1
|
Chung J, Kim S, Jeong J, Kim D, Jo A, Kim HY, Hwang J, Kweon DH, Yoo SY, Chung WJ. Preventive and therapeutic effects of a super-multivalent sialylated filamentous bacteriophage against the influenza virus. Biomaterials 2025; 312:122736. [PMID: 39121728 DOI: 10.1016/j.biomaterials.2024.122736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The resurgence of influenza viruses as a significant global threat emphasizes the urgent need for innovative antiviral strategies beyond existing treatments. Here, we present the development and evaluation of a novel super-multivalent sialyllactosylated filamentous phage, termed t-6SLPhage, as a potent entry blocker for influenza A viruses. Structural variations in sialyllactosyl ligands, including linkage type, valency, net charge, and spacer length, were systematically explored to identify optimal binding characteristics against target hemagglutinins and influenza viruses. The selected SLPhage equipped with optimal ligands, exhibited exceptional inhibitory potency in in vitro infection inhibition assays. Furthermore, in vivo studies demonstrated its efficacy as both a preventive and therapeutic intervention, even when administered post-exposure at 2 days post-infection, under 4 lethal dose 50% conditions. Remarkably, co-administration with oseltamivir revealed a synergistic effect, suggesting potential combination therapies to enhance efficacy and mitigate resistance. Our findings highlight the efficacy and safety of sialylated filamentous bacteriophages as promising influenza inhibitors. Moreover, the versatility of M13 phages for surface modifications offers avenues for further engineering to enhance therapeutic and preventive performance.
Collapse
Affiliation(s)
- Jinhyo Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sehoon Kim
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Jiyoon Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Doyeon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Anna Jo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Hwa Young Kim
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, 46241, Republic of Korea.
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Center for Biologics, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
| |
Collapse
|
2
|
Stauber JM. Tailoring Metallosupramolecular Glycoassemblies for Enhancing Lectin Recognition. Angew Chem Int Ed Engl 2024; 63:e202408751. [PMID: 38829965 DOI: 10.1002/anie.202408751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Multivalency is a fundamental principle in nature that leads to high-affinity intermolecular recognition through multiple cooperative interactions that overcome the weak binding of individual constituents. For example, multivalency plays a critical role in lectin-carbohydrate interactions that participate in many essential biological processes. Designing high-affinity multivalent glycoconjugates that engage lectins results in systems with the potential to disrupt these biological processes, offering promising applications in therapeutic design and bioengineering. Here, a versatile and tunable synthetic platform for the synthesis of metallosupramolecular glycoassemblies is presented that leverages subcomponent self-assembly, which employs metal ion templates to generate complex supramolecular architectures from simple precursors in one pot. Through ligand design, this approach provides precise control over molecular parameters such as size, shape, flexibility, valency, and charge, which afforded a diverse family of well-defined hybrid glyconanoassemblies. Evaluation of these complexes as multivalent binders to Concanavalin A (Con A) by isothermal titration calorimetry (ITC) demonstrates the optimal saccharide tether length and the effect of electrostatics on protein affinity, revealing insights into the impact of synthetic design on molecular recognition. The presented studies offer an enhanced understanding of structure-function relationships governing lectin-saccharide interactions at the molecular level and guide a systematic approach towards optimizing glyconanoassembly binding parameters.
Collapse
Affiliation(s)
- Julia M Stauber
- Department of Chemistry and Biochemistry, University of California, La Jolla, 92092, San Diego, California, United States
| |
Collapse
|
3
|
Cui L, Watanabe S, Miyanaga K, Kiga K, Sasahara T, Aiba Y, Tan XE, Veeranarayanan S, Thitiananpakorn K, Nguyen HM, Wannigama DL. A Comprehensive Review on Phage Therapy and Phage-Based Drug Development. Antibiotics (Basel) 2024; 13:870. [PMID: 39335043 PMCID: PMC11428490 DOI: 10.3390/antibiotics13090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Phage therapy, the use of bacteriophages (phages) to treat bacterial infections, is regaining momentum as a promising weapon against the rising threat of multidrug-resistant (MDR) bacteria. This comprehensive review explores the historical context, the modern resurgence of phage therapy, and phage-facilitated advancements in medical and technological fields. It details the mechanisms of action and applications of phages in treating MDR bacterial infections, particularly those associated with biofilms and intracellular pathogens. The review further highlights innovative uses of phages in vaccine development, cancer therapy, and as gene delivery vectors. Despite its targeted and efficient approach, phage therapy faces challenges related to phage stability, immune response, and regulatory approval. By examining these areas in detail, this review underscores the immense potential and remaining hurdles in integrating phage-based therapies into modern medical practices.
Collapse
Affiliation(s)
- Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kazuhiko Miyanaga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
| |
Collapse
|
4
|
Dutta M, Acharya P. Cryo-electron microscopy in the study of virus entry and infection. Front Mol Biosci 2024; 11:1429180. [PMID: 39114367 PMCID: PMC11303226 DOI: 10.3389/fmolb.2024.1429180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Viruses have been responsible for many epidemics and pandemics that have impacted human life globally. The COVID-19 pandemic highlighted both our vulnerability to viral outbreaks, as well as the mobilization of the scientific community to come together to combat the unprecedented threat to humanity. Cryo-electron microscopy (cryo-EM) played a central role in our understanding of SARS-CoV-2 during the pandemic and continues to inform about this evolving pathogen. Cryo-EM with its two popular imaging modalities, single particle analysis (SPA) and cryo-electron tomography (cryo-ET), has contributed immensely to understanding the structure of viruses and interactions that define their life cycles and pathogenicity. Here, we review how cryo-EM has informed our understanding of three distinct viruses, of which two - HIV-1 and SARS-CoV-2 infect humans, and the third, bacteriophages, infect bacteria. For HIV-1 and SARS-CoV-2 our focus is on the surface glycoproteins that are responsible for mediating host receptor binding, and host and cell membrane fusion, while for bacteriophages, we review their structure, capsid maturation, attachment to the bacterial cell surface and infection initiation mechanism.
Collapse
Affiliation(s)
- Moumita Dutta
- Duke Human Vaccine Institute, Durham, NC, United States
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Surgery, Durham, NC, United States
- Department of Biochemistry, Duke University, Durham, NC, United States
| |
Collapse
|
5
|
Hu L, Zhou S, Zhang X, Shi C, Zhang Y, Chen X. Self-Assembly of Polymers and Their Applications in the Fields of Biomedicine and Materials. Polymers (Basel) 2024; 16:2097. [PMID: 39125124 PMCID: PMC11314328 DOI: 10.3390/polym16152097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Polymer self-assembly can prepare various shapes and sizes of pores, making it widely used. The complexity and diversity of biomolecules make them a unique class of building blocks for precise assembly. They are particularly suitable for the new generation of biomaterials integrated with life systems as they possess inherent characteristics such as accurate identification, self-organization, and adaptability. Therefore, many excellent methods developed have led to various practical results. At the same time, the development of advanced science and technology has also expanded the application scope of self-assembly of synthetic polymers. By utilizing this technology, materials with unique shapes and properties can be prepared and applied in the field of tissue engineering. Nanomaterials with transparent and conductive properties can be prepared and applied in fields such as electronic displays and smart glass. Multi-dimensional, controllable, and multi-level self-assembly between nanostructures has been achieved through quantitative control of polymer dosage and combination, chemical modification, and composite methods. Here, we list the classic applications of natural- and artificially synthesized polymer self-assembly in the fields of biomedicine and materials, introduce the cutting-edge technologies involved in these applications, and discuss in-depth the advantages, disadvantages, and future development directions of each type of polymer self-assembly.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyi Chen
- School of Pharmacy, Jiamusi University, Jiamusi 154007, China; (L.H.); (S.Z.); (X.Z.); (C.S.); (Y.Z.)
| |
Collapse
|
6
|
Scalabrini M, Loquet D, Rochard C, Baudin Marie M, Assailly C, Brissonnet Y, Daligault F, Saumonneau A, Lambert A, Grandjean C, Deniaud D, Lottin P, Pascual S, Fontaine L, Balloy V, Gouin SG. Multivalent inhibition of the Aspergillus fumigatus KDNase. Org Biomol Chem 2024; 22:5783-5789. [PMID: 38938184 DOI: 10.1039/d4ob00601a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Aspergillus fumigatus is a saprophytic fungus and opportunistic pathogen often causing fatal infections in immunocompromised patients. Recently AfKDNAse, an exoglycosidase hydrolyzing 3-deoxy-D-galacto-D-glycero-nonulosonic acid (KDN), a rare sugar from the sialic acid family, was identified and characterized. The principal function of AfKDNAse is still unclear, but a study suggests a critical role in fungal cell wall morphology and virulence. Potent AfKDNAse inhibitors are required to better probe the enzyme's biological role and as potential antivirulence factors. In this work, we developed a set of AfKDNAse inhibitors based on enzymatically stable thio-KDN motifs. C2, C9-linked heterodi-KDN were designed to fit into unusually close KDN sugar binding pockets in the protein. A polymeric compound with an average of 54 KDN motifs was also designed by click chemistry. Inhibitory assays performed on recombinant AfKDNAse showed a moderate and strong enzymatic inhibition for the two classes of compounds, respectively. The poly-KDN showed more than a nine hundred fold improved inhibitory activity (IC50 = 1.52 ± 0.37 μM, 17-fold in a KDN molar basis) compared to a monovalent KDN reference, and is to our knowledge, the best synthetic inhibitor described for a KDNase. Multivalency appears to be a relevant strategy for the design of potent KDNase inhibitors. Importantly, poly-KDN was shown to strongly decrease filamentation when co-cultured with A. fumigatus at micromolar concentrations, opening interesting perspectives in the development of antivirulence factors.
Collapse
Affiliation(s)
| | - Denis Loquet
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Camille Rochard
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | | | - Coralie Assailly
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Yoan Brissonnet
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Franck Daligault
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Amélie Saumonneau
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Annie Lambert
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Cyrille Grandjean
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - David Deniaud
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Paul Lottin
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Viviane Balloy
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | | |
Collapse
|
7
|
Najer A. Pathogen-binding nanoparticles to inhibit host cell infection by heparan sulfate and sialic acid dependent viruses and protozoan parasites. SMART MEDICINE 2024; 3:e20230046. [PMID: 39188697 PMCID: PMC11235646 DOI: 10.1002/smmd.20230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 08/28/2024]
Abstract
Global health faces an immense burden from infectious diseases caused by viruses and intracellular protozoan parasites such as the coronavirus disease (COVID-19) and malaria, respectively. These pathogens propagate through the infection of human host cells. The first stage of this host cell infection mechanism is cell attachment, which typically involves interactions between the infectious agent and surface components on the host cell membranes, specifically heparan sulfate (HS) and/or sialic acid (SA). Hence, nanoparticles (NPs) which contain or mimic HS/SA that can directly bind to the pathogen surface and inhibit cell infection are emerging as potential candidates for an alternative anti-infection therapeutic strategy. These NPs can be prepared from metals, soft matter (lipid, polymer, and dendrimer), DNA, and carbon-based materials among others and can be designed to include aspects of multivalency, broad-spectrum activity, biocidal mechanisms, and multifunctionality. This review provides an overview of such anti-pathogen nanomedicines beyond drug delivery. Nanoscale inhibitors acting against viruses and obligate intracellular protozoan parasites are discussed. In the future, the availability of broadly applicable nanotherapeutics would allow early tackling of existing and upcoming viral diseases. Invasion inhibitory NPs could also provide urgently needed effective treatments for protozoan parasitic infections.
Collapse
Affiliation(s)
- Adrian Najer
- Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| |
Collapse
|
8
|
Gao R, Xu X, Kumar P, Liu Y, Zhang H, Guo X, Sun M, Colombari FM, de Moura AF, Hao C, Ma J, Turali Emre ES, Cha M, Xu L, Kuang H, Kotov NA, Xu C. Tapered chiral nanoparticles as broad-spectrum thermally stable antivirals for SARS-CoV-2 variants. Proc Natl Acad Sci U S A 2024; 121:e2310469121. [PMID: 38502692 PMCID: PMC10990083 DOI: 10.1073/pnas.2310469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/19/2024] [Indexed: 03/21/2024] Open
Abstract
The incessant mutations of viruses, variable immune responses, and likely emergence of new viral threats necessitate multiple approaches to novel antiviral therapeutics. Furthermore, the new antiviral agents should have broad-spectrum activity and be environmentally stable. Here, we show that biocompatible tapered CuS nanoparticles (NPs) efficiently agglutinate coronaviruses with binding affinity dependent on the chirality of surface ligands and particle shape. L-penicillamine-stabilized NPs with left-handed curved apexes display half-maximal inhibitory concentrations (IC50) as low as 0.66 pM (1.4 ng/mL) and 0.57 pM (1.2 ng/mL) for pseudo-type SARS-CoV-2 viruses and wild-type Wuhan-1 SARS-CoV-2 viruses, respectively, which are about 1,100 times lower than those for antibodies (0.73 nM). Benefiting from strong NPs-protein interactions, the same particles are also effective against other strains of coronaviruses, such as HCoV-HKU1, HCoV-OC43, HCoV-NL63, and SARS-CoV-2 Omicron variants with IC50 values below 10 pM (21.8 ng/mL). Considering rapid response to outbreaks, exposure to elevated temperatures causes no change in the antiviral activity of NPs while antibodies are completely deactivated. Testing in mice indicates that the chirality-optimized NPs can serve as thermally stable analogs of antiviral biologics complementing the current spectrum of treatments.
Collapse
Affiliation(s)
- Rui Gao
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Prashant Kumar
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan650000, People’s Republic of China
| | - Hongyu Zhang
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Xiao Guo
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Felippe Mariano Colombari
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13083-100, Brazil
| | - André F. de Moura
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo13565-905, Brazil
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Jessica Ma
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
- NSF Center for Complex Particles and Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI48109
| | - Emine Sumeyra Turali Emre
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
- NSF Center for Complex Particles and Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI48109
| | - Minjeong Cha
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Nicholas A. Kotov
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
- NSF Center for Complex Particles and Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI48109
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| |
Collapse
|
9
|
Dhar A, Gupta SL, Saini P, Sinha K, Khandelwal A, Tyagi R, Singh A, Sharma P, Jaiswal RK. Nanotechnology-based theranostic and prophylactic approaches against SARS-CoV-2. Immunol Res 2024; 72:14-33. [PMID: 37682455 DOI: 10.1007/s12026-023-09416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
SARS-CoV-2 (COVID-19) pandemic has been an unpredicted burden on global healthcare system by infecting over 700 million individuals, with approximately 6 million deaths worldwide. COVID-19 significantly impacted all sectors, but it very adversely affected the healthcare system. These effects were much more evident in the resource limited part of the world. Individuals with acute conditions were also severely impacted. Although classical COVID-19 diagnostics such as RT-PCR and rapid antibody testing have played a crucial role in reducing the spread of infection, these diagnostic techniques are associated with certain limitations. For instance, drawback of RT-PCR diagnostics is that due to degradation of viral RNA during shipping, it can give false negative results. Also, rapid antibody testing majorly depends on the phase of infection and cannot be performed on immune compromised individuals. These limitations in current diagnostic tools require the development of nanodiagnostic tools for early detection of COVID-19 infection. Therefore, the SARS-CoV-2 outbreak has necessitated the development of specific, responsive, accurate, rapid, low-cost, and simple-to-use diagnostic tools at point of care. In recent years, early detection has been a challenge for several health diseases that require prompt attention and treatment. Disease identification at an early stage, increased imaging of inner health issues, and ease of diagnostic processes have all been established using a new discipline of laboratory medicine called nanodiagnostics, even before symptoms have appeared. Nanodiagnostics refers to the application of nanoparticles (material with size equal to or less than 100 nm) for medical diagnostic purposes. The special property of nanomaterials compared to their macroscopic counterparts is a lesser signal loss and an enhanced electromagnetic field. Nanosize of the detection material also enhances its sensitivity and increases the signal to noise ratio. Microchips, nanorobots, biosensors, nanoidentification of single-celled structures, and microelectromechanical systems are some of the most modern nanodiagnostics technologies now in development. Here, we have highlighted the important roles of nanotechnology in healthcare sector, with a detailed focus on the management of the COVID-19 pandemic. We outline the different types of nanotechnology-based diagnostic devices for SARS-CoV-2 and the possible applications of nanomaterials in COVID-19 treatment. We also discuss the utility of nanomaterials in formulating preventive strategies against SARS-CoV-2 including their use in manufacture of protective equipment, formulation of vaccines, and strategies for directly hindering viral infection. We further discuss the factors hindering the large-scale accessibility of nanotechnology-based healthcare applications and suggestions for overcoming them.
Collapse
Affiliation(s)
- Atika Dhar
- National Institute of Immunology, New Delhi, India, 110067
| | | | - Pratima Saini
- National Institute of Immunology, New Delhi, India, 110067
| | - Kirti Sinha
- Department of Zoology, Patna Science College, Patna University, Patna, Bihar, India
| | | | - Rohit Tyagi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alka Singh
- Department of Chemistry, Feroze Gandhi College, Raebareli, U.P, India, 229001
| | - Priyanka Sharma
- Department of Zoology, Patna Science College, Patna University, Patna, Bihar, India.
| | - Rishi Kumar Jaiswal
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA.
| |
Collapse
|
10
|
Zhu F, Wang XW, Chen H, Wen J. Chiral nanopesticides: the invincible opponent of plant viruses. TRENDS IN PLANT SCIENCE 2024; 29:120-122. [PMID: 37993373 DOI: 10.1016/j.tplants.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Viral diseases of plants are exceptionally difficult to control in agriculture production. Recently, Gao et al. discovered that engineered site-selective nanoparticles (NPs), incorporating metal ion-based proteolytic activity and nanoscale chirality, can be used as potent, nontoxic, and environmentally friendly antiviral agents to kill plant viruses.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Xiao-Wen Wang
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Huan Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA.
| |
Collapse
|
11
|
Pradhan S, Swanson CJ, Leff C, Tengganu I, Bergeman MH, Wisna GBM, Hogue IB, Hariadi RF. Viral Attachment Blocking Chimera Composed of DNA Origami and Nanobody Inhibits Pseudorabies Virus Infection In Vitro. ACS NANO 2023; 17:23317-23330. [PMID: 37982733 PMCID: PMC10787579 DOI: 10.1021/acsnano.3c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative use in healthcare, antivirals have been clinically approved to treat only 10 of the more than 200 known pathogenic human viruses. Additionally, many virus functions are intimately coupled with host cellular processes, which presents challenges in antiviral development due to the limited number of clear targets per virus, necessitating extensive insight into these molecular processes. Compounding this challenge, many viral pathogens have evolved to evade effective antivirals. We hypothesize that a viral attachment blocking chimera (VirABloC) composed of a viral binder and a bulky scaffold that sterically blocks interactions between a viral particle and a host cell may be suitable for the development of antivirals that are agnostic to the extravirion epitope that is being bound. We test this hypothesis by modifying a nanobody that specifically recognizes a nonessential epitope presented on the extravirion surface of pseudorabies virus strain 486 with a 3-dimensional wireframe DNA origami structure ∼100 nm in diameter. The nanobody switches from having no inhibitory properties to 4.2 ± 0.9 nM IC50 when conjugated with the DNA origami scaffold. Mechanistic studies support that inhibition is mediated by the noncovalent attachment of the DNA origami scaffold to the virus particle, which obstructs the attachment of the viruses onto host cells. These results support the potential of VirABloC as a generalizable approach to developing antivirals.
Collapse
Affiliation(s)
- Swechchha Pradhan
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Carter J Swanson
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Chloe Leff
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Isadonna Tengganu
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Melissa H Bergeman
- School of Life Science, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, Arizona 85281, United States
| | - Gde B M Wisna
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85281, United States
| | - Ian B Hogue
- School of Life Science, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, Arizona 85281, United States
| | - Rizal F Hariadi
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
12
|
Liu C, Hu L, Dong G, Zhang Y, Ferreira da Silva-Júnior E, Liu X, Menéndez-Arias L, Zhan P. Emerging drug design strategies in anti-influenza drug discovery. Acta Pharm Sin B 2023; 13:4715-4732. [PMID: 38045039 PMCID: PMC10692392 DOI: 10.1016/j.apsb.2023.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 12/05/2023] Open
Abstract
Influenza is an acute respiratory infection caused by influenza viruses (IFV), According to the World Health Organization (WHO), seasonal IFV epidemics result in approximately 3-5 million cases of severe illness, leading to about half a million deaths worldwide, along with severe economic losses and social burdens. Unfortunately, frequent mutations in IFV lead to a certain lag in vaccine development as well as resistance to existing antiviral drugs. Therefore, it is of great importance to develop anti-IFV drugs with high efficiency against wild-type and resistant strains, needed in the fight against current and future outbreaks caused by different IFV strains. In this review, we summarize general strategies used for the discovery and development of antiviral agents targeting multiple IFV strains (including those resistant to available drugs). Structure-based drug design, mechanism-based drug design, multivalent interaction-based drug design and drug repurposing are amongst the most relevant strategies that provide a framework for the development of antiviral drugs targeting IFV.
Collapse
Affiliation(s)
- Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Lide Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Guanyu Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ying Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
13
|
Chauhan N, Xiong Y, Ren S, Dwivedy A, Magazine N, Zhou L, Jin X, Zhang T, Cunningham BT, Yao S, Huang W, Wang X. Net-Shaped DNA Nanostructures Designed for Rapid/Sensitive Detection and Potential Inhibition of the SARS-CoV-2 Virus. J Am Chem Soc 2023; 145:20214-20228. [PMID: 35881910 PMCID: PMC9344894 DOI: 10.1021/jacs.2c04835] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 02/07/2023]
Abstract
We present a net-shaped DNA nanostructure (called "DNA Net" herein) design strategy for selective recognition and high-affinity capture of intact SARS-CoV-2 virions through spatial pattern-matching and multivalent interactions between the aptamers (targeting wild-type spike-RBD) positioned on the DNA Net and the trimeric spike glycoproteins displayed on the viral outer surface. Carrying a designer nanoswitch, the DNA Net-aptamers release fluorescence signals upon virus binding that are easily read with a handheld fluorimeter for a rapid (in 10 min), simple (mix-and-read), sensitive (PCR equivalent), room temperature compatible, and inexpensive (∼$1.26/test) COVID-19 test assay. The DNA Net-aptamers also impede authentic wild-type SARS-CoV-2 infection in cell culture with a near 1 × 103-fold enhancement of the monomeric aptamer. Furthermore, our DNA Net design principle and strategy can be customized to tackle other life-threatening and economically influential viruses like influenza and HIV, whose surfaces carry class-I viral envelope glycoproteins like the SARS-CoV-2 spikes in trimeric forms.
Collapse
Affiliation(s)
- Neha Chauhan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yanyu Xiong
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shaokang Ren
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Abhisek Dwivedy
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Lifeng Zhou
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Brian T. Cunningham
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Xing Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Dong X, Wu W, Pan P, Zhang XZ. Engineered Living Materials for Advanced Diseases Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304963. [PMID: 37436776 DOI: 10.1002/adma.202304963] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Natural living materials serving as biotherapeutics exhibit great potential for treating various diseases owing to their immunoactivity, tissue targeting, and other biological activities. In this review, the recent developments in engineered living materials, including mammalian cells, bacteria, viruses, fungi, microalgae, plants, and their active derivatives that are used for treating various diseases are summarized. Further, the future perspectives and challenges of such engineered living material-based biotherapeutics are discussed to provide considerations for future advances in biomedical applications.
Collapse
Affiliation(s)
- Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Wei Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
15
|
Gabrielaitis D, Zitkute V, Saveikyte L, Labutyte G, Skapas M, Meskys R, Casaite V, Sasnauskiene A, Neniskyte U. Nanotubes from bacteriophage tail sheath proteins: internalisation by cancer cells and macrophages. NANOSCALE ADVANCES 2023; 5:3705-3716. [PMID: 37441259 PMCID: PMC10334369 DOI: 10.1039/d3na00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/04/2023] [Indexed: 07/15/2023]
Abstract
Bionanoparticles comprised of naturally occurring monomers are gaining interest in the development of novel drug transportation systems. Here we report on the stabilisation, cellular uptake, and macrophage clearance of nanotubes formed from the self-assembling gp053 tail sheath protein of the vB_EcoM_FV3 bacteriophage. To evaluate the potential of the bacteriophage protein-based nanotubes as therapeutic nanocarriers, we investigated their internalisation into colorectal cancer cell lines and professional macrophages that may hinder therapeutic applications by clearing nanotube carriers. We fused the bacteriophage protein with a SNAP-tag self-labelling enzyme and demonstrated that its activity is retained in assembled nanotubes, indicating that such carriers can be applied to deliver therapeutic biomolecules. Under physiological conditions, the stabilisation of the nanotubes by PEGylation was required to prevent aggregation and yield a stable solution with uniform nano-sized structures. Colorectal carcinoma cells from primary and metastatic tumours internalized SNAP-tag-carrying nanotubes with different efficiencies. The nanotubes entered HCT116 cells via dynamin-dependent and SW480 cells - via dynamin- and clathrin-dependent pathways and were accumulated in lysosomes. Meanwhile, peritoneal macrophages phagocytosed the nanotubes in a highly efficient manner through actin-dependent mechanisms. Macrophage clearance of nanotubes was enhanced by inflammatory activation but was dampened in macrophages isolated from aged animals. Altogether, our results demonstrate that gp053 nanotubes retained the cargo's enzymatic activity post-assembly and had the capacity to enter cancer cells. Furthermore, we emphasise the importance of evaluating the nanocarrier clearance by immune cells under conditions mimicking a cancerous environment.
Collapse
Affiliation(s)
- Dovydas Gabrielaitis
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Vilmante Zitkute
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Lina Saveikyte
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Greta Labutyte
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Martynas Skapas
- Institute of Biotechnology, Vilnius University Vilnius Lithuania
| | - Rolandas Meskys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Vida Casaite
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Ausra Sasnauskiene
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Urte Neniskyte
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
- VU-EMBL Partnership Institute, Vilnius University Vilnius Lithuania
| |
Collapse
|
16
|
Yan A, Chen X, He J, Ge Y, Liu Q, Men D, Xu K, Li D. Phosphorothioated DNA Engineered Liposomes as a General Platform for Stimuli-Responsive Cell-Specific Intracellular Delivery and Genome Editing. Angew Chem Int Ed Engl 2023; 62:e202303973. [PMID: 37100742 DOI: 10.1002/anie.202303973] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Intracellular protein delivery is highly desirable for protein drug-based cell therapy. Established technologies suffer from poor cell-specific cytosolic protein delivery, which hampers the targeting therapy of specific cell populations. A fusogenic liposome system enables cytosolic delivery, but its ability of cell-specific and controllable delivery is quite limited. Inspired by the kinetics of viral fusion, we designed a phosphorothioated DNA coatings-modified fusogenic liposome to mimic the function of viral hemagglutinin. The macromolecular fusion machine docks cargo-loaded liposomes at the membrane of target cells, triggers membrane fusion upon pH or UV light stimuli, and facilitates cytosolic protein delivery. Our results showed efficient cell-targeted delivery of proteins of various sizes and charges, indicating the phosphorothioated DNA plug-in unit on liposomes could be a general strategy for spatial-temporally controllable protein delivery both in vitro and in vivo.
Collapse
Affiliation(s)
- An Yan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaoqing Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jie He
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yifan Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Qing Liu
- Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dong Men
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Ke Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Di Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
17
|
Parshad B, Schlecht MN, Baumgardt M, Ludwig K, Nie C, Rimondi A, Hönzke K, Angioletti-Uberti S, Khatri V, Schneider P, Herrmann A, Haag R, Hocke AC, Wolff T, Bhatia S. Dual-Action Heteromultivalent Glycopolymers Stringently Block and Arrest Influenza A Virus Infection In Vitro and Ex Vivo. NANO LETTERS 2023; 23:4844-4853. [PMID: 37220024 DOI: 10.1021/acs.nanolett.3c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Here, we demonstrate the concerted inhibition of different influenza A virus (IAV) strains using a low-molecular-weight dual-action linear polymer. The 6'-sialyllactose and zanamivir conjugates of linear polyglycerol are optimized for simultaneous targeting of hemagglutinin and neuraminidase on the IAV surface. Independent of IAV subtypes, hemagglutination inhibition data suggest better adsorption of the heteromultivalent polymer than homomultivalent analogs onto the virus surface. Cryo-TEM images imply heteromultivalent compound-mediated virus aggregation. The optimized polymeric nanomaterial inhibits >99.9% propagation of various IAV strains 24 h postinfection in vitro at low nM concentrations and is up to 10000× more effective than the commercial zanamivir drug. In a human lung ex vivo multicyclic infection setup, the heteromultivalent polymer outperforms the commercial drug zanamivir and homomultivalent analogs or their physical mixtures. This study authenticates the translational potential of the dual-action targeting approach using small polymers for broad and high antiviral efficacy.
Collapse
Affiliation(s)
- Badri Parshad
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Marlena N Schlecht
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
- Medical Clinic III, Division of Nephrology, Medizinische Fakultät Carl Gustav Carus an der TU Dresden, Fiedlerstr. 40, 01307 Dresden, Germany
| | - Morris Baumgardt
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195 Berlin, Germany
| | - Chuanxiong Nie
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Agustina Rimondi
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| | - Katja Hönzke
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | | | - Vinod Khatri
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Paul Schneider
- Department for Thoracic Surgery, DRK Clinics, 13359 Berlin, Germany
| | - Andreas Herrmann
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Andreas C Hocke
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Thorsten Wolff
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| | - Sumati Bhatia
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
18
|
Anwar F, Naqvi S, Shams S, Sheikh RA, Al-Abbasi FA, Asseri AH, Baig MR, Kumar V. Nanomedicines: intervention in inflammatory pathways of cancer. Inflammopharmacology 2023; 31:1199-1221. [PMID: 37060398 PMCID: PMC10105366 DOI: 10.1007/s10787-023-01217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
Inflammation is a complex defense process that maintains tissue homeostasis. However, this complex cascade, if lasts long, may contribute to pathogenesis of several diseases. Chronic inflammation has been exhaustively studied in the last few decades, for its contribution in development and progression of cancer. The intrinsic limitations of conventional anti-inflammatory and anti-cancer therapies triggered the development of nanomedicines for more effective and safer therapies. Targeting inflammation and tumor cells by nanoparticles, encapsulated with active therapeutic agents, offers a promising outcome with patient survival. Considerable technological success has been achieved in this field through exploitation of tumor microenvironment, and recognition of molecules overexpressed on endothelial cells or macrophages, through enhanced vascular permeability, or by rendering biomimetic approach to nanoparticles. This review focusses on the inflammatory pathways in progression of a tumor, and advancement in nanotechnologies targeting these pathways. We also aim to identify the gaps that hinder the successful clinical translation of nanotherapeutics with further clinical studies that will allow oncologist to precisely identify the patients who may be benefited from nanotherapy at time when promotion or progression of tumor initiates. It is postulated that the nanomedicines, in near future, will shift the paradigm of cancer treatment and improve patient survival.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Saiba Shams
- School of Pharmaceutical Education & Research, (Deemed to be University), New Delhi, 110062, India
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mirza Rafi Baig
- Department of Clinical Pharmacy & Pharmacotherapeutics. Dubai Pharmacy College for Girls, Po Box 19099, Dubai, United Arab Emirates
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
19
|
Makky S, Abdelrahman F, Easwaran M, Safwat A, El-Shibiny A. Phages as delivery vehicles and phage display. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:119-132. [PMID: 37770167 DOI: 10.1016/bs.pmbts.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bacteriophages (Phages in short) were introduced as the natural enemy of bacteria that may act as alternatives to antibiotics to overcome the challenge of antibiotic resistance. However, in the recent history of science, phages have been employed in different molecular tools and used in numerous therapeutic and diagnostic approaches. Furthermore, thanks to the phage`s highly specific host range limited to prokaryotes, phage particles can be used as safe delivery vehicles and display systems. In this chapter, different phage display systems are introduced, in addition to various applications of phage display as a molecular and therapeutic tool in developing vaccines, antibacterial, and anti-cancer treatments.
Collapse
Affiliation(s)
- Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Maheswaran Easwaran
- Department of Biomedical Engineering, Sethu Institute of Technology, Virudhunagar, Tamil Nadu, India
| | - Anan Safwat
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt.
| |
Collapse
|
20
|
Cao Y, Song W, Chen X. Multivalent sialic acid materials for biomedical applications. Biomater Sci 2023; 11:2620-2638. [PMID: 36661319 DOI: 10.1039/d2bm01595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sialic acid is a kind of monosaccharide expressed on the non-reducing end of glycoproteins or glycolipids. It acts as a signal molecule combining with its natural receptors such as selectins and siglecs (sialic acid-binding immunoglobulin-like lectins) in intercellular interactions like immunological surveillance and leukocyte infiltration. The last few decades have witnessed the exploration of the roles that sialic acid plays in different physiological and pathological processes and the use of sialic acid-modified materials as therapeutics for related diseases like immune dysregulation and virus infection. In this review, we will briefly introduce the biomedical function of sialic acids in organisms and the utilization of multivalent sialic acid materials for targeted drug delivery as well as therapeutic applications including anti-inflammation and anti-virus.
Collapse
Affiliation(s)
- Yusong Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| |
Collapse
|
21
|
Jiao C, Wang B, Chen P, Jiang Y, Liu J. Analysis of the conserved protective epitopes of hemagglutinin on influenza A viruses. Front Immunol 2023; 14:1086297. [PMID: 36875062 PMCID: PMC9981632 DOI: 10.3389/fimmu.2023.1086297] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
The conserved protective epitopes of hemagglutinin (HA) are essential to the design of a universal influenza vaccine and new targeted therapeutic agents. Over the last 15 years, numerous broadly neutralizing antibodies (bnAbs) targeting the HA of influenza A viruses have been isolated from B lymphocytes of human donors and mouse models, and their binding epitopes identified. This work has brought new perspectives for identifying conserved protective epitopes of HA. In this review, we succinctly analyzed and summarized the antigenic epitopes and functions of more than 70 kinds of bnAb. The highly conserved protective epitopes are concentrated on five regions of HA: the hydrophobic groove, the receptor-binding site, the occluded epitope region of the HA monomers interface, the fusion peptide region, and the vestigial esterase subdomain. Our analysis clarifies the distribution of the conserved protective epitope regions on HA and provides distinct targets for the design of novel vaccines and therapeutics to combat influenza A virus infection.
Collapse
Affiliation(s)
- Chenchen Jiao
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bo Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
22
|
Gallego I, Ramos‐Soriano J, Méndez‐Ardoy A, Cabrera‐González J, Lostalé‐Seijo I, Illescas BM, Reina JJ, Martín N, Montenegro J. A 3D Peptide/[60]Fullerene Hybrid for Multivalent Recognition. Angew Chem Int Ed Engl 2022; 61:e202210043. [PMID: 35989251 PMCID: PMC9826239 DOI: 10.1002/anie.202210043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 01/11/2023]
Abstract
Fully substituted peptide/[60]fullerene hexakis-adducts offer an excellent opportunity for multivalent protein recognition. In contrast to monofunctionalized fullerene hybrids, peptide/[60]fullerene hexakis-adducts display multiple copies of a peptide in close spatial proximity and in the three dimensions of space. High affinity peptide binders for almost any target can be currently identified by in vitro evolution techniques, often providing synthetically simpler alternatives to natural ligands. However, despite the potential of peptide/[60]fullerene hexakis-adducts, these promising conjugates have not been reported to date. Here we present a synthetic strategy for the construction of 3D multivalent hybrids that are able to bind with high affinity the E-selectin. The here synthesized fully substituted peptide/[60]fullerene hybrids and their multivalent recognition of natural receptors constitute a proof of principle for their future application as functional biocompatible materials.
Collapse
Affiliation(s)
- Iván Gallego
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiago de CompostelaSpain
| | - Javier Ramos‐Soriano
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad Complutense28040MadridSpain,Present address: Glycosystems LaboratoryInstituto de Investigaciones Químicas (IIQ), CSICUniversidad de SevillaAv.Américo Vespucio, 4941092SevilleSpain
| | - Alejandro Méndez‐Ardoy
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiago de CompostelaSpain
| | - Justo Cabrera‐González
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad Complutense28040MadridSpain
| | - Irene Lostalé‐Seijo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiago de CompostelaSpain
| | - Beatriz M. Illescas
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad Complutense28040MadridSpain
| | - Jose J. Reina
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiago de CompostelaSpain,Present address: Universidad de Málaga, IBIMADpto. de Química OrgánicaCampus de Teatinos, s/n.29071MálagaSpain,Centro Andaluz de Nanomedicina y Biotecnología, BIONAND, Parque Tecnológico de AndalucíaC/Severo Ochoa, 3529590Campanillas (Málaga)Spain
| | - Nazario Martín
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad Complutense28040MadridSpain,IMDEA-NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiago de CompostelaSpain
| |
Collapse
|
23
|
Yasamineh S, Kalajahi HG, Yasamineh P, Yazdani Y, Gholizadeh O, Tabatabaie R, Afkhami H, Davodabadi F, Farkhad AK, Pahlevan D, Firouzi-Amandi A, Nejati-Koshki K, Dadashpour M. An overview on nanoparticle-based strategies to fight viral infections with a focus on COVID-19. J Nanobiotechnology 2022; 20:440. [PMID: 36209089 PMCID: PMC9547679 DOI: 10.1186/s12951-022-01625-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to COVID-19 and has become a pandemic worldwide with mortality of millions. Nanotechnology can be used to deliver antiviral medicines or other types of viral reproduction-inhibiting medications. At various steps of viral infection, nanotechnology could suggest practical solutions for usage in the fight against viral infection. Nanotechnology-based approaches can help in the fight against SARS-CoV-2 infection. Nanoparticles can play an essential role in progressing SARS-CoV-2 treatment and vaccine production in efficacy and safety. Nanocarriers have increased the speed of vaccine development and the efficiency of vaccines. As a result, the increased investigation into nanoparticles as nano-delivery systems and nanotherapeutics in viral infection, and the development of new and effective methods are essential for inhibiting SARS-CoV-2 infection. In this article, we compare the attributes of several nanoparticles and evaluate their capability to create novel vaccines and treatment methods against different types of viral diseases, especially the SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Medical Biotechnology, Institute of Higher Education Rab-Rashid, Tabriz, Iran
| | | | - Pooneh Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Gholizadeh
- Department of Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Tabatabaie
- Department of Medical Immunology, Faculty of Medical Sciences, Hamadan University, Hamadan, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | | | - Daryoush Pahlevan
- Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Akram Firouzi-Amandi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Nejati-Koshki
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mehdi Dadashpour
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
24
|
McBerney R, Dolan JP, Cawood EE, Webb ME, Turnbull WB. Bioorthogonal, Bifunctional Linker for Engineering Synthetic Glycoproteins. JACS AU 2022; 2:2038-2047. [PMID: 36186556 PMCID: PMC9516712 DOI: 10.1021/jacsau.2c00312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Post-translational glycosylation of proteins results in complex mixtures of heterogeneous protein glycoforms. Glycoproteins have many potential applications from fundamental studies of glycobiology to potential therapeutics, but generating homogeneous recombinant glycoproteins using chemical or chemoenzymatic reactions to mimic natural glycoproteins or creating homogeneous synthetic neoglycoproteins is a challenging synthetic task. In this work, we use a site-specific bioorthogonal approach to produce synthetic homogeneous glycoproteins. We develop a bifunctional, bioorthogonal linker that combines oxime ligation and strain-promoted azide-alkyne cycloaddition chemistry to functionalize reducing sugars and glycan derivatives for attachment to proteins. We demonstrate the utility of this minimal length linker by producing neoglycoprotein inhibitors of cholera toxin in which derivatives of the disaccharide lactose and GM1os pentasaccharide are attached to a nonbinding variant of the cholera toxin B-subunit that acts as a size- and valency-matched multivalent scaffold. The resulting neoglycoproteins decorated with GM1 ligands inhibit cholera toxin B-subunit adhesion with a picomolar IC50.
Collapse
|
25
|
Rastogi A, Singh A, Naik K, Mishra A, Chaudhary S, Manohar R, Singh Parmar A. A systemic review on liquid crystals, nanoformulations and its application for detection and treatment of SARS - CoV- 2 (COVID - 19). J Mol Liq 2022; 362:119795. [PMID: 35832289 PMCID: PMC9265145 DOI: 10.1016/j.molliq.2022.119795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 01/31/2023]
Abstract
The COVID-19 is a pandemic caused by the SARS-CoV-2 virus, has instigated major health problems and prompted WHO to proclaim a worldwide medical emergency. The knowledge of SARS-CoV-2 fundamental structure, aetiology, its entrance mechanism, membrane hijacking and immune response against the virus, are important parameters to develop effective vaccines and medicines. Liquid crystals integrated nano-techniques and various nanoformulations were applied to tackle the severity of the virus. It was reported that nanoformulations have helped to enhance the effectiveness of presently accessible antiviral medicines or to elicit a fast immunological response against COVID-19 virus. Applications of liquid crystals, nanostructures, nanoformulations and nanotechnology in diagnosis, prevention, treatment and tailored vaccine administration against COVID-19 which will help in establishing the framework for a successful pandemic combat are reviewed. This review also focuses on limitations associated with liquid crystal-nanotechnology based systems and suggests the possible ways to address these limitations. Also, topical advancements in the ground of liquid crystals and nanostructures established diagnostics (nanosensor/biosensor) are discussed in detail.
Collapse
Affiliation(s)
- Ayushi Rastogi
- Liquid Crystal Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
- Department of Humanity and Applied Sciences (Physics), SMS College of Engineering, Institute of Technology, Lucknow 226001, Uttar Pradesh, India
| | - Abhilasha Singh
- Department of Physics, J.S.S Academy of Technical Education, Bangalore 560060, Karnataka, India
| | - Kaustubh Naik
- Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Archana Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay - 400085, Mumbai, India
| | - Shilpi Chaudhary
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh 160012, Punjab, India
| | - Rajiv Manohar
- Liquid Crystal Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | | |
Collapse
|
26
|
Li L, Chen G. Precise Assembly of Proteins and Carbohydrates for Next-Generation Biomaterials. J Am Chem Soc 2022; 144:16232-16251. [PMID: 36044681 DOI: 10.1021/jacs.2c04418] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complexity and diversity of biomacromolecules make them a unique class of building blocks for generating precise assemblies. They are particularly available to a new generation of biomaterials integrated with living systems due to their intrinsic properties such as accurate recognition, self-organization, and adaptability. Therefore, many excellent approaches have been developed, leading to a variety of quite practical outcomes. Here, we review recent advances in the fabrication and application of artificially precise assemblies by employing proteins and carbohydrates as building blocks, followed by our perspectives on some of new challenges, goals, and opportunities for the future research directions in this field.
Collapse
Affiliation(s)
- Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China.,Multiscale Research Institute for Complex Systems, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
27
|
Gallego I, Ramos-Soriano J, Méndez-Ardoy A, Cabrera-González J, Lostalé-Seijo I, Reina JJ, Illescas BM, Martin N, Montenegro J. A 3D Peptide/[60]Fullerene Hybrid for Multivalent Recognition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ivan Gallego
- University of Santiago de Compostela: Universidade de Santiago de Compostela CIQUS SPAIN
| | - Javier Ramos-Soriano
- Complutense University of Madrid: Universidad Complutense de Madrid Organic Chemistry SPAIN
| | | | - Justo Cabrera-González
- Complutense University of Madrid: Universidad Complutense de Madrid Organic Chemistry SPAIN
| | - Irene Lostalé-Seijo
- University of Santiago de Compostela: Universidade de Santiago de Compostela CIQUS SPAIN
| | - Jose J. Reina
- University of Malaga: Universidad de Malaga Organic Chemistry SPAIN
| | - Beatriz M. Illescas
- Complutense University of Madrid: Universidad Complutense de Madrid organic chemistry SPAIN
| | - Nazario Martin
- Complutense University of Madrid: Universidad Complutense de Madrid organic chemistry SPAIN
| | - Javier Montenegro
- Universidad de Santiago de Compostela Departamento de Química Orgánica c/ Jenaro de la Fuente s/n 15782 Santiago de Compostela SPAIN
| |
Collapse
|
28
|
Gao R, Xu L, Sun M, Xu M, Hao C, Guo X, Colombari FM, Zheng X, Král P, de Moura AF, Xu C, Yang J, Kotov NA, Kuang H. Site-selective proteolytic cleavage of plant viruses by photoactive chiral nanoparticles. Nat Catal 2022. [DOI: 10.1038/s41929-022-00823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Adam L, Müller E, Ludwig K, Klenk S, Lauster D, Liese S, Herrmann A, Hackenberger CPR. Design and Functional Analysis of Heterobifunctional Multivalent Phage Capsid Inhibitors Blocking the Entry of Influenza Virus. Bioconjug Chem 2022; 33:1269-1278. [PMID: 35759354 PMCID: PMC9305970 DOI: 10.1021/acs.bioconjchem.2c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Multiple conjugation
of virus-binding ligands to multivalent carriers
is a prominent strategy to construct highly affine virus binders for
the inhibition of viral entry into host cells. In a previous study,
we introduced rationally designed sialic acid conjugates of bacteriophages
(Qβ) that match the triangular binding site geometry on hemagglutinin
spike proteins of influenza A virions, resulting in effective infection
inhibition in vitro and in vivo.
In this work, we demonstrate that even partially sialylated Qβ
conjugates retain the inhibitory effect despite reduced activity.
These observations not only support the importance of trivalent binding
events in preserving high affinity, as supported by computational
modeling, but also allow us to construct heterobifunctional modalities.
Capsids carrying two different sialic acid ligand–linker structures
showed higher viral inhibition than their monofunctional counterparts.
Furthermore, capsids carrying a fluorescent dye in addition to sialic
acid ligands were used to track their interaction with cells. These
findings support exploring broader applications as multivalent inhibitors
in the future.
Collapse
Affiliation(s)
- Lutz Adam
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Street 2, 12489 Berlin, Germany
| | - Eva Müller
- Institut für translationale HIV Forschung, Universitätsklinikum Essen, Virchowstree 171, 45147 Essen, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin 14195, Germany
| | - Simon Klenk
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Street 2, 12489 Berlin, Germany
| | - Daniel Lauster
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Susanne Liese
- Max-Planck Institute for the Physics of Complex Systems, Nöthnitzer Street 38, Dresden 01187, Germany.,Institut für Physik, Universität Augsburg, Augsburg 86159, Germany
| | - Andreas Herrmann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Street 2, 12489 Berlin, Germany
| |
Collapse
|
30
|
Microscale Thermophoresis as a Tool to Study Protein Interactions and Their Implication in Human Diseases. Int J Mol Sci 2022; 23:ijms23147672. [PMID: 35887019 PMCID: PMC9315744 DOI: 10.3390/ijms23147672] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
The review highlights how protein–protein interactions (PPIs) have determining roles in most life processes and how interactions between protein partners are involved in various human diseases. The study of PPIs and binding interactions as well as their understanding, quantification and pharmacological regulation are crucial for therapeutic purposes. Diverse computational and analytical methods, combined with high-throughput screening (HTS), have been extensively used to characterize multiple types of PPIs, but these procedures are generally laborious, long and expensive. Rapid, robust and efficient alternative methods are proposed, including the use of Microscale Thermophoresis (MST), which has emerged as the technology of choice in drug discovery programs in recent years. This review summarizes selected case studies pertaining to the use of MST to detect therapeutically pertinent proteins and highlights the biological importance of binding interactions, implicated in various human diseases. The benefits and limitations of MST to study PPIs and to identify regulators are discussed.
Collapse
|
31
|
Agostinelli D, Elfring GJ, Bacca M. The morphological role of ligand inhibitors in blocking receptor- and clathrin-mediated endocytosis. SOFT MATTER 2022; 18:3531-3545. [PMID: 35445221 DOI: 10.1039/d1sm01710a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells often internalize particles through endocytic pathways that involve the binding between cell receptors and particle ligands, which drives the cell membrane to wrap the particle into a delivery vesicle. Previous findings showed that receptor-mediated endocytosis is impossible for spherical particles smaller than a minimum size because of the energy barrier created by membrane bending. In this study, we investigate the morphological role of ligand inhibitors in blocking endocytosis, inspired by antibodies that inhibit virus ligands to prevent infection. While ligand inhibitors have the obvious effect of reducing the driving force due to adhesion, they also have a nontrivial (morphological) impact on the entropic and elastic energy of the system. We determine the necessary conditions for endocytosis by considering the additional energy barrier due to the membrane bending to wrap the inhibiting protrusions. We find that inhibitors increase the minimum radius previously reported, depending on their density and size. In addition, we extend this result to the case of clathrin-mediated endocytosis, which is the most common pathway for virus entry. The assembly of a clathrin coat with a spontaneous curvature increases the energy barrier and sets a maximum particle size (in agreement with experimental observations on spherical particles). Our investigation suggests that morphological considerations can inform the optimal design of neutralizing viral antibodies and new strategies for targeted nanomedicine.
Collapse
Affiliation(s)
- Daniele Agostinelli
- Mechanical Engineering Department, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Gwynn J Elfring
- Mechanical Engineering Department, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Mattia Bacca
- Mechanical Engineering Department, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
32
|
Dzuvor CKO, Tettey EL, Danquah MK. Aptamers as promising nanotheranostic tools in the COVID-19 pandemic era. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1785. [PMID: 35238490 PMCID: PMC9111085 DOI: 10.1002/wnan.1785] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
The emergence of SARS-COV-2, the causative agent of new coronavirus disease (COVID-19) has become a pandemic threat. Early and precise detection of the virus is vital for effective diagnosis and treatment. Various testing kits and assays, including nucleic acid detection methods, antigen tests, serological tests, and enzyme-linked immunosorbent assay (ELISA), have been implemented or are being explored to detect the virus and/or characterize cellular and antibody responses to the infection. However, these approaches have inherent drawbacks such as nonspecificity, high cost, are characterized by long turnaround times for test results, and can be labor-intensive. Also, the circulating SARS-COV-2 variant of concerns, reduced antibody sensitivity and/or neutralization, and possible antibody-dependent enhancement (ADE) have warranted the search for alternative potent therapeutics. Aptamers, which are single-stranded oligonucleotides, generated artificially by SELEX (Evolution of Ligands by Exponential Enrichment) may offer the capacity to generate high-affinity neutralizers and/or bioprobes for monitoring relevant SARS-COV-2 and COVID-19 biomarkers. This article reviews and discusses the prospects of implementing aptamers for rapid point-of-care detection and treatment of SARS-COV-2. We highlight other SARS-COV-2 targets (N protein, spike protein stem-helix), SELEX augmented with competition assays and in silico technologies for rapid discovery and isolation of theranostic aptamers against COVID-19 and future pandemics. It further provides an overview on site-specific bioconjugation approaches, customizable molecular scaffolding strategies, and nanotechnology platforms to engineer these aptamers into ultrapotent blockers, multivalent therapeutics, and vaccines to boost both humoral and cellular immunity against the virus. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
Collapse
Affiliation(s)
- Christian K. O. Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological EngineeringMonash UniversityClaytonVictoriaAustralia
| | | | - Michael K. Danquah
- Department of Chemical EngineeringUniversity of TennesseeChattanoogaTennesseeUSA
| |
Collapse
|
33
|
Chen WH, Chen QW, Chen Q, Cui C, Duan S, Kang Y, Liu Y, Liu Y, Muhammad W, Shao S, Tang C, Wang J, Wang L, Xiong MH, Yin L, Zhang K, Zhang Z, Zhen X, Feng J, Gao C, Gu Z, He C, Ji J, Jiang X, Liu W, Liu Z, Peng H, Shen Y, Shi L, Sun X, Wang H, Wang J, Xiao H, Xu FJ, Zhong Z, Zhang XZ, Chen X. Biomedical polymers: synthesis, properties, and applications. Sci China Chem 2022; 65:1010-1075. [PMID: 35505924 PMCID: PMC9050484 DOI: 10.1007/s11426-022-1243-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Biomedical polymers have been extensively developed for promising applications in a lot of biomedical fields, such as therapeutic medicine delivery, disease detection and diagnosis, biosensing, regenerative medicine, and disease treatment. In this review, we summarize the most recent advances in the synthesis and application of biomedical polymers, and discuss the comprehensive understanding of their property-function relationship for corresponding biomedical applications. In particular, a few burgeoning bioactive polymers, such as peptide/biomembrane/microorganism/cell-based biomedical polymers, are also introduced and highlighted as the emerging biomaterials for cancer precision therapy. Furthermore, the foreseeable challenges and outlook of the development of more efficient, healthier and safer biomedical polymers are discussed. We wish this systemic and comprehensive review on highlighting frontier progress of biomedical polymers could inspire and promote new breakthrough in fundamental research and clinical translation.
Collapse
Affiliation(s)
- Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Shun Duan
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Yun Liu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Meng-Hua Xiong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123 China
| | - Kuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Zhanzhan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xu Zhen
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Xiqun Jiang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| |
Collapse
|
34
|
Schwarz C, Mathieu J, Laverde Gomez JA, Yu P, Alvarez PJJ. Renaissance for Phage-Based Bacterial Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4691-4701. [PMID: 34793127 DOI: 10.1021/acs.est.1c06232] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacteriophages (phages) are an underutilized biological resource with vast potential for pathogen control and microbiome editing. Phage research and commercialization have increased rapidly in biomedical and agricultural industries, but adoption has been limited elsewhere. Nevertheless, converging advances in DNA sequencing, bioinformatics, microbial ecology, and synthetic biology are now poised to broaden phage applications beyond pathogen control toward the manipulation of microbial communities for defined functional improvements. Enhancements in sequencing combined with network analysis make it now feasible to identify and disrupt microbial associations to elicit desirable shifts in community structure or function, indirectly modulate species abundance, and target hub or keystone species to achieve broad functional shifts. Sequencing and bioinformatic advancements are also facilitating the use of temperate phages for safe gene delivery applications. Finally, integration of synthetic biology stands to create novel phage chassis and modular genetic components. While some fundamental, regulatory, and commercialization barriers to widespread phage use remain, many major challenges that have impeded the field now have workable solutions. Thus, a new dawn for phage-based (chemical-free) precise biocontrol and microbiome editing is on the horizon to enhance, suppress, or modulate microbial activities important for public health, food security, and more sustainable energy production and water reuse.
Collapse
Affiliation(s)
- Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Sentinel Environmental, Houston, Texas 77082, United States
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Sentinel Environmental, Houston, Texas 77082, United States
| | - Jenny A Laverde Gomez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Sentinel Environmental, Houston, Texas 77082, United States
| | - Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Sentinel Environmental, Houston, Texas 77082, United States
| |
Collapse
|
35
|
Li Y, Bao Q, Yang S, Yang M, Mao C. Bionanoparticles in cancer imaging, diagnosis, and treatment. VIEW 2022. [DOI: 10.1002/viw.20200027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yan Li
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Qing Bao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
| | - Shuxu Yang
- Department of Neurosurgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Chuanbin Mao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
- Department of Chemistry and Biochemistry Stephenson Life Science Research Center University of Oklahoma Norman Oklahoma USA
| |
Collapse
|
36
|
Amara U, Rashid S, Mahmood K, Nawaz MH, Hayat A, Hassan M. Insight into prognostics, diagnostics, and management strategies for SARS CoV-2. RSC Adv 2022; 12:8059-8094. [PMID: 35424750 PMCID: PMC8982343 DOI: 10.1039/d1ra07988c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 01/08/2023] Open
Abstract
The foremost challenge in countering infectious diseases is the shortage of effective therapeutics. The emergence of coronavirus disease (COVID-19) outbreak has posed a great menace to the public health system globally, prompting unprecedented endeavors to contain the virus. Many countries have organized research programs for therapeutics and management development. However, the longstanding process has forced authorities to implement widespread infrastructures for detailed prognostic and diagnostics study of severe acute respiratory syndrome (SARS CoV-2). This review discussed nearly all the globally developed diagnostic methodologies reported for SARS CoV-2 detection. We have highlighted in detail the approaches for evaluating COVID-19 biomarkers along with the most employed nucleic acid- and protein-based detection methodologies and the causes of their severe downfall and rejection. As the variable variants of SARS CoV-2 came into the picture, we captured the breadth of newly integrated digital sensing prototypes comprised of plasmonic and field-effect transistor-based sensors along with commercially available food and drug administration (FDA) approved detection kits. However, more efforts are required to exploit the available resources to manufacture cheap and robust diagnostic methodologies. Likewise, the visualization and characterization tools along with the current challenges associated with waste-water surveillance, food security, contact tracing, and their role during this intense period of the pandemic have also been discussed. We expect that the integrated data will be supportive and aid in the evaluation of sensing technologies not only in current but also future pandemics.
Collapse
Affiliation(s)
- Umay Amara
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 608000 Pakistan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Sidra Rashid
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 608000 Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Maria Hassan
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 608000 Pakistan
| |
Collapse
|
37
|
de Carvalho Lima EN, Octaviano ALM, Piqueira JRC, Diaz RS, Justo JF. Coronavirus and Carbon Nanotubes: Seeking Immunological Relationships to Discover Immunotherapeutic Possibilities. Int J Nanomedicine 2022; 17:751-781. [PMID: 35241912 PMCID: PMC8887185 DOI: 10.2147/ijn.s341890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Since December 2019, the world has faced an unprecedented pandemic crisis due to a new coronavirus disease, coronavirus disease-2019 (COVID-19), which has instigated intensive studies on prevention and treatment possibilities. Here, we investigate the relationships between the immune activation induced by three coronaviruses associated with recent outbreaks, with special attention to SARS-CoV-2, the causative agent of COVID-19, and the immune activation induced by carbon nanotubes (CNTs) to understand the points of convergence in immune induction and modulation. Evidence suggests that CNTs are among the most promising materials for use as immunotherapeutic agents. Therefore, this investigation explores new possibilities of effective immunotherapies for COVID-19. This study aimed to raise interest and knowledge about the use of CNTs as immunotherapeutic agents in coronavirus treatment. Thus, we summarize the most important immunological aspects of various coronavirus infections and describe key advances and challenges in using CNTs as immunotherapeutic agents against viral infections and the activation of the immune response induced by CNTs, which can shed light on the immunotherapeutic possibilities of CNTs.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, SP, CEP 05508-010, Brazil
| | - Ana Luiza Moraes Octaviano
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, SP, CEP 05508-010, Brazil
| |
Collapse
|
38
|
Ren S, Fraser K, Kuo L, Chauhan N, Adrian AT, Zhang F, Linhardt RJ, Kwon PS, Wang X. Designer DNA nanostructures for viral inhibition. Nat Protoc 2022; 17:282-326. [PMID: 35013618 PMCID: PMC8852688 DOI: 10.1038/s41596-021-00641-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022]
Abstract
Emerging viral diseases can substantially threaten national and global public health. Central to our ability to successfully tackle these diseases is the need to quickly detect the causative virus and neutralize it efficiently. Here we present the rational design of DNA nanostructures to inhibit dengue virus infection. The designer DNA nanostructure (DDN) can bind to complementary epitopes on antigens dispersed across the surface of a viral particle. Since these antigens are arranged in a defined geometric pattern that is unique to each virus, the structure of the DDN is designed to mirror the spatial arrangement of antigens on the viral particle, providing very high viral binding avidity. We describe how available structural data can be used to identify unique spatial patterns of antigens on the surface of a viral particle. We then present a procedure for synthesizing DDNs using a combination of in silico design principles, self-assembly, and characterization using gel electrophoresis, atomic force microscopy and surface plasmon resonance spectroscopy. Finally, we evaluate the efficacy of a DDN in inhibiting dengue virus infection via plaque-forming assays. We expect this protocol to take 2-3 d to complete virus antigen pattern identification from existing cryogenic electron microscopy data, ~2 weeks for DDN design, synthesis, and virus binding characterization, and ~2 weeks for DDN cytotoxicity and antiviral efficacy assays.
Collapse
Affiliation(s)
- Shaokang Ren
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Keith Fraser
- Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Lili Kuo
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Neha Chauhan
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Centre for Pathogen Diagnostics, DREMES at the University of Illinois at Urbana-Champaign and the Zhejiang University-University of Illinois at Urbana-Champaign Institute, Urbana, IL, USA
| | - Addison T Adrian
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Centre for Pathogen Diagnostics, DREMES at the University of Illinois at Urbana-Champaign and the Zhejiang University-University of Illinois at Urbana-Champaign Institute, Urbana, IL, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Paul S Kwon
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Centre for Pathogen Diagnostics, DREMES at the University of Illinois at Urbana-Champaign and the Zhejiang University-University of Illinois at Urbana-Champaign Institute, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
39
|
Jeong W, Bu J, Jafari R, Rehak P, Kubiatowicz LJ, Drelich AJ, Owen RH, Nair A, Rawding PA, Poellmann MJ, Hopkins CM, Král P, Hong S. Hierarchically Multivalent Peptide-Nanoparticle Architectures: A Systematic Approach to Engineer Surface Adhesion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103098. [PMID: 34894089 PMCID: PMC8811846 DOI: 10.1002/advs.202103098] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/04/2021] [Indexed: 05/20/2023]
Abstract
The multivalent binding effect has been the subject of extensive studies to modulate adhesion behaviors of various biological and engineered systems. However, precise control over the strong avidity-based binding remains a significant challenge. Here, a set of engineering strategies are developed and tested to systematically enhance the multivalent binding of peptides in a stepwise manner. Poly(amidoamine) (PAMAM) dendrimers are employed to increase local peptide densities on a substrate, resulting in hierarchically multivalent architectures (HMAs) that display multivalent dendrimer-peptide conjugates (DPCs) with various configurations. To control binding behaviors, effects of the three major components of the HMAs are investigated: i) poly(ethylene glycol) (PEG) linkers as spacers between conjugated peptides; ii) multiple peptides on the DPCs; and iii) various surface arrangements of HMAs (i.e., a mixture of DPCs each containing different peptides vs DPCs cofunctionalized with multiple peptides). The optimized HMA configuration enables significantly enhanced target cell binding with high selectivity compared to the control surfaces directly conjugated with peptides. The engineering approaches presented herein can be applied individually or in combination, providing guidelines for the effective utilization of biomolecular multivalent interactions using DPC-based HMAs.
Collapse
Affiliation(s)
- Woo‐jin Jeong
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
- Department of Biological Sciences and BioengineeringInha University100 Inha‐ro, Michuhol‐guIncheon22212Republic of Korea
| | - Jiyoon Bu
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
| | - Roya Jafari
- Department of ChemistryUniversity of Illinois at Chicago845 W Taylor StChicagoIL60607USA
| | - Pavel Rehak
- Department of ChemistryUniversity of Illinois at Chicago845 W Taylor StChicagoIL60607USA
| | - Luke J. Kubiatowicz
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
| | - Adam J. Drelich
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
| | - Randall H. Owen
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
| | - Ashita Nair
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
| | - Piper A. Rawding
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
| | - Michael J. Poellmann
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
| | - Caroline M. Hopkins
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
| | - Petr Král
- Department of ChemistryUniversity of Illinois at Chicago845 W Taylor StChicagoIL60607USA
- Departments of Physics, Pharmaceutical Sciences and Chemical EngineeringUniversity of Illinois at Chicago845 W Taylor StChicagoIL60607USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
- Department of Biomedical EngineeringThe University of Wisconsin‐Madison1550 Engineering Dr.MadisonWI53705USA
- Yonsei Frontier LabDepartment of PharmacyYonsei University50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| |
Collapse
|
40
|
Chen QW, Qiao JY, Liu XH, Zhang C, Zhang XZ. Customized materials-assisted microorganisms in tumor therapeutics. Chem Soc Rev 2021; 50:12576-12615. [PMID: 34605834 DOI: 10.1039/d0cs01571g] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms have been extensively applied as active biotherapeutic agents or drug delivery vehicles for antitumor treatment because of their unparalleled bio-functionalities. Taking advantage of the living attributes of microorganisms, a new avenue has been opened in anticancer research. The integration of customized functional materials with living microorganisms has demonstrated unprecedented potential in solving existing questions and even conferring microorganisms with updated antitumor abilities and has also provided an innovative train of thought for enhancing the efficacy of microorganism-based tumor therapy. In this review, we have summarized the emerging development of customized materials-assisted microorganisms (MAMO) (including bacteria, viruses, fungi, microalgae, as well as their components) in tumor therapeutics with an emphasis on the rational utilization of chosen microorganisms and tailored materials, the ingenious design of biohybrid systems, and the efficacious antitumor mechanisms. The future perspectives and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Ji-Yan Qiao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
41
|
Lee N, Afanasenkau D, Rinklin P, Wolfrum B, Wiegand S. Temperature profile characterization with fluorescence lifetime imaging microscopy in a thermophoretic chip. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:130. [PMID: 34668081 PMCID: PMC8526468 DOI: 10.1140/epje/s10189-021-00133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/01/2021] [Indexed: 05/05/2023]
Abstract
This study introduces a thermophoretic lab-on-a-chip device to measure the Soret coefficient. We use resistive heating of a microwire on the chip to induce a temperature gradient, which is measured by fluorescence lifetime imaging microscopy (FLIM). To verify the functionality of the device, we used dyed polystyrene particles with a diameter of 25 nm. A confocal microscope is utilized to monitor the concentration profile of colloidal particles in the temperature field. Based on the measured temperature and concentration differences, we calculate the corresponding Soret coefficient. The same particles have been recently investigated with thermal diffusion forced Rayleigh scattering (TDFRS) and we find that the obtained Soret coefficients agree with literature results. This chip offers a simple way to study the thermophoretic behavior of biological systems in multicomponent buffer solutions quantitatively, which are difficult to study with optical methods solely relying on the refractive index contrast.
Collapse
Affiliation(s)
- Namkyu Lee
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428, Jülich, Germany
| | - Dzmitry Afanasenkau
- Technische Universität Dresden Center for Molecular and Cellular Bioengineering, D-01062, Dresden, Germany
| | - Philipp Rinklin
- Neuroelectronics, Munich School of Bioengineering, Department of Electrical and Computer Engineering, Technical University of Munich, D-85748, Garching bei München, Germany
| | - Bernhard Wolfrum
- Neuroelectronics, Munich School of Bioengineering, Department of Electrical and Computer Engineering, Technical University of Munich, D-85748, Garching bei München, Germany
| | - Simone Wiegand
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428, Jülich, Germany.
- Chemistry Department-Physical Chemistry, University Cologne, D-50939, Cologne, Germany.
| |
Collapse
|
42
|
Li G, Ma W, Mo J, Cheng B, Shoda SI, Zhou D, Ye XS. Influenza Virus Precision Diagnosis and Continuous Purification Enabled by Neuraminidase-Resistant Glycopolymer-Coated Microbeads. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46260-46269. [PMID: 34547894 DOI: 10.1021/acsami.1c11561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rapid diagnosis and vaccine development are critical to prevent the threat posed by viruses. However, rapid tests, such as colloidal gold assays, yield false-negative results due to the low quantities of viruses; moreover, conventional virus purification, including ultracentrifugation and nanofiltration, is multistep and time-consuming, which limits laboratory research and commercial development of viral vaccines. A rapid virus enrichment and purification technique will improve clinical diagnosis sensitivity and simplify vaccine production. Hence, we developed the surface-glycosylated microbeads (glycobeads) featuring chemically synthetic glycoclusters and reversible linkers to selectively capture the influenza virus. The surface plasmon resonance (SPR) evaluation indicated broad spectrum affinity of S-linked glycosides to various influenza viruses. The magnetic glycobeads were integrated into clinical rapid diagnosis, leading to a 30-fold lower limit of detection. Additionally, the captured viruses can be released under physiological conditions, delivering purified viruses with >50% recovery and without decreasing their native infectivity. Notably, this glycobead platform will facilitate the sensitive detection and continuous one-step purification of the target virus that contributes to future vaccine production.
Collapse
Affiliation(s)
- Gefei Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Wenxiao Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Juan Mo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Boyang Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Shin-Ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11, Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| |
Collapse
|
43
|
Pereira-Silva M, Chauhan G, Shin MD, Hoskins C, Madou MJ, Martinez-Chapa SO, Steinmetz NF, Veiga F, Paiva-Santos AC. Unleashing the potential of cell membrane-based nanoparticles for COVID-19 treatment and vaccination. Expert Opin Drug Deliv 2021; 18:1395-1414. [PMID: 33944644 PMCID: PMC8182831 DOI: 10.1080/17425247.2021.1922387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022]
Abstract
Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a particular coronavirus strain responsible for the coronavirus disease 2019 (COVID-19), accounting for more than 3.1 million deaths worldwide. Several health-related strategies have been successfully developed to contain the rapidly-spreading virus across the globe, toward reduction of both disease burden and infection rates. Particularly, attention has been focused on either the development of novel drugs and vaccines, or by adapting already-existing drugs for COVID-19 treatment, mobilizing huge efforts to block disease progression and to overcome the shortage of effective measures available at this point.Areas covered: This perspective covers the breakthrough of multifunctional biomimetic cell membrane-based nanoparticles as next-generation nanosystems for cutting-edge COVID-19 therapeutics and vaccination, specifically cell membrane-derived nanovesicles and cell membrane-coated nanoparticles, both tailorable cell membrane-based nanosystems enriched with the surface repertoire of native cell membranes, toward maximized biointerfacing, immune evasion, cell targeting and cell-mimicking properties.Expert opinion: Nano-based approaches have received widespread interest regarding enhanced antigen delivery, prolonged blood circulation half-life and controlled release of drugs. Cell membrane-based nanoparticles comprise interesting antiviral multifunctional nanoplatforms for blocking SARS-CoV-2 binding to host cells, reducing inflammation through cytokine neutralization and improving drug delivery toward COVID-19 treatment.
Collapse
Affiliation(s)
- Miguel Pereira-Silva
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Matthew D. Shin
- Department of Nanoengineering, University of California, San Diego, San Diego, United States
| | - Clare Hoskins
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Marc J. Madou
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Engineering Gateway 4200, Irvine, United States
| | | | - Nicole F. Steinmetz
- Department of Nanoengineering, University of California, San Diego, San Diego, United States
- Department of Bioengineering, University of California, San Diego, United States
- Department of Radiology, UC San Diego Health, University of California, San Diego, United States
- Center for Nano-ImmunoEngineering (Nanoie), University of California, San Diego, United States
- Moores Cancer Center, UC San Diego Health, University of California, San Diego, United States
| | - Francisco Veiga
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
44
|
Brune KD, Liekniņa I, Sutov G, Morris AR, Jovicevic D, Kalniņš G, Kazāks A, Kluga R, Kastaljana S, Zajakina A, Jansons J, Skrastiņa D, Spunde K, Cohen AA, Bjorkman PJ, Morris HR, Suna E, Tārs K. N-Terminal Modification of Gly-His-Tagged Proteins with Azidogluconolactone. Chembiochem 2021; 22:3199-3207. [PMID: 34520613 DOI: 10.1002/cbic.202100381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Indexed: 01/07/2023]
Abstract
Site-specific protein modifications are vital for biopharmaceutical drug development. Gluconoylation is a non-enzymatic, post-translational modification of N-terminal HisTags. We report high-yield, site-selective in vitro α-aminoacylation of peptides, glycoproteins, antibodies, and virus-like particles (VLPs) with azidogluconolactone at pH 7.5 in 1 h. Conjugates slowly hydrolyse, but diol-masking with borate esters inhibits reversibility. In an example, we multimerise azidogluconoylated SARS-CoV-2 receptor-binding domain (RBD) onto VLPs via click-chemistry, to give a COVID-19 vaccine. Compared to yeast antigen, HEK-derived RBD was immunologically superior, likely due to observed differences in glycosylation. We show the benefits of ordered over randomly oriented multimeric antigen display, by demonstrating single-shot seroconversion and best virus-neutralizing antibodies. Azidogluconoylation is simple, fast and robust chemistry, and should accelerate research and development.
Collapse
Affiliation(s)
- Karl D Brune
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom.,Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Ilva Liekniņa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Grigorij Sutov
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom.,Lab Group LT, UAB, Vilnius, Lithuania
| | - Alexander R Morris
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom.,Lab Group LT, UAB, Vilnius, Lithuania.,BioPharmaSpec Ltd., Suite 3.1, Lido Medical Centre, St. Saviour, JE2 7LA, UK
| | - Dejana Jovicevic
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Andris Kazāks
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Rihards Kluga
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| | - Sabine Kastaljana
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| | - Anna Zajakina
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Dace Skrastiņa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Karīna Spunde
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Howard R Morris
- BioPharmaSpec Ltd., Suite 3.1, Lido Medical Centre, St. Saviour, JE2 7LA, UK.,Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| |
Collapse
|
45
|
Stadtmueller MN, Bhatia S, Kiran P, Hilsch M, Reiter-Scherer V, Adam L, Parshad B, Budt M, Klenk S, Sellrie K, Lauster D, Seeberger PH, Hackenberger CPR, Herrmann A, Haag R, Wolff T. Evaluation of Multivalent Sialylated Polyglycerols for Resistance Induction in and Broad Antiviral Activity against Influenza A Viruses. J Med Chem 2021; 64:12774-12789. [PMID: 34432457 DOI: 10.1021/acs.jmedchem.1c00794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of multivalent sialic acid-based inhibitors active against a variety of influenza A virus (IAV) strains has been hampered by high genetic and structural variability of the targeted viral hemagglutinin (HA). Here, we addressed this challenge by employing sialylated polyglycerols (PGs). Efficacy of prototypic PGs was restricted to a narrow spectrum of IAV strains. To understand this restriction, we selected IAV mutants resistant to a prototypic multivalent sialylated PG by serial passaging. Resistance mutations mapped to the receptor binding site of HA, which was accompanied by altered receptor binding profiles of mutant viruses as detected by glycan array analysis. Specifying the inhibitor functionalization to 2,6-α-sialyllactose (SL) and adjusting the linker yielded a rationally designed inhibitor covering an extended spectrum of inhibited IAV strains. These results highlight the importance of integrating virological data with chemical synthesis and structural data for the development of sialylated PGs toward broad anti-influenza compounds.
Collapse
Affiliation(s)
- Marlena N Stadtmueller
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| | - Sumati Bhatia
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Pallavi Kiran
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Malte Hilsch
- Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Valentin Reiter-Scherer
- Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Lutz Adam
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Strasse 10, 13125 Berlin, Germany.,Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Str. 2, 12489 Berlin, Germany
| | - Badri Parshad
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Matthias Budt
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| | - Simon Klenk
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Strasse 10, 13125 Berlin, Germany.,Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Str. 2, 12489 Berlin, Germany
| | - Katrin Sellrie
- Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Daniel Lauster
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Peter H Seeberger
- Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Andreas Herrmann
- Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Thorsten Wolff
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| |
Collapse
|
46
|
Sigl C, Willner EM, Engelen W, Kretzmann JA, Sachenbacher K, Liedl A, Kolbe F, Wilsch F, Aghvami SA, Protzer U, Hagan MF, Fraden S, Dietz H. Programmable icosahedral shell system for virus trapping. NATURE MATERIALS 2021; 20:1281-1289. [PMID: 34127822 PMCID: PMC7611604 DOI: 10.1038/s41563-021-01020-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/26/2021] [Indexed: 05/21/2023]
Abstract
Broad-spectrum antiviral platforms that can decrease or inhibit viral infection would alleviate many threats to global public health. Nonetheless, effective technologies of this kind are still not available. Here, we describe a programmable icosahedral canvas for the self-assembly of icosahedral shells that have viral trapping and antiviral properties. Programmable triangular building blocks constructed from DNA assemble with high yield into various shell objects with user-defined geometries and apertures. We have created shells with molecular masses ranging from 43 to 925 MDa (8 to 180 subunits) and with internal cavity diameters of up to 280 nm. The shell interior can be functionalized with virus-specific moieties in a modular fashion. We demonstrate this virus-trapping concept by engulfing hepatitis B virus core particles and adeno-associated viruses. We demonstrate the inhibition of hepatitis B virus core interactions with surfaces in vitro and the neutralization of infectious adeno-associated viruses exposed to human cells.
Collapse
Affiliation(s)
- Christian Sigl
- Department of Physics, Technical University of Munich, Munich, Germany
| | - Elena M Willner
- Department of Physics, Technical University of Munich, Munich, Germany
| | - Wouter Engelen
- Department of Physics, Technical University of Munich, Munich, Germany
| | | | - Ken Sachenbacher
- Department of Physics, Technical University of Munich, Munich, Germany
| | - Anna Liedl
- Department of Physics, Technical University of Munich, Munich, Germany
| | - Fenna Kolbe
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research, Munich, Germany
| | - Florian Wilsch
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research, Munich, Germany
| | - S Ali Aghvami
- Department of Physics, Brandeis University, Waltham, MA, USA
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research, Munich, Germany
| | - Michael F Hagan
- Department of Physics, Brandeis University, Waltham, MA, USA
| | - Seth Fraden
- Department of Physics, Brandeis University, Waltham, MA, USA
| | - Hendrik Dietz
- Department of Physics, Technical University of Munich, Munich, Germany.
| |
Collapse
|
47
|
Yayehrad AT, Siraj EA, Wondie GB, Alemie AA, Derseh MT, Ambaye AS. Could Nanotechnology Help to End the Fight Against COVID-19? Review of Current Findings, Challenges and Future Perspectives. Int J Nanomedicine 2021; 16:5713-5743. [PMID: 34465991 PMCID: PMC8402990 DOI: 10.2147/ijn.s327334] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
A serious viral infectious disease was introduced to the globe by the end of 2019 that was seen primarily from China, but spread worldwide in a few months to be a pandemic. Since then, accurate prevention, early detection, and effective treatment strategies are not yet outlined. There is no approved drug to counter its worldwide transmission. However, integration of nanostructured delivery systems with the current management strategies has promised a pronounced opportunity to tackle the pandemic. This review addressed the various promising nanotechnology-based approaches for the diagnosis, prevention, and treatment of the pandemic. The pharmaceutical, pharmacoeconomic, and regulatory aspects of these systems with currently achieved or predicted beneficial outcomes, challenges, and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Ashagrachew Tewabe Yayehrad
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Ebrahim Abdela Siraj
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Gebremariam Birhanu Wondie
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Atlaw Abate Alemie
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Food and Drug Authority (EFDA), Federal Ministry of Health (FMoH), Addis Ababa, Ethiopia
| | - Manaye Tamrie Derseh
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Departement of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| | - Abyou Seyfu Ambaye
- Departement of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| |
Collapse
|
48
|
de Carvalho Lima EN, Diaz RS, Justo JF, Castilho Piqueira JR. Advances and Perspectives in the Use of Carbon Nanotubes in Vaccine Development. Int J Nanomedicine 2021; 16:5411-5435. [PMID: 34408416 PMCID: PMC8367085 DOI: 10.2147/ijn.s314308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Advances in nanobiotechnology have allowed the utilization of nanotechnology through nanovaccines. Nanovaccines are powerful tools for enhancing the immunogenicity of a specific antigen and exhibit advantages over other adjuvant approaches, with features such as expanded stability, prolonged release, decreased immunotoxicity, and immunogenic selectivity. We introduce recent advances in carbon nanotubes (CNTs) to induce either a carrier effect as a nanoplatform or an immunostimulatory effect. Several studies of CNT-based nanovaccines revealed that due to the ability of CNTs to carry immunogenic molecules, they can act as nonclassical vaccines, a quality not possessed by vaccines with traditional formulations. Therefore, adapting and modifying the physicochemical properties of CNTs for use in vaccines may additionally enhance their efficacy in inducing a T cell-based immune response. Accordingly, the purpose of this study is to renew and awaken interest in and knowledge of the safe use of CNTs as adjuvants and carriers in vaccines.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
50
|
Khodajou-Masouleh H, Shahangian SS, Rasti B. Reinforcing our defense or weakening the enemy? A comparative overview of defensive and offensive strategies developed to confront COVID-19. Drug Metab Rev 2021; 53:508-541. [PMID: 33980089 DOI: 10.1080/03602532.2021.1928686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Developing effective strategies to confront coronavirus disease 2019 (COVID-19) has become one of the greatest concerns of the scientific community. In addition to the vast number of global mortalities due to COVID-19, since its outbreak, almost every aspect of human lives has changed one way or another. In the present review, various defensive and offensive strategies developed to confront COVID-19 are illustrated. The Administration of immune-boosting micronutrients/agents, as well as the inhibition of the activity of incompetent gatekeepers, including some host cell receptors (e.g. ACE2) and proteases (e.g. TMPRSS2), are some efficient defensive strategies. Antibody/phage therapies and specifically vaccines also play a prominent role in the enhancement of host defense against COVID-19. Nanotechnology, however, can considerably weaken the virulence of SARS-CoV-2, utilizing fake cellular locks (compounds mimicking cell receptors) to block the viral keys (spike proteins). Generally, two strategies are developed to interfere with the binding of spike proteins to the host cell receptors, either utilizing fake cellular locks to block the viral keys or utilizing fake viral keys to block the cellular locks. Due to their evolutionary conserved nature, viral enzymes, including 3CLpro, PLpro, RdRp, and helicase are highly potential targets for drug repurposing strategy. Thus, various steps of viral replication/transcription can effectively be blocked by their inhibition, leading to the elimination of SARS-CoV-2. Moreover, RNA decoy and CRISPR technologies likely offer the best offensive strategies after viral entry into the host cells, inhibiting the viral replication/assembly in the infected cells and substantially reducing the quantity of viral progeny.
Collapse
Affiliation(s)
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| |
Collapse
|