1
|
Khan D, Shaw R, Kabiraj A, Paul A, Bandopadhyay R. Microbial inheritance through seed: a clouded area needs to be enlightened. Arch Microbiol 2025; 207:23. [PMID: 39754662 DOI: 10.1007/s00203-024-04225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
Seed endophytes are actively used by the mother plant as both reservoir and vector of beneficial microbes. During seed dormancy endophytes experience significant physiochemical changes and only competent endophytes could colonise successfully in seeds and some of them act as obligate endophyte that are transmitted vertically across generations. The adaptive nature of endophytes allows them to switch lifestyles depending on environment and host conditions. In this review, instead of providing broad discussion on applicability of endophytes in plant growth improvement, the fundamental nature of endophytes, their survival strategies under stress conditions, transmittance, etc. have been broadly highlighted by collaborating recent discoveries and theories. We have also tried to differentiate endophyte with their pathogenic counterpart and their survival mechanism during seed dormancy stages. Critical analyses of physio-biochemical changes in seeds during maturation and parallel modifications of life styles of seed endophytes along with pathogens will enlighten the shaded part of seed-microbiome interactions. The mutualistic interrelations as well as their shipment towards pathogenic behaviour under stress are being discussed acutely. Finally, importances of conservation of seed microbiome to maintain seed quality and vigour have been pointed out. Throughout the manuscript, the knowledge gap on seed-microbiota have been mentioned, thus, in future, studies on these areas could help us to understand properly the actual role of endophytes for the betterment of maintaining seed quality and vigour.
Collapse
Affiliation(s)
- Dibyendu Khan
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
| | - Rajdeep Shaw
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
| | - Ashutosh Kabiraj
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
| | - Arpita Paul
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
| | - Rajib Bandopadhyay
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India.
| |
Collapse
|
2
|
Keppler A, Roulier M, Pfeilmeier S, Petti GC, Sintsova A, Maier BA, Bortfeld-Miller M, Sunagawa S, Zipfel C, Vorholt JA. Plant microbiota feedbacks through dose-responsive expression of general non-self response genes. NATURE PLANTS 2025; 11:74-89. [PMID: 39627368 PMCID: PMC11757152 DOI: 10.1038/s41477-024-01856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/22/2024] [Indexed: 01/25/2025]
Abstract
The ability of plants to perceive and react to biotic and abiotic stresses is critical for their health. We recently identified a core set of genes consistently induced by members of the leaf microbiota, termed general non-self response (GNSR) genes. Here we show that GNSR components conversely impact leaf microbiota composition. Specific strains that benefited from this altered assembly triggered strong plant responses, suggesting that the GNSR is a dynamic system that modulates colonization by certain strains. Examination of the GNSR to live and inactivated bacteria revealed that bacterial abundance, cellular composition and exposure time collectively determine the extent of the host response. We link the GNSR to pattern-triggered immunity, as diverse microbe- or danger-associated molecular patterns cause dynamic GNSR gene expression. Our findings suggest that the GNSR is the result of a dose-responsive perception and signalling system that feeds back to the leaf microbiota and contributes to the intricate balance of plant-microbiome interactions.
Collapse
Affiliation(s)
| | | | | | | | - Anna Sintsova
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
3
|
Schlechter RO, Remus‐Emsermann MNP. Differential Responses of Methylobacterium and Sphingomonas Species to Multispecies Interactions in the Phyllosphere. Environ Microbiol 2025; 27:e70025. [PMID: 39792582 PMCID: PMC11722692 DOI: 10.1111/1462-2920.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/06/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025]
Abstract
The leaf surface, known as the phylloplane, presents an oligotrophic and heterogeneous environment due to its topography and uneven distribution of resources. Although it is a challenging environment, leaves support abundant bacterial communities that are spatially structured. However, the factors influencing these spatial distribution patterns are not well understood. To study the changes in population density and spatial distribution of bacteria in synthetic communities, the behaviour of two common bacterial groups in the Arabidopsis thaliana leaf microbiota-Methylobacterium (methylobacteria) and Sphingomonas (sphingomonads)-was examined. Using synthetic communities consisting of two or three species, the hypothesis was tested that the presence of a third species affects the density and spatial interaction of the other two species. Results indicated that methylobacteria exhibit greater sensitivity to changes in population densities and spatial patterns, with higher intra-genus competition and lower densities and aggregation compared to sphingomonads. Pairwise comparisons were insufficient to explain the shifts observed in three-species communities, suggesting that higher-order interactions influence the structuring of complex communities. This emphasises the role of multispecies interactions in determining spatial patterns and community dynamics on the phylloplane.
Collapse
Affiliation(s)
- R. O. Schlechter
- Institute of Microbiology and Dahlem Centre of Plant Sciences, Department of Biology, Chemistry, PharmacyFreie Universität BerlinBerlinGermany
- School of Biological Sciences and Biomolecular Interaction Centre and Bioprotection Research CoreUniversity of CanterburyChristchurchNew Zealand
| | - M. N. P. Remus‐Emsermann
- Institute of Microbiology and Dahlem Centre of Plant Sciences, Department of Biology, Chemistry, PharmacyFreie Universität BerlinBerlinGermany
- School of Biological Sciences and Biomolecular Interaction Centre and Bioprotection Research CoreUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
4
|
Chesneau G, Herpell J, Garrido-Oter R, Hacquard S. From synthetic communities to synthetic ecosystems: exploring causalities in plant-microbe-environment interactions. THE NEW PHYTOLOGIST 2025; 245:496-502. [PMID: 39501565 DOI: 10.1111/nph.20250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/14/2024] [Indexed: 12/20/2024]
Abstract
The plant microbiota research field has rapidly shifted from efforts aimed at gaining a descriptive understanding of microbiota composition to a focus on acquiring mechanistic insights into microbiota functions and assembly rules. This evolution was driven by our ability to establish comprehensive collections of plant-associated microbes and to reconstruct meaningful microbial synthetic communities (SynComs). We argue that this powerful deconstruction-reconstruction strategy can be used to reconstitute increasingly complex synthetic ecosystems (SynEcos) and mechanistically understand high-level biological organization. The transitioning from simple to more advanced, fully tractable and programmable gnotobiotic SynEcos is ongoing and aims at rationally simplifying natural ecosystems by engineering them. Such reconstitution ecology approaches represent an untapped strategy for bridging the gap between ecology and functional biology and for unraveling plant-microbiota-environment mechanisms that modulate ecosystem health, assembly, and functioning.
Collapse
Affiliation(s)
- Guillaume Chesneau
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Johannes Herpell
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Rubén Garrido-Oter
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Earlham Institute, Norwich Research Park, NR4 7UZ, Norwich, UK
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| |
Collapse
|
5
|
Mesny F, Bauer M, Zhu J, Thomma BPHJ. Meddling with the microbiota: Fungal tricks to infect plant hosts. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102622. [PMID: 39241281 DOI: 10.1016/j.pbi.2024.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024]
Abstract
Plants associate with a wealth of microbes, collectively referred to as the plant microbiota, whose composition is determined by host plant genetics, immune responses, environmental factors and intermicrobial relations. Unsurprisingly, microbiota compositions change during disease development. Recent evidence revealed that some of these changes can be attributed to effector proteins with antimicrobial activities that are secreted by plant pathogens to manipulate host microbiota to their advantage. Intriguingly, many of these effectors have ancient origins, predating land plant emergence, and evolved over long evolutionary trajectories to acquire selective antimicrobial activities to target microbial antagonists in host plant microbiota. Thus, we argue that host-pathogen co-evolution likely involved arms races within the host-associated microbiota.
Collapse
Affiliation(s)
- Fantin Mesny
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), 50674 Cologne, Germany
| | - Martha Bauer
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), 50674 Cologne, Germany
| | - Jinyi Zhu
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), 50674 Cologne, Germany
| | - Bart P H J Thomma
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), 50674 Cologne, Germany.
| |
Collapse
|
6
|
Wang Z, Li Z, Zhang Y, Liao J, Guan K, Zhai J, Meng P, Tang X, Dong T, Song Y. Root hair developmental regulators orchestrate drought triggered microbiome changes and the interaction with beneficial Rhizobiaceae. Nat Commun 2024; 15:10068. [PMID: 39567534 PMCID: PMC11579020 DOI: 10.1038/s41467-024-54417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Drought is one of the most serious abiotic stresses, and emerging evidence suggest plant microbiome affects plant drought tolerance. However, there is a lack of genetic evidence regarding whether and how plants orchestrate the dynamic assembly of the microbiome upon drought. By utilizing mutants with enhanced or decreased root hair densities, we find that root hair regulators also affect drought induced root microbiome changes. Rhizobiaceae is a key biomarker taxa affected by root hair related mutants. We isolated and sequenced 1479 root associated microbes, and confirmed that several Rhizobium strains presented stress-alleviating activities. Metagenome, root transcriptome and root metabolome studies further reveal the multi-omic changes upon drought stress. We knocked out an ornithine cyclodeaminase (ocd) gene in Rhizobium sp. 4F10, which significantly dampens its stress alleviating ability. Our genetic and integrated multi-omics studies confirm the involvement of host genetic effects in reshaping a stress-alleviating root microbiome during drought, and provide mechanistic insights into Rhizobiaceae mediated abiotic stress protection.
Collapse
Affiliation(s)
- Zhenghong Wang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Zewen Li
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Yujie Zhang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Jingye Liao
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Kaixiang Guan
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Jingxuan Zhai
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Pengfei Meng
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Xianli Tang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Yi Song
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China.
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Northen TR, Kleiner M, Torres M, Kovács ÁT, Nicolaisen MH, Krzyżanowska DM, Sharma S, Lund G, Jelsbak L, Baars O, Kindtler NL, Wippel K, Dinesen C, Ferrarezi JA, Marian M, Pioppi A, Xu X, Andersen T, Geldner N, Schulze-Lefert P, Vorholt JA, Garrido-Oter R. Community standards and future opportunities for synthetic communities in plant-microbiota research. Nat Microbiol 2024; 9:2774-2784. [PMID: 39478084 DOI: 10.1038/s41564-024-01833-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Harnessing beneficial microorganisms is seen as a promising approach to enhance sustainable agriculture production. Synthetic communities (SynComs) are increasingly being used to study relevant microbial activities and interactions with the plant host. Yet, the lack of community standards limits the efficiency and progress in this important area of research. To address this gap, we recommend three actions: (1) defining reference SynComs; (2) establishing community standards, protocols and benchmark data for constructing and using SynComs; and (3) creating an infrastructure for sharing strains and data. We also outline opportunities to develop SynCom research through technical advances, linking to field studies, and filling taxonomic blind spots to move towards fully representative SynComs.
Collapse
Affiliation(s)
- Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- DOE Joint Genome Institute, Berkeley, CA, USA.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Marta Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ákos T Kovács
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Dorota M Krzyżanowska
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Gdańsk, Poland
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - George Lund
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | - Lars Jelsbak
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Nikolaj Lunding Kindtler
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kathrin Wippel
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Caja Dinesen
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jessica A Ferrarezi
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Malek Marian
- Center for Agriculture Food Environment, University of Trento, San Michele all'Adige, Trento, Italy
| | - Adele Pioppi
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xinming Xu
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Tonni Andersen
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Paul Schulze-Lefert
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | | | - Ruben Garrido-Oter
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany.
- Earlham Institute, Norwich Research Park, Norwich, UK.
| |
Collapse
|
8
|
Wang R, Li J, Liang Y. Role of ROS signaling in the plant defense against vascular pathogens. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102617. [PMID: 39163783 DOI: 10.1016/j.pbi.2024.102617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024]
Abstract
Reactive oxygen species (ROS) is a collective term for highly reactive oxygen derivatives, including singlet oxygen, hydroxyl radicals, superoxide anions, and hydrogen peroxide. In plants, ROS are produced in apoplasts, chloroplasts, mitochondria, and peroxisomes. Although ROS are toxic when their levels exceed a certain threshold, low-concentration ROS can serve as essential signaling molecules for plant growth and development, as well as plant responses to abiotic and biotic stresses. Various aspects of the role of ROS in plants have been discussed in previous reviews. In this review, we first summarize recent progress in the regulatory mechanisms of apoplastic ROS signaling and then propose its potential roles in plant defense against vascular pathogens to provide new ideas for the prevention and control of vascular diseases.
Collapse
Affiliation(s)
- Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory for Agricultural Microbiome of the Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory for Agricultural Microbiome of the Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory for Agricultural Microbiome of the Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Unger K, Raza SAK, Mayer T, Reichelt M, Stuttmann J, Hielscher A, Wittstock U, Gershenzon J, Agler MT. Glucosinolate structural diversity shapes recruitment of a metabolic network of leaf-associated bacteria. Nat Commun 2024; 15:8496. [PMID: 39353951 PMCID: PMC11445407 DOI: 10.1038/s41467-024-52679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
Host defenses can have broader ecological roles, but how they shape natural microbiome recruitment is poorly understood. Aliphatic glucosinolates (GLSs) are secondary defense metabolites in Brassicaceae plant leaves. Their genetically defined structure shapes interactions with pests in Arabidopsis thaliana leaves, and here we find that it also shapes bacterial recruitment. In model genotype Col-0, GLSs (mostly 4-methylsulfinylbutyl-GLS) have no clear effect on natural leaf bacterial recruitment. In a genotype from a wild population, however, GLSs (mostly allyl-GLS) enrich specific taxa, mostly Comamonadaceae and Oxalobacteraceae. Consistently, Comamonadaceae are also enriched in wild A. thaliana, and Oxalobacteraceae are enriched from wild plants on allyl-GLS as carbon source, but not on 4-methylsulfinylbutyl-GLS. Recruitment differences between GLS structures most likely arise from bacterial myrosinase specificity. Community recruitment is then defined by metabolic cross-feeding among bacteria. The link of genetically defined metabolites to recruitment could lead to new strategies to shape plant microbiome balance.
Collapse
Affiliation(s)
- Kerstin Unger
- Institute for Microbiology, Plant Microbiosis Group, Friedrich Schiller University Jena, Jena, Germany
| | - Syed Ali Komail Raza
- Institute for Microbiology, Plant Microbiosis Group, Friedrich Schiller University Jena, Jena, Germany
| | - Teresa Mayer
- Institute for Microbiology, Plant Microbiosis Group, Friedrich Schiller University Jena, Jena, Germany
- Schülerforschungszentrum Berchtesgaden, Didactics of Life Science, Technical University of Munich, Munich, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Johannes Stuttmann
- CEA, CNRS, BIAM, UMR7265, LEMiRE (Rhizosphère et Interactions sol-plante-microbiote), Aix Marseille University, 13115, Saint-Paul lez Durance, France
| | - Annika Hielscher
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ute Wittstock
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Matthew T Agler
- Institute for Microbiology, Plant Microbiosis Group, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
10
|
Nakagami S, Wang Z, Han X, Tsuda K. Regulation of Bacterial Growth and Behavior by Host Plant. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:69-96. [PMID: 38857544 DOI: 10.1146/annurev-phyto-010824-023359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Plants are associated with diverse bacteria in nature. Some bacteria are pathogens that decrease plant fitness, and others are beneficial bacteria that promote plant growth and stress resistance. Emerging evidence also suggests that plant-associated commensal bacteria collectively contribute to plant health and are essential for plant survival in nature. Bacteria with different characteristics simultaneously colonize plant tissues. Thus, plants need to accommodate bacteria that provide service to the host plants, but they need to defend against pathogens at the same time. How do plants achieve this? In this review, we summarize how plants use physical barriers, control common goods such as water and nutrients, and produce antibacterial molecules to regulate bacterial growth and behavior. Furthermore, we highlight that plants use specialized metabolites that support or inhibit specific bacteria, thereby selectively recruiting plant-associated bacterial communities and regulating their function. We also raise important questions that need to be addressed to improve our understanding of plant-bacteria interactions.
Collapse
Affiliation(s)
- Satoru Nakagami
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Zhe Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Xiaowei Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Kenichi Tsuda
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| |
Collapse
|
11
|
Spooren J, van Bentum S, Thomashow LS, Pieterse CMJ, Weller DM, Berendsen RL. Plant-Driven Assembly of Disease-Suppressive Soil Microbiomes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:1-30. [PMID: 38857541 DOI: 10.1146/annurev-phyto-021622-100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Plants have coevolved together with the microbes that surround them and this assemblage of host and microbes functions as a discrete ecological unit called a holobiont. This review outlines plant-driven assembly of disease-suppressive microbiomes. Plants are colonized by microbes from seed, soil, and air but selectively shape the microbiome with root exudates, creating microenvironment hot spots where microbes thrive. Using plant immunity for gatekeeping and surveillance, host-plant genetic properties govern microbiome assembly and can confer adaptive advantages to the holobiont. These advantages manifest in disease-suppressive soils, where buildup of specific microbes inhibits the causal agent of disease, that typically develop after an initial disease outbreak. Based on disease-suppressive soils such as take-all decline, we developed a conceptual model of how plants in response to pathogen attack cry for help and recruit plant-protective microbes that confer increased resistance. Thereby, plants create a soilborne legacy that protects subsequent generations and forms disease-suppressive soils.
Collapse
Affiliation(s)
- Jelle Spooren
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Sietske van Bentum
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Linda S Thomashow
- Wheat Health, Genetics and Quality Research Unit, US Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA;
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - David M Weller
- Wheat Health, Genetics and Quality Research Unit, US Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA;
| | - Roeland L Berendsen
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Cheng YT, Thireault CA, Zhang L, Paasch BC, Sohrabi R, He SY. Roles of microbiota in autoimmunity in Arabidopsis leaves. NATURE PLANTS 2024; 10:1363-1376. [PMID: 39242981 PMCID: PMC11410663 DOI: 10.1038/s41477-024-01779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/01/2024] [Indexed: 09/09/2024]
Abstract
Over the past three decades, researchers have isolated plant mutants that show constitutively activated defence responses in the absence of pathogen infection. These mutants are called autoimmune mutants and are typically dwarf and/or bearing chlorotic/necrotic lesions. Here, from a genetic screen for Arabidopsis genes involved in maintaining a normal leaf microbiota, we identified TIP GROWTH DEFECTIVE 1 (TIP1), which encodes an S-acyltransferase, as a key player in guarding leaves against abnormal microbiota level and composition under high-humidity conditions. The tip1 mutant has several characteristic phenotypes of classical autoimmune mutants, including a dwarf stature, showing lesions, and having a high basal level of defence gene expression. Gnotobiotic experiments revealed that the autoimmune phenotypes of the tip1 mutant are largely dependent on the presence of microbiota as axenic tip1 plants have markedly reduced autoimmune phenotypes. We found that the microbiota dependency of autoimmune phenotypes is shared by several 'lesion mimic'-type autoimmune mutants in Arabidopsis. It is worth noting that autoimmune phenotypes caused by mutations in two Nucleotide-Binding, Leucine-Rich Repeat (NLR) genes do not require the presence of microbiota and can even be partially alleviated by microbiota. Our results therefore suggest the existence of at least two classes of autoimmunity (microbiota-dependent versus microbiota-independent) in plants. The observed interplay between autoimmunity and microbiota in the lesion mimic class of autoimmunity is reminiscent of the interactions between autoimmunity and dysbiosis in the animal kingdom. These parallels highlight the intricate relationship between host immunity and microbial communities across various biological systems.
Collapse
Affiliation(s)
- Yu Ti Cheng
- Department of Biology, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
| | - Caitlin A Thireault
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Li Zhang
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Bradley C Paasch
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Reza Sohrabi
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
13
|
Zhang W, Gundel PE, Jáuregui R, Card SD, Mace WJ, Johnson RD, Bastías DA. The growth promotion in endophyte symbiotic plants does not penalise the resistance to herbivores and bacterial microbiota. PLANT, CELL & ENVIRONMENT 2024; 47:2865-2878. [PMID: 38616528 DOI: 10.1111/pce.14912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
A trade-off between growth and defence against biotic stresses is common in plants. Fungal endophytes of the genus Epichloë may relieve this trade-off in their host grasses since they can simultaneously induce plant growth and produce antiherbivore alkaloids that circumvent the need for host defence. The Epichloë ability to decouple the growth-defence trade-off was evaluated by subjecting ryegrass with and without Epichloë endophytes to an exogenous treatment with gibberellin (GA) followed by a challenge with Rhopalosiphum padi aphids. In agreement with the endophyte-mediated trade-off decoupling hypothesis, the GA-derived promotion of plant growth increased the susceptibility to aphids in endophyte-free plants but did not affect the insect resistance in endophyte-symbiotic plants. In line with the unaltered insect resistance, the GA treatment did not reduce the concentration of Epichloë-derived alkaloids. The Epichloë mycelial biomass was transiently increased by the GA treatment but at the expense of hyphal integrity. The response of the phyllosphere bacterial microbiota to both GA treatment and Epichloë was also evaluated. Only Epichloë, and not the GA treatment, altered the composition of the phyllosphere microbiota and the abundance of certain bacterial taxa. Our findings clearly demonstrate that Epichloë does indeed relieve the plant growth-defence trade-off.
Collapse
Affiliation(s)
- Wei Zhang
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Pedro E Gundel
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Ruy Jáuregui
- Animal Health Laboratory, Biosecurity New Zealand, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - Stuart D Card
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Wade J Mace
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Richard D Johnson
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Daniel A Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
14
|
Du B, Haensch R, Alfarraj S, Rennenberg H. Strategies of plants to overcome abiotic and biotic stresses. Biol Rev Camb Philos Soc 2024; 99:1524-1536. [PMID: 38561998 DOI: 10.1111/brv.13079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
In their environment, plants are exposed to a multitude of abiotic and biotic stresses that differ in intensity, duration and severity. As sessile organisms, they cannot escape these stresses, but instead have developed strategies to overcome them or to compensate for the consequences of stress exposure. Defence can take place at different levels and the mechanisms involved are thought to differ in efficiency across these levels. To minimise metabolic constraints and to reduce the costs of stress defence, plants prioritise first-line defence strategies in the apoplastic space, involving ascorbate, defensins and small peptides, as well as secondary metabolites, before cellular processes are affected. In addition, a large number of different symplastic mechanisms also provide efficient stress defence, including chemical antioxidants, antioxidative enzymes, secondary metabolites, defensins and other peptides as well as proteins. At both the symplastic and the apoplastic level of stress defence and compensation, a number of specialised transporters are thought to be involved in exchange across membranes that still have not been identified, and information on the regeneration of different defence compounds remains ambiguous. In addition, strategies to overcome and compensate for stress exposure operate not only at the cellular, but also at the organ and whole-plant levels, including stomatal regulation, and hypersensitive and systemic responses to prevent or reduce the spread of stress impacts within the plant. Defence can also take place at the ecosystem level by root exudation of signalling molecules and the emission of volatile organic compounds, either directly or indirectly into the rhizosphere and/or the aboveground atmosphere. The mechanisms by which plants control the production of these compounds and that mediate perception of stressful conditions are still not fully understood. Here we summarise plant defence strategies from the cellular to ecosystem level, discuss their advantages and disadvantages for plant growth and development, elucidate the current state of research on the transport and regeneration capacity of defence metabolites, and outline insufficiently explored questions for further investigation.
Collapse
Affiliation(s)
- Baoguo Du
- College of Life Science and Biotechnology, Ecological Security and Protection Key laboratory of Sichuan Province, Mianyang Normal University, Mianxing Road West 166, Mianyang, 621000, PR China
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Köhler-Allee 53, Freiburg, D-79110, Germany
| | - Robert Haensch
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstr. 1, Braunschweig, D-38106, Germany
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715, PR China
| | - Saleh Alfarraj
- King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Köhler-Allee 53, Freiburg, D-79110, Germany
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715, PR China
| |
Collapse
|
15
|
Sommer A, Wenig M, Knappe C, Kublik S, Foesel BU, Schloter M, Vlot AC. A salicylic acid-associated plant-microbe interaction attracts beneficial Flavobacterium sp. to the Arabidopsis thaliana phyllosphere. PHYSIOLOGIA PLANTARUM 2024; 176:e14483. [PMID: 39169536 DOI: 10.1111/ppl.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/23/2024]
Abstract
Both above- and below-ground parts of plants are constantly challenged with microbes and interact closely with them. Many plant-growth-promoting rhizobacteria, mostly interacting with the plant's root system, enhance the immunity of plants in a process described as induced systemic resistance (ISR). Here, we characterized local induced resistance (IR) triggered by the model PGPR Pseudomonas simiae WCS417r (WCS417) in Arabidopsis thaliana. Hydroponic application of WCS417 to Arabidopsis roots resulted in propagation of WCS417 in/on leaves and the establishment of local IR. WCS417-triggered local IR was dependent on salicylic acid (SA) biosynthesis and signalling and on functional biosynthesis of pipecolic acid and monoterpenes, which are classically associated with systemic acquired resistance (SAR). WCS417-triggered local IR was further associated with a priming of gene expression changes related to SA signalling and SAR. A metabarcoding approach applied to the leaf microbiome revealed a significant local IR-associated enrichment of Flavobacterium sp.. Co-inoculation experiments using WCS417 and At-LSPHERE Flavobacterium sp. Leaf82 suggest that the proliferation of these bacteria is influenced by both microbial and immunity-related, plant-derived factors. Furthermore, application of Flavobacterium Leaf82 to Arabidopsis leaves induced SAR in an NPR1-dependent manner, suggesting that recruitment of this bacterium to the phyllosphere resulted in propagation of IR. Together, the data highlight the importance of plant-microbe-microbe interactions in the phyllosphere and reveal Flavobacterium sp. Leaf82 as a new beneficial promoter of plant health.
Collapse
Affiliation(s)
- Anna Sommer
- Faculty of Life Sciences: Food, Nutrition and Health, Chair of Crop Plant Genetics, University of Bayreuth, Kulmbach, Germany
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Claudia Knappe
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Susanne Kublik
- Helmholtz Zentrum Muenchen, Institute for Comparative Microbiome Analysis, Neuherberg, Germany
| | - Bärbel U Foesel
- Helmholtz Zentrum Muenchen, Institute for Comparative Microbiome Analysis, Neuherberg, Germany
| | - Michael Schloter
- Helmholtz Zentrum Muenchen, Institute for Comparative Microbiome Analysis, Neuherberg, Germany
- Chair for Environmental Microbiology, Technische Universität München, Freising, Germany
| | - A Corina Vlot
- Faculty of Life Sciences: Food, Nutrition and Health, Chair of Crop Plant Genetics, University of Bayreuth, Kulmbach, Germany
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| |
Collapse
|
16
|
Markova O, Garipova S, Chistoedova A, Matyunina V, Lubyanova A, Lastochkina O, Garipov A, Shpirnaya I, Pusenkova L. Predicting Field Effectiveness of Endophytic Bacillus subtilis Inoculants for Common Bean Using Morphometric and Biochemical Markers. PLANTS (BASEL, SWITZERLAND) 2024; 13:1769. [PMID: 38999609 PMCID: PMC11244252 DOI: 10.3390/plants13131769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
According to four field experiments, after the inoculation of Phaseolus vulgaris L. cultivar Ufimskaya with the commercial strain Bacillus subtilis 26D and the promising strain B. subtilis 10-4, it was found that inoculation with B. subtilis 10-4 improved seed productivity (SP) by 31-41% per plant, but only in dry years. In contrast, all 4 years of inoculation with B. subtilis 26D were ineffective or neutral. It was intended to determine the growing and biochemical characteristics of inoculated 7-day-old plants, which correlate with the field SP of bacterial preparations. The SP of inoculated plants (average of 4 years) correlated with root length (0.83), MDA content (-0.98), and catalase (CAT) activity in roots (-0.96) of week-old seedlings. High correlation coefficients between the H2O2 content in the roots and SP (0.89 and 0.77), as well as between the H2O2 content in shoots and SP (0.98 and 0.56), were observed only in two dry years, when the influence of bacteria was detected. These physiological indicators were identified as potential markers for predicting the effectiveness of the endophytic symbiosis between bean plants and B. subtilis strains. The findings may be used to develop effective microbial-based, eco-friendly technologies for bean production.
Collapse
Affiliation(s)
- Oksana Markova
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Svetlana Garipova
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Aelita Chistoedova
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Viktoriia Matyunina
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Alsu Lubyanova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya 71, 450054 Ufa, Russia
| | - Oksana Lastochkina
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya 71, 450054 Ufa, Russia
| | - Arsenii Garipov
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Irina Shpirnaya
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Lyudmila Pusenkova
- Bashkir Research Institute of Agriculture-Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, R. Zorge Str. 19, 450059 Ufa, Russia
| |
Collapse
|
17
|
Li J, Saha M, Majzoub ME, Yang T, Chu H, Thomas T, Weinberger F, Egan S. Non-selective microbiota reduction after the elicitation of a seaweed's immune response. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13268. [PMID: 38761002 PMCID: PMC11101764 DOI: 10.1111/1758-2229.13268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/06/2024] [Indexed: 05/20/2024]
Abstract
Pattern-triggered immunity (PTI) is an integral part of the innate immune system of many eukaryotic hosts, assisting in the defence against pathogen invasions. In plants and animals, PTI exerts a selective pressure on the microbiota that can alter community composition. However, the effect of PTI on the microbiota for non-model hosts, including seaweeds, remains unknown. Using quantitative polymerase chain reaction complemented with 16S rRNA gene and transcript amplicon sequencing, this study profiled the impact that PTI of the red seaweed Gracilaria gracilis has on its microbiota. PTI elicitation with agar oligosaccharides resulted in a significant reduction in the number of bacteria (by >75% within 72 h after treatment). However, the PTI elicitation did not cause any significant difference in the community diversity or structure. These findings demonstrated that PTI can be non-selective, and this might help to maintain a stable microbiota by uniformly reducing bacterial loads.
Collapse
Affiliation(s)
- Jiasui Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- Centre for Marine Science and Innovation, Faculty of Science, School of Biological, Earth and Environmental SciencesThe University of New South WalesKensingtonNew South WalesAustralia
| | - Mahasweta Saha
- Marine Ecology DivisionGEOMAR Helmholtz Centre for Ocean Research KielKielGermany
- Marine Ecology and BiodiversityPlymouth Marine LaboratoryPlymouthUK
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, Faculty of Science, School of Biological, Earth and Environmental SciencesThe University of New South WalesKensingtonNew South WalesAustralia
- Faculty of Medicine and Health, School of Biomedical SciencesThe University of New South WalesKensingtonNew South WalesAustralia
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- Institute of Soil ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Torsten Thomas
- Centre for Marine Science and Innovation, Faculty of Science, School of Biological, Earth and Environmental SciencesThe University of New South WalesKensingtonNew South WalesAustralia
| | - Florian Weinberger
- Marine Ecology DivisionGEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| | - Suhelen Egan
- Centre for Marine Science and Innovation, Faculty of Science, School of Biological, Earth and Environmental SciencesThe University of New South WalesKensingtonNew South WalesAustralia
| |
Collapse
|
18
|
Gholizadeh S, Nemati I, Vestergård M, Barnes CJ, Kudjordjie EN, Nicolaisen M. Harnessing root-soil-microbiota interactions for drought-resilient cereals. Microbiol Res 2024; 283:127698. [PMID: 38537330 DOI: 10.1016/j.micres.2024.127698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/17/2024]
Abstract
Cereal plants form complex networks with their associated microbiome in the soil environment. A complex system including variations of numerous parameters of soil properties and host traits shapes the dynamics of cereal microbiota under drought. These multifaceted interactions can greatly affect carbon and nutrient cycling in soil and offer the potential to increase plant growth and fitness under drought conditions. Despite growing recognition of the importance of plant microbiota to agroecosystem functioning, harnessing the cereal root microbiota remains a significant challenge due to interacting and synergistic effects between root traits, soil properties, agricultural practices, and drought-related features. A better mechanistic understanding of root-soil-microbiota associations could lead to the development of novel strategies to improve cereal production under drought. In this review, we discuss the root-soil-microbiota interactions for improving the soil environment and host fitness under drought and suggest a roadmap for harnessing the benefits of these interactions for drought-resilient cereals. These methods include conservative trait-based approaches for the selection and breeding of plant genetic resources and manipulation of the soil environments.
Collapse
Affiliation(s)
- Somayeh Gholizadeh
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Iman Nemati
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mette Vestergård
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Christopher James Barnes
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Enoch Narh Kudjordjie
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Mogens Nicolaisen
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark.
| |
Collapse
|
19
|
Nakano RT, Shimasaki T. Long-Term Consequences of PTI Activation and Its Manipulation by Root-Associated Microbiota. PLANT & CELL PHYSIOLOGY 2024; 65:681-693. [PMID: 38549511 DOI: 10.1093/pcp/pcae033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 05/31/2024]
Abstract
In nature, plants are constantly colonized by a massive diversity of microbes engaged in mutualistic, pathogenic or commensal relationships with the host. Molecular patterns present in these microbes activate pattern-triggered immunity (PTI), which detects microbes in the apoplast or at the tissue surface. Whether and how PTI distinguishes among soil-borne pathogens, opportunistic pathogens, and commensal microbes within the soil microbiota remains unclear. PTI is a multimodal series of molecular events initiated by pattern perception, such as Ca2+ influx, reactive oxygen burst, and extensive transcriptional and metabolic reprogramming. These short-term responses may manifest within minutes to hours, while the long-term consequences of chronic PTI activation persist for days to weeks. Chronic activation of PTI is detrimental to plant growth, so plants need to coordinate growth and defense depending on the surrounding biotic and abiotic environments. Recent studies have demonstrated that root-associated commensal microbes can activate or suppress immune responses to variable extents, clearly pointing to the role of PTI in root-microbiota interactions. However, the molecular mechanisms by which root commensals interfere with root immunity and root immunity modulates microbial behavior remain largely elusive. Here, with a focus on the difference between short-term and long-term PTI responses, we summarize what is known about microbial interference with host PTI, especially in the context of root microbiota. We emphasize some missing pieces that remain to be characterized to promote the ultimate understanding of the role of plant immunity in root-microbiota interactions.
Collapse
|
20
|
Getzke F, Wang L, Chesneau G, Böhringer N, Mesny F, Denissen N, Wesseler H, Adisa PT, Marner M, Schulze-Lefert P, Schäberle TF, Hacquard S. Physiochemical interaction between osmotic stress and a bacterial exometabolite promotes plant disease. Nat Commun 2024; 15:4438. [PMID: 38806462 PMCID: PMC11133316 DOI: 10.1038/s41467-024-48517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Various microbes isolated from healthy plants are detrimental under laboratory conditions, indicating the existence of molecular mechanisms preventing disease in nature. Here, we demonstrated that application of sodium chloride (NaCl) in natural and gnotobiotic soil systems is sufficient to induce plant disease caused by an otherwise non-pathogenic root-derived Pseudomonas brassicacearum isolate (R401). Disease caused by combinatorial treatment of NaCl and R401 triggered extensive, root-specific transcriptional reprogramming that did not involve down-regulation of host innate immune genes, nor dampening of ROS-mediated immunity. Instead, we identified and structurally characterized the R401 lipopeptide brassicapeptin A as necessary and sufficient to promote disease on salt-treated plants. Brassicapeptin A production is salt-inducible, promotes root colonization and transitions R401 from being beneficial to being detrimental on salt-treated plants by disturbing host ion homeostasis, thereby bolstering susceptibility to osmolytes. We conclude that the interaction between a global change stressor and a single exometabolite from a member of the root microbiome promotes plant disease in complex soil systems.
Collapse
Affiliation(s)
- Felix Getzke
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Lei Wang
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Guillaume Chesneau
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Nils Böhringer
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany
| | - Fantin Mesny
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany
| | - Nienke Denissen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Hidde Wesseler
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Priscilla Tijesuni Adisa
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany.
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany.
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
| |
Collapse
|
21
|
Sun K, Pan YT, Jiang HJ, Xu JY, Ma CY, Zhou J, Liu Y, Shabala S, Zhang W, Dai CC. Root endophyte-mediated alteration in plant H2O2 homeostasis regulates symbiosis outcome and reshapes the rhizosphere microbiota. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3153-3170. [PMID: 38394357 DOI: 10.1093/jxb/erae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
Endophytic symbioses between plants and fungi are a dominant feature of many terrestrial ecosystems, yet little is known about the signaling that defines these symbiotic associations. Hydrogen peroxide (H2O2) is recognized as a key signal mediating the plant adaptive response to both biotic and abiotic stresses. However, the role of H2O2 in plant-fungal symbiosis remains elusive. Using a combination of physiological analysis, plant and fungal deletion mutants, and comparative transcriptomics, we reported that various environmental conditions differentially affect the interaction between Arabidopsis and the root endophyte Phomopsis liquidambaris, and link this process to alterations in H2O2 levels and H2O2 fluxes across root tips. We found that enhanced H2O2 efflux leading to a moderate increase in H2O2 levels at the plant-fungal interface is required for maintaining plant-fungal symbiosis. Disturbance of plant H2O2 homeostasis compromises the symbiotic ability of plant roots. Moreover, the fungus-regulated H2O2 dynamics modulate the rhizosphere microbiome by selectively enriching for the phylum Cyanobacteria, with strong antioxidant defenses. Our results demonstrated that the regulation of H2O2 dynamics at the plant-fungal interface affects the symbiotic outcome in response to external conditions and highlight the importance of the root endophyte in reshaping the rhizosphere microbiota.
Collapse
Affiliation(s)
- Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Yi-Tong Pan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Hui-Jun Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Jia-Yan Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chen-Yu Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Jiayu Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Yunqi Liu
- Zhongguancun Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing 10080, China
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 60909, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| |
Collapse
|
22
|
Inoue K, Tsuchida N, Saijo Y. Modulation of plant immunity and biotic interactions under phosphate deficiency. JOURNAL OF PLANT RESEARCH 2024; 137:343-357. [PMID: 38693461 DOI: 10.1007/s10265-024-01546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Phosphorus (P) is an essential macronutrient for plant life and growth. P is primarily acquired in the form of inorganic phosphate (Pi) from soil. To cope with Pi deficiency, plants have evolved an elaborate system to improve Pi acquisition and utilization through an array of developmental and physiological changes, termed Pi starvation response (PSR). Plants also assemble and manage mutualistic microbes to enhance Pi uptake, through integrating PSR and immunity signaling. A trade-off between plant growth and defense favors the notion that plants lower a cellular state of immunity to accommodate host-beneficial microbes for nutrition and growth at the cost of infection risk. However, the existing data indicate that plants selectively activate defense responses against pathogens, but do not or less against non-pathogens, even under nutrient deficiency. In this review, we highlight recent advances in the principles and mechanisms with which plants balance immunity and growth-related processes to optimize their adaptation to Pi deficiency.
Collapse
Affiliation(s)
- Kanako Inoue
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| | - Natsuki Tsuchida
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| | - Yusuke Saijo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
23
|
Pena MM, Bhandari R, Bowers RM, Weis K, Newberry E, Wagner N, Pupko T, Jones JB, Woyke T, Vinatzer BA, Jacques MA, Potnis N. Genetic and Functional Diversity Help Explain Pathogenic, Weakly Pathogenic, and Commensal Lifestyles in the Genus Xanthomonas. Genome Biol Evol 2024; 16:evae074. [PMID: 38648506 PMCID: PMC11032200 DOI: 10.1093/gbe/evae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
The genus Xanthomonas has been primarily studied for pathogenic interactions with plants. However, besides host and tissue-specific pathogenic strains, this genus also comprises nonpathogenic strains isolated from a broad range of hosts, sometimes in association with pathogenic strains, and other environments, including rainwater. Based on their incapacity or limited capacity to cause symptoms on the host of isolation, nonpathogenic xanthomonads can be further characterized as commensal and weakly pathogenic. This study aimed to understand the diversity and evolution of nonpathogenic xanthomonads compared to their pathogenic counterparts based on their cooccurrence and phylogenetic relationship and to identify genomic traits that form the basis of a life history framework that groups xanthomonads by ecological strategies. We sequenced genomes of 83 strains spanning the genus phylogeny and identified eight novel species, indicating unexplored diversity. While some nonpathogenic species have experienced a recent loss of a type III secretion system, specifically the hrp2 cluster, we observed an apparent lack of association of the hrp2 cluster with lifestyles of diverse species. We performed association analysis on a large data set of 337 Xanthomonas strains to explain how xanthomonads may have established association with the plants across the continuum of lifestyles from commensals to weak pathogens to pathogens. Presence of distinct transcriptional regulators, distinct nutrient utilization and assimilation genes, transcriptional regulators, and chemotaxis genes may explain lifestyle-specific adaptations of xanthomonads.
Collapse
Affiliation(s)
- Michelle M Pena
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
- Present address: Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - Rishi Bhandari
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Robert M Bowers
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kylie Weis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Eric Newberry
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel Aviv, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel Aviv, Israel
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Life and Environmental Sciences, University of California Merced, Merced, CA, USA
| | - Boris A Vinatzer
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Marie-Agnès Jacques
- Institut Agro, INRAE, IRHS, SFR QUASAV, University of Angers, Angers F-49000, France
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|
24
|
Daniel BBJ, Steiger Y, Sintsova A, Field CM, Nguyen BD, Schubert C, Cherrak Y, Sunagawa S, Hardt WD, Vorholt JA. Assessing microbiome population dynamics using wild-type isogenic standardized hybrid (WISH)-tags. Nat Microbiol 2024; 9:1103-1116. [PMID: 38503975 PMCID: PMC10994841 DOI: 10.1038/s41564-024-01634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/09/2024] [Indexed: 03/21/2024]
Abstract
Microbiomes feature recurrent compositional structures under given environmental conditions. However, these patterns may conceal diverse underlying population dynamics that require intrastrain resolution. Here we developed a genomic tagging system, termed wild-type isogenic standardized hybrid (WISH)-tags, that can be combined with quantitative polymerase chain reaction and next-generation sequencing for microbial strain enumeration. We experimentally validated the performance of 62 tags and showed that they can be differentiated with high precision. WISH-tags were introduced into model and non-model bacterial members of the mouse and plant microbiota. Intrastrain priority effects were tested using one species of isogenic barcoded bacteria in the murine gut and the Arabidopsis phyllosphere, both with and without microbiota context. We observed colonization resistance against late-arriving strains of Salmonella Typhimurium in the mouse gut, whereas the phyllosphere accommodated Sphingomonas latecomers in a manner proportional to their presence at the late inoculation timepoint. This demonstrates that WISH-tags are a resource for deciphering population dynamics underlying microbiome assembly across biological systems.
Collapse
Affiliation(s)
| | - Yves Steiger
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Anna Sintsova
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pacheco-Moreno A, Bollmann-Giolai A, Chandra G, Brett P, Davies J, Thornton O, Poole P, Ramachandran V, Brown JKM, Nicholson P, Ridout C, DeVos S, Malone JG. The genotype of barley cultivars influences multiple aspects of their associated microbiota via differential root exudate secretion. PLoS Biol 2024; 22:e3002232. [PMID: 38662644 PMCID: PMC11045101 DOI: 10.1371/journal.pbio.3002232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Plant-associated microbes play vital roles in promoting plant growth and health, with plants secreting root exudates into the rhizosphere to attract beneficial microbes. Exudate composition defines the nature of microbial recruitment, with different plant species attracting distinct microbiota to enable optimal adaptation to the soil environment. To more closely examine the relationship between plant genotype and microbial recruitment, we analysed the rhizosphere microbiomes of landrace (Chevallier) and modern (NFC Tipple) barley (Hordeum vulgare) cultivars. Distinct differences were observed between the plant-associated microbiomes of the 2 cultivars, with the plant-growth promoting rhizobacterial genus Pseudomonas substantially more abundant in the Tipple rhizosphere. Striking differences were also observed between the phenotypes of recruited Pseudomonas populations, alongside distinct genotypic clustering by cultivar. Cultivar-driven Pseudomonas selection was driven by root exudate composition, with the greater abundance of hexose sugars secreted from Tipple roots attracting microbes better adapted to growth on these metabolites and vice versa. Cultivar-driven selection also operates at the molecular level, with both gene expression and the abundance of ecologically relevant loci differing between Tipple and Chevallier Pseudomonas isolates. Finally, cultivar-driven selection is important for plant health, with both cultivars showing a distinct preference for microbes selected by their genetic siblings in rhizosphere transplantation assays.
Collapse
Affiliation(s)
- Alba Pacheco-Moreno
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | | | - Govind Chandra
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Paul Brett
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Jack Davies
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Owen Thornton
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Philip Poole
- Department of Biology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Vinoy Ramachandran
- Department of Biology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - James K. M. Brown
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Paul Nicholson
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Chris Ridout
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- New Heritage Barley, Norwich Research Park, Norwich, United Kingdom
| | - Sarah DeVos
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- New Heritage Barley, Norwich Research Park, Norwich, United Kingdom
| | - Jacob G. Malone
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
26
|
Van Gerrewey T, Chung HS. MAPK Cascades in Plant Microbiota Structure and Functioning. J Microbiol 2024; 62:231-248. [PMID: 38587594 DOI: 10.1007/s12275-024-00114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 04/09/2024]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules that coordinate diverse biological processes such as plant innate immunity and development. Recently, MAPK cascades have emerged as pivotal regulators of the plant holobiont, influencing the assembly of normal plant microbiota, essential for maintaining optimal plant growth and health. In this review, we provide an overview of current knowledge on MAPK cascades, from upstream perception of microbial stimuli to downstream host responses. Synthesizing recent findings, we explore the intricate connections between MAPK signaling and the assembly and functioning of plant microbiota. Additionally, the role of MAPK activation in orchestrating dynamic changes in root exudation to shape microbiota composition is discussed. Finally, our review concludes by emphasizing the necessity for more sophisticated techniques to accurately decipher the role of MAPK signaling in establishing the plant holobiont relationship.
Collapse
Affiliation(s)
- Thijs Van Gerrewey
- Plant Biotechnology Research Center, Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, 21985, Republic of Korea
| | - Hoo Sun Chung
- Plant Biotechnology Research Center, Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, 21985, Republic of Korea.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
27
|
Goto Y, Maki N, Sklenar J, Derbyshire P, Menke FLH, Zipfel C, Kadota Y, Shirasu K. The phagocytosis oxidase/Bem1p domain-containing protein PB1CP negatively regulates the NADPH oxidase RBOHD in plant immunity. THE NEW PHYTOLOGIST 2024; 241:1763-1779. [PMID: 37823353 DOI: 10.1111/nph.19302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Perception of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors activates RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) through direct phosphorylation by BOTRYTIS-INDUCED KINASE 1 (BIK1) and induces the production of reactive oxygen species (ROS). RBOHD activity must be tightly controlled to avoid the detrimental effects of ROS, but little is known about RBOHD downregulation. To understand the regulation of RBOHD, we used co-immunoprecipitation of RBOHD with mass spectrometry analysis and identified PHAGOCYTOSIS OXIDASE/BEM1P (PB1) DOMAIN-CONTAINING PROTEIN (PB1CP). PB1CP negatively regulates RBOHD and the resistance against the fungal pathogen Colletotrichum higginsianum. PB1CP competes with BIK1 for binding to RBOHD in vitro. Furthermore, PAMP treatment enhances the PB1CP-RBOHD interaction, thereby leading to the dissociation of phosphorylated BIK1 from RBOHD in vivo. PB1CP localizes at the cell periphery and PAMP treatment induces relocalization of PB1CP and RBOHD to the same small endomembrane compartments. Additionally, overexpression of PB1CP in Arabidopsis leads to a reduction in the abundance of RBOHD protein, suggesting the possible involvement of PB1CP in RBOHD endocytosis. We found PB1CP, a novel negative regulator of RBOHD, and revealed its possible regulatory mechanisms involving the removal of phosphorylated BIK1 from RBOHD and the promotion of RBOHD endocytosis.
Collapse
Affiliation(s)
- Yukihisa Goto
- RIKEN Center for Sustainable Resource Science (CSRS), Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
| | - Noriko Maki
- RIKEN Center for Sustainable Resource Science (CSRS), Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Yasuhiro Kadota
- RIKEN Center for Sustainable Resource Science (CSRS), Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science (CSRS), Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| |
Collapse
|
28
|
Tabassum N, Ahmed HI, Parween S, Sheikh AH, Saad MM, Krattinger SG, Hirt H. Host genotype, soil composition, and geo-climatic factors shape the fonio seed microbiome. MICROBIOME 2024; 12:11. [PMID: 38233870 PMCID: PMC10792890 DOI: 10.1186/s40168-023-01725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/18/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Fonio (Digitaria exilis), an orphan millet crop, is the oldest indigenous crop in West Africa. Although the yield is low due to pre-domestication characteristics, the quick maturation time, drought tolerance, and the ability to thrive on poor soils make fonio a climate-smart crop. Being holobionts, plants evolve in close interaction with microbial partners, which is crucial for plant phenology and fitness. As seeds are the bottleneck of vertically transmitting plant microbiota, we proposed to unravel the seed microbiome of the under-domesticated and resilient crop fonio. Our study investigated the bacterial seed endophyte diversity across 126 sequenced fonio accessions from distinct locations in West Africa. We conducted a correlation study of the structures and functions of the seed-associated microbiomes with the native geo-climate and soil structure data. We also performed Genome-wide association studies (GWAS) to identify genetic loci associated with seed endophyte diversity. RESULT We report that fonio millet has diverse heritable seed endophytic taxa. We analyzed the seed microbiomes of 126 fonio accessions and showed that despite the diversity of microbiomes from distinct geographical locations, all fonio genetic groups share a core microbiome. In addition, we observed that native soil composition, geo-climatic factors, and host genotype correlate with the seed microbiomes. GWAS analysis of genetic loci associated with endophyte seed bacterial diversity identified fonio SNPs associated with genes functioning in embryo development and stress/defense response. CONCLUSION Analysis of the seed endophyte of the climate-smart crop fonio indicated that despite possessing a heritable core microbiome, native conditions may shape the overall fonio seed microbiomes in different populations. These distinct microbiomes could play important roles in the adaptation of fonio to different environmental conditions. Our study identified the seed microbiome as a potential target for enhancing crop resilience to climate stress in a sustainable way. Video Abstract.
Collapse
Affiliation(s)
- Naheed Tabassum
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Sabiha Parween
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Arsheed H Sheikh
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Maged M Saad
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| | - Heribert Hirt
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
29
|
Entila F, Han X, Mine A, Schulze-Lefert P, Tsuda K. Commensal lifestyle regulated by a negative feedback loop between Arabidopsis ROS and the bacterial T2SS. Nat Commun 2024; 15:456. [PMID: 38212332 PMCID: PMC10784570 DOI: 10.1038/s41467-024-44724-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
Despite the plant health-promoting effects of plant microbiota, these assemblages also comprise potentially detrimental microbes. How plant immunity controls its microbiota to promote plant health under these conditions remains largely unknown. We find that commensal bacteria isolated from healthy Arabidopsis plants trigger diverse patterns of reactive oxygen species (ROS) production dependent on the immune receptors and completely on the NADPH oxidase RBOHD that selectively inhibited specific commensals, notably Xanthomonas L148. Through random mutagenesis, we find that L148 gspE, encoding a type II secretion system (T2SS) component, is required for the damaging effects of Xanthomonas L148 on rbohD mutant plants. In planta bacterial transcriptomics reveals that RBOHD suppresses most T2SS gene expression including gspE. L148 colonization protected plants against a bacterial pathogen, when gspE was inhibited by ROS or mutation. Thus, a negative feedback loop between Arabidopsis ROS and the bacterial T2SS tames a potentially detrimental leaf commensal and turns it into a microbe beneficial to the host.
Collapse
Affiliation(s)
- Frederickson Entila
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, Cologne, 50829, Germany
| | - Xiaowei Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
| | - Akira Mine
- JST PRESTO, Kawaguchi-shi, Saitama, 332-0012, Japan
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, Cologne, 50829, Germany
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, Cologne, 50829, Germany.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China.
| |
Collapse
|
30
|
Su P, Kang H, Peng Q, Wicaksono WA, Berg G, Liu Z, Ma J, Zhang D, Cernava T, Liu Y. Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis. Nat Commun 2024; 15:23. [PMID: 38167850 PMCID: PMC10762202 DOI: 10.1038/s41467-023-44335-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
In terrestrial ecosystems, plant leaves provide the largest biological habitat for highly diverse microbial communities, known as the phyllosphere microbiota. However, the underlying mechanisms of host-driven assembly of these ubiquitous communities remain largely elusive. Here, we conduct a large-scale and in-depth assessment of the rice phyllosphere microbiome aimed at identifying specific host-microbe links. A genome-wide association study reveals a strong association between the plant genotype and members of four bacterial orders, Pseudomonadales, Burkholderiales, Enterobacterales and Xanthomonadales. Some of the associations are specific to a distinct host genomic locus, pathway or even gene. The compound 4-hydroxycinnamic acid (4-HCA) is identified as the main driver for enrichment of bacteria belonging to Pseudomonadales. 4-HCA can be synthesized by the host plant's OsPAL02 from the phenylpropanoid biosynthesis pathway. A knockout mutant of OsPAL02 results in reduced Pseudomonadales abundance, dysbiosis of the phyllosphere microbiota and consequently higher susceptibility of rice plants to disease. Our study provides a direct link between a specific plant metabolite and rice phyllosphere homeostasis opening possibilities for new breeding strategies.
Collapse
Affiliation(s)
- Pin Su
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qianze Peng
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya City, Sanya, 572024, China
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, 14469, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany
| | - Zhuoxin Liu
- Longping Branch, College of Biology, Hunan University, Changsha, 410082, China
| | - Jiejia Ma
- Longping Branch, College of Biology, Hunan University, Changsha, 410082, China
| | - Deyong Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya City, Sanya, 572024, China.
- College of Tropical Crops, Hainan University, Haikou, 570228, China.
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria.
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Yong Liu
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
31
|
Garai S, Bhowal B, Gupta M, Sopory SK, Singla-Pareek SL, Pareek A, Kaur C. Role of methylglyoxal and redox homeostasis in microbe-mediated stress mitigation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111922. [PMID: 37952767 DOI: 10.1016/j.plantsci.2023.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
One of the general consequences of stress in plants is the accumulation of reactive oxygen (ROS) and carbonyl species (like methylglyoxal) to levels that are detrimental for plant growth. These reactive species are inherently produced in all organisms and serve different physiological functions but their excessive accumulation results in cellular toxicity. It is, therefore, essential to restore equilibrium between their synthesis and breakdown to ensure normal cellular functioning. Detoxification mechanisms that scavenge these reactive species are considered important for stress mitigation as they maintain redox balance by restricting the levels of ROS, methylglyoxal and other reactive species in the cellular milieu. Stress tolerance imparted to plants by root-associated microbes involves a multitude of mechanisms, including maintenance of redox homeostasis. By improving the overall antioxidant response in plants, microbes can strengthen defense pathways and hence, the adaptive abilities of plants to sustain growth under stress. Hence, through this review we wish to highlight the contribution of root microbiota in modulating the levels of reactive species and thereby, maintaining redox homeostasis in plants as one of the important mechanisms of stress alleviation. Further, we also examine the microbial mechanisms of resistance to oxidative stress and their role in combating plant stress.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mayank Gupta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sudhir K Sopory
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India
| | - Charanpreet Kaur
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India.
| |
Collapse
|
32
|
Huang WF, Li J, Huang JA, Liu ZH, Xiong LG. Review: Research progress on seasonal succession of phyllosphere microorganisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111898. [PMID: 37879538 DOI: 10.1016/j.plantsci.2023.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/15/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Phyllosphere microorganisms have recently attracted the attention of scientists studying plant microbiomes. The origin, diversity, functions, and interactions of phyllosphere microorganisms have been extensively explored. Many experiments have demonstrated seasonal cycles of phyllosphere microbes. However, a comprehensive comparison of these separate investigations to characterize seasonal trends in phyllosphere microbes of woody and herbaceous plants has not been conducted. In this review, we explored the dynamic changes of phyllosphere microorganisms in woody and non-woody plants with the passage of the season, sought to find the driving factors, summarized these texts, and thought about future research trends regarding the application of phyllosphere microorganisms in agricultural production. Seasonal trends in phyllosphere microorganisms of herbaceous and woody plants have similarities and differences, but extensive experimental validation is needed. Climate, insects, hosts, microbial interactions, and anthropogenic activities are the diverse factors that influence seasonal variation in phyllosphere microorganisms.
Collapse
Affiliation(s)
- Wen-Feng Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Li-Gui Xiong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
33
|
Pfeilmeier S, Werz A, Ote M, Bortfeld-Miller M, Kirner P, Keppler A, Hemmerle L, Gäbelein CG, Petti GC, Wolf S, Pestalozzi CM, Vorholt JA. Leaf microbiome dysbiosis triggered by T2SS-dependent enzyme secretion from opportunistic Xanthomonas pathogens. Nat Microbiol 2024; 9:136-149. [PMID: 38172620 PMCID: PMC10769872 DOI: 10.1038/s41564-023-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
In healthy plants, the innate immune system contributes to maintenance of microbiota homoeostasis, while disease can be associated with microbiome perturbation or dysbiosis, and enrichment of opportunistic plant pathogens like Xanthomonas. It is currently unclear whether the microbiota change occurs independently of the opportunistic pathogens or is caused by the latter. Here we tested if protein export through the type-2 secretion system (T2SS) by Xanthomonas causes microbiome dysbiosis in Arabidopsis thaliana in immunocompromised plants. We found that Xanthomonas strains secrete a cocktail of plant cell wall-degrading enzymes that promote Xanthomonas growth during infection. Disease severity and leaf tissue degradation were increased in A. thaliana mutants lacking the NADPH oxidase RBOHD. Experiments with gnotobiotic plants, synthetic bacterial communities and wild-type or T2SS-mutant Xanthomonas revealed that virulence and leaf microbiome composition are controlled by the T2SS. Overall, a compromised immune system in plants can enrich opportunistic pathogens, which damage leaf tissues and ultimately cause microbiome dysbiosis by facilitating growth of specific commensal bacteria.
Collapse
Affiliation(s)
- Sebastian Pfeilmeier
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
- Molecular Plant Pathology, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Anja Werz
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Marine Ote
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Pascal Kirner
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Lucas Hemmerle
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | - Sarah Wolf
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
34
|
Emmenegger B, Massoni J, Pestalozzi CM, Bortfeld-Miller M, Maier BA, Vorholt JA. Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning. Nat Commun 2023; 14:7983. [PMID: 38042924 PMCID: PMC10693592 DOI: 10.1038/s41467-023-43793-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
Plant-associated microbiomes contribute to important ecosystem functions such as host resistance to biotic and abiotic stresses. The factors that determine such community outcomes are inherently difficult to identify under complex environmental conditions. In this study, we present an experimental and analytical approach to explore microbiota properties relevant for a microbiota-conferred host phenotype, here plant protection, in a reductionist system. We screened 136 randomly assembled synthetic communities (SynComs) of five bacterial strains each, followed by classification and regression analyses as well as empirical validation to test potential explanatory factors of community structure and composition, including evenness, total commensal colonization, phylogenetic diversity, and strain identity. We find strain identity to be the most important predictor of pathogen reduction, with machine learning algorithms improving performances compared to random classifications (94-100% versus 32% recall) and non-modelled predictions (0.79-1.06 versus 1.5 RMSE). Further experimental validation confirms three strains as the main drivers of pathogen reduction and two additional strains that confer protection in combination. Beyond the specific application presented in our study, we provide a framework that can be adapted to help determine features relevant for microbiota function in other biological systems.
Collapse
Affiliation(s)
| | - Julien Massoni
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
35
|
Song S, Morales Moreira Z, Briggs AL, Zhang XC, Diener AC, Haney CH. PSKR1 balances the plant growth-defence trade-off in the rhizosphere microbiome. NATURE PLANTS 2023; 9:2071-2084. [PMID: 37973937 DOI: 10.1038/s41477-023-01539-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 09/08/2023] [Indexed: 11/19/2023]
Abstract
Microbiota benefit their hosts by improving nutrient uptake and pathogen protection. How host immunity restricts microbiota while avoiding autoimmunity is poorly understood. Here we show that the Arabidopsis phytosulfokine receptor 1 (pskr1) mutant displays autoimmunity (plant stunting, defence-gene expression and reduced rhizosphere bacterial growth) in response to growth-promoting Pseudomonas fluorescens. Microbiome profiling and microbiota colonization showed that PSKR1-mediated reduction in bacterial growth and stunting is largely specific to Pseudomonas. Transcriptional profiling demonstrated that PSKR1 regulates the growth-defence trade-off during Pseudomonas colonization: PSKR1 upregulates plant photosynthesis and root growth but suppresses salicylic-acid-mediated defences. Genetic epistasis experiments showed that pskr1 stunting and restriction of bacterial growth are salicylic acid dependent. Finally, we showed that Pseudomonas, but not other bacteria, induces PSKR1 expression in roots, suggesting that Pseudomonas might manipulate plant signalling to promote its colonization. Our data demonstrate a genetic mechanism to coordinate beneficial functions of the microbiome while preventing autoimmunity.
Collapse
Affiliation(s)
- Siyu Song
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zayda Morales Moreira
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Annika L Briggs
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xue-Cheng Zhang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew C Diener
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Cara H Haney
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Biological Sciences, The University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
36
|
Shu LJ, Kahlon PS, Ranf S. The power of patterns: new insights into pattern-triggered immunity. THE NEW PHYTOLOGIST 2023; 240:960-967. [PMID: 37525301 DOI: 10.1111/nph.19148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/16/2023] [Indexed: 08/02/2023]
Abstract
The plant immune system features numerous immune receptors localized on the cell surface to monitor the apoplastic space for danger signals from a broad range of plant colonizers. Recent discoveries shed light on the enormous complexity of molecular signals sensed by these receptors, how they are generated and removed to maintain cellular homeostasis and immunocompetence, and how they are shaped by host-imposed evolutionary constraints. Fine-tuning receptor sensing mechanisms at the molecular, cellular and physiological level is critical for maintaining a robust but adaptive host barrier to commensal, pathogenic, and symbiotic colonizers alike. These receptors are at the core of any plant-colonizer interaction and hold great potential for engineering disease resistance and harnessing beneficial microbiota to keep crops healthy.
Collapse
Affiliation(s)
- Lin-Jie Shu
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising-Weihenstephan, Germany
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Parvinderdeep S Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising-Weihenstephan, Germany
| | - Stefanie Ranf
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising-Weihenstephan, Germany
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| |
Collapse
|
37
|
Russ D, Fitzpatrick CR, Teixeira PJPL, Dangl JL. Deep discovery informs difficult deployment in plant microbiome science. Cell 2023; 186:4496-4513. [PMID: 37832524 DOI: 10.1016/j.cell.2023.08.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023]
Abstract
Plant-associated microbiota can extend plant immune system function, improve nutrient acquisition and availability, and alleviate abiotic stresses. Thus, naturally beneficial microbial therapeutics are enticing tools to improve plant productivity. The basic definition of plant microbiota across species and ecosystems, combined with the development of reductionist experimental models and the manipulation of plant phenotypes with microbes, has fueled interest in its translation to agriculture. However, the great majority of microbes exhibiting plant-productivity traits in the lab and greenhouse fail in the field. Therapeutic microbes must reach détente, the establishment of uneasy homeostasis, with the plant immune system, invade heterogeneous pre-established plant-associated communities, and persist in a new and potentially remodeled community. Environmental conditions can alter community structure and thus impact the engraftment of therapeutic microbes. We survey recent breakthroughs, challenges, and opportunities in translating beneficial microbes from the lab to the field.
Collapse
Affiliation(s)
- Dor Russ
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Connor R Fitzpatrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paulo J P L Teixeira
- Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
38
|
De Mandal S, Jeon J. Phyllosphere Microbiome in Plant Health and Disease. PLANTS (BASEL, SWITZERLAND) 2023; 12:3481. [PMID: 37836221 PMCID: PMC10575124 DOI: 10.3390/plants12193481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
The phyllosphere refers to the aboveground surface of plants colonized by diverse microorganisms. Microbes inhabiting this environment play an important role in enhancing the host's genomic and metabolic capabilities, including defense against pathogens. Compared to the large volume of studies on rhizosphere microbiome for plant health and defense, our understanding of phyllosphere microbiome remains in its infancy. In this review, we aim to explore the mechanisms that govern the phyllosphere assembly and their function in host defence, as well as highlight the knowledge gaps. These efforts will help develop strategies to harness the phyllosphere microbiome toward sustainable crop production.
Collapse
Affiliation(s)
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
39
|
Mesny F, Hacquard S, Thomma BPHJ. Co-evolution within the plant holobiont drives host performance. EMBO Rep 2023; 24:e57455. [PMID: 37471099 PMCID: PMC10481671 DOI: 10.15252/embr.202357455] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Plants interact with a diversity of microorganisms that influence their growth and resilience, and they can therefore be considered as ecological entities, namely "plant holobionts," rather than as singular organisms. In a plant holobiont, the assembly of above- and belowground microbiota is ruled by host, microbial, and environmental factors. Upon microorganism perception, plants activate immune signaling resulting in the secretion of factors that modulate microbiota composition. Additionally, metabolic interdependencies and antagonism between microbes are driving forces for community assemblies. We argue that complex plant-microbe and intermicrobial interactions have been selected for during evolution and may promote the survival and fitness of plants and their associated microorganisms as holobionts. As part of this process, plants evolved metabolite-mediated strategies to selectively recruit beneficial microorganisms in their microbiota. Some of these microbiota members show host-adaptation, from which mutualism may rapidly arise. In the holobiont, microbiota members also co-evolved antagonistic activities that restrict proliferation of microbes with high pathogenic potential and can therefore prevent disease development. Co-evolution within holobionts thus ultimately drives plant performance.
Collapse
Affiliation(s)
- Fantin Mesny
- Institute for Plant SciencesUniversity of CologneCologneGermany
| | - Stéphane Hacquard
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| | - Bart PHJ Thomma
- Institute for Plant SciencesUniversity of CologneCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| |
Collapse
|
40
|
Paasch BC, Sohrabi R, Kremer JM, Nomura K, Cheng YT, Martz J, Kvitko B, Tiedje JM, He SY. A critical role of a eubiotic microbiota in gating proper immunocompetence in Arabidopsis. NATURE PLANTS 2023; 9:1468-1480. [PMID: 37591928 PMCID: PMC10505558 DOI: 10.1038/s41477-023-01501-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Although many studies have shown that microbes can ectopically stimulate or suppress plant immune responses, the fundamental question of whether the entire preexisting microbiota is indeed required for proper development of plant immune response remains unanswered. Using a recently developed peat-based gnotobiotic plant growth system, we found that Arabidopsis grown in the absence of a natural microbiota lacked age-dependent maturation of plant immune response and were defective in several aspects of pattern-triggered immunity. Axenic plants exhibited hypersusceptibility to infection by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and the fungal pathogen Botrytis cinerea. Microbiota-mediated immunocompetence was suppressed by rich nutrient conditions, indicating a tripartite interaction between the host, microbiota and abiotic environment. A synthetic microbiota composed of 48 culturable bacterial strains from the leaf endosphere of healthy Arabidopsis plants was able to substantially restore immunocompetence similar to plants inoculated with a soil-derived community. In contrast, a 52-member dysbiotic synthetic leaf microbiota overstimulated the immune transcriptome. Together, these results provide evidence for a causal role of a eubiotic microbiota in gating proper immunocompetence and age-dependent immunity in plants.
Collapse
Affiliation(s)
- Bradley C Paasch
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Reza Sohrabi
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - James M Kremer
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Kinya Nomura
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Yu Ti Cheng
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Jennifer Martz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Brian Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA, USA
| | - James M Tiedje
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
41
|
Su T, Wang W, Wang Z, Li P, Xin X, Yu Y, Zhang D, Zhao X, Wang J, Sun L, Jin G, Zhang F, Yu S. BrMYB108 confers resistance to Verticillium wilt by activating ROS generation in Brassica rapa. Cell Rep 2023; 42:112938. [PMID: 37552600 DOI: 10.1016/j.celrep.2023.112938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/12/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Increasing plant resistance to Verticillium wilt (VW), which causes massive losses of Brassica rapa crops, is a challenge worldwide. However, few causal genes for VW resistance have been identified by forward genetic approaches, resulting in limited application in breeding. We combine a genome-wide association study in a natural population and quantitative trait locus mapping in an F2 population and identify that the MYB transcription factor BrMYB108 regulates plant resistance to VW. A 179 bp insertion in the BrMYB108 promoter alters its expression pattern during Verticillium longisporum (VL) infection. High BrMYB108 expression leads to high VL resistance, which is confirmed by disease resistance tests using BrMYB108 overexpression and loss-of-function mutants. Furthermore, we verify that BrMYB108 confers VL resistance by regulating reactive oxygen species (ROS) generation through binding to the promoters of respiratory burst oxidase genes (Rboh). A loss-of-function mutant of AtRbohF in Arabidopsis shows significant susceptibility to VL. Thus, BrMYB108 and its target ROS genes could be used as targets for genetic engineering for VL resistance of B. rapa.
Collapse
Affiliation(s)
- Tongbing Su
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Weihong Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Zheng Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Peirong Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Xiaoyun Xin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Yangjun Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Deshuang Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Xiuyun Zhao
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Jiao Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Liling Sun
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Guihua Jin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Fenglan Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China.
| | - Shuancang Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China.
| |
Collapse
|
42
|
Martins SJ, Pasche J, Silva HAO, Selten G, Savastano N, Abreu LM, Bais HP, Garrett KA, Kraisitudomsook N, Pieterse CMJ, Cernava T. The Use of Synthetic Microbial Communities to Improve Plant Health. PHYTOPATHOLOGY 2023; 113:1369-1379. [PMID: 36858028 DOI: 10.1094/phyto-01-23-0016-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Despite the numerous benefits plants receive from probiotics, maintaining consistent results across applications is still a challenge. Cultivation-independent methods associated with reduced sequencing costs have considerably improved the overall understanding of microbial ecology in the plant environment. As a result, now, it is possible to engineer a consortium of microbes aiming for improved plant health. Such synthetic microbial communities (SynComs) contain carefully chosen microbial species to produce the desired microbiome function. Microbial biofilm formation, production of secondary metabolites, and ability to induce plant resistance are some of the microbial traits to consider when designing SynComs. Plant-associated microbial communities are not assembled randomly. Ecological theories suggest that these communities have a defined phylogenetic organization structured by general community assembly rules. Using machine learning, we can study these rules and target microbial functions that generate desired plant phenotypes. Well-structured assemblages are more likely to lead to a stable SynCom that thrives under environmental stressors as compared with the classical selection of single microbial activities or taxonomy. However, ensuring microbial colonization and long-term plant phenotype stability is still one of the challenges to overcome with SynComs, as the synthetic community may change over time with microbial horizontal gene transfer and retained mutations. Here, we explored the advances made in SynCom research regarding plant health, focusing on bacteria, as they are the most dominant microbial form compared with other members of the microbiome and the most commonly found in SynCom studies.
Collapse
Affiliation(s)
- Samuel J Martins
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, U.S.A
| | - Josephine Pasche
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, U.S.A
| | - Hiago Antonio O Silva
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, U.S.A
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Gijs Selten
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Noah Savastano
- Department of Plant and Soil Sciences, 311 AP Biopharma, University of Delaware, Newark, DE 19713, U.S.A
| | - Lucas Magalhães Abreu
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Harsh P Bais
- Department of Plant and Soil Sciences, 311 AP Biopharma, University of Delaware, Newark, DE 19713, U.S.A
| | - Karen A Garrett
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, U.S.A
| | | | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8020, Austria
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, U.K
| |
Collapse
|
43
|
Cheng YT, Thireault CA, Paasch BC, Zhang L, He SY. Roles of microbiota in autoimmunity in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531303. [PMID: 36945461 PMCID: PMC10028843 DOI: 10.1101/2023.03.06.531303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Over the past three decades, researchers have isolated plant mutants that display constitutively activated defense responses in the absence of pathogen infection. These mutants are called autoimmune mutants and are typically dwarf and/or bearing chlorotic/necrotic lesions. From a genetic screen for Arabidopsis genes involved in maintaining a normal leaf microbiota, we identified TIP GROWTH DEFECTIVE 1 (TIP1), which encodes a S-acyltransferase, as a key player in guarding leaves against abnormal microbiota level and composition under high humidity conditions. The tip1 mutant has several characteristic phenotypes of classical autoimmune mutants, including a dwarf stature, displaying lesions, and having a high basal level of defense gene expression. Gnotobiotic experiments revealed that the autoimmune phenotypes of the tip1 mutant are largely dependent on the presence of microbiota as axenic tip1 plants have markedly reduced autoimmune phenotypes. We found that the microbiota dependency of autoimmune phenotypes is shared by several "lesion mimic"-type autoimmune mutants in Arabidopsis. Interestingly, autoimmune phenotypes caused by mutations in NLR genes do not require the presence of microbiota and can even be partially alleviated by microbiota. Our results therefore suggest the existence of two classes of autoimmunity (microbiota-dependent vs. microbiota-independent) in plants. The observed interplay between autoimmunity and microbiota in the lesion mimic class of autoimmunity is reminiscent of the interactions between autoimmunity and dysbiosis in the animal kingdom.
Collapse
Affiliation(s)
- Yu Ti Cheng
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Caitlin A. Thireault
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Bradley C. Paasch
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Li Zhang
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
44
|
Herpell JB, Alickovic A, Diallo B, Schindler F, Weckwerth W. Phyllosphere symbiont promotes plant growth through ACC deaminase production. THE ISME JOURNAL 2023:10.1038/s41396-023-01428-7. [PMID: 37264153 DOI: 10.1038/s41396-023-01428-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
Plant growth promoting bacteria can confer resistance to various types of stress and increase agricultural yields. The mechanisms they employ are diverse. One of the most important genes associated with the increase in plant biomass and stress resistance is acdS, which encodes a 1-aminocyclopropane-1-carboxylate- or ACC-deaminase. The non-proteinogenic amino acid ACC is the precursor and means of long-distance transport of ethylene, a plant hormone associated with growth arrest. Expression of acdS reduces stress induced ethylene levels and the enzyme is abundant in rhizosphere colonizers. Whether ACC hydrolysis plays a role in the phyllosphere, both as assembly cue and in growth promotion, remains unclear. Here we show that Paraburkholderia dioscoreae Msb3, a yam phyllosphere symbiont, colonizes the tomato phyllosphere and promotes plant growth by action of its ACC deaminase. We found that acdS is required for improved plant growth but not for efficient leaf colonization. Strain Msb3 readily proliferates on the leaf surface of tomato, only occasionally spreading to the leaf endosphere through stomata. The strain can also colonize the soil or medium around the roots but only spreads into the root if the plant is wounded. Our results indicate that the degradation of ACC is not just an important trait of plant growth promoting rhizobacteria but also one of leaf dwelling phyllosphere bacteria. Manipulation of the leaf microbiota by means of spray inoculation may be more easily achieved than that of the soil. Therefore, the application of ACC deaminase containing bacteria to the phyllosphere may be a promising strategy to increasing plant stress resistance, pathogen control, and harvest yields.
Collapse
Affiliation(s)
- Johannes B Herpell
- Molecular Systems Biology Division, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Ajtena Alickovic
- Molecular Systems Biology Division, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Bocar Diallo
- Molecular Systems Biology Division, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Florian Schindler
- Molecular Systems Biology Division, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology Division, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
45
|
Zhang M, Wang Y, Hu Y, Wang H, Liu Y, Zhao B, Zhang J, Fang R, Yan Y. Heterosis in root microbiota inhibits growth of soil-borne fungal pathogens in hybrid rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1059-1076. [PMID: 36426878 DOI: 10.1111/jipb.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
In nature, plants are colonized by various microbes that play essential roles in their growth and health. Heterosis is a natural genetic phenomenon whereby first-generation hybrids exhibit superior phenotypic performance relative to their parents. It remains unclear whether this concept can be extended to the "hybridization" of microbiota from two parents in their descendants and what benefits the hybrid microbiota might convey. Here, we investigated the structure and function of the root microbiota from three hybrid rice varieties and their parents through amplicon sequencing analysis of bacterial 16S ribosomal DNA (rDNA) and fungal internal transcribed spacer (ITS) regions. We show that the bacterial and fungal root microbiota of the varieties are distinct from those of their parental lines and exhibit potential heterosis features in diversity and composition. Moreover, the root bacterial microbiota of hybrid variety LYP9 protects rice against soil-borne fungal pathogens. Systematic analysis of the protective capabilities of individual strains from a 30-member bacterial synthetic community derived from LYP9 roots indicated that community members have additive protective roles. Global transcription profiling analyses suggested that LYP9 root bacterial microbiota activate rice reactive oxygen species production and cell wall biogenesis, contributing to heterosis for protection. In addition, we demonstrate that the protection conferred by the LYP9 root microbiota is transferable to neighboring plants, potentially explaining the observed hybrid-mediated superior effects of mixed planting. Our findings suggest that some hybrids exhibit heterosis in their microbiota composition that promotes plant health, highlighting the potential for microbiota heterosis in breeding hybrid crops.
Collapse
Affiliation(s)
- Mengting Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yinyue Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyi Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Huacai Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yawen Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingran Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongsheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
46
|
Pereira LB, Thomazella DPT, Teixeira PJPL. Plant-microbiome crosstalk and disease development. CURRENT OPINION IN PLANT BIOLOGY 2023; 72:102351. [PMID: 36848753 DOI: 10.1016/j.pbi.2023.102351] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Plants harbor a complex immune system to fight off invaders and prevent diseases. For decades, the interactions between plants and pathogens have been investigated primarily through the lens of binary interactions, largely neglecting the diversity of microbes that naturally inhabit plant tissues. Recent research, however, demonstrates that resident microbes are more than mere spectators. Instead, the plant microbiome extends host immune function and influences the outcome of a pathogen infection. Both plants and the interacting microbes produce a large diversity of metabolites that form an intricate chemical network of nutrients, signals, and antimicrobial molecules. In this review, we discuss the involvement of the plant microbiome in disease development, focusing on the biochemical conversation that occurs between plants and their associated microbiota before, during and after infection. We also highlight outstanding questions and possible directions for future research.
Collapse
Affiliation(s)
- Letícia B Pereira
- Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Daniela P T Thomazella
- Department of Genetics, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Paulo J P L Teixeira
- Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil.
| |
Collapse
|
47
|
Lu Y, Zhang Y, Lian N, Li X. Membrane Dynamics Regulated by Cytoskeleton in Plant Immunity. Int J Mol Sci 2023; 24:ijms24076059. [PMID: 37047032 PMCID: PMC10094514 DOI: 10.3390/ijms24076059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
The plasma membrane (PM), which is composed of a lipid layer implanted with proteins, has diverse functions in plant responses to environmental triggers. The heterogenous dynamics of lipids and proteins in the plasma membrane play important roles in regulating cellular activities with an intricate pathway that orchestrates reception, signal transduction and appropriate response in the plant immune system. In the process of the plasma membrane participating in defense responses, the cytoskeletal elements have important functions in a variety of ways, including regulation of protein and lipid dynamics as well as vesicle trafficking. In this review, we summarized how the plasma membrane contributed to plant immunity and focused on the dynamic process of cytoskeleton regulation of endocytosis and exocytosis and propose future research directions.
Collapse
Affiliation(s)
- Yuqing Lu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Na Lian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
48
|
Ahmed A, He P, He P, Wu Y, He Y, Munir S. Environmental effect of agriculture-related manufactured nano-objects on soil microbial communities. ENVIRONMENT INTERNATIONAL 2023; 173:107819. [PMID: 36842382 DOI: 10.1016/j.envint.2023.107819] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Agriculture-related manufactured nano-objects (MNOs) can revolutionize the crop production and help to achieve sustainable development goals. MNOs with diverse physico-chemical properties and ability to encapsulate and deliver active ingredients in controlled, targeted and stimuli responsive manner can enhance the efficiency while minimizing collateral damage to non-target organisms and environment. Application of MNOs in the form of nanopesticides and nanofertilizers is known to affect soil microbial communities both positively and negatively, but detailed studies with varying dose, type and environmental conditions are scarce. Therefore, it is imperative to understand the complex mechanisms and factors which shape the MNOs-microbial interactions through integrating state of the art technologies including omics (transcriptomics, metabolomics, and proteomics), artificial intelligence, and statistical frameworks. Lastly, we propose the idea of MNOs-mediated manipulation of soil microbiome to modify the soil microbial communities for improved microbial services. These microbial services, if harnessed appropriately, can revolutionize modern agriculture and help in achieving sustainable development goals.
Collapse
Affiliation(s)
- Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
49
|
Poupin MJ, Ledger T, Roselló-Móra R, González B. The Arabidopsis holobiont: a (re)source of insights to understand the amazing world of plant-microbe interactions. ENVIRONMENTAL MICROBIOME 2023; 18:9. [PMID: 36803555 PMCID: PMC9938593 DOI: 10.1186/s40793-023-00466-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
As holobiont, a plant is intrinsically connected to its microbiomes. However, some characteristics of these microbiomes, such as their taxonomic composition, biological and evolutionary role, and especially the drivers that shape them, are not entirely elucidated. Reports on the microbiota of Arabidopsis thaliana first appeared more than ten years ago. However, there is still a lack of a comprehensive understanding of the vast amount of information that has been generated using this holobiont. The main goal of this review was to perform an in-depth, exhaustive, and systematic analysis of the literature regarding the Arabidopsis-microbiome interaction. A core microbiota was identified as composed of a few bacterial and non-bacterial taxa. The soil (and, to a lesser degree, air) were detected as primary microorganism sources. From the plant perspective, the species, ecotype, circadian cycle, developmental stage, environmental responses, and the exudation of metabolites were crucial factors shaping the plant-microbe interaction. From the microbial perspective, the microbe-microbe interactions, the type of microorganisms belonging to the microbiota (i.e., beneficial or detrimental), and the microbial metabolic responses were also key drivers. The underlying mechanisms are just beginning to be unveiled, but relevant future research needs were identified. Thus, this review provides valuable information and novel analyses that will shed light to deepen our understanding of this plant holobiont and its interaction with the environment.
Collapse
Affiliation(s)
- M J Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - T Ledger
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - R Roselló-Móra
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Illes Balears, Majorca, Spain
| | - B González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile.
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile.
| |
Collapse
|
50
|
Lian WH, Mohamad OAA, Dong L, Zhang LY, Wang D, Liu L, Han MX, Li S, Wang S, Antunes A, Fang BZ, Jiao JY, Li WJ. Culturomics- and metagenomics-based insights into the microbial community and function of rhizosphere soils in Sinai desert farming systems. ENVIRONMENTAL MICROBIOME 2023; 18:4. [PMID: 36639807 PMCID: PMC9840269 DOI: 10.1186/s40793-023-00463-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/08/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The microbiome of the Sinai Desert farming system plays an important role in the adaptive strategy of growing crops in a harsh, poly-extreme, desert environment. However, the diversity and function of microbial communities under this unfavorable moisture and nutritional conditions have not yet been investigated. Based on culturomic and metagenomic methods, we analyzed the microbial diversity and function of a total of fourteen rhizosphere soil samples (collected from twelve plants in four farms of the Sinai desert), which may provide a valuable and meaningful guidance for the design of microbial inoculants. RESULTS The results revealed a wide range of microbial taxa, including a high proportion of novel undescribed lineages. The composition of the rhizosphere microbial communities differed according to the sampling sites, despite similarities or differences in floristics. Whereas, the functional features of rhizosphere microbiomes were significantly similar in different sampling sites, although the microbial communities and the plant hosts themselves were different. Importantly, microorganisms involved in ecosystem functions are different between the sampling sites, for example nitrogen fixation was prevalent in all sample sites while microorganisms responsible for this process were different. CONCLUSION Here, we provide the first characterization of microbial communities and functions of rhizosphere soil from the Sinai desert farming systems and highlight its unexpectedly high diversity. This study provides evidence that the key microorganisms involved in ecosystem functions are different between sampling sites with different environment conditions, emphasizing the importance of the functional microbiomes of rhizosphere microbial communities. Furthermore, we suggest that microbial inoculants to be used in future agricultural production should select microorganisms that can be involved in plant-microorganism interactions and are already adapted to a similar environmental setting.
Collapse
Affiliation(s)
- Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Osama Abdalla Abdelshafy Mohamad
- Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511, Egypt
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Macau, People's Republic of China
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ling-Yu Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Dong Wang
- College of Life Science and Technology, Honghe University, Mengzi, 661199, People's Republic of China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ming-Xian Han
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shuang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, People's Republic of China
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Macau, People's Republic of China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|