1
|
Markandan K, Tiong YW, Sankaran R, Subramanian S, Markandan UD, Chaudhary V, Numan A, Khalid M, Walvekar R. Emergence of infectious diseases and role of advanced nanomaterials in point-of-care diagnostics: a review. Biotechnol Genet Eng Rev 2024; 40:3438-3526. [PMID: 36243900 DOI: 10.1080/02648725.2022.2127070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Infectious outbreaks are the foremost global public health concern, challenging the current healthcare system, which claims millions of lives annually. The most crucial way to control an infectious outbreak is by early detection through point-of-care (POC) diagnostics. POC diagnostics are highly advantageous owing to the prompt diagnosis, which is economical, simple and highly efficient with remote access capabilities. In particular, utilization of nanomaterials to architect POC devices has enabled highly integrated and portable (compact) devices with enhanced efficiency. As such, this review will detail the factors influencing the emergence of infectious diseases and methods for fast and accurate detection, thus elucidating the underlying factors of these infections. Furthermore, it comprehensively highlights the importance of different nanomaterials in POCs to detect nucleic acid, whole pathogens, proteins and antibody detection systems. Finally, we summarize findings reported on nanomaterials based on advanced POCs such as lab-on-chip, lab-on-disc-devices, point-of-action and hospital-on-chip. To this end, we discuss the challenges, potential solutions, prospects of integrating internet-of-things, artificial intelligence, 5G communications and data clouding to achieve intelligent POCs.
Collapse
Affiliation(s)
- Kalaimani Markandan
- Temasek Laboratories, Nanyang Technological University, Nanyang Drive, Singapore
- Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
| | - Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, Engineering Drive, Singapore
| | - Revathy Sankaran
- Graduate School, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Sakthinathan Subramanian
- Department of Materials & Mineral Resources Engineering, National Taipei University of Technology (NTUT), Taipei, Taiwan
| | | | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| |
Collapse
|
2
|
Huldin GF, Huang J, Reitemeier J, Fu KX. Nafion coated nanopore electrode for improving electrochemical aptamer-based biosensing. Faraday Discuss 2024. [PMID: 39495268 DOI: 10.1039/d4fd00144c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The transition to a personalized point-of-care model in medicine will fundamentally change the way medicine is practiced, leading to better patient care. Electrochemical biosensors based on structure-switching aptamers can contribute to this medical revolution due to the feasibility and convenience of selecting aptamers for specific targets. Recent studies have reported that nanostructured electrodes can enhance the signals of aptamer-based biosensors. However, miniaturized systems and body fluid environments pose challenges such as signal-to-noise ratio reduction and biofouling. To address these issues, researchers have proposed various electrode coating materials, including zwitterionic materials, biocompatible polymers and hybrid membranes. Nafion, a commonly used ion exchange membrane, is known for its excellent permselectivity and anti-biofouling properties, making it a suitable choice for biosensor systems. However, the performance and mechanism of Nafion-coated aptamer-based biosensor systems have not been thoroughly studied. In this work, we present a Nafion-coated gold nanoporous electrode, which excludes Nafion from the nanoporous structures and allows the aptamers immobilized inside the nanopores to freely detect chosen targets. The nanopore electrode is formed by a sputtering and dealloying process, resulting in a pore size in tens of nanometers. The biosensor is optimized by adjusting the electrochemical measurement parameters, aptamer density, Nafion thickness and nanopore size. Furthermore, we propose an explanation for the unusual signaling behavior of the aptamers confined within the nanoporous structures. This work provides a generalizable platform to investigate membrane-coated aptamer-based biosensors.
Collapse
Affiliation(s)
- Grayson F Huldin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
- Materials Science and Engineering Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Junming Huang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | - Julius Reitemeier
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | - Kaiyu X Fu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
3
|
Tang S, Xie X, Li L, Zhou L, Xing Y, Chen Y, Cai K, Li F, Zhang J. High fidelity detection of miRNAs from complex physiological samples through electrochemical nanosensors empowered by proximity catalysis and magnetic separation. Biosens Bioelectron 2024; 260:116435. [PMID: 38820724 DOI: 10.1016/j.bios.2024.116435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/25/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Electrochemical detection of miRNA biomarkers in complex physiological samples holds great promise for accurate evaluation of tumor burden in the perioperative period, yet limited by reproducibility and bias issues. Here, nanosensors installed with hybrid probes that responsively release catalytic DNAzymes (G-quadruplexes/hemin) were developed to solve the fidelity challenge in an immobilization-free detection. miRNA targets triggered toehold-mediated strand displacement reactions on the sensor surface and resulted in amplified shedding of DNAzymes. Subsequently, the interference background was removed by Fe3O4 core-facilitated magnetic separation. Binding aptamers of the electrochemical reporter (dopamine) were tethered closely to the catalytic units for boosting H2O2-mediated oxidation through proximity catalysis. The one-to-many conversion by dual amplification from biological-chemical catalysis facilitated sufficient homogeneous sensing signals on electrodes. Thereby, the nanosensor exhibited a low detection limit (2.08 fM), and high reproducibility (relative standard deviation of 1.99%). Most importantly, smaller variations (RSD of 0.51-1.04%) of quantified miRNAs were observed for detection from cell lysates, multiplexed detection from unprocessed serum, and successful discrimination of small upregulations in lysates of tumor tissue samples. The nanosensor showed superior diagnostic performance with an area under curve (AUC) of 0.97 and 94% accuracy in classifying breast cancer patients and healthy donors. These findings demonstrated the synergy of signal amplification and interference removal in achieving high-fidelity miRNA detection for practical clinical applications.
Collapse
Affiliation(s)
- Shuqi Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Lin Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Luoli Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yuhua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Fan Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.
| |
Collapse
|
4
|
Li W, Sun Z, Che X, Ma Y, Guo Y, Chen G, Zhu X, Feng C. Liquid-colloid-solid modular assembly for three-dimensional electrochemical biosensing of small molecules. Biosens Bioelectron 2024; 259:116396. [PMID: 38772247 DOI: 10.1016/j.bios.2024.116396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Electrochemical biosensors hold promise for advanced analytical applications in modern life analysis due to their miniaturization and cost-effectiveness. Nevertheless, their implementation in complex biological systems necessitates overcoming challenges related to timeliness, sensitivity, and interference resistance. Here, we developed a novel DNA hydrogel three-dimensional electron transporter through liquid-colloid-solid assembly, integrating electronic mediators and employing porous electrode covers with 3D printing technology. Our approach facilitated the fabrication of a high-performance electrochemical sensor for small molecule detection, leveraging target-specific aptamers and catalytic hairpin assembly (CHA) elements within the DNA hydrogel, which exhibited outstanding selectivity, sensitivity, and universality, achieving detection limits of 0.047 nM for kanamycin and 2.67 pM for ATP. Furthermore, this sensor could detect kanamycin in real samples, demonstrating good accuracy and robust anti-interference capabilities in human serum. Our work not only possesses substantial application value in clinical sample analysis but also represents a breakthrough in traditional strategies, thereby contributing to advancements in the application of electrochemical biosensors for life analysis.
Collapse
Affiliation(s)
- Wenxing Li
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Zijiu Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Xinran Che
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yonggeng Ma
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yi Guo
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
5
|
Rösch EL, Sack R, Chowdhury MS, Wolgast F, Zaborski M, Ludwig F, Schilling M, Viereck T, Rand U, Lak A. Amplification- and Enzyme-Free Magnetic Diagnostics Circuit for Whole-Genome Detection of SARS-CoV-2 RNA. Chembiochem 2024; 25:e202400251. [PMID: 38709072 DOI: 10.1002/cbic.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
Polymerase chain reaction (PCR) requires thermal cycling and enzymatic reactions for sequence amplification, hampering their applications in point-of-care (POC) settings. Magnetic bioassays based on magnetic particle spectroscopy (MPS) and magnetic nanoparticles (MNPs) are isothermal, wash-free, and can be quantitative. Realizing them amplification- and enzyme-free on a benchtop device, they will become irreplaceable for POC applications. Here we demonstrate a first-in-class magnetic signal amplification circuit (MAC) that enables detection of whole genome of SARS-CoV-2 by combining the specificity of toehold-mediated DNA strand displacement with the magnetic response of MNPs to declustering processes. Using MAC, we detect the N gene of SARS-CoV-2 samples at a concentration of 104 RNA copies/μl as determined by droplet digital PCR. Further, we demonstrate that MAC can reliably distinguish between SARS-CoV-2 and other human coronaviruses. Being a wash-, amplification- and enzyme-free biosensing concept and working at isothermal conditions (25 °C) on a low-cost benchtop MPS device, our MAC biosensing concept offers several indispensable features for translating nucleic acid detection to POC applications.
Collapse
Affiliation(s)
- Enja Laureen Rösch
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Rebecca Sack
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Mohammad Suman Chowdhury
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Florian Wolgast
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Margarete Zaborski
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures GmbH (DSMZ), Inhoffenstr. 7b, Braunschweig, 38124, Germany
| | - Frank Ludwig
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Meinhard Schilling
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Thilo Viereck
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Ulfert Rand
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures GmbH (DSMZ), Inhoffenstr. 7b, Braunschweig, 38124, Germany
| | - Aidin Lak
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| |
Collapse
|
6
|
Wang H. A Review of Nanotechnology in microRNA Detection and Drug Delivery. Cells 2024; 13:1277. [PMID: 39120308 PMCID: PMC11311607 DOI: 10.3390/cells13151277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play a crucial role in regulating gene expression. Dysfunction in miRNAs can lead to various diseases, including cancers, neurological disorders, and cardiovascular conditions. To date, approximately 2000 miRNAs have been identified in humans. These small molecules have shown promise as disease biomarkers and potential therapeutic targets. Therefore, identifying miRNA biomarkers for diseases and developing effective miRNA drug delivery systems are essential. Nanotechnology offers promising new approaches to addressing scientific and medical challenges. Traditional miRNA detection methods include next-generation sequencing, microarrays, Northern blotting, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Nanotechnology can serve as an effective alternative to Northern blotting and RT-qPCR for miRNA detection. Moreover, nanomaterials exhibit unique properties that differ from larger counterparts, enabling miRNA therapeutics to more effectively enter target cells, reduce degradation in the bloodstream, and be released in specific tissues or cells. This paper reviews the application of nanotechnology in miRNA detection and drug delivery systems. Given that miRNA therapeutics are still in the developing stages, nanotechnology holds great promise for accelerating miRNA therapeutics development.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
7
|
Yao Y, Liu W, Guan J, Cheng Y, Wu Z, Liu Q, Chen X. Synergy of Target-Induced Magnetic Network and Single-Drop Chromogenic System for Ultrasensitive "All-in-Tube" Detection of miRNA in Whole Blood. Anal Chem 2024; 96:12012-12021. [PMID: 38975991 DOI: 10.1021/acs.analchem.4c02045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The development of liquid biopsy methods for the accurate and reliable detection of miRNAs in whole blood is critical for the early diagnosis and monitoring of diseases. However, accurate quantification of miRNA expression levels remains challenging due to the complex matrix and low abundance of miRNAs in blood samples. Herein, we report a contactless signal output strategy with low background interference that ensures "zero-contact" between the reaction system and the colorimetry system. The designed target-induced magnetic ZnS/ZIF-90/ZnS network can serve as a unique signal amplifier and transducer. It releases hydrogen sulfide (H2S) gas in an acidic solution which can be concentrated in a droplet of only a few microliters in volume, etching the silver layer of Au@Ag nanostars (NSTs) in the droplet. This will lead to changes in the localized surface plasmon resonance signals of the NSTs. Finally, quantitative detection of let-7a is realized by measuring the offset value of the UV-vis absorption peak. Therefore, by virtue of the synergistic action of quadruple signal amplification methods, including catalytic hairpin assembly, ZnS/ZIF-90/ZnS, magnetic separation, and microextraction, the "All-in-Tube" ultrasensitive detection of low-abundance let-7a in whole blood is achieved with a detection limit as low as the aM level. In addition, the "zero-contact" signal output mode effectively solves the problem of complex matrix interference, demonstrating the great potential of this method for miRNA quantification in complex samples, such as whole blood.
Collapse
Affiliation(s)
- Yao Yao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Wei Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jianping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yujun Cheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhiliang Wu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- Xiangjiang Laboratory, Changsha, Hunan 410083, China
| |
Collapse
|
8
|
Liu Y, Sundah NR, Ho NRY, Shen WX, Xu Y, Natalia A, Yu Z, Seet JE, Chan CW, Loh TP, Lim BY, Shao H. Bidirectional linkage of DNA barcodes for the multiplexed mapping of higher-order protein interactions in cells. Nat Biomed Eng 2024; 8:909-923. [PMID: 38898172 DOI: 10.1038/s41551-024-01225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/05/2024] [Indexed: 06/21/2024]
Abstract
Capturing the full complexity of the diverse hierarchical interactions in the protein interactome is challenging. Here we report a DNA-barcoding method for the multiplexed mapping of pairwise and higher-order protein interactions and their dynamics within cells. The method leverages antibodies conjugated with barcoded DNA strands that can bidirectionally hybridize and covalently link to linearize closely spaced interactions within individual 3D protein complexes, encoding and decoding the protein constituents and the interactions among them. By mapping protein interactions in cancer cells and normal cells, we found that tumour cells exhibit a larger diversity and abundance of protein complexes with higher-order interactions. In biopsies of human breast-cancer tissue, the method accurately identified the cancer subtype and revealed that higher-order protein interactions are associated with cancer aggressiveness.
Collapse
Affiliation(s)
- Yu Liu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Noah R Sundah
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Nicholas R Y Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Wan Xiang Shen
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yun Xu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Zhonglang Yu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Ju Ee Seet
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Ching Wan Chan
- Department of Surgery, National University Hospital, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tze Ping Loh
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Brian Y Lim
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
- Department of Computer Science, School of Computing, National University of Singapore, Singapore, Singapore.
| | - Huilin Shao
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
9
|
Wu R, Chen Y, Zhang Y, Liu R, Zhang Q, Zhang C. Catalytic Gold Nanoparticle Assembly Programmed by DNAzyme Circuits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307107. [PMID: 38191832 DOI: 10.1002/smll.202307107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Assembled gold nanoparticle (AuNP) superstructures can generate unique physicochemical characteristics and be used in various applications, thus becoming an attractive research field. Recently, several DNA-assisted gold nanoparticle assembly methods have been rigorously developed that typically require a non-catalytic equimolar molecular assembly to guarantee the designed assembly. Although efficient and accurate, exploring such non-catalytic nanoparticle assemblies in the complex cellular milieu under low trigger concentrations remains challenging. Therefore, developing a catalytic method that facilitates gold nanoparticle assemblies with relatively low DNA trigger concentrations is desirable. In this report, a catalytic method to program gold nanoparticle assemblies by DNAzyme circuits is presented, where only a small number of DNA triggers are able to induce the production of a large number of the desired nanoparticle assemblies. The feasibility of using logic DNAzyme circuits to control catalytic nanoparticle assemblies is experimentally verified. Additionally, catalytic AuNP assembly systems are established with cascading and feedback functions. The work provides an alternative research direction to enrich the tool library of nanoparticle assembly and their application in biosensing and nanomedicine.
Collapse
Affiliation(s)
- Ranfeng Wu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yiming Chen
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing, 100871, China
| | - Yongpeng Zhang
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 100096, China
| | - Rongming Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Cheng Zhang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
Park BC, Soh JO, Choi HJ, Park HS, Lee SM, Fu HE, Kim MS, Ko MJ, Koo TM, Lee JY, Kim YK, Lee JH. Ultrasensitive and Rapid Circulating Tumor DNA Liquid Biopsy Using Surface-Confined Gene Amplification on Dispersible Magnetic Nano-Electrodes. ACS NANO 2024; 18:12781-12794. [PMID: 38733343 DOI: 10.1021/acsnano.3c12266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Circulating tumor DNA (ctDNA) detection has been acknowledged as a promising liquid biopsy approach for cancer diagnosis, with various ctDNA assays used for early detection and treatment monitoring. Dispersible magnetic nanoparticle-based electrochemical detection methods have been proposed as promising candidates for ctDNA detection based on the detection performance and features of the platform material. This study proposes a nanoparticle surface-localized genetic amplification approach by integrating Fe3O4-Au core-shell nanoparticles into polymerase chain reactions (PCR). These highly dispersible and magnetically responsive superparamagnetic nanoparticles act as nano-electrodes that amplify and accumulate target ctDNA in situ on the nanoparticle surface upon PCR amplification. These nanoparticles are subsequently captured and subjected to repetitive electrochemical measurements to induce reconfiguration-mediated signal amplification for ultrasensitive (∼3 aM) and rapid (∼7 min) metastatic breast cancer ctDNA detection in vitro. The detection platform can also detect metastatic biomarkers from in vivo samples, highlighting the potential for clinical applications and further expansion to rapid and ultrasensitive multiplex detection of various cancers.
Collapse
Affiliation(s)
- Bum Chul Park
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Jeong Ook Soh
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hee-Joo Choi
- Department of Pathology, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Biomedical Research Institute (HBRI), Hanyang University, Seoul 04763, Republic of Korea
| | - Hyeon Su Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Lee
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hong En Fu
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Myeong Soo Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min Jun Ko
- Department of Radiology, Northwestern University, Chicago, Illinois 60611, United States
| | - Thomas Myeongseok Koo
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jeong-Yeon Lee
- Department of Pathology, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Brain Korea Center for Smart Materials and Devices, Korea University, Seoul 02841, Republic of Korea
| | - Ju Hun Lee
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
11
|
Fang M, Wang Y, Yang T, Zhang J, Yu H, Luo Z, Su B, Lin X. Nucleic Acid Plate Culture: Label-Free and Naked-Eye-Based Digital Loop-Mediated Isothermal Amplification in Hydrogel with Machine Learning. ACS Sens 2024; 9:2010-2019. [PMID: 38602267 DOI: 10.1021/acssensors.3c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Digital nucleic acid amplification enables the absolute quantification of single molecules. However, due to the ultrasmall reaction volume in the digital system (i.e., short light path), most digital systems are limited to fluorescence signals, while label-free and naked-eye readout remain challenging. In this work, we report a digital nucleic acid plate culture method for label-free, ultrasimple, and naked-eye nucleic acid analysis. As simple as the bacteria culture, the nanoconfined digital loop-mediated isothermal amplification was performed by using polyacrylamide (PAM) hydrogel as the amplification matrix. The nanoconfinement of PAM hydrogel with an ionic polymer chain can remarkably accelerate the amplification of target nucleic acids and the growth of inorganic byproducts, namely, magnesium pyrophosphate particles (MPPs). Compared to that in aqueous solutions, MPPs trapped in the hydrogel with enhanced light scattering characteristics are clearly visible to the naked eye, forming white "colony" spots that can be simply counted in a label-free and instrument-free manner. The MPPs can also be photographed by a smartphone and automatically counted by a machine-learning algorithm to realize the absolute quantification of antibiotic-resistant pathogens in diverse real samples.
Collapse
Affiliation(s)
- Mei Fang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Yiru Wang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Tao Yang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Jing Zhang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanry Yu
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
12
|
Wang M, Jin L, Hang-Mei Leung P, Wang-Ngai Chow F, Zhao X, Chen H, Pan W, Liu H, Li S. Advancements in magnetic nanoparticle-based biosensors for point-of-care testing. Front Bioeng Biotechnol 2024; 12:1393789. [PMID: 38725992 PMCID: PMC11079239 DOI: 10.3389/fbioe.2024.1393789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The significance of point-of-care testing (POCT) in early clinical diagnosis and personalized patient care is increasingly recognized as a crucial tool in reducing disease outbreaks and improving patient survival rates. Within the realm of POCT, biosensors utilizing magnetic nanoparticles (MNPs) have emerged as a subject of substantial interest. This review aims to provide a comprehensive evaluation of the current landscape of POCT, emphasizing its growing significance within clinical practice. Subsequently, the current status of the combination of MNPs in the Biological detection has been presented. Furthermore, it delves into the specific domain of MNP-based biosensors, assessing their potential impact on POCT. By combining existing research and spotlighting pivotal discoveries, this review enhances our comprehension of the advancements and promising prospects offered by MNP-based biosensors in the context of POCT. It seeks to facilitate informed decision-making among healthcare professionals and researchers while also promoting further exploration in this promising field of study.
Collapse
Affiliation(s)
- Miaomiao Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Lian Jin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaoni Zhao
- Guangzhou Wanfu Biotechnology Company, Guangzhou, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Wenjing Pan
- Hengyang Medical School, University of South China, Hengyang, China
| | - Hongna Liu
- Hengyang Medical School, University of South China, Hengyang, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
- Hengyang Medical School, University of South China, Hengyang, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Healthcare Hospital, Changsha, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, China
| |
Collapse
|
13
|
Kong X, Cheng L, Dong Z, Huang Y, Xue X, Wang Z, Wang Y, Zang X, Qian H, Chang L, Wang Y. Rapid Cryptococcus electroporated-lysis and sensitive detection on a miniaturized platform. Biosens Bioelectron 2024; 250:116096. [PMID: 38316089 DOI: 10.1016/j.bios.2024.116096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Fast and accurate detection of Cryptococcus and precise differentiation of its subtypes is of great significance in protecting people from cryptococcal disease and preventing its spread in populations. However, traditional Cryptococcus identification and detection techniques still face significant challenges in achieving high analysis speed as well as high sensitivity. In this work, we report an electric microfluidic biochip. Compared to conventional methods that take several hours or even a day, this chip can detect Cryptococcus within 20 min, and achieve its maximum detection limit within 1 h, with the ability to differentiate between the Cryptococcus neoformans (NEO) and rare Cryptococcus gattii (GAT) efficiently, which accounts for nearly 100%. This device integrated two functional zones of an electroporation lysis (EL) zone for rapid cell lysis (<30 s) and an electrochemical detection (ED) zone for sensitive analysis of the released nucleic acids. The EL zone adopted a design of microelectrode arrays, which obtains a large electric field intensity at the constriction of the microchannel, addressing the safety concerns associated with high-voltage lysis. The device enables a limit of detection (LOD) of 60 pg/mL for NEO and 100 pg/mL for GAT through the modification of nanocomposites and specific probes. In terms of the detection time and sensitivity, the integrated microfluidic biochip demonstrates broad potential in Cryptococcus diagnosis and disease prevention.
Collapse
Affiliation(s)
- Xiangzhu Kong
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Long Cheng
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Zaizai Dong
- School of Engineering Medicine, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Yemei Huang
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; Affiliated Hospital of Weifang Medical University, Weifang, 261000, China
| | - Zhiying Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yusen Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xuelei Zang
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China; School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Lingqian Chang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China; Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Yang Wang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
| |
Collapse
|
14
|
Huang J, Zhang D, Zu Y, Zhang L. Procalcitonin Detection Using Immunomagnetic Beads-Mediated Surface-Enhanced Raman Spectroscopy. BIOSENSORS 2024; 14:164. [PMID: 38667157 PMCID: PMC11048292 DOI: 10.3390/bios14040164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
The early detection of procalcitonin (PCT) is crucial for diagnosing bacterial infections due to its high sensitivity and specificity. While colloidal gold colorimetric and immune-chemiluminescence methods are commonly employed in clinical detection, the former lacks sensitivity, and the latter faces challenges with a brief luminescence process and an elevated background. Here, we introduce a novel approach for the quantitative analysis of PCT using surface-enhanced Raman spectroscopy (SERS), leveraging the enhanced properties of metal nanoparticles. Simultaneously, we employed a magnetic nanoparticle coating and surface biofunctionalization modification to immobilize PCT-trapping antibodies, creating the required immune substrates. The resulting magnetic nanoparticles and antibody complexes, acting as carriers and recognition units, exhibited superparamagnetism and the specific recognition of biomarkers. Then, this complex efficiently underwent magnetic separation with an applied magnetic field, streamlining the cumbersome steps of traditional ELISA and significantly reducing the detection time. In conclusion, the exploration of immunomagnetic bead detection technology based on surface-enhanced Raman spectroscopy holds crucial practical significance for the sensitive detection of PCT.
Collapse
Affiliation(s)
- Jiayue Huang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China;
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative In-novation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Dagan Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yan Zu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Lexiang Zhang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China;
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
15
|
Guo H, Chen J, Feng Y, Dai Z. A Simple and Robust Exponential Amplification Reaction (EXPAR)-Based Hairpin Template (exp-Hairpin) for Highly Specific, Sensitive, and Universal MicroRNA Detection. Anal Chem 2024; 96:2643-2650. [PMID: 38295438 DOI: 10.1021/acs.analchem.3c05323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Specific and sensitive detection of microRNAs continues to encounter significant challenges, especially in the development of rapid and efficient isothermal amplification strategies for point-of-care settings. The exponential amplification reaction (EXPAR) has garnered significant attention owing to its simplicity and rapid amplification of signals within a short period. However, a substantial loss of amplification efficiency, difficulty in distinguishing closely related homologous sequences, and adapting the designed templates to other targets seriously hamper the practical application of the EXPAR. In this work, a hairpin template tailored for the EXPAR system (exp-Hairpin) was constructed by adding identical trigger sequences and enzyme cleavage sites on two arms of the hairpin, achieving theoretically more than 2n amplification efficiency and minimal background amplification of EXPAR. Modulating the stability of the exp-Hairpin template by increasing the stem length, the specificity of detecting target miRNA in highly homologous sequences could be significantly improved. Using miRNA let-7a as a target model, the exp-Hairpin with 8 bp stem length for EXPAR amplification curves could effectively distinguish target let-7a and nontarget let-7b/7c/7f/7g/7i homologous sequences. This strategy enabled the sensitive and accurate analysis of let-7a in diluted human serum with satisfactory recoveries. By simply replacing the loop recognition sequence of exp-Hairpin, the specific detection of miR-200b was also achieved, demonstrating the universality of this strategy. The exp-Hairpin EXPAR accelerates simple and rapid molecular diagnostic applications for short nucleic acids.
Collapse
Affiliation(s)
- Haijing Guo
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yaqiang Feng
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Zong Dai
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China
| |
Collapse
|
16
|
Qin X, Wei B, Xiang Y, Lu H, Liu F, Li X, Yang F. Exosome-tuned MOF signal amplifier boosting tumor exosome phenotyping with high-affinity nanostars. Biosens Bioelectron 2024; 245:115828. [PMID: 37976982 DOI: 10.1016/j.bios.2023.115828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
The natural phospholipid structure imparts exosomes with not only cargo protection, but rich sites for coordination with metal-organic frameworks (MOFs) to assemble functional nanocomplexes, such as signal amplifiers. Here, we exploit exosomes to tune MOF signal amplifiers (Exo-MOF) for ultrasensitive phenotyping of tumor-derived exosomes (tExo) based on self-driven coordination assembly and high-affinity nanostars. Exo-MOF leverages the specific coordination interaction between exosome and MOF that cages abundant redox molecules to assemble a super-redox signal amplifier. Moreover, the dispersed immuno-magnetic nanostars, which are assembled with antibodies on the surface of Au nanostars-coated magnetic nanoparticles, allow for rapid capturing of target tExo, addressing the limited mass transfer on electrode surface. Both Exo-MOF and high-affinity nanostars orchestrate the ultrahigh sensitivity (1 particle per 100 μL, higher than that no Exo-MOF by at least 10-fold), specificity and speed of the sensor in tExo detection. Such a sensitive strategy allows profiling tExo across seven cancer types, and revealing the distinct exosomal surface expression patterns. Further, the Exo-MOF sensor accurately distinguishes cancer patients from healthy individuals in a clinical cohort, and provides new opportunities for functional materials assembly and precision diagnostics.
Collapse
Affiliation(s)
- Xiaojie Qin
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Binqi Wei
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yuanhang Xiang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Hao Lu
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Fengfei Liu
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xinchun Li
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Fan Yang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
17
|
Zhong Y, Li Z, Li Z, Li B, Xin H, Wang C. Remotely Activated DNA Probe System for the Detection and Imaging of Dual miRNAs. ACS APPLIED BIO MATERIALS 2024; 7:462-471. [PMID: 38151236 DOI: 10.1021/acsabm.3c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Cancers remain the leading cause of mortality worldwide. It is crucial to detect cancer at an early stage for improving survival rates. Biomarkers have precise implications for cancer progression. Here, we built a straightforward DNA probe system that could be activated by near-infrared light to detect dual miRNAs with a high specificity. This probe is built on the basis of upconversion nanoparticles, which could emit ultraviolet light and activate DNA probes adsorbed on the outer layer. The DNA probe system is remotely controlled through manipulation of the near-infrared (NIR) light, enabling simultaneous detection of dual miRNAs. The DNA nanosystem could be effectively endocytosed by cancer cells and reflect expression levels of dual miRNAs. Overall, this study demonstrates a promising remote-controlled DNA nanoplatform for the simultaneous detection of dual miRNAs, which has tremendous potential for precise cancer diagnostics and therapies.
Collapse
Affiliation(s)
- Yan Zhong
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Zhihao Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Zheng Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Bo Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Hui Xin
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Chunyan Wang
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| |
Collapse
|
18
|
Ganganboina AB, Park EY. Signal-Amplified Nanobiosensors for Virus Detection Using Advanced Nanomaterials. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:381-412. [PMID: 38337075 DOI: 10.1007/10_2023_244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Rapid diagnosis and treatment of infectious illnesses are crucial for clinical outcomes and public health. Biosensing developments enhance diagnostics at the point of care. This is superior to traditional procedures, which need centralized lab facilities, specialized personnel, and large equipment. The emerging coronavirus epidemic threatens global health and economic security. Increasing viral surveillance and regulatory actions against disease transmission necessitate rapid, sensitive testing tools for viruses. Due to their sensitivity and specificity, biosensors offer a possible reliable and quantifiable viral detection method. Current advances in genetic engineering, such as genetic alteration and material engineering, have provided several opportunities to enhance biosensors' sensitivity, selectivity, and recognition efficiency. This chapter explains biosensing techniques, biosensor varieties, and signal amplification technologies. Challenges and potential developments for viral microorganisms based on biosensors and signal amplification were also investigated.
Collapse
Affiliation(s)
- Akhilesh Babu Ganganboina
- International Center for Young Scientists ICYS-NAMIKI, National Institute for Materials Science, Ibaraki, Japan.
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|
19
|
Huang S, Zhang M, Chen F, Wu H, Li M, Crommen J, Wang Q, Jiang Z. A chimeric hairpin DNA aptamer-based biosensor for monitoring the therapeutic drug bevacizumab. Analyst 2023; 149:212-220. [PMID: 38018757 DOI: 10.1039/d3an01324c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The accurate and rapid detection of specific antibodies in blood is very important for efficient diagnosis and precise treatment. Conventional methods often suffer from time-consuming operations and/or a narrow detection range. In this work, for the rapid determination of bevacizumab in plasma, a series of chimeric hairpin DNA aptamer-based probes were designed by the modification, labeling and theoretical computation of an original aptamer. Then, the dissociation constant of the modified hairpin DNA to bevacizumab was measured and screened using microscale thermophoresis. The best chimeric hairpin DNA aptamer-based probe was then selected, and a one-step platform for the rapid determination of bevacizumab was constructed. This strategy has the advantages of being simple, fast and label-free. Because of the design and screening of the hairpin DNA, as well as the optimization of the concentration and electrochemical parameters, a low detection limit of 0.37 pM (0.054 ng mL-1) with a wide linear range (1 pM-1 μM) was obtained. Finally, the rationally constructed biosensor was successfully applied to the determination of bevacizumab in spiked samples, and it showed good accuracy and precision. This method is expected to truly realize accurate and rapid detection of bevacizumab and provides a new idea for the precise treatment of diseases.
Collapse
Affiliation(s)
- Shengfeng Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Mengyun Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Feng Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Huihui Wu
- Occupational Health Laboratory, Anhui No. 2 Provincial People's Hospital/Anhui No. 2 Provincial People's Hospital Clinical College, Anhui Medical University, Hefei 230041, China
| | - Minyi Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, B-4000 Liège, Belgium
| | - Qiqin Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Zhengjin Jiang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| |
Collapse
|
20
|
Shen C, Huang Z, Chen X, Wang Z, Zhou J, Wang Z, Liu D, Li C, Zhao T, Zhang Y, Xu S, Zhou W, Peng W. Rapid ultra-sensitive nucleic acid detection using plasmonic fiber-optic spectral combs and gold nanoparticle-tagged targets. Biosens Bioelectron 2023; 242:115719. [PMID: 37797532 DOI: 10.1016/j.bios.2023.115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/24/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Nucleic acid (NA) is a widely-used biomarker for viruses. Accurate quantification of NA can provide a reliable basis for point-of-care diagnosis and treatment. Here, we propose a tilted fiber Bragg grating (TFBG)-based plasmonic fiber-optic spectral comb for fast response and ultralow limit NA detection. The TFBG is coated with a gold film which enables excitation of surface plasmon resonance (SPR), and single-stranded probe NAs with known base sequences are assembled on the gold film. To enhance sensitivity of refractive index (RI) for sensing a chosen combination of probe and target NAs around the TFBG surface, gold nanoparticles (AuNPs) are bonded to the target NA molecules as "RI-labels". The NA combination-induced aggregation of AuNPs induces significant spectral responses in the TFBG that would be below the detection threshold for the NAs in the absence of the AuNPs. The proposed TFBG-SPR NA sensor shows a fast response time of 30 s and an ultra-wide NA detection range from 1 × 10-18 mol/L to 1 × 10-7 mol/L. In the NA concentration range of 1 × 10-12 mol/L (1 pM) to 105 pM, an ultra-high sensitivity of 1.534 dB/lg(pM) is obtained. The sensor achieves an ultra-low limit of detection down to 1.0 × 10-18 mol/L (1 aM), which is more than an order of magnitude lower than the previous reports. The proposed sensor not only shows potentials in practical applications of NA detection, but also provides a new way for TFBG-SPR biochemical sensors to achieve higher RI sensitivity.
Collapse
Affiliation(s)
- Changyu Shen
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| | - Zhenlin Huang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Xiaoman Chen
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Zhihao Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Jun Zhou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Zhaokun Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Dejun Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chenxia Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Tianqi Zhao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Yang Zhang
- School of Physics, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Shiqing Xu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Wenjun Zhou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Wei Peng
- School of Physics, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|
21
|
Hu R, Liu Y, Wang G, Lv J, Yang J, Xiao H, Liu Y, Zhang B. Amplification-free microRNA profiling with femtomolar sensitivity on a plasmonic enhanced fluorescence nano-chip. Anal Chim Acta 2023; 1280:341870. [PMID: 37858557 DOI: 10.1016/j.aca.2023.341870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/06/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules involved in the regulation of gene expression, thus considered as promising biomarkers for cancer, cardiovascular diseases, neurodegenerative diseases, etc. However, quantitative analysis of miRNAs faces challenges owing to their high homology, small size & ultra-low abundance, and disease occurrence is often related to abnormal expression of multiple miRNAs where method for parallel miRNAs analysis is required. In this work, multiplexed analysis of miRNAs was established on a plasmonic nano-chip capable of fluorescence enhancement in the near-infrared region. Combined with polyadenylation at the hydroxyl terminate of target miRNA to afford abundant sites for fluorophore labeling, our assay achieved amplification-free detection of miRNAs from nM to fM with the limit of detection down to ca. 5 fM. A miRNA panel was constructed to detect 10 miRNAs differentially expressed in MCF-7 and A549 cell lines and validated with qRT-PCR, demonstrating the practical application of this method. This scalable platform can be customized for different miRNA panels, facilitating multiple miRNA profiling for various diseases.
Collapse
Affiliation(s)
- Ruibin Hu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiyi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guanghui Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiahui Lv
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingkai Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongjun Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ying Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bo Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
22
|
Liang Y, Chen D, Wang H, Pian H, Liu W, Wang F, Wang H, Li Z. Single-microbead space-confined digital quantification strategy (SMSDQ) for counting microRNAs at the single-molecule level. Biosens Bioelectron 2023; 238:115578. [PMID: 37573644 DOI: 10.1016/j.bios.2023.115578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
Quantification of microRNAs (miRNAs) at the single-molecule level is of great significance for clinical diagnostics and biomedical research. The challenges lie in the limits to transforming single-molecule measurements into quantitative signals. To address these limits, here, we report a new approach called a Single Microbead-based Space-confined Digital Quantification (SMSDQ) to measure individual miRNA molecules by counting gold nanoparticles (AuNPs) with localized surface plasmon resonance (LSPR) light-scattering imaging. One miRNA target hybridizes with the alkynyl-modified capture DNA probe immobilized on a microbead (60 μm) and the azide-modified report DNA probe anchored on AuNP (50 nm), respectively. Through the click reaction between the alkynyl and azide group, a single microbead can covalently link the AuNPs in the confined space within the view of the microscope. By digitally counting the light-scattering spots of AuNPs, we demonstrated the proposed approach with single-molecule detection sensitivity and high specificity of single-base discrimination. Taking the advantages of ultrahigh sensitivity, specificity, and the digital detection manner, the approach is suitable for evaluating cell heterogeneity and small variations of miRNA expression and has been successfully applied to direct quantification of miRNAs in one-tenth single-cell lysates and serum samples without RNA-isolated and nucleic acid amplification steps.
Collapse
Affiliation(s)
- Yuanwen Liang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Desheng Chen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Honghong Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hongru Pian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Weiliang Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Fangfang Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hui Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Zhengping Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
23
|
Bai H, Wang Y, Li X, Guo J. Electrochemical nucleic acid sensors: Competent pathways for mobile molecular diagnostics. Biosens Bioelectron 2023; 237:115407. [PMID: 37295136 DOI: 10.1016/j.bios.2023.115407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
Electrochemical nucleic acid biosensor has demonstrated great promise in clinical diagnostic tests, mainly because of its flexibility, high efficiency, low cost, and easy integration for analytical applications. Numerous nucleic acid hybridization-based strategies have been developed for the design and construction of novel electrochemical biosensors for diagnosing genetic-related diseases. This review describes the advances, challenges, and prospects of electrochemical nucleic acid biosensors for mobile molecular diagnosis. Specifically, the basic principles, sensing elements, applications in diagnosis of cancer and infectious diseases, integration with microfluidic technology and commercialization are mainly included in this review, aiming to provide new insights and directions for the future development of electrochemical nucleic acid biosensors.
Collapse
Affiliation(s)
- Huijie Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Jinhong Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China; School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Meng X, O'Hare D, Ladame S. Surface immobilization strategies for the development of electrochemical nucleic acid sensors. Biosens Bioelectron 2023; 237:115440. [PMID: 37406480 DOI: 10.1016/j.bios.2023.115440] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/20/2023] [Accepted: 05/27/2023] [Indexed: 07/07/2023]
Abstract
Following the recent pandemic and with the emergence of cell-free nucleic acids in liquid biopsies as promising biomarkers for a broad range of pathologies, there is an increasing demand for a new generation of nucleic acid tests, with a particular focus on cost-effective, highly sensitive and specific biosensors. Easily miniaturized electrochemical sensors show the greatest promise and most typically rely on the chemical functionalization of conductive materials or electrodes with sequence-specific hybridization probes made of standard oligonucleotides (DNA or RNA) or synthetic analogues (e.g. Peptide Nucleic Acids or PNAs). The robustness of such sensors is mostly influenced by the ability to control the density and orientation of the probe at the surface of the electrode, making the chemistry used for this immobilization a key parameter. This exhaustive review will cover the various strategies to immobilize nucleic acid probes onto different solid electrode materials. Both physical and chemical immobilization techniques will be presented. Their applicability to specific electrode materials and surfaces will also be discussed as well as strategies for passivation of the electrode surface as a way of preventing electrode fouling and reducing nonspecific binding.
Collapse
Affiliation(s)
- Xiaotong Meng
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK. https://in.linkedin.com/https://www.linkedin.com/profile/view?id=xiaotong-meng-888IC
| | - Danny O'Hare
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
25
|
Chen S, Bashir R. Advances in field-effect biosensors towards point-of-use. NANOTECHNOLOGY 2023; 34:492002. [PMID: 37625391 PMCID: PMC10523595 DOI: 10.1088/1361-6528/acf3f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
The future of medical diagnostics calls for portable biosensors at the point of care, aiming to improve healthcare by reducing costs, improving access, and increasing quality-what is called the 'triple aim'. Developing point-of-care sensors that provide high sensitivity, detect multiple analytes, and provide real time measurements can expand access to medical diagnostics for all. Field-effect transistor (FET)-based biosensors have several advantages, including ultrahigh sensitivity, label-free and amplification-free detection, reduced cost and complexity, portability, and large-scale multiplexing. They can also be integrated into wearable or implantable devices and provide continuous, real-time monitoring of analytesin vivo, enabling early detection of biomarkers for disease diagnosis and management. This review analyzes advances in the sensitivity, parallelization, and reusability of FET biosensors, benchmarks the limit of detection of the state of the art, and discusses the challenges and opportunities of FET biosensors for future healthcare applications.
Collapse
Affiliation(s)
- Sihan Chen
- Holonyak Micro and Nanotechnology Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Rashid Bashir
- Holonyak Micro and Nanotechnology Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| |
Collapse
|
26
|
Campuzano S, Pingarrón JM. Electrochemical Affinity Biosensors: Pervasive Devices with Exciting Alliances and Horizons Ahead. ACS Sens 2023; 8:3276-3293. [PMID: 37534629 PMCID: PMC10521145 DOI: 10.1021/acssensors.3c01172] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Electrochemical affinity biosensors are evolving at breakneck speed, strengthening and colonizing more and more niches and drawing unimaginable roadmaps that increasingly make them protagonists of our daily lives. They achieve this by combining their intrinsic attributes with those acquired by leveraging the significant advances that occurred in (nano)materials technology, bio(nano)materials and nature-inspired receptors, gene editing and amplification technologies, and signal detection and processing techniques. The aim of this Perspective is to provide, with the support of recent representative and illustrative literature, an updated and critical view of the repertoire of opportunities, innovations, and applications offered by electrochemical affinity biosensors fueled by the key alliances indicated. In addition, the imminent challenges that these biodevices must face and the new directions in which they are envisioned as key players are discussed.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica,
Facultad de Ciencias Químicas, Universidad
Complutense de Madrid, 28040 Madrid, España
| | - José M. Pingarrón
- Departamento de Química Analítica,
Facultad de Ciencias Químicas, Universidad
Complutense de Madrid, 28040 Madrid, España
| |
Collapse
|
27
|
Zhang Y, Wong CY, Lim CZJ, Chen Q, Yu Z, Natalia A, Wang Z, Pang QY, Lim SW, Loh TP, Ang BT, Tang C, Shao H. Multiplexed RNA profiling by regenerative catalysis enables blood-based subtyping of brain tumors. Nat Commun 2023; 14:4278. [PMID: 37460561 DOI: 10.1038/s41467-023-39844-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Current technologies to subtype glioblastoma (GBM), the most lethal brain tumor, require highly invasive brain biopsies. Here, we develop a dedicated analytical platform to achieve direct and multiplexed profiling of circulating RNAs in extracellular vesicles for blood-based GBM characterization. The technology, termed 'enzyme ZIF-8 complexes for regenerative and catalytic digital detection of RNA' (EZ-READ), leverages an RNA-responsive transducer to regeneratively convert and catalytically enhance signals from rare RNA targets. Each transducer comprises hybrid complexes - protein enzymes encapsulated within metal organic frameworks - to configure strong catalytic activity and robust protection. Upon target RNA hybridization, the transducer activates directly to liberate catalytic complexes, in a target-recyclable manner; when partitioned within a microfluidic device, these complexes can individually catalyze strong chemifluorescence reactions for digital RNA quantification. The EZ-READ platform thus enables programmable and reliable RNA detection, across different-sized RNA subtypes (miRNA and mRNA), directly in sample lysates. When clinically evaluated, the EZ-READ platform established composite signatures for accurate blood-based GBM diagnosis and subtyping.
Collapse
Affiliation(s)
- Yan Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Chi Yan Wong
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Carine Z J Lim
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Qingchang Chen
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Zhonglang Yu
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Zhigang Wang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Qing You Pang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - See Wee Lim
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Tze Ping Loh
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Beng Ti Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Carol Tang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- National Neuroscience Institute, Singapore, Singapore.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
28
|
Zhao Y, Shao J, Jin Z, Zheng W, Yao J, Ma W. Plasmon-enhanced electroreduction activity of Au-AgPd Janus nanoparticles for ochratoxin a detection. Food Chem 2023; 412:135526. [PMID: 36731235 DOI: 10.1016/j.foodchem.2023.135526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Ochratoxin A (OTA) was a dangerous biological toxin, and would easily contaminate food and induced food safety problems. The development of electrochemical aptasensors by designing strong and anti-interfere electroactive labels could improve the sensitivity and accuracy of OTA detection. In this contribution, novel electroactive Au-AgPd Janus NPs were firstly synthesized and exhibited electroreduction signal at -0.4 V, owing to the reduction process of Pd2+. The electroreduction signal was amplified 1.5 times under local surface plasmon resonance (LSPR) excitation, which could improve the sensitivity of OTA detection. Plasmon-enhanced electroreduction principle of Au-AgPd Janus NPs was verified, which endowed electrochemical aptasensor with high accuracy and anti-interference ability for OTA detection. Au-AgPd Janus NPs served as electrochemical beacon achieved sensitive and accurate OTA detection with the limit of detection (LOD) of 0.98 pM. This work opens up new directions for the construction of electroactive heterostructures for the sensitive and accurate biotoxins electroanalytical applications.
Collapse
Affiliation(s)
- Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Juanjuan Shao
- College of Science and Technology, Hebei Agricultural University, Cangzhou, Hebei 061100, China
| | - Zhao Jin
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wangwang Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Yao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Ma
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
29
|
Mo L, Mo M, Liang D, Yang C, Lin W. Simultaneous detection and imaging of two specific miRNAs using DNA tetrahedron-based catalytic hairpin assembly. Talanta 2023; 265:124871. [PMID: 37369154 DOI: 10.1016/j.talanta.2023.124871] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Improving the accuracy, sensitivity and speed of intracellular miRNA imaging is essential for early diagnosis of cancer. To achieve this goal, we herein present a strategy for imaging two distinct miRNAs by DNA tetrahedron-based catalytic hairpin assembly (DCHA). Two nanoprobes, DTH-13 and DTH-24, were prepared by one-pot synthesis. The resultant structures were DNA tetrahedrons functionalized with two sets of CHA hairpins, which respectively responded to miR-21 and miR-155. Using these structured DNA nanoparticles as the carriers, the probes could easily enter living cells. The presence of miR-21 or miR-155 could trigger CHA between DTH-13 and DTH-24, leading to independent fluorescence signals of FAM and Cy3. In this system, the sensitivity and kinetics were significantly enhanced owing to the strategy of DCHA. The sensing performance of our method was thoroughly investigated in buffers, fetal bovine serum (FBS) solutions, living cells, and clinical tissue samples. The results validated the potential of DTH nanoprobes as a diagnostic tool for early stages of cancer.
Collapse
Affiliation(s)
- Liuting Mo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Mingxiu Mo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Danlian Liang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chan Yang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
30
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
31
|
Ahmad A, Imran M, Ahsan H. Biomarkers as Biomedical Bioindicators: Approaches and Techniques for the Detection, Analysis, and Validation of Novel Biomarkers of Diseases. Pharmaceutics 2023; 15:1630. [PMID: 37376078 DOI: 10.3390/pharmaceutics15061630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
A biomarker is any measurable biological moiety that can be assessed and measured as a potential index of either normal or abnormal pathophysiology or pharmacological responses to some treatment regimen. Every tissue in the body has a distinct biomolecular make-up, which is known as its biomarkers, which possess particular features, viz., the levels or activities (the ability of a gene or protein to carry out a particular body function) of a gene, protein, or other biomolecules. A biomarker refers to some feature that can be objectively quantified by various biochemical samples and evaluates the exposure of an organism to normal or pathological procedures or their response to some drug interventions. An in-depth and comprehensive realization of the significance of these biomarkers becomes quite important for the efficient diagnosis of diseases and for providing the appropriate directions in case of multiple drug choices being presently available, which can benefit any patient. Presently, advancements in omics technologies have opened up new possibilities to obtain novel biomarkers of different types, employing genomic strategies, epigenetics, metabolomics, transcriptomics, lipid-based analysis, protein studies, etc. Particular biomarkers for specific diseases, their prognostic capabilities, and responses to therapeutic paradigms have been applied for screening of various normal healthy, as well as diseased, tissue or serum samples, and act as appreciable tools in pharmacology and therapeutics, etc. In this review, we have summarized various biomarker types, their classification, and monitoring and detection methods and strategies. Various analytical techniques and approaches of biomarkers have also been described along with various clinically applicable biomarker sensing techniques which have been developed in the recent past. A section has also been dedicated to the latest trends in the formulation and designing of nanotechnology-based biomarker sensing and detection developments in this field.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane 4102, Australia
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
32
|
Huang S, An Y, Xi B, Gong X, Chen Z, Shao S, Ge S, Zhang J, Zhang D, Xia N. Ultra-fast, sensitive and low-cost real-time PCR system for nucleic acid detection. LAB ON A CHIP 2023; 23:2611-2622. [PMID: 37158116 DOI: 10.1039/d3lc00174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nucleic acid detection directly identifies the presence of pathogenic microorganisms and has various advantages, such as high sensitivity, commendable specificity and a short window period, and has been widely used in many fields, such as early tumor screening, prenatal diagnosis and infectious disease detection. Real-time PCR (polymerase chain reaction) is the most commonly used method for nucleic acid detection in clinical practice, but it always takes about 1-3 hours, severely limiting its application in particular scenarios such as emergency testing, large-scale testing and on-site testing. To solve the time-consuming problem, a real-time PCR system based on multiple temperature zones was proposed, which realized the speed of temperature change of biological reagents from 2-4 °C s-1 to 13.33 °C s-1. The system integrates the advantages of fixed microchamber-type and microchannel-type amplification systems, including a microfluidic chip capable of fast heat transfer and a real-time PCR device with a temperature control strategy based on the temperature difference. The detection of HCMV biological samples using the real-time PCR system in this research took only 15 min, which was 75% shorter compared to the commercial qPCR instrument such as BIO-RAD, and the detection sensitivity remained essentially the same. The system could complete nucleic acid detection within 9 min under extreme conditions, characterized by fast detection speed and high sensitivity, providing a promising solution for ultra-fast nucleic acid detection.
Collapse
Affiliation(s)
- Shaolei Huang
- School of Public Health, Xiamen University, Fujian, China.
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Yiquan An
- School of Public Health, Xiamen University, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Bangchao Xi
- School of Public Health, Xiamen University, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Xianglian Gong
- School of Public Health, Xiamen University, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Zhongfu Chen
- School of Public Health, Xiamen University, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Shan Shao
- School of Public Health, Xiamen University, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Shengxiang Ge
- School of Public Health, Xiamen University, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Jun Zhang
- School of Public Health, Xiamen University, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Dongxu Zhang
- School of Public Health, Xiamen University, Fujian, China.
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Ningshao Xia
- School of Public Health, Xiamen University, Fujian, China.
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| |
Collapse
|
33
|
Liu M, Yang M, Wan X, Tang Z, Jiang L, Wang S. From Nanoscopic to Macroscopic Materials by Stimuli-Responsive Nanoparticle Aggregation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208995. [PMID: 36409139 DOI: 10.1002/adma.202208995] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Indexed: 05/19/2023]
Abstract
Stimuli-responsive nanoparticle (NP) aggregation plays an increasingly important role in regulating NP assembly into microscopic superstructures, macroscopic 2D, and 3D functional materials. Diverse external stimuli are widely used to adjust the aggregation of responsive NPs, such as light, temperature, pH, electric, and magnetic fields. Many unique structures based on responsive NPs are constructed including disordered aggregates, ordered superlattices, structural droplets, colloidosomes, and bulk solids. In this review, the strategies for NP aggregation by external stimuli, and their recent progress ranging from nanoscale aggregates, microscale superstructures to macroscale bulk materials along the length scales as well as their applications are summarized. The future opportunities and challenges for designing functional materials through NP aggregation at different length scales are also discussed.
Collapse
Affiliation(s)
- Mingqian Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Man Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xizi Wan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiyong Tang
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
34
|
Wang D, Wang X, Ye F, Zou J, Qu J, Jiang X. An Integrated Amplification-Free Digital CRISPR/Cas-Assisted Assay for Single Molecule Detection of RNA. ACS NANO 2023; 17:7250-7256. [PMID: 37052221 PMCID: PMC10108731 DOI: 10.1021/acsnano.2c10143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023]
Abstract
Conventional nucleic acid detection technologies usually rely on amplification to improve sensitivity, which has drawbacks, such as amplification bias, complicated operation, high requirements for complex instruments, and aerosol pollution. To address these concerns, we developed an integrated assay for the enrichment and single molecule digital detection of nucleic acid based on a CRISPR/Cas13a and microwell array. In our design, magnetic beads capture and concentrate the target from a large volume of sample, which is 100 times larger than reported earlier. The target-induced CRISPR/Cas13a cutting reaction was then dispersed and limited to a million individual femtoliter-sized microwells, thereby enhancing the local signal intensity to achieve single-molecule detection. The limit of this assay for amplification-free detection of SARS-CoV-2 is 2 aM. The implementation of this study will establish a "sample-in-answer-out" single-RNA detection technology without amplification and improve the sensitivity and specificity while shortening the detection time. This research has broad prospects in clinical application.
Collapse
Affiliation(s)
- Dou Wang
- Shenzhen Key Laboratory of Smart Healthcare
Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of
Biomedical Engineering, Southern University of Science and
Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen,
Guangdong 518055, P. R. China
| | - Xuedong Wang
- Shenzhen Key Laboratory of Smart Healthcare
Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of
Biomedical Engineering, Southern University of Science and
Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen,
Guangdong 518055, P. R. China
| | - Feidi Ye
- Department of Clinical Laboratory,
Shenzhen Third People’s Hospital, Second Hospital Affiliated to
Southern University of Science and Technology, National Clinical Research Center for
Infectious Diseases, Guangdong, 518055, P. R.
China
| | - Jin Zou
- Department of Clinical Laboratory,
Shenzhen Third People’s Hospital, Second Hospital Affiliated to
Southern University of Science and Technology, National Clinical Research Center for
Infectious Diseases, Guangdong, 518055, P. R.
China
| | - Jiuxin Qu
- Department of Clinical Laboratory,
Shenzhen Third People’s Hospital, Second Hospital Affiliated to
Southern University of Science and Technology, National Clinical Research Center for
Infectious Diseases, Guangdong, 518055, P. R.
China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare
Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of
Biomedical Engineering, Southern University of Science and
Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen,
Guangdong 518055, P. R. China
| |
Collapse
|
35
|
GhaderiShekhiAbadi P, Irani M, Noorisepehr M, Maleki A. Magnetic biosensors for identification of SARS-CoV-2, Influenza, HIV, and Ebola viruses: a review. NANOTECHNOLOGY 2023; 34:272001. [PMID: 36996779 DOI: 10.1088/1361-6528/acc8da] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Infectious diseases such as novel coronavirus (SARS-CoV-2), Influenza, HIV, Ebola, etc kill many people around the world every year (SARS-CoV-2 in 2019, Ebola in 2013, HIV in 1980, Influenza in 1918). For example, SARS-CoV-2 has plagued higher than 317 000 000 people around the world from December 2019 to January 13, 2022. Some infectious diseases do not yet have not a proper vaccine, drug, therapeutic, and/or detection method, which makes rapid identification and definitive treatments the main challenges. Different device techniques have been used to detect infectious diseases. However, in recent years, magnetic materials have emerged as active sensors/biosensors for detecting viral, bacterial, and plasmids agents. In this review, the recent applications of magnetic materials in biosensors for infectious viruses detection have been discussed. Also, this work addresses the future trends and perspectives of magnetic biosensors.
Collapse
Affiliation(s)
| | - Mohammad Irani
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Noorisepehr
- Environmental Health Engineering Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
36
|
Roychoudhury A, Dear JW, Kersaudy-Kerhoas M, Bachmann TT. Amplification-free electrochemical biosensor detection of circulating microRNA to identify drug-induced liver injury. Biosens Bioelectron 2023; 231:115298. [PMID: 37054598 DOI: 10.1016/j.bios.2023.115298] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
Drug-induced liver injury (DILI) is a major challenge in clinical medicine and drug development. There is a need for rapid diagnostic tests, ideally at point-of-care. MicroRNA 122 (miR-122) is an early biomarker for DILI which is reported to increase in the blood before standard-of-care markers such as alanine aminotransferase activity. We developed an electrochemical biosensor for diagnosis of DILI by detecting miR-122 from clinical samples. We used electrochemical impedance spectroscopy (EIS) for direct, amplification free detection of miR-122 with screen-printed electrodes functionalised with sequence specific peptide nucleic acid (PNA) probes. We studied the probe functionalisation using atomic force microscopy and performed elemental and electrochemical characterisations. To enhance the assay performance and minimise sample volume requirements, we designed and characterised a closed-loop microfluidic system. We presented the EIS assay's specificity for wild-type miR-122 over non-complementary and single nucleotide mismatch targets. We successfully demonstrated a detection limit of 50 pM for miR-122. Assay performance could be extended to real samples; it displayed high selectivity for liver (miR-122 high) comparing to kidney (miR-122 low) derived samples extracted from murine tissue. Finally, we successfully performed an evaluation with 26 clinical samples. Using EIS, DILI patients were distinguished from healthy controls with a ROC-AUC of 0.77, a comparable performance to qPCR detection of miR-122 (ROC-AUC: 0.83). In conclusion, direct, amplification free detection of miR-122 using EIS was achievable at clinically relevant concentrations and in clinical samples. Future work will focus on realising a full sample-to-answer system which can be deployed for point-of-care testing.
Collapse
Affiliation(s)
- Appan Roychoudhury
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - James W Dear
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Maïwenn Kersaudy-Kerhoas
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK; Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Till T Bachmann
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
37
|
Surpi A, Shelyakova T, Murgia M, Rivas J, Piñeiro Y, Greco P, Fini M, Dediu VA. Versatile magnetic configuration for the control and manipulation of superparamagnetic nanoparticles. Sci Rep 2023; 13:5301. [PMID: 37002375 PMCID: PMC10066313 DOI: 10.1038/s41598-023-32299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
The control and manipulation of superparamagnetic nanoparticles (SP-MNP) is a significant challenge and has become increasingly important in various fields, especially in biomedical research. Yet, most of applications rely on relatively large nanoparticles, 50 nm or higher, mainly due to the fact that the magnetic control of smaller MNPs is often hampered by the thermally induced Brownian motion. Here we present a magnetic device able to manipulate remotely in microfluidic environment SP-MNPs smaller than 10 nm. The device is based on a specifically tailored configuration of movable permanent magnets. The experiments performed in 500 µm capillary have shown the ability to concentrate the SP-MNPs into regions characterized by different shapes and sizes ranging from 100 to 200 µm. The results are explained by straightforward calculations and comparison between magnetic and thermal energies. We provide then a comprehensive description of the magnetic field intensity and its spatial distribution for the confinement and motion of magnetic nanoparticles for a wide range of sizes. We believe this description could be used to establish accurate and quantitative magnetic protocols not only for biomedical applications, but also for environment, food, security, and other areas.
Collapse
Affiliation(s)
- Alessandro Surpi
- Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), 40129, Bologna, Italy.
| | - Tatiana Shelyakova
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136, Bologna, Italy.
| | - Mauro Murgia
- Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), 40129, Bologna, Italy
- Italian Institute of Technology, Center for Translational Neurophysiology (IIT), 44121, Ferrara, Italy
| | - José Rivas
- Laboratorio de Nanomagnetismo y Nanotecnologia, Departamento de Fisica Aplicada, Istituto NANOMAG, Universitade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Yolanda Piñeiro
- Laboratorio de Nanomagnetismo y Nanotecnologia, Departamento de Fisica Aplicada, Istituto NANOMAG, Universitade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Pierpaolo Greco
- Italian Institute of Technology, Center for Translational Neurophysiology (IIT), 44121, Ferrara, Italy
- Dipartimento di Neuroscienze e Riabilitazione, Università di Ferrara, 44121, Ferrara, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136, Bologna, Italy
| | - Valentin Alek Dediu
- Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), 40129, Bologna, Italy.
| |
Collapse
|
38
|
Natalia A, Zhang L, Sundah NR, Zhang Y, Shao H. Analytical device miniaturization for the detection of circulating biomarkers. NATURE REVIEWS BIOENGINEERING 2023; 1:1-18. [PMID: 37359772 PMCID: PMC10064972 DOI: 10.1038/s44222-023-00050-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 06/28/2023]
Abstract
Diverse (sub)cellular materials are secreted by cells into the systemic circulation at different stages of disease progression. These circulating biomarkers include whole cells, such as circulating tumour cells, subcellular extracellular vesicles and cell-free factors such as DNA, RNA and proteins. The biophysical and biomolecular state of circulating biomarkers carry a rich repertoire of molecular information that can be captured in the form of liquid biopsies for disease detection and monitoring. In this Review, we discuss miniaturized platforms that allow the minimally invasive and rapid detection and analysis of circulating biomarkers, accounting for their differences in size, concentration and molecular composition. We examine differently scaled materials and devices that can enrich, measure and analyse specific circulating biomarkers, outlining their distinct detection challenges. Finally, we highlight emerging opportunities in biomarker and device integration and provide key future milestones for their clinical translation.
Collapse
Affiliation(s)
- Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Li Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Noah R. Sundah
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Yan Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Sun Y, Liu J, Peng X, Zhang G, Li Y. A novel photoelectrochemical array platform for ultrasensitive multiplex detection and subtype identification of HPV genes. Biosens Bioelectron 2023; 224:115059. [PMID: 36621083 DOI: 10.1016/j.bios.2023.115059] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023]
Abstract
The rapid, low-cost and user-friendly methods for nucleic acid detection is urgently needed. Here we developed a miniaturized and convenient photoelectrochemical biosensor array (PEBA) platform for multiplexing and simultaneous detection of nucleic acid. The array system containing nine sensing units was integrated on one piece of conductive glass by laser etching and screen printing. Moreover, human papillomavirus (HPV), the main cause of cervical cancer, was selected as the model marker to evaluate the applicability of the fabricated PEBA. The proposed PEBA for HPV genotyping involved the TiO2@Au nanoparticles (NPs) as the photoelectrochemical (PEC) material and CdS quantum dots (CdS QDs)-labeled DNA hairpin probe anchored on the TiO2@Au NPs as the recognition element. With the addition of HPV target, the probe undergoes a significant conformational change and forces CdS QDs away from TiO2@Au, resulting in decreased PEC signals. The established array platform coupled with nucleic acid amplification exhibited high sensitivity as low as 0.1 copies/μL and a linear range of 0.6-600 copies/μL for nine HPV genotyping. Method evaluation with 40 clinical samples including 20 HPV-positive and 20 negative samples, gave a 97.5% concordance result in comparison with commercial kits. The genotyping results obtained by the PEBA reveal that HPV52, HPV18, and HPV11 are the most prevalent genotypes in positive samples, which is in good concordance with the official report concerning the trend of HPV prevalence among women with cervical lesions in Shenzhen. The designed PEBA platform has potential applications in extensive fields like biomedicine analysis and clinical healthcare diagnosis.
Collapse
Affiliation(s)
- Yudong Sun
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China
| | - Jiang Liu
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China
| | - Xin Peng
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China
| | - Guanghui Zhang
- Department of Laboratory Medicine, Shenzhen Hengsheng Hospital, Shenzhen, Guangdong, 518102, China.
| | - Yingchun Li
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
40
|
Wilkirson EC, Singampalli KL, Li J, Dixit DD, Jiang X, Gonzalez DH, Lillehoj PB. Affinity-based electrochemical sensors for biomolecular detection in whole blood. Anal Bioanal Chem 2023:10.1007/s00216-023-04627-5. [PMID: 36917265 PMCID: PMC10011785 DOI: 10.1007/s00216-023-04627-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/15/2023]
Abstract
The detection and/or quantification of biomarkers in blood is important for the early detection, diagnosis, and treatment of a variety of diseases and medical conditions. Among the different types of sensors for detecting molecular biomarkers, such as proteins, nucleic acids, and small-molecule drugs, affinity-based electrochemical sensors offer the advantages of high analytical sensitivity and specificity, fast detection times, simple operation, and portability. However, biomolecular detection in whole blood is challenging due to its highly complex matrix, necessitating sample purification (i.e., centrifugation), which involves the use of bulky, expensive equipment and tedious sample-handling procedures. To address these challenges, various strategies have been employed, such as purifying the blood sample directly on the sensor, employing micro-/nanoparticles to enhance the detection signal, and coating the electrode surface with blocking agents to reduce nonspecific binding, to improve the analytical performance of affinity-based electrochemical sensors without requiring sample pre-processing steps or laboratory equipment. In this article, we present an overview of affinity-based electrochemical sensor technologies that employ these strategies for biomolecular detection in whole blood.
Collapse
Affiliation(s)
- Elizabeth C Wilkirson
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Kavya L Singampalli
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jiran Li
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Desh Deepak Dixit
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xue Jiang
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Diego H Gonzalez
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA
| | - Peter B Lillehoj
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA.
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Fang M, Liu F, Fang D, Chen Y, Xiang Y, Zhang H, Huang M, Qin X, Pan LH, Yang F. Primer exchange reaction-amplified protein-nucleic acid interactions for ultrasensitive and specific microRNA detection. Biosens Bioelectron 2023; 230:115274. [PMID: 37004284 DOI: 10.1016/j.bios.2023.115274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Protein-nucleic acid interactions are not only fundamental to genetic regulation and cellular metabolism, but molecular basis to artificial biosensors. However, such interactions are generally weak and dynamic, making their specific and sensitive quantitative detection challenging. By using primer exchange reaction (PER)-amplified protein-nucleic acid interactions, we here design a universal and ultrasensitive electrochemical sensor to quantify microRNAs (miRNAs) in blood. This PER-miR sensor leverages specific recognition between S9.6 antibodies and miRNA/DNA hybrids to couple with PER-derived multi-enzyme catalysis for ultrasensitive miRNA detection. Surface binding kinetic analysis shows a rational Kd (8.9 nM) between the miRNA/DNA heteroduplex and electrode-attached S9.6 antibody. Based on such a favorable affinity, the programmable PER amplification enables the sensor to detect target miRNAs with sensitivity up to 90.5 aM, three orders of magnitude higher than that without PER in routine design, and with specificity of single-base resolution. Furthermore, the PER-miR sensor allows detecting multiple miRNAs in parallel, measuring target miRNA in lysates across four types of cell lines, and differentiating tumor patients from healthy individuals by directly analyzing the human blood samples (n = 40). These advantages make the sensor a promising tool to enable quantitative sensing of biomolecular interactions and precision diagnostics.
Collapse
|
42
|
Kim ER, Joe C, Mitchell RJ, Gu MB. Biosensors for healthcare: current and future perspectives. Trends Biotechnol 2023; 41:374-395. [PMID: 36567185 DOI: 10.1016/j.tibtech.2022.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Biosensors are utilized in several different fields, including medicine, food, and the environment; in this review, we examine recent developments in biosensors for healthcare. These involve three distinct types of biosensor: biosensors for in vitro diagnosis with blood, saliva, or urine samples; continuous monitoring biosensors (CMBs); and wearable biosensors. Biosensors for in vitro diagnosis have seen a significant expansion recently, with newly reported clustered regularly interspaced short palindromic repeats (CRISPR)/Cas methodologies and improvements to many established integrated biosensor devices, including lateral flow assays (LFAs) and microfluidic/electrochemical paper-based analytical devices (μPADs/ePADs). We conclude with a discussion of two novel groups of biosensors that have drawn great attention recently, continuous monitoring and wearable biosensors, as well as with perspectives on the commercialization and future of biosensors.
Collapse
Affiliation(s)
- Eun Ryung Kim
- Department of Biotechnology, Korea University, Anam-dong, Sungbuk-Gu, Seoul 02841, Republic of Korea
| | - Cheulmin Joe
- Department of Biotechnology, Korea University, Anam-dong, Sungbuk-Gu, Seoul 02841, Republic of Korea
| | - Robert J Mitchell
- Department of Biological Sciences, UNIST, Ulsan 44919, Republic of Korea
| | - Man Bock Gu
- Department of Biotechnology, Korea University, Anam-dong, Sungbuk-Gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
43
|
Soh JO, Park BC, Park HS, Kim MS, Fu HE, Kim YK, Lee JH. Multifunctional Nanoparticle Platform for Surface Accumulative Nucleic Acid Amplification and Rapid Electrochemical Detection: An Application to Pathogenic Coronavirus. ACS Sens 2023; 8:839-847. [PMID: 36707063 PMCID: PMC9897046 DOI: 10.1021/acssensors.2c02512] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/06/2023] [Indexed: 01/29/2023]
Abstract
Of various molecular diagnostic assays, the real-time reverse transcription polymerase chain reaction is considered the gold standard for infection diagnosis, despite critical drawbacks that limit rapid detection and accessibility. To confront these issues, several nanoparticle-based molecular detection methods have been developed to a great extent, but still possess several challenges. In this study, a novel nucleic acid amplification method termed nanoparticle-based surface localized amplification (nSLAM) is paired with electrochemical detection (ECD) to develop a nucleic acid biosensor platform that overcomes these limitations. The system uses primer-functionalized Fe3O4-Au core-shell nanoparticles for nucleic acid amplification, which promotes the production of amplicons that accumulate on the nanoparticle surfaces, inducing significantly amplified currents during ECD that identify the presence of target genetic material. The platform, applying to the COVID-19 model, demonstrates an exceptional sensitivity of ∼1 copy/μL for 35 cycles of amplification, enabling the reduction of amplification cycles to 4 cycles (∼7 min runtime) using 1 fM complementary DNA. The nSLAM acts as an accelerator that actively promotes and participates in the nucleic acid amplification process through direct polymerization and binding of amplicons on the nanoparticle surfaces. This ultrasensitive fast-response system is a promising method for detecting emerging pathogens like the coronavirus and can be extended to detect a wider variety of biomolecules.
Collapse
Affiliation(s)
- Jeong Ook Soh
- Department of Bionano Engineering,
Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu,
Ansan15588, Republic of Korea
- Center for Bionano Intelligence Education and
Research, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu,
Ansan15588, Republic of Korea
| | - Bum Chul Park
- Department of Materials Science and Engineering,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841,
Republic of Korea
- Brain Korea Center for Smart Materials and Devices,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841,
Republic of Korea
| | - Hyeon Su Park
- Department of Materials Science and Engineering,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841,
Republic of Korea
| | - Myeong Soo Kim
- Department of Materials Science and Engineering,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841,
Republic of Korea
| | - Hong En Fu
- Department of Materials Science and Engineering,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841,
Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841,
Republic of Korea
- Brain Korea Center for Smart Materials and Devices,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841,
Republic of Korea
| | - Ju Hun Lee
- Department of Bionano Engineering,
Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu,
Ansan15588, Republic of Korea
- Center for Bionano Intelligence Education and
Research, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu,
Ansan15588, Republic of Korea
| |
Collapse
|
44
|
Chen M, Ma E, Xing Y, Xu H, Chen L, Wang Y, Zhang Y, Li J, Wang H, Zheng S. Dual-Modal Lateral Flow Test Strip Assisted by Near-Infrared-Powered Nanomotors for Direct Quantitative Detection of Circulating MicroRNA Biomarkers from Serum. ACS Sens 2023; 8:757-766. [PMID: 36696535 DOI: 10.1021/acssensors.2c02315] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Quantification of microRNA (miRNA) has attracted intense interest owing to its importance as a biomarker for the early diagnosis of multiple diseases. However, the inefficient capture of microRNAs from complex biological samples due to the passive diffusion of detection probes essentially restricts their accurate quantification. Herein, we report near-infrared (NIR)-powered Janus nanomotors composed of Au nanorods and periodic mesoporous organo-silica microspheres (AuNR/PMO JNMs) as "swimming probes" to assist a lateral flow test strip (LFTS) for direct, amplification-free, and quantitative miRNA-21 detection in serum and cell medium. The AuNR/PMO JNMs were conjugated with designed hDNA as a recognition probe for miRNA-21. Under NIR irradiation, the exposed AuNRs can generate asymmetric thermal gradients around the JNMs to achieve vigorous self-propelled thermophoretic motion. The active movement significantly accelerated the recognition of miRNA-21 targets, which greatly improved the capture efficiency from 59.39 to 86.12% in the reaction buffer. The enhanced miRNA-21 capture enabled direct quantitative miRNA-21 detection on the LFTS assay with both visual and thermal signals. Under the assistance of AuNR/PMO JNMs, a limit-of-detection of 18 fmol/L for miRNA-21 was achieved, which was 12.22-fold compared to that of LFTS assay with static probes. The constructed LFTS assay was further successfully deployed to directly sense the miRNA-21 in spiked serum samples and MDA-MB-231 medium. Overall, the AuNR/PMO JNM-assisted LFTS system unveils a concrete point-of-care testing strategy for precise miRNA detection in real biological samples, which holds great potential for early diagnosis and treatment of miRNA-related diseases.
Collapse
Affiliation(s)
- Minghui Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Enhui Ma
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Yujuan Xing
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Hanbo Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Liang Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Yuxin Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Hong Wang
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| |
Collapse
|
45
|
Xu H, Lin M, Zheng Y, Fang X, Huang X, Huang Q, Xu J, Duan W, Wei J, Jia L. In situ imaging miRNAs using multifunctional linear DNA nanostructure. Talanta 2023; 253:123997. [PMID: 36228560 DOI: 10.1016/j.talanta.2022.123997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
The microRNAs (miRNAs) play a critical role in many biological processes and are essential biomarkers for diagnosing disease. However, the sensitive and specific quantification of microRNAs (miRNAs) expression in living cells still faces a huge challenge. Our study designed a multifunctional linear DNA nanostructure (MLN) as a carrier of molecular beacons (MB-21) for detecting and intracellular imaging miRNA-21. The MLN-MB consists of three parts: aptamer, MLN, and MB-21. The aptamer (AS1411) could media MLN-MB enter live cells without additional transfection reagents. Once inside the cells, the intracellular miRNA-21 could hybridize the MB-21s, resulting in significantly enhanced fluorescence signals. The whole process was enzyme-free, autonomous, and continuous, which avoided the necessity of adding external fuel strands or enzymes. We demonstrated that the MLN-MB could be used to screen the miRNA-21 with a detection limit of 320 pM in a short time (10 min) and show high specificity toward miRNA-21 against other miRNAs. Moreover, the proposed MLN-MB could detect the miRNA-21 in complex matrixes stably. With its outstanding stability, dual recognition, and biocompatibility, MLN-MB is capable of delivering into living cells to identify specific cancer cells. Therefore, our sensing approach, with high sensitivity, specificity, and simplicity advantages, holds great potential for early cancer diagnosis.
Collapse
Affiliation(s)
- Huo Xu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Min Lin
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yanhui Zheng
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Xiaojun Fang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China; Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Xinmei Huang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Qi Huang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Jiawei Xu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Wei Duan
- School of Medicine and Centre for Molecular and Medical Research Deakin University Geelong, Victoria, 3216, Australia
| | - Juan Wei
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
46
|
Qin X, Wang X, Xu K, Zhang Y, Tian H, Li Y, Qi B, Yang X. Quantitative analysis of miRNAs using SplintR ligase-mediated ligation of complementary-pairing probes enhanced by RNase H (SPLICER)-qPCR. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:241-255. [PMID: 36700047 PMCID: PMC9842969 DOI: 10.1016/j.omtn.2022.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Here, a method using SplintR ligase-mediated ligation of complementary-pairing probes enhanced by RNase H (SPLICER) for miRNAs quantification was established. The strategy has two steps: (1) ligation of two DNA probes specifically hybridize to target miRNA and (2) qPCR amplifying the ligated probe. The miRNA-binding regions of the probes are stem-looped, a motif significantly reduces nonspecific ligation at high ligation temperature (65°C). The ends of the probes are designed complementary to form a paired probe, facilitating the recognition of target miRNAs with low concentrations. RNase H proved to be able to stabilize the heteroduplex formed by the probe and target miRNA, contributing to enhanced sensitivity (limit of detection = 60 copies). High specificity (discriminating homology miRNAs differing only one nucleotide), wide dynamic range (seven orders of magnitude) and ability to accurately detect plant miRNAs (immune to hindrance of 2'-O-methyl moiety) enable SPLICER comparable with the commercially available TaqMan and miRCURY assays. SYBR green I, rather than expensive hydrolysis or locked nucleic acid probes indispensable to TaqMan and miRCURY assays, is adequate for SPLICER. The method was efficient (<1 h), economical ($7 per sample), and robust (able to detect xeno-miRNAs in mammalian bodies), making it a powerful tool for molecular diagnosis and corresponding therapy.
Collapse
Affiliation(s)
- Xinshu Qin
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710062, Shaanxi, China
| | - Xingyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710062, Shaanxi, China,Corresponding author: Xingyu Wang, College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710054, Shaanxi, China.
| | - Ke Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi, China
| | - Yi Zhang
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hongye Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710062, Shaanxi, China
| | - Yinglei Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710062, Shaanxi, China
| | - Bangran Qi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710062, Shaanxi, China
| | - Xingbin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710062, Shaanxi, China,Corresponding author: Xingbin Yang, College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710054, Shaanxi, China.
| |
Collapse
|
47
|
Deng L, Du J, Hun X. Photoelectrochemical assay based on CRISPR/Cas12a coupled with AuNP/MoS2/WS2/g-C3N4 nanoprobe for determination of hepatitis B virus. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Hoque S, Gonçales VR, Bakthavathsalam P, Tilley RD, Gooding JJ. A calibration-free approach to detecting microRNA with DNA-modified gold coated magnetic nanoparticles as dispersible electrodes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4861-4866. [PMID: 36408664 DOI: 10.1039/d2ay01782b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gold coated magnetic nanoparticles (Au@MNPs), modified with DNA sequences give dispersible electrodes that can detect ultralow amounts of microRNAs and other nucleic acids but, as with most other sensors, they require calibration. Herein we show how to adapt a calibration free approach for electrochemical aptamer-based sensors on bulk electrodes to microRNA (miR-21) detection with methylene blue terminated DNA modified Au@MNPs. The electrochemical square wave voltammetry signal from the DNA-Au@MNPs when collected at a bulk electrode under magnetic control, decreases upon capture of miR-21. We show that the square wave voltammogram has concentration dependent and independent frequencies that can be used to give a calibration free signal.
Collapse
Affiliation(s)
- Sharmin Hoque
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia.
| | - Vinicius R Gonçales
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia.
| | - Padmavathy Bakthavathsalam
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia.
| | - Richard D Tilley
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia.
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
49
|
Localized DNA tetrahedrons assisted catalytic hairpin assembly for the rapid and sensitive profiling of small extracellular vesicle-associated microRNAs. J Nanobiotechnology 2022; 20:503. [PMID: 36457020 PMCID: PMC9714172 DOI: 10.1186/s12951-022-01700-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
The profiling of small extracellular vesicle-associated microRNAs (sEV-miRNAs) plays a vital role in cancer diagnosis and monitoring. However, detecting sEV-miRNAs with low expression in clinical samples remains challenging. Herein, we propose a novel electrochemical biosensor using localized DNA tetrahedron-assisted catalytic hairpin assembly (LDT-CHA) for sEV-miRNA determination. The LDT-CHA contained localized DNA tetrahedrons with CHA substrates, leveraging an efficient localized reaction to enable sensitive and rapid sEV-miRNA measurement. Based on the LDT-CHA, the proposed platform can quantitatively detect sEV-miRNA down to 25 aM in 30 min with outstanding specificity. For accurate diagnosis of gastric cancer patients, a combination of LDT-CHA and a panel of four sEV-miRNAs (sEV-miR-1246, sEV-miR-21, sEV-miR-183-5P, and sEV-miR-142-5P) was employed in a gastric cancer cohort. Compared with diagnosis with single sEV-miRNA, the proposed platform demonstrated a higher accuracy of 88.3% for early gastric tumor diagnoses with higher efficiency (AUC: 0.883) and great potential for treatment monitoring. Thus, this study provides a promising method for the bioanalysis and determination of the clinical applications of LDT-CHA.
Collapse
|
50
|
M Silva S, Langley DP, Cossins LR, Samudra AN, Quigley AF, Kapsa RMI, Tothill RW, Greene GW, Moulton SE. Rapid Point-of-Care Electrochemical Sensor for the Detection of Cancer Tn Antigen Carbohydrate in Whole Unprocessed Blood. ACS Sens 2022; 7:3379-3388. [PMID: 36374944 DOI: 10.1021/acssensors.2c01460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Improving outcomes for cancer patients during treatment and monitoring for cancer recurrence requires personalized care which can only be achieved through regular surveillance for biomarkers. Unfortunately, routine detection for blood-based biomarkers is cost-prohibitive using currently specialized laboratories. Using a rapid self-assembly sensing interface amenable to methods of mass production, we demonstrate the ability to detect and quantify a small carbohydrate-based cancer biomarker, Tn antigen (αGalNAc-Ser/Thr) in a small volume of blood, using a test format strip reminiscent of a blood glucose test. The detection of Tn antigen at picomolar levels is achieved through a new transduction mechanism based on the impact of Tn antigen interactions on the molecular dynamic motion of a lectin cross-linked lubricin antifouling brush. In tests performed on retrospective blood plasma samples from patients presenting three different tumor types, differentiation between healthy and diseased patients was achieved, highlighting the clinical potential for cancer monitoring.
Collapse
Affiliation(s)
- Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn3122, Victoria, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne3065, Victoria, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn3122, Victoria, Australia
| | | | | | | | - Anita F Quigley
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne3001, Victoria, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne3065, Victoria, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne3065, Victoria, Australia
| | - Robert M I Kapsa
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne3001, Victoria, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne3065, Victoria, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne3065, Victoria, Australia
| | - Richard W Tothill
- Peter MacCallum Cancer Centre, Department of Clinical Pathology, University of Melbourne, Melbourne3010, Victoria, Australia
| | - George W Greene
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Waurn Ponds3216, Victoria, Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn3122, Victoria, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne3065, Victoria, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn3122, Victoria, Australia
| |
Collapse
|