1
|
Zeng J, Jing X, Lin L, Wang G, Zhang Y, Feng P. Smart sensing hydrogel actuators conferred by MXene gradient arrangement. J Colloid Interface Sci 2025; 677:816-826. [PMID: 39173514 DOI: 10.1016/j.jcis.2024.08.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Smart sensing and excellent actuation abilities of natural organisms have driven scientists to develop bionic soft-bodied robots. However, most conventional robots suffer from poor electrical conductivity, limiting their application in real-time sensing and actuation. Here, we report a novel strategy to enhance the electrical conductivity of hydrogels that integrated actuation and strain-sensing functions for bioinspired self-sensing soft actuators. Conductive hydrogels were synthesized in situ by copolymerizing MXene nanosheets with thermosensitive N-isopropylacrylamide and acrylamide under a direct current electric field. The resulting hydrogels exhibited high electrical conductivity (2.11 mS/cm), good sensitivity with a gauge factor of 4.79 and long-term stability. The developed hydrogels demonstrated remarkable capabilities in detecting human motions at subtle strains such as facial expressions and large strains such as knee bending. Additionally, the hydrogel electrode patch was capable of monitoring physiological signals. Furthermore, the developed hydrogel showed good thermally induced actuation effects when the temperature was higher than 30 °C. Overall, this work provided new insights for the design of sensory materials with integrated self-sensing and actuation capabilities, which would pave the way for the development of high-performance conductive soft materials for intelligent soft robots and automated machinery.
Collapse
Affiliation(s)
- Jiazhou Zeng
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Xin Jing
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China.
| | - Liya Lin
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Gangrong Wang
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Yaoxun Zhang
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Peiyong Feng
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
2
|
Bullard MR, Martinez-Cervantes JC, Quaicoe NB, Jin A, Adams DA, Lin JM, Iliadis E, Seidler TM, Cervantes-Sandoval I, He HY. Accelerated protein retention expansion microscopy using microwave radiation. CELL REPORTS METHODS 2024; 4:100907. [PMID: 39579759 PMCID: PMC11704622 DOI: 10.1016/j.crmeth.2024.100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/12/2024] [Accepted: 10/29/2024] [Indexed: 11/25/2024]
Abstract
Protein retention expansion microscopy (ExM) retains fluorescent signals in fixed tissue and isotropically expands the tissue to allow nanoscale (<70 nm) resolution on diffraction-limited confocal microscopes. Despite the numerous advantages of ExM, the protocol is time-consuming. Here, we adapted an ExM protocol to vibratome-sectioned brain tissue of Xenopus laevis tadpoles and implemented a microwave (M/W)-assisted protocol (M/WExM) to reduce the workflow from days to hours. Our M/WExM protocol maintains the superior resolution of the original ExM protocol and yields a higher magnitude of expansion, suggesting that M/W radiation may also facilitate the expansion process. We then adapted the M/W protocol to the whole-mount brain of Drosophila melanogaster fruit flies, and successfully reduced the processing time of a widely used Drosophila IHC-ExM protocol from 6 to 2 days. This demonstrates that with appropriate adjustment of M/W parameters, this protocol can be readily adapted to different organisms and tissue types to greatly increase the efficiency of ExM experiments.
Collapse
Affiliation(s)
- Meghan R Bullard
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | | | - Norisha B Quaicoe
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Amanda Jin
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Danya A Adams
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Jessica M Lin
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Elena Iliadis
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Tess M Seidler
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | | | - Hai-Yan He
- Department of Biology, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
3
|
Jia D, Cui M, Divsalar A, Khattab TA, Al-Qahtani SD, Cheung E, Ding X. Derivative Technologies of Expansion Microscopy and Applications in Biomedicine. Chembiochem 2024:e202400795. [PMID: 39681518 DOI: 10.1002/cbic.202400795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Expansion microscopy (ExM) is an innovative super-resolution imaging technique that utilizes physical expansion to magnify biological samples, facilitating the visualization of cellular structures that are challenging to observe using traditional optical microscopes. The fundamental principle of ExM revolves around employing a specialized hydrogel to uniformly expand biological samples, thereby achieving super-resolution imaging under conventional optical imaging conditions. This technology finds application not only in various biological samples such as cells and tissue sections, but also enables super-resolution imaging of large biological molecules including proteins, nucleic acids, and metabolite molecules. In recent years, numerous researchers have delved into ExM, resulting in the continuous development of a range of derivative technologies that optimize experimental protocols and broaden practical application fields. This article presents a comprehensive review of these derivative technologies, highlighting the utilization of ExM for anchoring nucleic acids, proteins, and other biological molecules, as well as its applications in biomedicine. Furthermore, this review offers insights into the future development prospects of ExM technology.
Collapse
Affiliation(s)
- Dongling Jia
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Minhui Cui
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Adeleh Divsalar
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911, Iran
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute National Research Centre, Cairo, 12622, Egypt
| | - Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Edwin Cheung
- Cancer Centre, Centre for Precision Medicine Research and Training, Faculty of Health Science, University of Macau Taipa, 999078, Macau, SAR
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
4
|
Wang S, Shin TW, Yoder HB, McMillan RB, Su H, Liu Y, Zhang C, Leung KS, Yin P, Kiessling LL, Boyden ES. Single-shot 20-fold expansion microscopy. Nat Methods 2024; 21:2128-2134. [PMID: 39394503 PMCID: PMC11541206 DOI: 10.1038/s41592-024-02454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/09/2024] [Indexed: 10/13/2024]
Abstract
Expansion microscopy (ExM) is in increasingly widespread use throughout biology because its isotropic physical magnification enables nanoimaging on conventional microscopes. To date, ExM methods either expand specimens to a limited range (~4-10× linearly) or achieve larger expansion factors through iterating the expansion process a second time (~15-20× linearly). Here, we present an ExM protocol that achieves ~20× expansion (yielding <20-nm resolution on a conventional microscope) in a single expansion step, achieving the performance of iterative expansion with the simplicity of a single-shot protocol. This protocol, which we call 20ExM, supports postexpansion staining for brain tissue, which can facilitate biomolecular labeling. 20ExM may find utility in many areas of biological investigation requiring high-resolution imaging.
Collapse
Affiliation(s)
- Shiwei Wang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tay Won Shin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harley B Yoder
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ryan B McMillan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Biophysics PhD Program, Harvard University, Cambridge, MA, USA
| | - Hanquan Su
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Yixi Liu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chi Zhang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kylie S Leung
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Edward S Boyden
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
5
|
Shaib AH, Chouaib AA, Chowdhury R, Altendorf J, Mihaylov D, Zhang C, Krah D, Imani V, Spencer RKW, Georgiev SV, Mougios N, Monga M, Reshetniak S, Mimoso T, Chen H, Fatehbasharzad P, Crzan D, Saal KA, Alawieh MM, Alawar N, Eilts J, Kang J, Soleimani A, Müller M, Pape C, Alvarez L, Trenkwalder C, Mollenhauer B, Outeiro TF, Köster S, Preobraschenski J, Becherer U, Moser T, Boyden ES, Aricescu AR, Sauer M, Opazo F, Rizzoli SO. One-step nanoscale expansion microscopy reveals individual protein shapes. Nat Biotechnol 2024:10.1038/s41587-024-02431-9. [PMID: 39385007 PMCID: PMC7616833 DOI: 10.1038/s41587-024-02431-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
The attainable resolution of fluorescence microscopy has reached the subnanometer range, but this technique still fails to image the morphology of single proteins or small molecular complexes. Here, we expand the specimens at least tenfold, label them with conventional fluorophores and image them with conventional light microscopes, acquiring videos in which we analyze fluorescence fluctuations. One-step nanoscale expansion (ONE) microscopy enables the visualization of the shapes of individual membrane and soluble proteins, achieving around 1-nm resolution. We show that conformational changes are readily observable, such as those undergone by the ~17-kDa protein calmodulin upon Ca2+ binding. ONE is also applied to clinical samples, analyzing the morphology of protein aggregates in cerebrospinal fluid from persons with Parkinson disease, potentially aiding disease diagnosis. This technology bridges the gap between high-resolution structural biology techniques and light microscopy, providing new avenues for discoveries in biology and medicine.
Collapse
Affiliation(s)
- Ali H Shaib
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany.
| | - Abed Alrahman Chouaib
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Rajdeep Chowdhury
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Chemistry, GITAM School of Science, GITAM, Hyderabad, India
| | - Jonas Altendorf
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Chi Zhang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Donatus Krah
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Vanessa Imani
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Russell K W Spencer
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany
| | - Svilen Veselinov Georgiev
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Nikolaos Mougios
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Mehar Monga
- Biochemistry of Membrane Dynamics Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
| | - Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Mimoso
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Han Chen
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Parisa Fatehbasharzad
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dagmar Crzan
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Kim-Ann Saal
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Mohamad Mahdi Alawieh
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Nadia Alawar
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Janna Eilts
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Jinyoung Kang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alireza Soleimani
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | | | - Claudia Trenkwalder
- Department of Neurosurgery, University Medical Center, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Julia Preobraschenski
- Biochemistry of Membrane Dynamics Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Ute Becherer
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Tobias Moser
- Biochemistry of Membrane Dynamics Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Edward S Boyden
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- NanoTag Biotechnologies GmbH, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
6
|
Pesce L, Ricci P, Sportelli G, Belcari N, Sancataldo G. Expansion and Light-Sheet Microscopy for Nanoscale 3D Imaging. SMALL METHODS 2024; 8:e2301715. [PMID: 38461540 DOI: 10.1002/smtd.202301715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/10/2024] [Indexed: 03/12/2024]
Abstract
Expansion Microscopy (ExM) and Light-Sheet Fluorescence Microscopy (LSFM) are forefront imaging techniques that enable high-resolution visualization of biological specimens. ExM enhances nanoscale investigation using conventional fluorescence microscopes, while LSFM offers rapid, minimally invasive imaging over large volumes. This review explores the joint advancements of ExM and LSFM, focusing on the excellent performance of the integrated modality obtained from the combination of the two, which is refer to as ExLSFM. In doing so, the chemical processes required for ExM, the tailored optical setup of LSFM for examining expanded samples, and the adjustments in sample preparation for accurate data collection are emphasized. It is delve into various specimen types studied using this integrated method and assess its potential for future applications. The goal of this literature review is to enrich the comprehension of ExM and LSFM, encouraging their wider use and ongoing development, looking forward to the upcoming challenges, and anticipating innovations in these imaging techniques.
Collapse
Affiliation(s)
- Luca Pesce
- Department of Physics - Enrico Fermi, University of Pisa, Largo Pontecorvo, 3, Pisa, 56127, Italy
| | - Pietro Ricci
- Department of Applied Physics, University of Barcelona, C/Martí i Franquès, 1, Barcelona, 08028, Spain
| | - Giancarlo Sportelli
- Department of Physics - Enrico Fermi, University of Pisa, Largo Pontecorvo, 3, Pisa, 56127, Italy
| | - Nicola Belcari
- Department of Physics - Enrico Fermi, University of Pisa, Largo Pontecorvo, 3, Pisa, 56127, Italy
| | - Giuseppe Sancataldo
- Department of Physics - Emilio Segrè, University of Palermo, Viale delle Scienze, 18, Palermo, 90128, Italy
| |
Collapse
|
7
|
Wang W, Ruan X, Liu G, Milkie DE, Li W, Betzig E, Upadhyayula S, Gao R. Nanoscale volumetric fluorescence imaging via photochemical sectioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.605857. [PMID: 39149407 PMCID: PMC11326139 DOI: 10.1101/2024.08.01.605857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Optical nanoscopy of intact biological specimens has been transformed by recent advancements in hydrogel-based tissue clearing and expansion, enabling the imaging of cellular and subcellular structures with molecular contrast. However, existing high-resolution fluorescence microscopes have limited imaging depth, which prevents the study of whole-mount specimens without physical sectioning. To address this challenge, we developed "photochemical sectioning," a spatially precise, light-based sample sectioning process. By combining photochemical sectioning with volumetric lattice light-sheet imaging and petabyte-scale computation, we imaged and reconstructed axons and myelination sheaths across entire mouse olfactory bulbs at nanoscale resolution. An olfactory-bulb-wide analysis of myelinated and unmyelinated axons revealed distinctive patterns of axon degeneration and de-/dysmyelination in the neurodegenerative mouse, highlighting the potential for peta- to exabyte-scale super-resolution studies using this approach.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
| | - Xiongtao Ruan
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Gaoxiang Liu
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Daniel E. Milkie
- Howard Hughes Medical Institute, Janelia Research Campus; Ashburn, VA 20417, USA
| | - Wenping Li
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
| | - Eric Betzig
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Janelia Research Campus; Ashburn, VA 20417, USA
- Department of Physics, Howard Hughes Medical Institute, Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Srigokul Upadhyayula
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub; San Francisco, CA 94158, USA
| | - Ruixuan Gao
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
- Department of Biological Sciences, University of Illinois Chicago; Chicago, IL 60607, USA
| |
Collapse
|
8
|
Mu X, Ma C, Mei X, Liao J, Bojar R, Kuang S, Rong Q, Yao J, Zhang YS. On-demand expansion fluorescence and photoacoustic microscopy (ExFLPAM). PHOTOACOUSTICS 2024; 38:100610. [PMID: 38726025 PMCID: PMC11079527 DOI: 10.1016/j.pacs.2024.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/04/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024]
Abstract
Expansion microscopy (ExM) is a promising technology that enables nanoscale imaging on conventional optical microscopes by physically magnifying the specimens. Here, we report the development of a strategy that enables i) on-demand labeling of subcellular organelles in live cells for ExM through transfection of fluorescent proteins that are well-retained during the expansion procedure; and ii) non-fluorescent chromogenic color-development towards efficient bright-field and photoacoustic imaging in both planar and volumetric formats, which is applicable to both cultured cells and biological tissues. Compared to the conventional ExM methods, our strategy provides an expanded toolkit, which we term as expansion fluorescence and photoacoustic microscopy (ExFLPAM), by allowing on-demand fluorescent protein labeling of cultured cells, as well as non-fluorescent absorption contrast-imaging of biological samples.
Collapse
Affiliation(s)
- Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Junlong Liao
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Rebecca Bojar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
- Barnard College, Columbia University, New York, NY 10027, USA
| | - Sizhe Kuang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Qiangzhou Rong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Chan YH, Pathmasiri KC, Pierre-Jacques D, Hibbard MC, Tao N, Fischer JL, Yang E, Cologna SM, Gao R. Gel-assisted mass spectrometry imaging enables sub-micrometer spatial lipidomics. Nat Commun 2024; 15:5036. [PMID: 38866734 PMCID: PMC11169460 DOI: 10.1038/s41467-024-49384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
A technique capable of label-free detection, mass spectrometry imaging (MSI) is a powerful tool for spatial investigation of native biomolecules in intact specimens. However, MSI has often been precluded from single-cell applications due to the spatial resolution limit set forth by the physical and instrumental constraints of the method. By taking advantage of the reversible interaction between the analytes and a superabsorbent hydrogel, we have developed a sample preparation and imaging workflow named Gel-Assisted Mass Spectrometry Imaging (GAMSI) to overcome the spatial resolution limits of modern mass spectrometers. With GAMSI, we show that the spatial resolution of MALDI-MSI can be enhanced ~3-6-fold to the sub-micrometer level without changing the existing mass spectrometry hardware or analysis pipeline. This approach will vastly enhance the accessibility of MSI-based spatial analysis at the cellular scale.
Collapse
Affiliation(s)
- Yat Ho Chan
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | | | | - Maddison C Hibbard
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | | | | | | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
- Laboratory for Integrative Neuroscience, University of Illinois Chicago, Chicago, IL, USA
| | - Ruixuan Gao
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA.
- Laboratory for Integrative Neuroscience, University of Illinois Chicago, Chicago, IL, USA.
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Hümpfer N, Thielhorn R, Ewers H. Expanding boundaries - a cell biologist's guide to expansion microscopy. J Cell Sci 2024; 137:jcs260765. [PMID: 38629499 PMCID: PMC11058692 DOI: 10.1242/jcs.260765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Expansion microscopy (ExM) is a revolutionary novel approach to increase resolution in light microscopy. In contrast to super-resolution microscopy methods that rely on sophisticated technological advances, including novel instrumentation, ExM instead is entirely based on sample preparation. In ExM, labeled target molecules in fixed cells are anchored in a hydrogel, which is then physically enlarged by osmotic swelling. The isotropic swelling of the hydrogel pulls the labels apart from one another, and their relative organization can thus be resolved using conventional microscopes even if it was below the diffraction limit of light beforehand. As ExM can additionally benefit from the technical resolution enhancements achieved by super-resolution microscopy, it can reach into the nanometer range of resolution with an astoundingly low degree of error induced by distortion during the physical expansion process. Because the underlying chemistry is well understood and the technique is based on a relatively simple procedure, ExM is easily reproducible in non-expert laboratories and has quickly been adopted to address an ever-expanding spectrum of problems across the life sciences. In this Review, we provide an overview of this rapidly expanding new field, summarize the most important insights gained so far and attempt to offer an outlook on future developments.
Collapse
Affiliation(s)
- Nadja Hümpfer
- Department of Biology, Chemistry and Pharmacy, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ria Thielhorn
- Department of Biology, Chemistry and Pharmacy, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Helge Ewers
- Department of Biology, Chemistry and Pharmacy, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
11
|
Vojnovic I, Caspari OD, Hoşkan MA, Endesfelder U. Combining single-molecule and expansion microscopy in fission yeast to visualize protein structures at the nanostructural level. Open Biol 2024; 14:230414. [PMID: 38320620 PMCID: PMC10846934 DOI: 10.1098/rsob.230414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024] Open
Abstract
In this work, we have developed an expansion microscopy (ExM) protocol that combines ExM with photoactivated localization microscopy (ExPALM) for yeast cell imaging, and report a robust protocol for single-molecule and expansion microscopy of fission yeast, abbreviated as SExY. Our optimized SExY protocol retains about 50% of the fluorescent protein signal, doubling the amount obtained compared to the original protein retention ExM (proExM) protocol. It allows for a fivefold, highly isotropic expansion of fission yeast cells, which we carefully controlled while optimizing protein yield. We demonstrate the SExY method on several exemplary molecular targets and explicitly introduce low-abundant protein targets (e.g. nuclear proteins such as cbp1 and mis16, and the centromere-specific histone protein cnp1). The SExY protocol optimizations increasing protein yield could be beneficial for many studies, when targeting low abundance proteins, or for studies that rely on genetic labelling for various reasons (e.g. for proteins that cannot be easily targeted by extrinsic staining or in case artefacts introduced by unspecific staining interfere with data quality).
Collapse
Affiliation(s)
- Ilijana Vojnovic
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Oliver D. Caspari
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Department of Microbiology, Institute Pasteur, Paris, France
| | - Mehmet Ali Hoşkan
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Ishikawa S, Iwanaga Y, Uneyama T, Li X, Hojo H, Fujinaga I, Katashima T, Saito T, Okada Y, Chung UI, Sakumichi N, Sakai T. Percolation-induced gel-gel phase separation in a dilute polymer network. NATURE MATERIALS 2023; 22:1564-1570. [PMID: 37903925 DOI: 10.1038/s41563-023-01712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/02/2023] [Indexed: 11/01/2023]
Abstract
Cosmic large-scale structures, animal flocks and living tissues can be considered non-equilibrium organized systems created by dissipative processes. Replicating such properties in artificial systems is still difficult. Herein we report a dissipative network formation process in a dilute polymer-water mixture that leads to percolation-induced gel-gel phase separation. The dilute system, which forms a monophase structure at the percolation threshold, spontaneously separates into two co-continuous gel phases with a submillimetre scale (a dilute-percolated gel) during the deswelling process after the completion of the gelation reaction. The dilute-percolated gel, which contains 99% water, exhibits unexpected hydrophobicity and induces the development of adipose-like tissues in subcutaneous tissues. These findings support the development of dissipative structures with advanced functionalities for distinct applications, ranging from physical chemistry to tissue engineering.
Collapse
Grants
- JPMJCR1992 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- JPMJCR1852 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- JPMJCR20E2 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- Moon-shot R&D 1125941 MEXT | Japan Science and Technology Agency (JST)
- JPMJMS2025-14 MEXT | Japan Science and Technology Agency (JST)
- JPMXP1122714694 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H04688 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H05733 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19H05794 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19H05795 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19K14672 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H01187 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20J01344 MEXT | Japan Society for the Promotion of Science (JSPS)
- JPMJPR1992 MEXT | JST | Precursory Research for Embryonic Science and Technology (PRESTO)
Collapse
Affiliation(s)
- Shohei Ishikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yasuhide Iwanaga
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takashi Uneyama
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Xiang Li
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ikuo Fujinaga
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takuya Katashima
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Taku Saito
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Japan
- Department of Cell Biology, Department of Physics, Universal Biology Institute (UBI) and International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Ung-Il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Naoyuki Sakumichi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Takamasa Sakai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Louvel V, Haase R, Mercey O, Laporte MH, Eloy T, Baudrier É, Fortun D, Soldati-Favre D, Hamel V, Guichard P. iU-ExM: nanoscopy of organelles and tissues with iterative ultrastructure expansion microscopy. Nat Commun 2023; 14:7893. [PMID: 38036510 PMCID: PMC10689735 DOI: 10.1038/s41467-023-43582-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
Expansion microscopy (ExM) is a highly effective technique for super-resolution fluorescence microscopy that enables imaging of biological samples beyond the diffraction limit with conventional fluorescence microscopes. Despite the development of several enhanced protocols, ExM has not yet demonstrated the ability to achieve the precision of nanoscopy techniques such as Single Molecule Localization Microscopy (SMLM). Here, to address this limitation, we have developed an iterative ultrastructure expansion microscopy (iU-ExM) approach that achieves SMLM-level resolution. With iU-ExM, it is now possible to visualize the molecular architecture of gold-standard samples, such as the eight-fold symmetry of nuclear pores or the molecular organization of the conoid in Apicomplexa. With its wide-ranging applications, from isolated organelles to cells and tissue, iU-ExM opens new super-resolution avenues for scientists studying biological structures and functions.
Collapse
Affiliation(s)
- Vincent Louvel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Romuald Haase
- Department of Microbiology and Molecular medicine, University of Geneva, Geneva, Switzerland
| | - Olivier Mercey
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Marine H Laporte
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Thibaut Eloy
- ICube - UMR7357, CNRS, University of Strasbourg, Strasbourg, France
| | - Étienne Baudrier
- ICube - UMR7357, CNRS, University of Strasbourg, Strasbourg, France
| | - Denis Fortun
- ICube - UMR7357, CNRS, University of Strasbourg, Strasbourg, France
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular medicine, University of Geneva, Geneva, Switzerland
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
14
|
Balaram P, Takasaki K, Hellevik A, Tandukar J, Turschak E, MacLennan B, Ouellette N, Torres R, Laughland C, Gliko O, Seshamani S, Perlman E, Taormina M, Peterson E, Juneau Z, Potekhina L, Glaser A, Chandrashekar J, Logsdon M, Cao K, Dylla C, Hatanaka G, Chatterjee S, Ting J, Vumbaco D, Waters J, Bair W, Tsao D, Gao R, Reid C. Microscale visualization of cellular features in adult macaque visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565381. [PMID: 37961179 PMCID: PMC10635096 DOI: 10.1101/2023.11.02.565381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Expansion microscopy and light sheet imaging enable fine-scale resolution of intracellular features that comprise neural circuits. Most current techniques visualize sparsely distributed features across whole brains or densely distributed features within individual brain regions. Here, we visualize dense distributions of immunolabeled proteins across early visual cortical areas in adult macaque monkeys. This process may be combined with multiphoton or magnetic resonance imaging to produce multimodal atlases in large, gyrencephalic brains.
Collapse
|
15
|
Galib RH, Tian Y, Lei Y, Dang S, Li X, Yudhanto A, Lubineau G, Gan Q. Atmospheric-moisture-induced polyacrylate hydrogels for hybrid passive cooling. Nat Commun 2023; 14:6707. [PMID: 37872249 PMCID: PMC10593860 DOI: 10.1038/s41467-023-42548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Heat stress is being exacerbated by global warming, jeopardizing human and social sustainability. As a result, reliable and energy-efficient cooling methods are highly sought-after. Here, we report a polyacrylate film fabricated by self-moisture-absorbing hygroscopic hydrogel for efficient hybrid passive cooling. Using one of the lowest-cost industrial materials (e.g., sodium polyacrylate), we demonstrate radiative cooling by reducing solar heating with high solar reflectance (0.93) while maximizing thermal emission with high mid-infrared emittance (0.99). Importantly, the manufacturing process utilizes only atmospheric moisture and requires no additional chemicals or energy consumption, making it a completely green process. Under sunlight illumination of 800 W m-2, the surface temperature of the film was reduced by 5 °C under a partly cloudy sky observed at Buffalo, NY. Combined with its hygroscopic feature, this film can simultaneously introduce evaporative cooling that is independent of access to the clear sky. The hybrid passive cooling approach is projected to decrease global carbon emissions by 118.4 billion kg/year compared to current air-conditioning facilities powered by electricity. Given its low-cost raw materials and excellent molding feature, the film can be manufactured through simple and cost-effective roll-to-roll processes, making it suitable for future building construction and personal thermal management needs.
Collapse
Affiliation(s)
- Roisul Hasan Galib
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Yanpei Tian
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Water Desalination and Reuse Center, Biological and Environmental Science & Engineering Division, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Yue Lei
- Water Desalination and Reuse Center, Biological and Environmental Science & Engineering Division, KAUST, Thuwal, 23955-6900, Saudi Arabia
- School of Architecture and Urban Planning, Chongqing University, 400045, Chongqing, China
| | - Saichao Dang
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Water Desalination and Reuse Center, Biological and Environmental Science & Engineering Division, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Xiaole Li
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Mechanics of Composites for Energy and Mobility Laboratory, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Arief Yudhanto
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Mechanics of Composites for Energy and Mobility Laboratory, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Gilles Lubineau
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Mechanics of Composites for Energy and Mobility Laboratory, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Qiaoqiang Gan
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Water Desalination and Reuse Center, Biological and Environmental Science & Engineering Division, KAUST, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
16
|
Cui Y, Yang G, Goodwin DR, O’Flanagan CH, Sinha A, Zhang C, Kitko KE, Shin TW, Park D, Aparicio S, Boyden ES. Expansion microscopy using a single anchor molecule for high-yield multiplexed imaging of proteins and RNAs. PLoS One 2023; 18:e0291506. [PMID: 37729182 PMCID: PMC10511132 DOI: 10.1371/journal.pone.0291506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023] Open
Abstract
Expansion microscopy (ExM), by physically enlarging specimens in an isotropic fashion, enables nanoimaging on standard light microscopes. Key to existing ExM protocols is the equipping of different kinds of molecules, with different kinds of anchoring moieties, so they can all be pulled apart from each other by polymer swelling. Here we present a multifunctional anchor, an acrylate epoxide, that enables proteins and RNAs to be equipped with anchors in a single experimental step. This reagent simplifies ExM protocols and reduces cost (by 2-10-fold for a typical multiplexed ExM experiment) compared to previous strategies for equipping RNAs with anchors. We show that this united ExM (uniExM) protocol can be used to preserve and visualize RNA transcripts, proteins in biologically relevant ultrastructures, and sets of RNA transcripts in patient-derived xenograft (PDX) cancer tissues and may support the visualization of other kinds of biomolecular species as well. uniExM may find many uses in the simple, multimodal nanoscale analysis of cells and tissues.
Collapse
Affiliation(s)
- Yi Cui
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Gaojie Yang
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Daniel R. Goodwin
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Ciara H. O’Flanagan
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Anubhav Sinha
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, Massachusetts, United States of America
| | - Chi Zhang
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Kristina E. Kitko
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Tay Won Shin
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Demian Park
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Samuel Aparicio
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Edward S. Boyden
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts, United States of America
- Koch Institute for Cancer Research, MIT, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
17
|
Mäntylä E, Montonen T, Azzari L, Mattola S, Hannula M, Vihinen-Ranta M, Hyttinen J, Vippola M, Foi A, Nymark S, Ihalainen TO. Iterative immunostaining combined with expansion microscopy and image processing reveals nanoscopic network organization of nuclear lamina. Mol Biol Cell 2023; 34:br13. [PMID: 37342871 PMCID: PMC10398900 DOI: 10.1091/mbc.e22-09-0448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
Investigation of nuclear lamina architecture relies on superresolved microscopy. However, epitope accessibility, labeling density, and detection precision of individual molecules pose challenges within the molecularly crowded nucleus. We developed iterative indirect immunofluorescence (IT-IF) staining approach combined with expansion microscopy (ExM) and structured illumination microscopy to improve superresolution microscopy of subnuclear nanostructures like lamins. We prove that ExM is applicable in analyzing highly compacted nuclear multiprotein complexes such as viral capsids and provide technical improvements to ExM method including three-dimensional-printed gel casting equipment. We show that in comparison with conventional immunostaining, IT-IF results in a higher signal-to-background ratio and a mean fluorescence intensity by improving the labeling density. Moreover, we present a signal-processing pipeline for noise estimation, denoising, and deblurring to aid in quantitative image analyses and provide this platform for the microscopy imaging community. Finally, we show the potential of signal-resolved IT-IF in quantitative superresolution ExM imaging of nuclear lamina and reveal nanoscopic details of the lamin network organization-a prerequisite for studying intranuclear structural coregulation of cell function and fate.
Collapse
Affiliation(s)
- Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Toni Montonen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Lucio Azzari
- Tampere Microscopy Center (TMC), Tampere University, 33100 Tampere, Finland
| | - Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Markus Hannula
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Jari Hyttinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Minnamari Vippola
- Tampere Microscopy Center (TMC), Tampere University, 33100 Tampere, Finland
| | - Alessandro Foi
- Faculty of Information Technology and Communication Sciences, Computing Sciences, Tampere University, 33100 Tampere, Finland
| | - Soile Nymark
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Teemu O. Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, 33100 Tampere, Finland
| |
Collapse
|
18
|
Zhuang Y, Shi X. Expansion microscopy: A chemical approach for super-resolution microscopy. Curr Opin Struct Biol 2023; 81:102614. [PMID: 37253290 PMCID: PMC11103276 DOI: 10.1016/j.sbi.2023.102614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 06/01/2023]
Abstract
Super-resolution microscopy is a series of imaging techniques that bypass the diffraction limit of resolution. Since the 1990s, optical approaches, such as single-molecular localization microscopy, have allowed us to visualize biological samples from the sub-organelle to the molecular level. Recently, a chemical approach called expansion microscopy emerged as a new trend in super-resolution microscopy. It physically enlarges cells and tissues, which leads to an increase in the effective resolution of any microscope by the length expansion factor. Compared with optical approaches, expansion microscopy has a lower cost and higher imaging depth but requires a more complex procedure. The integration of expansion microscopy and advanced microscopes significantly pushed forward the boundary of super-resolution microscopy. This review covers the current state of the art in expansion microscopy, including the latest methods and their applications, as well as challenges and opportunities for future research.
Collapse
Affiliation(s)
- Yinyin Zhuang
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA. https://twitter.com/YinyinZhuang
| | - Xiaoyu Shi
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
19
|
Gao R. A Structurally Homogeneous Polymer for High-Isotropy Expansion and Nanoscale Imaging of Biological Ultrastructure. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:992. [PMID: 37613792 DOI: 10.1093/micmic/ozad067.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Ruixuan Gao
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, United States
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Rashid SA, Dong Y, Ogasawara H, Vierengel M, Essien ME, Salaita K. All-Covalent Nuclease-Resistant and Hydrogel-Tethered DNA Hairpin Probes Map pN Cell Traction Forces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:33362-33372. [PMID: 37409737 PMCID: PMC10360067 DOI: 10.1021/acsami.3c04826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Cells sense and respond to the physical properties of their environment through receptor-mediated signaling, a process known as mechanotransduction, which can modulate critical cellular functions such as proliferation, differentiation, and survival. At the molecular level, cell adhesion receptors, such as integrins, transmit piconewton (pN)-scale forces to the extracellular matrix, and the magnitude of the force plays a critical role in cell signaling. The most sensitive approach to measuring integrin forces involves DNA hairpin-based sensors, which are used to quantify and map forces in living cells. Despite the broad use of DNA hairpin sensors to study a variety of mechanotransduction processes, these sensors are typically anchored to rigid glass slides, which are orders of magnitude stiffer than the extracellular matrix and hence modulate native biological responses. Here, we have developed nuclease-resistant DNA hairpin probes that are all covalently tethered to PEG hydrogels to image cell traction forces on physiologically relevant substrate stiffness. Using HeLa cells as a model cell line, we show that the molecular forces transmitted by integrins are highly sensitive to the bulk modulus of the substrate, and cells cultured on the 6 and 13 kPa gels produced a greater number of hairpin unfolding events compared to the 2 kPa substrates. Tension signals are spatially colocalized with pY118-paxillin, confirming focal adhesion-mediated probe opening. Additionally, we found that integrin forces are greater than 5.8 pN but less than 19 pN on 13 kPa gels. This work provides a general strategy to integrate molecular tension probes into hydrogels, which can better mimic in vivo mechanotransduction.
Collapse
Affiliation(s)
- Sk Aysha Rashid
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yixiao Dong
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hiroaki Ogasawara
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Maia Vierengel
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mark Edoho Essien
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
21
|
Chan YH, Pathmasiri KC, Pierre-Jacques D, Cologna SM, Gao R. Gel-assisted mass spectrometry imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543480. [PMID: 37398444 PMCID: PMC10312618 DOI: 10.1101/2023.06.02.543480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Compatible with label-free detection and quantification, mass spectrometry imaging (MSI) is a powerful tool for spatial investigation of biomolecules in intact specimens. Yet, the spatial resolution of MSI is limited by the method's physical and instrumental constraints, which often preclude it from single-cell and subcellular applications. By taking advantage of the reversible interaction of analytes with superabsorbent hydrogels, we developed a sample preparation and imaging workflow named Gel-Assisted Mass Spectrometry Imaging (GAMSI) to overcome these limits. With GAMSI, the spatial resolution of lipid and protein MALDI-MSI can be enhanced severalfold without changing the existing mass spectrometry hardware and analysis pipeline. This approach will further enhance the accessibility to (sub)cellular-scale MALDI-MSI-based spatial omics.
Collapse
Affiliation(s)
- Yat Ho Chan
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
| | | | | | - Stephanie M. Cologna
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
- Laboratory for Integrative Neuroscience, University of Illinois at Chicago; Chicago, IL 60607, USA
| | - Ruixuan Gao
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
- Laboratory for Integrative Neuroscience, University of Illinois at Chicago; Chicago, IL 60607, USA
- Department of Biological Sciences, University of Illinois Chicago; Chicago, IL 60607, USA
| |
Collapse
|
22
|
Günay KA, Chang TL, Skillin NP, Rao VV, Macdougall LJ, Cutler AA, Silver JS, Brown TE, Zhang C, Yu CCJ, Olwin BB, Boyden ES, Anseth KS. Photo-expansion microscopy enables super-resolution imaging of cells embedded in 3D hydrogels. NATURE MATERIALS 2023; 22:777-785. [PMID: 37217701 PMCID: PMC10590656 DOI: 10.1038/s41563-023-01558-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Hydrogels are extensively used as tunable, biomimetic three-dimensional cell culture matrices, but optically deep, high-resolution images are often difficult to obtain, limiting nanoscale quantification of cell-matrix interactions and outside-in signalling. Here we present photopolymerized hydrogels for expansion microscopy that enable optical clearance and tunable ×4.6-6.7 homogeneous expansion of not only monolayer cell cultures and tissue sections, but cells embedded within hydrogels. The photopolymerized hydrogels for expansion microscopy formulation relies on a rapid photoinitiated thiol/acrylate mixed-mode polymerization that is not inhibited by oxygen and decouples monomer diffusion from polymerization, which is particularly beneficial when expanding cells embedded within hydrogels. Using this technology, we visualize human mesenchymal stem cells and their interactions with nascently deposited proteins at <120 nm resolution when cultured in proteolytically degradable synthetic polyethylene glycol hydrogels. Results support the notion that focal adhesion maturation requires cellular fibronectin deposition; nuclear deformation precedes cellular spreading; and human mesenchymal stem cells display cell-surface metalloproteinases for matrix remodelling.
Collapse
Affiliation(s)
- Kemal Arda Günay
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Tze-Ling Chang
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Nathaniel P Skillin
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Varsha V Rao
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Alicia A Cutler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Jason S Silver
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Tobin E Brown
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Chi Zhang
- McGovern Institute, MIT, Cambridge, MA, USA
- HHMI, Cambridge, MA, USA
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, MIT, Cambridge, MA, USA
| | - Chih-Chieh Jay Yu
- McGovern Institute, MIT, Cambridge, MA, USA
- HHMI, Cambridge, MA, USA
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, MIT, Cambridge, MA, USA
| | - Bradley B Olwin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Edward S Boyden
- McGovern Institute, MIT, Cambridge, MA, USA
- HHMI, Cambridge, MA, USA
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, MIT, Cambridge, MA, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
23
|
Golm SK, Hübner W, Müller KM. Fluorescence Microscopy in Adeno-Associated Virus Research. Viruses 2023; 15:v15051174. [PMID: 37243260 DOI: 10.3390/v15051174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Research on adeno-associated virus (AAV) and its recombinant vectors as well as on fluorescence microscopy imaging is rapidly progressing driven by clinical applications and new technologies, respectively. The topics converge, since high and super-resolution microscopes facilitate the study of spatial and temporal aspects of cellular virus biology. Labeling methods also evolve and diversify. We review these interdisciplinary developments and provide information on the technologies used and the biological knowledge gained. The emphasis lies on the visualization of AAV proteins by chemical fluorophores, protein fusions and antibodies as well as on methods for the detection of adeno-associated viral DNA. We add a short overview of fluorescent microscope techniques and their advantages and challenges in detecting AAV.
Collapse
Affiliation(s)
- Susanne K Golm
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wolfgang Hübner
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Kristian M Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
24
|
Laporte MH, Bertiaux É, Hamel V, Guichard P. [Closer to the native architecture of the cell using Cryo-ExM]. Med Sci (Paris) 2023; 39:351-358. [PMID: 37094268 DOI: 10.1051/medsci/2023052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Most cellular imaging techniques, such as light or electron microscopy, require that the biological sample is first fixed by chemical cross-linking agents. This necessary step is also known to damage molecular nanostructures or even sub-cellular organization. To overcome this problem, another fixation approach was invented more than 40 years ago, which consists in cryo-fixing biological samples, thus allowing to preserve their native state. However, this method has been scarcely used in light microscopy due to the complexity of its implementation. In this review, we present a recently developed super-resolution method called expansion microscopy, which, when coupled with cryo-fixation, allows to visualize at a nanometric resolution the cell architecture as close as possible to its native state.
Collapse
Affiliation(s)
- Marine H Laporte
- Department of Molecular and Cellular Biology, Université de Genève, 30 quai Ernest Ansermet, 1211 Genève, Suisse
| | - Éloïse Bertiaux
- Department of Molecular and Cellular Biology, Université de Genève, 30 quai Ernest Ansermet, 1211 Genève, Suisse
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, Université de Genève, 30 quai Ernest Ansermet, 1211 Genève, Suisse
| | - Paul Guichard
- Department of Molecular and Cellular Biology, Université de Genève, 30 quai Ernest Ansermet, 1211 Genève, Suisse
| |
Collapse
|
25
|
Wen G, Leen V, Rohand T, Sauer M, Hofkens J. Current Progress in Expansion Microscopy: Chemical Strategies and Applications. Chem Rev 2023; 123:3299-3323. [PMID: 36881995 DOI: 10.1021/acs.chemrev.2c00711] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Expansion microscopy (ExM) is a newly developed super-resolution technique, allowing visualization of biological targets at nanoscale resolution on conventional fluorescence microscopes. Since its introduction in 2015, many efforts have been dedicated to broaden its application range or increase the resolution that can be achieved. As a consequence, recent years have witnessed remarkable advances in ExM. This review summarizes recent progress in ExM, with the focus on the chemical aspects of the method, from chemistries for biomolecule grafting to polymer synthesis and the impact on biological analysis. The combination of ExM with other microscopy techniques, in search of additional resolution improvement, is also discussed. In addition, we compare pre- and postexpansion labeling strategies and discuss the impact of fixation methods on ultrastructure preservation. We conclude this review with a perspective on existing challenges and future directions. We believe that this review will provide a comprehensive understanding of ExM and facilitate its usage and further development.
Collapse
Affiliation(s)
- Gang Wen
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
| | - Volker Leen
- Chrometra Scientific, Kortenaken 3470, Belgium
| | - Taoufik Rohand
- Laboratory of Analytical and Molecular Chemistry, Faculty Polydisciplinaire of Safi, University Cadi Ayyad Marrakech, BP 4162, 46000 Safi, Morocco
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
26
|
Hou M, Xing F, Yang J, Hu F, Pan L, Xu J. Molecular Resolution Mapping of Erythrocyte Cytoskeleton by Ultrastructure Expansion Single-Molecule Localization Microscopy. SMALL METHODS 2023; 7:e2201243. [PMID: 36543363 DOI: 10.1002/smtd.202201243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The combination of expansion microscopy and single-molecule localization microscopy has the potential to approach the molecular resolution. However, this combination meets challenges due to the hydrogel shrinkage in the presence of imaging buffer. Here, a method of ultrastructure expansion single-molecule localization microscopy (U-ExSMLM) based on skillfully adhering the gel onto poly-l-lysine (pLL)-coated coverslip is developed to prevent lateral shrinkage of the hydrogel. U-ExSMLM is then applied to dissect the membrane cytoskeleton organization of human erythrocytes at molecular resolution. The resolved nanoscale spatial distributions of cytoskeleton proteins, including the N/C-termini of β-spectrin, protein 4.1, and tropomodulin, show good agreement with the acknowledged model of erythrocyte cytoskeleton structure, demonstrating the reliability of U-ExSMLM. Furthermore, the concentration of pLL is adjusted to preserve the physiological biconcave morphology of erythrocytes, and it is found that the spectrin cytoskeleton in the dimple regions has lower density and larger length than that in the rim regions, which provides the direct evidence for cytoskeleton asymmetry in human erythrocytes. Therefore, the integrated method offers future opportunities to study the ultrastructure of membrane cytoskeleton at molecular resolution.
Collapse
Affiliation(s)
- Mengdi Hou
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Fulin Xing
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Jianyu Yang
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Fen Hu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Leiting Pan
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Shenzhen Research Institute of Nankai University, Shenzhen, Guangdong, 518083, China
| | - Jingjun Xu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
- Shenzhen Research Institute of Nankai University, Shenzhen, Guangdong, 518083, China
| |
Collapse
|
27
|
Affiliation(s)
- Sven Truckenbrodt
- Convergent Research, E11 Bio. 1600 Harbor Bay Parkway, Alameda, California94502, United States
| |
Collapse
|
28
|
Hinterndorfer K, Laporte MH, Mikus F, Tafur L, Bourgoint C, Prouteau M, Dey G, Loewith R, Guichard P, Hamel V. Ultrastructure expansion microscopy reveals the cellular architecture of budding and fission yeast. J Cell Sci 2022; 135:286062. [PMID: 36524422 PMCID: PMC10112979 DOI: 10.1242/jcs.260240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT
The budding and fission yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have served as invaluable model organisms to study conserved fundamental cellular processes. Although super-resolution microscopy has in recent years paved the way to a better understanding of the spatial organization of molecules in cells, its wide use in yeasts has remained limited due to the specific know-how and instrumentation required, contrasted with the relative ease of endogenous tagging and live-cell fluorescence microscopy. To facilitate super-resolution microscopy in yeasts, we have extended the ultrastructure expansion microscopy (U-ExM) method to both S. cerevisiae and S. pombe, enabling a 4-fold isotropic expansion. We demonstrate that U-ExM allows imaging of the microtubule cytoskeleton and its associated spindle pole body, notably unveiling the Sfi1p–Cdc31p spatial organization on the appendage bridge structure. In S. pombe, we validate the method by monitoring the homeostatic regulation of nuclear pore complex number through the cell cycle. Combined with NHS-ester pan-labelling, which provides a global cellular context, U-ExM reveals the subcellular organization of these two yeast models and provides a powerful new method to augment the already extensive yeast toolbox.
This article has an associated First Person interview with Kerstin Hinterndorfer and Felix Mikus, two of the joint first authors of the paper.
Collapse
Affiliation(s)
- Kerstin Hinterndorfer
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Marine H. Laporte
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Felix Mikus
- European Molecular Biology Laboratory 2 Cell Biology and Biophysics , , Heidelberg , Germany
| | - Lucas Tafur
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Clélia Bourgoint
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Manoel Prouteau
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Gautam Dey
- European Molecular Biology Laboratory 2 Cell Biology and Biophysics , , Heidelberg , Germany
| | - Robbie Loewith
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Paul Guichard
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Virginie Hamel
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| |
Collapse
|
29
|
Zhang J, Li Q, Dai C, Cheng M, Hu X, Kim HS, Yang H, Preston DJ, Li Z, Zhang X, Lee WK. Hydrogel-Based, Dynamically Tunable Plasmonic Metasurfaces with Nanoscale Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205057. [PMID: 36269881 DOI: 10.1002/smll.202205057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Flat metasurfaces with subwavelength meta-atoms can be designed to manipulate the electromagnetic parameters of incident light and enable unusual light-matter interactions. Although hydrogel-based metasurfaces have the potential to control optical properties dynamically in response to environmental conditions, the pattern resolution of these surfaces has been limited to microscale features or larger, limiting capabilities at the nanoscale, and precluding effective use in metamaterials. This paper reports a general approach to developing tunable plasmonic metasurfaces with hydrogel meta-atoms at the subwavelength scale. Periodic arrays of hydrogel nanodots with continuously tunable diameters are fabricated on silver substrates, resulting in humidity-responsive surface plasmon polaritons (SPPs) at the nanostructure-metal interfaces. The peaks of the SPPs are controlled reversibly by absorbing or releasing water within the hydrogel matrix, the matrix-generated plasmonic color rendering in the visible spectrum. This work demonstrates that metasurfaces designed with these spatially patterned nanodots of varying sizes benefit applications in anti-counterfeiting and generate multicolored displays with single-nanodot resolution. Furthermore, this work shows system versatility exhibited by broadband beam-steering on a phase modulator consisting of hydrogel supercell units in which the size variations of constituent hydrogel nanostructures engineer the wavefront of reflected light from the metasurface.
Collapse
Affiliation(s)
- Jian Zhang
- Information Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Qiang Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chenjie Dai
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Mingliang Cheng
- Information Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xin Hu
- Information Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Hyun-Sik Kim
- Department of Materials Science and Engineering, University of Seoul, Seoul, 02504, Korea
| | - Heesun Yang
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Korea
| | - Daniel J Preston
- Department of Mechanical Engineering, Rice University, Houston, TX, 77006, USA
| | - Zhongyang Li
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Xuefeng Zhang
- Information Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Won-Kyu Lee
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Korea
| |
Collapse
|
30
|
Wen G, Leen V, Jia Y, Rohand T, Hofkens J. Improved Dye Survival in Expansion Microscopy through Stabilizer-Conjugated Linkers. Chemistry 2022; 28:e202202404. [PMID: 36031562 PMCID: PMC9828348 DOI: 10.1002/chem.202202404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 01/12/2023]
Abstract
Expansion microscopy (ExM) has been widely used to detect biomolecules in cultured cells and tissue samples due to its enablement of super resolution imaging with conventional microscopes, via physical expansion of samples. However, reaction conditions inherent to the process bring about strong fluorescent signal loss during polymerization and digestion and thus limit the brightness of the signal obtained post expansion. Here, we explore the impact of stabilizer-containing organic fluorophores in ExM, as a mitigation strategy for this radical-induced dye degradation. Through direct conjugation of 4-nitrophenylalanine (NPA) to our previously developed trifunctional reagents, we validate and demonstrate that these multifunctional linkers enable visualization of different organelles with improved fluorescent intensity, owning to protection of the dyes to radical induced degradation as well as to photoprotection upon imaging. At this point, we cannot disentangle the relative contribution of both mechanisms. Furthermore, we report anchoring linkers that allow straightforward application of NPA or Trolox to commercially available fluorophore-conjugated antibodies. We show that these anchoring linkers enable complete retention of biological targets while increasing fluorophore photostability. Our results provide guidance in exploring these stabilizer-modified agents in ExM and methods for increased signal survival through the polymerization steps of the ExM protocols.
Collapse
Affiliation(s)
- Gang Wen
- Department of ChemistryKU LeuvenLeuven3001Belgium
| | | | - Yuqing Jia
- Department of Cell and Chemical BiologyLeiden University Medical CenterEinthovenweg 202333 ZCLeidenThe Netherlands
| | - Taoufik Rohand
- Laboratory of Analytical & Molecular Chemistry Faculty Polydisciplinaire of Safi Department of ChemistryUniversity Cadi Ayyad46000SafiMorocco
| | - Johan Hofkens
- Department of ChemistryKU LeuvenLeuven3001Belgium,Max Planck Institute for Polymer Research55128MainzGermany
| |
Collapse
|
31
|
Abstract
Strategies to visualize cellular membranes with light microscopy are restricted by the diffraction limit of light, which far exceeds the dimensions of lipid bilayers. Here, we describe a method for super-resolution imaging of metabolically labeled phospholipids within cellular membranes. Guided by the principles of expansion microscopy, we develop an all-small molecule approach that enables direct chemical anchoring of bioorthogonally labeled phospholipids into a hydrogel network and is capable of super-resolution imaging of cellular membranes. We apply this method, termed lipid expansion microscopy (LExM), to visualize organelle membranes with precision, including a unique class of membrane-bound structures known as nuclear invaginations. Compatible with standard confocal microscopes, LExM will be widely applicable for super-resolution imaging of phospholipids and cellular membranes in numerous physiological contexts.
Collapse
Affiliation(s)
- Brittany M White
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
| | - Pratik Kumar
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Amanda N Conwell
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kane Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
32
|
Wang W, Chan YH, Kwon S, Tandukar J, Gao R. Nanoscale fluorescence imaging of biological ultrastructure via molecular anchoring and physical expansion. NANO CONVERGENCE 2022; 9:30. [PMID: 35810234 PMCID: PMC9271151 DOI: 10.1186/s40580-022-00318-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/26/2022] [Indexed: 05/25/2023]
Abstract
Nanoscale imaging of biological samples can provide rich morphological and mechanistic information about biological functions and dysfunctions at the subcellular and molecular level. Expansion microscopy (ExM) is a recently developed nanoscale fluorescence imaging method that takes advantage of physical enlargement of biological samples. In ExM, preserved cells and tissues are embedded in a swellable hydrogel, to which the molecules and fluorescent tags in the samples are anchored. When the hydrogel swells several-fold, the effective resolution of the sample images can be improved accordingly via physical separation of the retained molecules and fluorescent tags. In this review, we focus on the early conception and development of ExM from a biochemical and materials perspective. We first examine the general workflow as well as the numerous variations of ExM developed to retain and visualize a broad range of biomolecules, such as proteins, nucleic acids, and membranous structures. We then describe a number of inherent challenges facing ExM, including those associated with expansion isotropy and labeling density, as well as the ongoing effort to address these limitations. Finally, we discuss the prospect and possibility of pushing the resolution and accuracy of ExM to the single-molecule scale and beyond.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Yat Ho Chan
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - SoYoung Kwon
- Department of Biomedical and Health Information Sciences, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Jamuna Tandukar
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Ruixuan Gao
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA.
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
33
|
Pócsi I, Szigeti ZM, Emri T, Boczonádi I, Vereb G, Szöllősi J. Use of red, far-red, and near-infrared light in imaging of yeasts and filamentous fungi. Appl Microbiol Biotechnol 2022; 106:3895-3912. [PMID: 35599256 PMCID: PMC9200671 DOI: 10.1007/s00253-022-11967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Abstract While phototoxicity can be a useful therapeutic modality not only for eliminating malignant cells but also in treating fungal infections, mycologists aiming to observe morphological changes or molecular events in fungi, especially when long observation periods or high light fluxes are warranted, encounter problems owed to altered regulatory pathways or even cell death caused by various photosensing mechanisms. Consequently, the ever expanding repertoire of visible fluorescent protein toolboxes and high-resolution microscopy methods designed to investigate fungi in vitro and in vivo need to comply with an additional requirement: to decrease the unwanted side effects of illumination. In addition to optimizing exposure, an obvious solution is red-shifted illumination, which, however, does not come without compromises. This review summarizes the interactions of fungi with light and the various molecular biology and technology approaches developed for exploring their functions on the molecular, cellular, and in vivo microscopic levels, and outlines the progress towards reducing phototoxicity through applying far-red and near-infrared light. Key points • Fungal biological processes alter upon illumination, also under the microscope • Red shifted fluorescent protein toolboxes decrease interference by illumination • Innovations like two-photon, lightsheet, and near IR microscopy reduce phototoxicity
Collapse
Affiliation(s)
- István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| | - Zsuzsa M Szigeti
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Imre Boczonádi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.,MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.,Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.,MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| |
Collapse
|
34
|
Li H, Warden AR, He J, Shen G, Ding X. Expansion microscopy with ninefold swelling (NIFS) hydrogel permits cellular ultrastructure imaging on conventional microscope. SCIENCE ADVANCES 2022; 8:eabm4006. [PMID: 35507653 PMCID: PMC9067917 DOI: 10.1126/sciadv.abm4006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Superresolution microscopy enables probing of cellular ultrastructures. However, its widespread applications are limited by the need for expensive machinery, specific hardware, and sophisticated data processing. Expansion microscopy (ExM) improves the resolution of conventional microscopy by physically expanding biological specimens before imaging and currently provides ~70-nm resolution, which still lags behind that of modern superresolution microscopy (~30 nm). Here, we demonstrate a ninefold swelling (NIFS) hydrogel, that can reduce ExM resolution to 31 nm when using regular traditional microscopy. We also design a detachable chip that integrates all the experimental operations to facilitate the maximal reproducibility of this high-resolution imaging technology. We demonstrate this technique on the superimaging of nuclear pore complex and clathrin-coated pits, whose structures can hardly be resolved by conventional microscopy. The method presented here offers a universal platform with superresolution imaging to unveil cellular ultrastructural details using standard conventional laboratory microscopes.
Collapse
|
35
|
Robb NC. Virus morphology: Insights from super-resolution fluorescence microscopy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166347. [PMID: 35032594 PMCID: PMC8755447 DOI: 10.1016/j.bbadis.2022.166347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/06/2023]
Abstract
As epitomised by the COVID-19 pandemic, diseases caused by viruses are one of the greatest health and economic burdens to human society. Viruses are 'nanostructures', and their small size (typically less than 200 nm in diameter) can make it challenging to obtain images of their morphology and structure. Recent advances in fluorescence microscopy have given rise to super-resolution techniques, which have enabled the structure of viruses to be visualised directly at a resolution in the order of 20 nm. This mini-review discusses how recent state-of-the-art super-resolution imaging technologies are providing new nanoscale insights into virus structure.
Collapse
Affiliation(s)
- Nicole C Robb
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
36
|
Wang W, Wang S. Cell-based biocomposite engineering directed by polymers. LAB ON A CHIP 2022; 22:1042-1067. [PMID: 35244136 DOI: 10.1039/d2lc00067a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biological cells such as bacterial, fungal, and mammalian cells always exploit sophisticated chemistries and exquisite micro- and nano-structures to execute life activities, providing numerous templates for engineering bioactive and biomorphic materials, devices, and systems. To transform biological cells into functional biocomposites, polymer-directed cell surface engineering and intracellular functionalization have been developed over the past two decades. Polymeric materials can be easily adopted by various cells through polymer grafting or in situ hydrogelation and can successfully bridge cells with other functional materials as interfacial layers, thus achieving the manufacture of advanced biocomposites through bioaugmentation of living cells and transformation of cells into templated materials. This review article summarizes the recent progress in the design and construction of cell-based biocomposites by polymer-directed strategies. Furthermore, the applications of cell-based biocomposites in broad fields such as cell research, biomedicine, and bioenergy are discussed. Last, we provide personal perspectives on challenges and future trends in this interdisciplinary area.
Collapse
Affiliation(s)
- Wenshuo Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
|
38
|
Sneve MA, Piatkevich KD. Towards a Comprehensive Optical Connectome at Single Synapse Resolution via Expansion Microscopy. Front Synaptic Neurosci 2022; 13:754814. [PMID: 35115916 PMCID: PMC8803729 DOI: 10.3389/fnsyn.2021.754814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
Mapping and determining the molecular identity of individual synapses is a crucial step towards the comprehensive reconstruction of neuronal circuits. Throughout the history of neuroscience, microscopy has been a key technology for mapping brain circuits. However, subdiffraction size and high density of synapses in brain tissue make this process extremely challenging. Electron microscopy (EM), with its nanoscale resolution, offers one approach to this challenge yet comes with many practical limitations, and to date has only been used in very small samples such as C. elegans, tadpole larvae, fruit fly brain, or very small pieces of mammalian brain tissue. Moreover, EM datasets require tedious data tracing. Light microscopy in combination with tissue expansion via physical magnification-known as expansion microscopy (ExM)-offers an alternative approach to this problem. ExM enables nanoscale imaging of large biological samples, which in combination with multicolor neuronal and synaptic labeling offers the unprecedented capability to trace and map entire neuronal circuits in fully automated mode. Recent advances in new methods for synaptic staining as well as new types of optical molecular probes with superior stability, specificity, and brightness provide new modalities for studying brain circuits. Here we review advanced methods and molecular probes for fluorescence staining of the synapses in the brain that are compatible with currently available expansion microscopy techniques. In particular, we will describe genetically encoded probes for synaptic labeling in mice, zebrafish, Drosophila fruit flies, and C. elegans, which enable the visualization of post-synaptic scaffolds and receptors, presynaptic terminals and vesicles, and even a snapshot of the synaptic activity itself. We will address current methods for applying these probes in ExM experiments, as well as appropriate vectors for the delivery of these molecular constructs. In addition, we offer experimental considerations and limitations for using each of these tools as well as our perspective on emerging tools.
Collapse
Affiliation(s)
- Madison A. Sneve
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, United States
| | - Kiryl D. Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
39
|
Chen C, Zhang Y, Chen Z, Yang H, Gu Z. Cellular transformers for targeted therapy. Adv Drug Deliv Rev 2021; 179:114032. [PMID: 34736989 DOI: 10.1016/j.addr.2021.114032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/16/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Employing natural cells as drug carriers has been a hotspot in recent years, attributing to their biocompatibility and inherent dynamic properties. In the earlier stage, cells were mainly used as vehicles by virtue of their lipid-delimited compartmentalized structures and native membrane proteins. The scope emphasis was 'what cell displays' instead of 'how cell changes'. More recently, the dynamic behaviours, such as changes in surface protein patterns, morphologies, polarities and in-situ generation of therapeutics, of natural cells have drawn more attention for developing advanced drug delivery systems by fully taking advantage of these processes. In this review, we revolve around the dynamic cellular transformation behaviours which facilitate targeted therapy. Cellular deformation in geometry shape, spitting smaller vesicles, activation of antigen present cells, polarization between distinct phenotypes, local production of therapeutics, and hybridization with synthetic materials are involved. Other than focusing on the traditional delivery of concrete cargoes, more functional 'handles' that are derived from the cells themselves are introduced, such as information exchange, cellular communication and interactions between cell and extracellular environment.
Collapse
|
40
|
RNA Structures and Their Role in Selective Genome Packaging. Viruses 2021; 13:v13091788. [PMID: 34578369 PMCID: PMC8472981 DOI: 10.3390/v13091788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
To generate infectious viral particles, viruses must specifically select their genomic RNA from milieu that contains a complex mixture of cellular or non-genomic viral RNAs. In this review, we focus on the role of viral encoded RNA structures in genome packaging. We first discuss how packaging signals are constructed from local and long-range base pairings within viral genomes, as well as inter-molecular interactions between viral and host RNAs. Then, how genome packaging is regulated by the biophysical properties of RNA. Finally, we examine the impact of RNA packaging signals on viral evolution.
Collapse
|
41
|
Tetra-gel enables superior accuracy in combined super-resolution imaging and expansion microscopy. Sci Rep 2021; 11:16944. [PMID: 34417516 PMCID: PMC8379153 DOI: 10.1038/s41598-021-96258-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/23/2021] [Indexed: 12/02/2022] Open
Abstract
The accuracy of expansion microscopy (ExM) depends on the structural preservation of samples embedded in a hydrogel. However, it has been unknown to what extent gel embedding alters the molecular positions of individual labeled sites. Here, we quantified the accuracy of gel embedding by using stochastic optical reconstruction microscopy (STORM) to image DNA origami with well-defined structures. We found that embedding in hydrogels based on polyacrylamide, the most widely used chemistry in ExM, resulted in random displacements of labeled sites with a standard deviation of ~ 16 nm. In contrast, we found that embedding in tetra-gel, a hydrogel that does not depend on free-radical chain-growth polymerization, preserved labeled sites with a standard deviation of less than 5 nm. By combining tetra-gel ExM with STORM, we were able to resolve 11-nm structural features without the loss in accuracy seen with polyacrylamide gels. Our study thus provides direct measurements of the single-molecule distortions resulting from hydrogel embedding, and presents a way to improve super-resolution microscopy through combination with tetra-gel ExM.
Collapse
|
42
|
Putlyaeva LV, Lukyanov KA. Studying SARS-CoV-2 with Fluorescence Microscopy. Int J Mol Sci 2021; 22:6558. [PMID: 34207305 PMCID: PMC8234815 DOI: 10.3390/ijms22126558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 coronavirus deeply affected the world community. It gave a strong impetus to the development of not only approaches to diagnostics and therapy, but also fundamental research of the molecular biology of this virus. Fluorescence microscopy is a powerful technology enabling detailed investigation of virus-cell interactions in fixed and live samples with high specificity. While spatial resolution of conventional fluorescence microscopy is not sufficient to resolve all virus-related structures, super-resolution fluorescence microscopy can solve this problem. In this paper, we review the use of fluorescence microscopy to study SARS-CoV-2 and related viruses. The prospects for the application of the recently developed advanced methods of fluorescence labeling and microscopy-which in our opinion can provide important information about the molecular biology of SARS-CoV-2-are discussed.
Collapse
Affiliation(s)
| | - Konstantin A. Lukyanov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
| |
Collapse
|
43
|
Light-Sheet Fluorescence Microscopy for Multiscale Biological Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|