study, the effects of electrode porosity on nerve regeneration and functional recovery after sciatic nerve transection in rats was investigated. A sieve-type neural electrode with 70% porosity was designed and compared with an electrode with 30% porosity. Electrodes were fabricated from photosensitive polyimide and implanted into the transected sciatic nerves. Motor function recovery was evaluated using the Sciatic Function Index. The number of active channels and their signal quality were recorded and analyzed to assess the sensory neural signal acquisition. Electrical impedance spectroscopy was used to evaluate the electrode performance. The group implanted with the 70% porosity electrode demonstrated significantly enhanced nerve regeneration and motor function recovery, approaching control group levels by the fifth week. In contrast, the group with the 30% porosity electrode exhibited limited improvement. Immunohistochemical analysis confirmed extensive nerve fiber growth within the 70% porous structure. Moreover, the 70% porosity electrode consistently acquired neural signals from more channels compared to the 30% porosity electrode, demonstrating its superior performance in sensory signal detection. These findings emphasize the importance of optimizing electrode porosity in the development of advanced neural interfaces, with the potential to enhance clinical outcomes in peripheral nerve repair and neuroprosthetic applications.
Collapse
Affiliation(s)
- Wonsuk Choi
- Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (W.C.); (H.P.); (S.O.)
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - HyungDal Park
- Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (W.C.); (H.P.); (S.O.)
| | - Seonghwan Oh
- Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (W.C.); (H.P.); (S.O.)
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seonho Seok
- Center for Nanoscience and Nanotechnology (C2N), University-Paris-Saclay, 91400 Orsay, France;
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinseok Kim
- Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (W.C.); (H.P.); (S.O.)
| |
Collapse
|
34
|
Kim M, Lee H, Nam S, Kim DH, Cha GD. Soft Bioelectronics Using Nanomaterials and Nanostructures for Neuroengineering. Acc Chem Res 2024; 57:1633-1647. [PMID: 38752397 DOI: 10.1021/acs.accounts.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The identification of neural networks for large areas and the regulation of neuronal activity at the single-neuron scale have garnered considerable attention in neuroscience. In addition, detecting biochemical molecules and electrically, optically, and chemically controlling neural functions are key research issues. However, conventional rigid and bulky bioelectronics face challenges for neural applications, including mechanical mismatch, unsatisfactory signal-to-noise ratio, and poor integration of multifunctional components, thereby degrading the sensing and modulation performance, long-term stability and biocompatibility, and diagnosis and therapy efficacy. Implantable bioelectronics have been developed to be mechanically compatible with the brain environment by adopting advanced geometric designs and utilizing intrinsically stretchable materials, but such advances have not been able to address all of the aforementioned challenges.Recently, the exploration of nanomaterial synthesis and nanoscale fabrication strategies has facilitated the design of unconventional soft bioelectronics with mechanical properties similar to those of neural tissues and submicrometer-scale resolution comparable to typical neuron sizes. The introduction of nanotechnology has provided bioelectronics with improved spatial resolution, selectivity, single neuron targeting, and even multifunctionality. As a result, this state-of-the-art nanotechnology has been integrated with bioelectronics in two main types, i.e., bioelectronics integrated with synthesized nanomaterials and bioelectronics with nanoscale structures. The functional nanomaterials can be synthesized and assembled to compose bioelectronics, allowing easy customization of their functionality to meet specific requirements. The unique nanoscale structures implemented with the bioelectronics could maximize the performance in terms of sensing and stimulation. Such soft nanobioelectronics have demonstrated their applicability for neuronal recording and modulation over a long period at the intracellular level and incorporation of multiple functions, such as electrical, optical, and chemical sensing and stimulation functions.In this Account, we will discuss the technical pathways in soft bioelectronics integrated with nanomaterials and implementing nanostructures for application to neuroengineering. We traced the historical development of bioelectronics from rigid and bulky structures to soft and deformable devices to conform to neuroengineering requirements. Recent approaches that introduced nanotechnology into neural devices enhanced the spatiotemporal resolution and endowed various device functions. These soft nanobioelectronic technologies are discussed in two categories: bioelectronics with synthesized nanomaterials and bioelectronics with nanoscale structures. We describe nanomaterial-integrated soft bioelectronics exhibiting various functionalities and modalities depending on the integrated nanomaterials. Meanwhile, soft bioelectronics with nanoscale structures are explained with their superior resolution and unique administration methods. We also exemplified the neural sensing and stimulation applications of soft nanobioelectronics across various modalities, showcasing their clinical applications in the treatment of neurological diseases, such as brain tumors, epilepsy, and Parkinson's disease. Finally, we discussed the challenges and direction of next-generation technologies.
Collapse
Affiliation(s)
- Minjeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjin Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seonghyeon Nam
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
35
|
Nam TU, Vo NTP, Jeong MW, Jung KH, Lee SH, Lee TI, Oh JY. Intrinsically Stretchable Floating Gate Memory Transistors for Data Storage of Electronic Skin Devices. ACS NANO 2024; 18:14558-14568. [PMID: 38761154 DOI: 10.1021/acsnano.4c02303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
To propel electronic skin (e-skin) to the next level by integrating artificial intelligence features with advanced sensory capabilities, it is imperative to develop stretchable memory device technology. A stretchable memory device for e-skin must offer, in particular, long-term data storage while ensuring the security of personal information under any type of deformation. However, despite the significance of these needs, technology related to stretchable memory devices remains in its infancy. Here, we report an intrinsically stretchable floating gate (FG) polymer memory transistor. The device features a dual-stimuli (optical and electrical) writing system to prevent easy erasure of recorded data. An FG comprising an intermixture of Ag nanoparticles and elastomer and with proper energy-band alignment between the semiconductor and dielectric facilitated sustainable memory performance, while achieving a high memory on/off ratio (>105) and a long retention time (106 s) with the ability to withstand 50% uniaxial or 30% biaxial strain. In addition, our memory transistor exhibited high mechanical durability over multiple stretching cycles (1000 times), along with excellent environmental stability with respect to factors such as temperature, moisture, air, and delamination. Finally, we fabricated a 7 × 7 active-matrix memory transistor array for personalized storage of e-skin data and successfully demonstrated its functionality.
Collapse
Affiliation(s)
- Tae Uk Nam
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, Korea
| | - Ngoc Thanh Phuong Vo
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, Korea
| | - Min Woo Jeong
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, Korea
| | - Kyu Ho Jung
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, Korea
| | - Seung Hwan Lee
- Department of Electronics Engineering, Kyung Hee University, Yongin, Gyeonggi 17104, Korea
| | - Tae Il Lee
- Department of Materials Science and Engineering, Gachon University, Seong-nam, Gyeonggi 13120, Korea
| | - Jin Young Oh
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, Korea
| |
Collapse
|
36
|
Sun Y, Xiao Z, Chen B, Zhao Y, Dai J. Advances in Material-Assisted Electromagnetic Neural Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400346. [PMID: 38594598 DOI: 10.1002/adma.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Bioelectricity plays a crucial role in organisms, being closely connected to neural activity and physiological processes. Disruptions in the nervous system can lead to chaotic ionic currents at the injured site, causing disturbances in the local cellular microenvironment, impairing biological pathways, and resulting in a loss of neural functions. Electromagnetic stimulation has the ability to generate internal currents, which can be utilized to counter tissue damage and aid in the restoration of movement in paralyzed limbs. By incorporating implanted materials, electromagnetic stimulation can be targeted more accurately, thereby significantly improving the effectiveness and safety of such interventions. Currently, there have been significant advancements in the development of numerous promising electromagnetic stimulation strategies with diverse materials. This review provides a comprehensive summary of the fundamental theories, neural stimulation modulating materials, material application strategies, and pre-clinical therapeutic effects associated with electromagnetic stimulation for neural repair. It offers a thorough analysis of current techniques that employ materials to enhance electromagnetic stimulation, as well as potential therapeutic strategies for future applications.
Collapse
Affiliation(s)
- Yuting Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
37
|
Merces L, Ferro LMM, Thomas A, Karnaushenko DD, Luo Y, Egunov AI, Zhang W, Bandari VK, Lee Y, McCaskill JS, Zhu M, Schmidt OG, Karnaushenko D. Bio-Inspired Dynamically Morphing Microelectronics toward High-Density Energy Applications and Intelligent Biomedical Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313327. [PMID: 38402420 DOI: 10.1002/adma.202313327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/09/2024] [Indexed: 02/26/2024]
Abstract
Choreographing the adaptive shapes of patterned surfaces to exhibit designable mechanical interactions with their environment remains an intricate challenge. Here, a novel category of strain-engineered dynamic-shape materials, empowering diverse multi-dimensional shape modulations that are combined to form fine-grained adaptive microarchitectures is introduced. Using micro-origami tessellation technology, heterogeneous materials are provided with strategic creases featuring stimuli-responsive micro-hinges that morph precisely upon chemical and electrical cues. Freestanding multifaceted foldable packages, auxetic mesosurfaces, and morphable cages are three of the forms demonstrated herein of these complex 4-dimensional (4D) metamaterials. These systems are integrated in dual proof-of-concept bioelectronic demonstrations: a soft foldable supercapacitor enhancing its power density (≈108 mW cm-2), and a bio-adaptive device with a dynamic shape that may enable novel smart-implant technologies. This work demonstrates that intelligent material systems are now ready to support ultra-flexible 4D microelectronics, which can impart autonomy to devices culminating in the tangible realization of microelectronic morphogenesis.
Collapse
Affiliation(s)
- Leandro Merces
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Letícia Mariê Minatogau Ferro
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Aleena Thomas
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Institute of Chemistry, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Dmitriy D Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Yumin Luo
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Aleksandr I Egunov
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Wenlan Zhang
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Vineeth K Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Yeji Lee
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - John S McCaskill
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- European Centre for Living Technology (ECLT), Venice, 30123, Italy
| | - Minshen Zhu
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
- Nanophysics, Faculty of Physics, Dresden University of Technology, 01062, Dresden, Germany
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
| |
Collapse
|
38
|
Zhou X, Liu X, Yu X, Liu Q, Bai T, Gao M, Xu C, Zhang X, Zhu M, Cheng Y. Hybrid Water-Harvesting Channels Delivering Wide-Range and Supersensitive Passive Fluorescence Humidity Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27794-27803. [PMID: 38748448 DOI: 10.1021/acsami.4c05437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The development of optical humidity detection has been of considerable interest in highly integrated wearable electronics and packaged equipment. However, improving their capacities for color recognition at ultralow humidity and response-recovery rate remains a significant challenge. Herein, we propose a type of hybrid water-harvesting channel to construct brand-new passive fluorescence humidity sensors (PFHSs). Specifically, the hybrid water-harvesting channels involve porous metal-organic frameworks and a hydrophilic poly(acrylic acid) network that can capture water vapors from the ambient environment even at ultralow humidity, into which polar-responsive aggregation-induced emission molecules are doped to impart humidity-sensitive luminescence colors. As a result, the PFHSs exhibit clearly defined fluorescence signals within 0-98% RH coupling with desirable performances such as a fast response rate, precise quantitative feedback, and durable reversibility. Given the flexible processability of this system, we further upgrade the porous structure via electrostatic spinning to furnish a kind of Nano-PFHSs, demonstrating an impressive response time (<100 ms). Finally, we validate the promising applications of these sensors in electronic humidity monitoring and successfully fabricate a portable and rapid humidity indicator card.
Collapse
Affiliation(s)
- Xuyang Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoqing Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Tianxiang Bai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xinhai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
39
|
Wang Q, Liu Y, Zhang B, Dong J, Wang L. Advancing the Frontiers of Neuroelectrodes: A Paradigm Shift towards Enhanced Biocompatibility and Electrochemical Performance. Polymers (Basel) 2024; 16:1457. [PMID: 38891404 PMCID: PMC11174417 DOI: 10.3390/polym16111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The aim of this study is the fabrication of unprecedented neuroelectrodes, replete with exceptional biological and electrical attributes. Commencing with the synthesis of polyethylene glycol and polyethyleneimine-modified iron oxide nanoparticles, the grafting of Dimyristoyl phosphatidylcholine was embarked upon to generate DMPC-SPION nanoparticles. Subsequently, the deposition of DMPC-SPIONs onto a nickel-chromium alloy electrode facilitated the inception of an innovative neuroelectrode-DMPC-SPION. A meticulous characterization of DMPC-SPIONs ensued, encompassing zeta potential, infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction analyses. Evaluations pertaining to hemolysis and cytotoxicity were conducted to ascertain the biocompatibility and biosafety of DMPC-SPIONs. Ultimately, a comprehensive assessment of the biocompatibility, electrochemical properties, and electrophysiological signal acquisition capabilities of DMPC-SPION neuroelectrodes was undertaken. These findings conclusively affirm the exemplary biocompatibility, electrochemical capabilities, and outstanding capability in recording electrical signals of DMPC-SPION neuroelectrodes, with an astounding 91.4% augmentation in electrode charge and a noteworthy 13% decline in impedance, with peak potentials reaching as high as 171 μV and an impressive signal-to-noise ratio of 15.92. Intriguingly, the novel DMPC-SPION neuroelectrodes herald an innovative pathway towards injury repair as well as the diagnosis and treatment of neurological disorders.
Collapse
Affiliation(s)
- Qin Wang
- School of Intelligent Medicine and Biotechnology, Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, Guilin Medical University, Guilin 541004, China;
| | - Yiyang Liu
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (Y.L.); (B.Z.)
| | - Baolin Zhang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (Y.L.); (B.Z.)
| | - Jianghui Dong
- School of Intelligent Medicine and Biotechnology, Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, Guilin Medical University, Guilin 541004, China;
| | - Liping Wang
- School of Intelligent Medicine and Biotechnology, Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, Guilin Medical University, Guilin 541004, China;
| |
Collapse
|
40
|
Lee S, Liang X, Kim JS, Yokota T, Fukuda K, Someya T. Permeable Bioelectronics toward Biointegrated Systems. Chem Rev 2024; 124:6543-6591. [PMID: 38728658 DOI: 10.1021/acs.chemrev.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Bioelectronics integrates electronics with biological organs, sustaining the natural functions of the organs. Organs dynamically interact with the external environment, managing internal equilibrium and responding to external stimuli. These interactions are crucial for maintaining homeostasis. Additionally, biological organs possess a soft and stretchable nature; encountering objects with differing properties can disrupt their function. Therefore, when electronic devices come into contact with biological objects, the permeability of these devices, enabling interactions and substance exchanges with the external environment, and the mechanical compliance are crucial for maintaining the inherent functionality of biological organs. This review discusses recent advancements in soft and permeable bioelectronics, emphasizing materials, structures, and a wide range of applications. The review also addresses current challenges and potential solutions, providing insights into the integration of electronics with biological organs.
Collapse
Affiliation(s)
- Sunghoon Lee
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaoping Liang
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Joo Sung Kim
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
41
|
Xing Z, Hu Q, Wang W, Kong N, Gao R, Shen X, Xu S, Meng L, Liu JR, Zhu X. An NIR-IIb emissive transmembrane voltage nano-indicator for the optical monitoring of electrophysiological activities in vivo. MATERIALS HORIZONS 2024; 11:2457-2468. [PMID: 38465967 DOI: 10.1039/d3mh02189k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
In vivo transmembrane-voltage detection reflected the electrophysiological activities of the biological system, which is crucial for the diagnosis of neuronal disease. Traditional implanted electrodes can only monitor limited regions and induce relatively large tissue damage. Despite emerging monitoring methods based on optical imaging have access to signal recording in a larger area, the recording wavelength of less than 1000 nm seriously weakens the detection depth and resolution in vivo. Herein, a Förster resonance energy transfer (FRET)-based nano-indicator, NaYbF4:Er@NaYF4@Cy7.5@DPPC (Cy7.5-ErNP) with emission in the near-infrared IIb biological window (NIR-IIb, 1500-1700 nm) is developed for transmembrane-voltage detection. Cy7.5 dye is found to be voltage-sensitive and is employed as the energy donor for the energy transfer to the lanthanide nanoparticle, NaYbF4:Er@NaYF4 (ErNP), which works as the acceptor to achieve electrophysiological signal responsive NIR-IIb luminescence. Benefiting from the high penetration and low scattering of NIR-IIb luminescence, the Cy7.5-ErNP enables both the visualization of action potential in vitro and monitoring of Mesial Temporal lobe epilepsy (mTLE) disease in vivo. This work presents a concept for leveraging the lanthanide luminescent nanoprobes to visualize electrophysiological activity in vivo, which facilitates the development of an optical nano-indicator for the diagnosis of neurological disorders.
Collapse
Affiliation(s)
- Zhenyu Xing
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Qian Hu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Weikan Wang
- Department of Neurology, Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, Shanghai, 200011, P. R. China
| | - Na Kong
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Rong Gao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Xiaolei Shen
- Department of Neurology, Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, Shanghai, 200011, P. R. China
| | - Sixin Xu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Lingkai Meng
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Jian-Ren Liu
- Department of Neurology, Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, Shanghai, 200011, P. R. China
| | - Xingjun Zhu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| |
Collapse
|
42
|
Xiang Y, Zhao Y, Cheng T, Sun S, Wang J, Pei R. Implantable Neural Microelectrodes: How to Reduce Immune Response. ACS Biomater Sci Eng 2024; 10:2762-2783. [PMID: 38591141 DOI: 10.1021/acsbiomaterials.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Implantable neural microelectrodes exhibit the great ability to accurately capture the electrophysiological signals from individual neurons with exceptional submillisecond precision, holding tremendous potential for advancing brain science research, as well as offering promising avenues for neurological disease therapy. Although significant advancements have been made in the channel and density of implantable neural microelectrodes, challenges persist in extending the stable recording duration of these microelectrodes. The enduring stability of implanted electrode signals is primarily influenced by the chronic immune response triggered by the slight movement of the electrode within the neural tissue. The intensity of this immune response increases with a higher bending stiffness of the electrode. This Review thoroughly analyzes the sequential reactions evoked by implanted electrodes in the brain and highlights strategies aimed at mitigating chronic immune responses. Minimizing immune response mainly includes designing the microelectrode structure, selecting flexible materials, surface modification, and controlling drug release. The purpose of this paper is to provide valuable references and ideas for reducing the immune response of implantable neural microelectrodes and stimulate their further exploration in the field of brain science.
Collapse
Affiliation(s)
- Ying Xiang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tingting Cheng
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shengkai Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jine Wang
- Jiangxi Institute of Nanotechnology, Nanchang 330200, China
- College of Medicine and Nursing, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou 253023, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
43
|
Woodington BJ, Lei J, Carnicer-Lombarte A, Güemes-González A, Naegele TE, Hilton S, El-Hadwe S, Trivedi RA, Malliaras GG, Barone DG. Flexible circumferential bioelectronics to enable 360-degree recording and stimulation of the spinal cord. SCIENCE ADVANCES 2024; 10:eadl1230. [PMID: 38718109 PMCID: PMC11078185 DOI: 10.1126/sciadv.adl1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
The spinal cord is crucial for transmitting motor and sensory information between the brain and peripheral systems. Spinal cord injuries can lead to severe consequences, including paralysis and autonomic dysfunction. We introduce thin-film, flexible electronics for circumferential interfacing with the spinal cord. This method enables simultaneous recording and stimulation of dorsal, lateral, and ventral tracts with a single device. Our findings include successful motor and sensory signal capture and elicitation in anesthetized rats, a proof-of-concept closed-loop system for bridging complete spinal cord injuries, and device safety verification in freely moving rodents. Moreover, we demonstrate potential for human application through a cadaver model. This method sees a clear route to the clinic by using materials and surgical practices that mitigate risk during implantation and preserve cord integrity.
Collapse
Affiliation(s)
- Ben J. Woodington
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Jiang Lei
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Amparo Güemes-González
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Tobias E. Naegele
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Sam Hilton
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Salim El-Hadwe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Rikin A. Trivedi
- Division of Neurosurgery, Addenbrookes Hospital, Hills Road, Cambridge, UK
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Damiano G. Barone
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
44
|
Gao Y, Wang Y, Wu Y, Liu S. Biomaterials targeting the microenvironment for spinal cord injury repair: progression and perspectives. Front Cell Neurosci 2024; 18:1362494. [PMID: 38784712 PMCID: PMC11111957 DOI: 10.3389/fncel.2024.1362494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury (SCI) disrupts nerve pathways and affects sensory, motor, and autonomic function. There is currently no effective treatment for SCI. SCI occurs within three temporal periods: acute, subacute, and chronic. In each period there are different alterations in the cells, inflammatory factors, and signaling pathways within the spinal cord. Many biomaterials have been investigated in the treatment of SCI, including hydrogels and fiber scaffolds, and some progress has been made in the treatment of SCI using multiple materials. However, there are limitations when using individual biomaterials in SCI treatment, and these limitations can be significantly improved by combining treatments with stem cells. In order to better understand SCI and to investigate new strategies for its treatment, several combination therapies that include materials combined with cells, drugs, cytokines, etc. are summarized in the current review.
Collapse
Affiliation(s)
- Yating Gao
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yu Wang
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Zhu P, Simon I, Kokalari I, Kohane DS, Rwei AY. Miniaturized therapeutic systems for ultrasound-modulated drug delivery to the central and peripheral nervous system. Adv Drug Deliv Rev 2024; 208:115275. [PMID: 38442747 PMCID: PMC11031353 DOI: 10.1016/j.addr.2024.115275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Ultrasound is a promising technology to address challenges in drug delivery, including limited drug penetration across physiological barriers and ineffective targeting. Here we provide an overview of the significant advances made in recent years in overcoming technical and pharmacological barriers using ultrasound-assisted drug delivery to the central and peripheral nervous system. We commence by exploring the fundamental principles of ultrasound physics and its interaction with tissue. The mechanisms of ultrasonic-enhanced drug delivery are examined, as well as the relevant tissue barriers. We highlight drug transport through such tissue barriers utilizing insonation alone, in combination with ultrasound contrast agents (e.g., microbubbles), and through innovative particulate drug delivery systems. Furthermore, we review advances in systems and devices for providing therapeutic ultrasound, as their practicality and accessibility are crucial for clinical application.
Collapse
Affiliation(s)
- Pancheng Zhu
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands; State Key Laboratory of Mechanics and Control of Aerospace Structures, Nanjing University of Aeronautics & Astronautics, 210016, Nanjing, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ignasi Simon
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Ida Kokalari
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Alina Y Rwei
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
46
|
Lai Y, Cheng J, Xie M, Chen J, Zhu G, Huang W, Feng LW. Precisely Patterned Channels in a Vertical Organic Electrochemical Transistor with a Diazirine Photo-Crosslinker. Angew Chem Int Ed Engl 2024; 63:e202401773. [PMID: 38429971 DOI: 10.1002/anie.202401773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
Organic electrochemical transistors (OECTs) rely on both efficient ionic doping/de-doping process and carrier transport in the mixed ionic-electronic channel under the modulation of gate bias. Moreover, channels that hold photopatterning capability are highly desired to minimize parasitic capacitance and simplify the fabrication process/cost. However, yielding photo-patternable channels with both precise/robust patterning capability and controllable ionic-electronic coupling is still challenging. Herein, double-end trifluoromethyl diazirines (DtFDA) with different chain lengths are introduced in the OECT channel to act as both photo-crosslinker and medium to regulate ionic-electronic transport. Specifically, high-resolution patterns with a minimum line width/gap of 2 μm are realized in p(g2T-T) or Homo-gDPP based channels by introducing DtFDA. Maximum transconductances of 68.6 mS and 81.6 mS, current on/off ratio of 106 and 107 (under a drain voltage of only ±0.1 V), are achieved in p- and n-type vertical OECTs (vOECTs), respectively, along with current densities exceeding 1 kA cm-2 and good cycling stability of more than 100,000 cycles (2000 seconds). This work provides a new and facile strategy for the fabrication of vOECT channels with high resolution and high performance via the introduction of a simple and efficient crosslinker.
Collapse
Affiliation(s)
- Yueping Lai
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, China
| | - Jingliang Cheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, China
| | - Miao Xie
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 611731, China
| | - Jianhua Chen
- Department of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Guichuan Zhu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 611731, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
47
|
Wang Y, Shao B, Song J, Hong W, Guo CF. Mechanical Tester Driven by Surface Tension. NANO LETTERS 2024; 24:4012-4019. [PMID: 38527220 DOI: 10.1021/acs.nanolett.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The measurement of in-plane mechanical properties, such as Young's modulus and strength, of thin and stretchable materials has long been a challenge. Existing measurements, including wrinkle instability and nano indentation, are either indirect or destructive, and are inapplicable to meshes or porous materials, while the conventional tension test fails to measure the mechanical properties of nanoscale films. Here, we report a technique to test thin and stretchable films by loading a thin film afloat via differential surface tension and recording its deformation. We have demonstrated the method by measuring the Young's moduli of homogeneous films of soft materials including polydimethylsiloxane and Ecoflex and verified the results with known values. We further measured the strain distributions of meshes, both isotropic and anisotropic, which were otherwise nearly impossible to measure. The method proposed herein is expected to be generally applicable to many material systems that are thin, stretchable, and water-insoluble.
Collapse
Affiliation(s)
- Yan Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang, JiangXi 330031, China
| | - Biqi Shao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jia Song
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Hong
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
48
|
Bhatia A, Hanna J, Stuart T, Kasper KA, Clausen DM, Gutruf P. Wireless Battery-free and Fully Implantable Organ Interfaces. Chem Rev 2024; 124:2205-2280. [PMID: 38382030 DOI: 10.1021/acs.chemrev.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-free power supplies are resulting in a new generation of fully implantable organ interfaces that leverage volumetric reduction and soft mechanics by eliminating electrochemical power storage. This device class offers the ability to provide high-fidelity readouts of physiological processes, enables stimulation, and allows control over organs to realize new therapeutic and diagnostic paradigms. Driven by seamless integration with connected infrastructure, these devices enable personalized digital medicine. Key to advances are carefully designed material, electrophysical, electrochemical, and electromagnetic systems that form implantables with mechanical properties closely matched to the target organ to deliver functionality that supports high-fidelity sensors and stimulators. The elimination of electrochemical power supplies enables control over device operation, anywhere from acute, to lifetimes matching the target subject with physical dimensions that supports imperceptible operation. This review provides a comprehensive overview of the basic building blocks of battery-free organ interfaces and related topics such as implantation, delivery, sterilization, and user acceptance. State of the art examples categorized by organ system and an outlook of interconnection and advanced strategies for computation leveraging the consistent power influx to elevate functionality of this device class over current battery-powered strategies is highlighted.
Collapse
Affiliation(s)
- Aman Bhatia
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tucker Stuart
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - David Marshall Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
49
|
Le Floch P, Zhao S, Liu R, Molinari N, Medina E, Shen H, Wang Z, Kim J, Sheng H, Partarrieu S, Wang W, Sessler C, Zhang G, Park H, Gong X, Spencer A, Lee J, Ye T, Tang X, Wang X, Bertoldi K, Lu N, Kozinsky B, Suo Z, Liu J. 3D spatiotemporally scalable in vivo neural probes based on fluorinated elastomers. NATURE NANOTECHNOLOGY 2024; 19:319-329. [PMID: 38135719 DOI: 10.1038/s41565-023-01545-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/16/2023] [Indexed: 12/24/2023]
Abstract
Electronic devices for recording neural activity in the nervous system need to be scalable across large spatial and temporal scales while also providing millisecond and single-cell spatiotemporal resolution. However, existing high-resolution neural recording devices cannot achieve simultaneous scalability on both spatial and temporal levels due to a trade-off between sensor density and mechanical flexibility. Here we introduce a three-dimensional (3D) stacking implantable electronic platform, based on perfluorinated dielectric elastomers and tissue-level soft multilayer electrodes, that enables spatiotemporally scalable single-cell neural electrophysiology in the nervous system. Our elastomers exhibit stable dielectric performance for over a year in physiological solutions and are 10,000 times softer than conventional plastic dielectrics. By leveraging these unique characteristics we develop the packaging of lithographed nanometre-thick electrode arrays in a 3D configuration with a cross-sectional density of 7.6 electrodes per 100 µm2. The resulting 3D integrated multilayer soft electrode array retains tissue-level flexibility, reducing chronic immune responses in mouse neural tissues, and demonstrates the ability to reliably track electrical activity in the mouse brain or spinal cord over months without disrupting animal behaviour.
Collapse
Affiliation(s)
- Paul Le Floch
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
- Axoft, Inc., Cambridge, MA, USA
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Nicola Molinari
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Eder Medina
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Hao Shen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Zheliang Wang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA
| | - Junsoo Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Hao Sheng
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Sebastian Partarrieu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Wenbo Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Chanan Sessler
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guogao Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | | | | | | | | | | | - Xin Tang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Xiao Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katia Bertoldi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
- Robert Bosch LLC Research and Technology Center, Watertown, MA, USA
| | - Zhigang Suo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.
| |
Collapse
|
50
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|