1
|
Wang N, Kang JM, Lu WL, Wang SM, Wang YJ, Li HO, Cao G, Wang BC, Guo GP. Highly Tunable 2D Silicon Quantum Dot Array with Coupling beyond Nearest Neighbors. NANO LETTERS 2024; 24:13126-13133. [PMID: 39401161 DOI: 10.1021/acs.nanolett.4c02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Scaling up quantum dots to two-dimensional (2D) arrays is a crucial step for advancing semiconductor quantum computation. However, maintaining excellent tunability of quantum dot parameters, including both nearest-neighbor and next-nearest-neighbor couplings, during 2D scaling is challenging, particularly for silicon quantum dots due to their relatively small size. Here, we present a highly controllable and interconnected 2D quantum dot array in planar silicon, demonstrating independent control over electron fillings and the tunnel couplings of nearest-neighbor dots. More importantly, we also demonstrate the wide tuning of tunnel couplings between next-nearest-neighbor dots, which play a crucial role in 2D quantum dot arrays. This excellent tunability enables us to alter the coupling configuration of the array as needed. These results open up the possibility of utilizing silicon quantum dot arrays as versatile platforms for quantum computing and quantum simulation.
Collapse
Affiliation(s)
- Ning Wang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jia-Min Kang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen-Long Lu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shao-Min Wang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - You-Jia Wang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hai-Ou Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Gang Cao
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Bao-Chuan Wang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guo-Ping Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Origin Quantum Computing Company Limited, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Hansen I, Seedhouse AE, Serrano S, Nickl A, Feng M, Huang JY, Tanttu T, Dumoulin Stuyck N, Lim WH, Hudson FE, Itoh KM, Saraiva A, Laucht A, Dzurak AS, Yang CH. Entangling gates on degenerate spin qubits dressed by a global field. Nat Commun 2024; 15:7656. [PMID: 39227618 PMCID: PMC11372149 DOI: 10.1038/s41467-024-52010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Semiconductor spin qubits represent a promising platform for future large-scale quantum computers owing to their excellent qubit performance, as well as the ability to leverage the mature semiconductor manufacturing industry for scaling up. Individual qubit control, however, commonly relies on spectral selectivity, where individual microwave signals of distinct frequencies are used to address each qubit. As quantum processors scale up, this approach will suffer from frequency crowding, control signal interference and unfeasible bandwidth requirements. Here, we propose a strategy based on arrays of degenerate spins coherently dressed by a global control field and individually addressed by local electrodes. We demonstrate simultaneous on-resonance driving of two degenerate qubits using a global field while retaining addressability for qubits with equal Larmor frequencies. Furthermore, we implement SWAP oscillations during on-resonance driving, constituting the demonstration of driven two-qubit gates. Significantly, our findings highlight how dressing can overcome the fragility of entangling gates between superposition states and increase their noise robustness. These results constitute a paradigm shift in qubit control in order to overcome frequency crowding in large-scale quantum computing.
Collapse
Affiliation(s)
- Ingvild Hansen
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia.
| | - Amanda E Seedhouse
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
- Diraq, Sydney, NSW, Australia
| | - Santiago Serrano
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
| | - Andreas Nickl
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
| | - MengKe Feng
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
- Diraq, Sydney, NSW, Australia
| | - Jonathan Y Huang
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
| | - Tuomo Tanttu
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
- Diraq, Sydney, NSW, Australia
| | - Nard Dumoulin Stuyck
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
- Diraq, Sydney, NSW, Australia
| | - Wee Han Lim
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
- Diraq, Sydney, NSW, Australia
| | - Fay E Hudson
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
- Diraq, Sydney, NSW, Australia
| | - Kohei M Itoh
- School of Fundamental Science and Technology, Keio University, Yokohama, Japan
| | - Andre Saraiva
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
- Diraq, Sydney, NSW, Australia
| | - Arne Laucht
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
- Diraq, Sydney, NSW, Australia
| | - Andrew S Dzurak
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia.
- Diraq, Sydney, NSW, Australia.
| | - Chih Hwan Yang
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia.
- Diraq, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Adelsberger C, Bosco S, Klinovaja J, Loss D. Valley-Free Silicon Fins Caused by Shear Strain. PHYSICAL REVIEW LETTERS 2024; 133:037001. [PMID: 39094129 DOI: 10.1103/physrevlett.133.037001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/04/2024] [Accepted: 06/05/2024] [Indexed: 08/04/2024]
Abstract
Electron spins confined in silicon quantum dots are promising candidates for large-scale quantum computers. However, the degeneracy of the conduction band of bulk silicon introduces additional levels dangerously close to the window of computational energies, where the quantum information can leak. The energy of the valley states-typically 0.1 meV-depends on hardly controllable atomistic disorder and still constitutes a fundamental limit to the scalability of these architectures. In this work, we introduce designs of complementary metal-oxide-semiconductor (CMOS)-compatible silicon fin field-effect transistors that enhance the energy gap to noncomputational states by more than one order of magnitude. Our devices comprise realistic silicon-germanium nanostructures with a large shear strain, where troublesome valley degrees of freedom are completely removed. The energy of noncomputational states is therefore not affected by unavoidable atomistic disorder and can further be tuned in situ by applied electric fields. Our design ideas are directly applicable to a variety of setups and will offer a blueprint toward silicon-based large-scale quantum processors.
Collapse
|
4
|
Bornet G, Emperauger G, Chen C, Machado F, Chern S, Leclerc L, Gély B, Chew YT, Barredo D, Lahaye T, Yao NY, Browaeys A. Enhancing a Many-Body Dipolar Rydberg Tweezer Array with Arbitrary Local Controls. PHYSICAL REVIEW LETTERS 2024; 132:263601. [PMID: 38996299 DOI: 10.1103/physrevlett.132.263601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 07/14/2024]
Abstract
We implement and characterize a protocol that enables arbitrary local controls in a dipolar atom array, where the degree of freedom is encoded in a pair of Rydberg states. Our approach relies on a combination of local addressing beams and global microwave fields. Using this method, we directly prepare two different types of three-atom entangled states, including a W state and a state exhibiting finite chirality. We verify the nature of the underlying entanglement by performing quantum state tomography. Finally, leveraging our ability to measure multibasis, multibody observables, we explore the adiabatic preparation of low-energy states in a frustrated geometry consisting of a pair of triangular plaquettes. By using local addressing to tune the symmetry of the initial state, we demonstrate the ability to prepare correlated states distinguished only by correlations of their chirality (a fundamentally six-body observable). Our protocol is generic, allowing for rotations on arbitrary sub-groups of atoms within the array at arbitrary times during the experiment; this extends the scope of capabilities for quantum simulations of the dipolar XY model.
Collapse
|
5
|
Kang JH, Yoon T, Lee C, Lim S, Ryu H. Design of high-performance entangling logic in silicon quantum dot systems with Bayesian optimization. Sci Rep 2024; 14:10080. [PMID: 38698015 PMCID: PMC11066012 DOI: 10.1038/s41598-024-60478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
Device engineering based on computer-aided simulations is essential to make silicon (Si) quantum bits (qubits) be competitive to commercial platforms based on superconductors and trapped ions. Combining device simulations with the Bayesian optimization (BO), here we propose a systematic design approach that is quite useful to procure fast and precise entangling operations of qubits encoded to electron spins in electrode-driven Si quantum dot (QD) systems. For a target problem of the controlled-X (CNOT) logic operation, we employ BO with the Gaussian process regression to evolve design factors of a Si double QD system to the ones that are optimal in terms of speed and fidelity of a CNOT logic driven by a single microwave pulse. The design framework not only clearly contributes to cost-efficient securing of solutions that enhance performance of the target quantum operation, but can be extended to implement more complicated logics with Si QD structures in experimentally unprecedented ways.
Collapse
Affiliation(s)
- Ji-Hoon Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Republic of Korea
| | - Taehyun Yoon
- Artificial Intelligence Graduate School, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Chanhui Lee
- Department of Artificial Intelligence, Korea University, Seoul, 02841, Republic of Korea
| | - Sungbin Lim
- Department of Statistics, Korea University, Seoul, 02841, Republic of Korea.
| | - Hoon Ryu
- Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
6
|
Zhang Y, Fan W, Yang J, Guan H, Zhang Q, Qin X, Duan C, de Boo GG, Johnson BC, McCallum JC, Sellars MJ, Rogge S, Yin C, Du J. Photoionisation detection of a single Er 3+ ion with sub-100-ns time resolution. Natl Sci Rev 2024; 11:nwad134. [PMID: 38487492 PMCID: PMC10939366 DOI: 10.1093/nsr/nwad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 05/04/2023] [Indexed: 03/17/2024] Open
Abstract
Efficient detection of single optical centres in solids is essential for quantum information processing, sensing and single-photon generation applications. In this work, we use radio-frequency (RF) reflectometry to electrically detect the photoionisation induced by a single Er3+ ion in Si. The high bandwidth and sensitivity of the RF reflectometry provide sub-100-ns time resolution for the photoionisation detection. With this technique, the optically excited state lifetime of a single Er3+ ion in a Si nano-transistor is measured for the first time to be [Formula: see text]s. Our results demonstrate an efficient approach for detecting a charge state change induced by Er excitation and relaxation. This approach could be used for fast readout of other single optical centres in solids and is attractive for large-scale integrated optical quantum systems thanks to the multi-channel RF reflectometry demonstrated with frequency multiplexing techniques.
Collapse
Affiliation(s)
- Yangbo Zhang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wenda Fan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jiliang Yang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Hao Guan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Qi Zhang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xi Qin
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Changkui Duan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Gabriele G de Boo
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, NSW 2052, Australia
| | - Brett C Johnson
- Centre of Excellence for Quantum Computation and Communication Technology, School of Engineering, RMIT University, Victoria 3001, Australia
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Victoria 3010, Australia
| | - Jeffrey C McCallum
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Victoria 3010, Australia
| | - Matthew J Sellars
- Centre of Excellence for Quantum Computation and Communication Technology, Research School of Physics and Engineering, Australian National University, ACT 0200, Australia
| | - Sven Rogge
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, NSW 2052, Australia
| | - Chunming Yin
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
7
|
Xing WB, Hu XM, Guo Y, Liu BH, Li CF, Guo GC. Preparation of multiphoton high-dimensional GHZ states. OPTICS EXPRESS 2023; 31:24887-24896. [PMID: 37475305 DOI: 10.1364/oe.494850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023]
Abstract
The physics associated with multipartite high-dimensional entanglement is different from that of multipartite two-dimensional entanglement. Therefore, preparing multipartite high-dimensional entanglements with linear optics is challenging. This study proposes a preparation protocol of multiphoton GHZ state with arbitrary dimensions for optical systems. Auxiliary entanglements realize a high-dimensional entanglement gate to connect the high-dimensional entangled pairs to a multipartite high-dimensional GHZ state. Specifically, we use the path degrees of freedom of photons to prepare a four-partite, three-dimensional GHZ state. Our method can be extended to other degrees of freedom to generate arbitrary GHZ entanglements in any dimension.
Collapse
|
8
|
Lawrie WIL, Rimbach-Russ M, Riggelen FV, Hendrickx NW, Snoo SLD, Sammak A, Scappucci G, Helsen J, Veldhorst M. Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nat Commun 2023; 14:3617. [PMID: 37336892 DOI: 10.1038/s41467-023-39334-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
Practical Quantum computing hinges on the ability to control large numbers of qubits with high fidelity. Quantum dots define a promising platform due to their compatibility with semiconductor manufacturing. Moreover, high-fidelity operations above 99.9% have been realized with individual qubits, though their performance has been limited to 98.67% when driving two qubits simultaneously. Here we present single-qubit randomized benchmarking in a two-dimensional array of spin qubits, finding native gate fidelities as high as 99.992(1)%. Furthermore, we benchmark single qubit gate performance while simultaneously driving two and four qubits, utilizing a novel benchmarking technique called N-copy randomized benchmarking, designed for simple experimental implementation and accurate simultaneous gate fidelity estimation. We find two- and four-copy randomized benchmarking fidelities of 99.905(8)% and 99.34(4)% respectively, and that next-nearest neighbor pairs are highly robust to cross-talk errors. These characterizations of single-qubit gate quality are crucial for scaling up quantum information technology.
Collapse
Affiliation(s)
- W I L Lawrie
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - M Rimbach-Russ
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - F van Riggelen
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - N W Hendrickx
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - S L de Snoo
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - A Sammak
- QuTech and Netherlands Organisation for Applied Scientific Research (TNO), Delft, the Netherlands
| | - G Scappucci
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - J Helsen
- QuSoft and CWI, Amsterdam, the Netherlands
| | - M Veldhorst
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
9
|
Meyer M, Déprez C, van Abswoude TR, Meijer IN, Liu D, Wang CA, Karwal S, Oosterhout S, Borsoi F, Sammak A, Hendrickx NW, Scappucci G, Veldhorst M. Electrical Control of Uniformity in Quantum Dot Devices. NANO LETTERS 2023; 23:2522-2529. [PMID: 36975126 PMCID: PMC10103318 DOI: 10.1021/acs.nanolett.2c04446] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Highly uniform quantum systems are essential for the practical implementation of scalable quantum processors. While quantum dot spin qubits based on semiconductor technology are a promising platform for large-scale quantum computing, their small size makes them particularly sensitive to their local environment. Here, we present a method to electrically obtain a high degree of uniformity in the intrinsic potential landscape using hysteretic shifts of the gate voltage characteristics. We demonstrate the tuning of pinch-off voltages in quantum dot devices over hundreds of millivolts that then remain stable at least for hours. Applying our method, we homogenize the pinch-off voltages of the plunger gates in a linear array for four quantum dots, reducing the spread in pinch-off voltages by one order of magnitude. This work provides a new tool for the tuning of quantum dot devices and offers new perspectives for the implementation of scalable spin qubit arrays.
Collapse
Affiliation(s)
- Marcel Meyer
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
| | - Corentin Déprez
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
| | - Timo R. van Abswoude
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
| | - Ilja N. Meijer
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
| | - Dingshan Liu
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
| | - Chien-An Wang
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
| | - Saurabh Karwal
- QuTech
and Netherlands Organisation for Applied Scientific Research (TNO), PO Box 155, 2600 AD Delft, The Netherlands
| | - Stefan Oosterhout
- QuTech
and Netherlands Organisation for Applied Scientific Research (TNO), PO Box 155, 2600 AD Delft, The Netherlands
| | - Francesco Borsoi
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
| | - Amir Sammak
- QuTech
and Netherlands Organisation for Applied Scientific Research (TNO), PO Box 155, 2600 AD Delft, The Netherlands
| | - Nico W. Hendrickx
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
| | - Giordano Scappucci
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
| | - Menno Veldhorst
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
| |
Collapse
|
10
|
Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots. Nat Commun 2022; 13:7730. [PMID: 36513678 PMCID: PMC9747794 DOI: 10.1038/s41467-022-35458-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Electron spins in Si/SiGe quantum wells suffer from nearly degenerate conduction band valleys, which compete with the spin degree of freedom in the formation of qubits. Despite attempts to enhance the valley energy splitting deterministically, by engineering a sharp interface, valley splitting fluctuations remain a serious problem for qubit uniformity, needed to scale up to large quantum processors. Here, we elucidate and statistically predict the valley splitting by the holistic integration of 3D atomic-level properties, theory and transport. We find that the concentration fluctuations of Si and Ge atoms within the 3D landscape of Si/SiGe interfaces can explain the observed large spread of valley splitting from measurements on many quantum dot devices. Against the prevailing belief, we propose to boost these random alloy composition fluctuations by incorporating Ge atoms in the Si quantum well to statistically enhance valley splitting.
Collapse
|
11
|
Piot N, Brun B, Schmitt V, Zihlmann S, Michal VP, Apra A, Abadillo-Uriel JC, Jehl X, Bertrand B, Niebojewski H, Hutin L, Vinet M, Urdampilleta M, Meunier T, Niquet YM, Maurand R, Franceschi SD. A single hole spin with enhanced coherence in natural silicon. NATURE NANOTECHNOLOGY 2022; 17:1072-1077. [PMID: 36138200 PMCID: PMC9576591 DOI: 10.1038/s41565-022-01196-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Semiconductor spin qubits based on spin-orbit states are responsive to electric field excitations, allowing for practical, fast and potentially scalable qubit control. Spin electric susceptibility, however, renders these qubits generally vulnerable to electrical noise, which limits their coherence time. Here we report on a spin-orbit qubit consisting of a single hole electrostatically confined in a natural silicon metal-oxide-semiconductor device. By varying the magnetic field orientation, we reveal the existence of operation sweet spots where the impact of charge noise is minimized while preserving an efficient electric-dipole spin control. We correspondingly observe an extension of the Hahn-echo coherence time up to 88 μs, exceeding by an order of magnitude existing values reported for hole spin qubits, and approaching the state-of-the-art for electron spin qubits with synthetic spin-orbit coupling in isotopically purified silicon. Our finding enhances the prospects of silicon-based hole spin qubits for scalable quantum information processing.
Collapse
Affiliation(s)
- N Piot
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France
| | - B Brun
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France.
| | - V Schmitt
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France
| | - S Zihlmann
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France
| | - V P Michal
- Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim, Grenoble, France
| | - A Apra
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France
| | | | - X Jehl
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France
| | - B Bertrand
- Université Grenoble Alpes, CEA, LETI, Minatec Campus, Grenoble, France
| | - H Niebojewski
- Université Grenoble Alpes, CEA, LETI, Minatec Campus, Grenoble, France
| | - L Hutin
- Université Grenoble Alpes, CEA, LETI, Minatec Campus, Grenoble, France
| | - M Vinet
- Université Grenoble Alpes, CEA, LETI, Minatec Campus, Grenoble, France
| | - M Urdampilleta
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France
| | - T Meunier
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France
| | - Y-M Niquet
- Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim, Grenoble, France
| | - R Maurand
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France.
| | - S De Franceschi
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France.
| |
Collapse
|
12
|
Noiri A, Takeda K, Nakajima T, Kobayashi T, Sammak A, Scappucci G, Tarucha S. A shuttling-based two-qubit logic gate for linking distant silicon quantum processors. Nat Commun 2022; 13:5740. [PMID: 36180449 PMCID: PMC9525571 DOI: 10.1038/s41467-022-33453-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Control of entanglement between qubits at distant quantum processors using a two-qubit gate is an essential function of a scalable, modular implementation of quantum computation. Among the many qubit platforms, spin qubits in silicon quantum dots are promising for large-scale integration along with their nanofabrication capability. However, linking distant silicon quantum processors is challenging as two-qubit gates in spin qubits typically utilize short-range exchange coupling, which is only effective between nearest-neighbor quantum dots. Here we demonstrate a two-qubit gate between spin qubits via coherent spin shuttling, a key technology for linking distant silicon quantum processors. Coherent shuttling of a spin qubit enables efficient switching of the exchange coupling with an on/off ratio exceeding 1000, while preserving the spin coherence by 99.6% for the single shuttling between neighboring dots. With this shuttling-mode exchange control, we demonstrate a two-qubit controlled-phase gate with a fidelity of 93%, assessed via randomized benchmarking. Combination of our technique and a phase coherent shuttling of a qubit across a large quantum dot array will provide feasible path toward a quantum link between distant silicon quantum processors, a key requirement for large-scale quantum computation. A coherent quantum link between distant quantum processors is desirable for scaling up of quantum computation. Noiri et al. demonstrate a strategy to link distant quantum processors in silicon, by implementing a shuttling-based two-qubit gate between spin qubits in a Si/SiGe triple quantum dot.
Collapse
Affiliation(s)
- Akito Noiri
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan.
| | - Kenta Takeda
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
| | | | | | - Amir Sammak
- QuTech, Delft University of Technology, Delft, The Netherlands.,Netherlands Organization for Applied Scientific Research (TNO), Delft, The Netherlands
| | - Giordano Scappucci
- QuTech, Delft University of Technology, Delft, The Netherlands.,Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Seigo Tarucha
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan. .,RIKEN Center for Quantum Computing (RQC), Wako, Japan.
| |
Collapse
|
13
|
Ryu H, Kang JH. Devitalizing noise-driven instability of entangling logic in silicon devices with bias controls. Sci Rep 2022; 12:15200. [PMID: 36071130 PMCID: PMC9452571 DOI: 10.1038/s41598-022-19404-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022] Open
Abstract
The quality of quantum bits (qubits) in silicon is highly vulnerable to charge noise that is omnipresent in semiconductor devices and is in principle hard to be suppressed. For a realistically sized quantum dot system based on a silicon-germanium heterostructure whose confinement is manipulated with electrical biases imposed on top electrodes, we computationally explore the noise-robustness of 2-qubit entangling operations with a focus on the controlled-X (CNOT) logic that is essential for designs of gate-based universal quantum logic circuits. With device simulations based on the physics of bulk semiconductors augmented with electronic structure calculations, we not only quantify the degradation in fidelity of single-step CNOT operations with respect to the strength of charge noise, but also discuss a strategy of device engineering that can significantly enhance noise-robustness of CNOT operations with almost no sacrifice of speed compared to the single-step case. Details of device designs and controls that this work presents can establish practical guideline for potential efforts to secure silicon-based quantum processors using an electrode-driven quantum dot platform.
Collapse
Affiliation(s)
- Hoon Ryu
- Korea Institute of Science and Technology Information, Daejeon, 34141, Republic of Korea.
| | - Ji-Hoon Kang
- Korea Institute of Science and Technology Information, Daejeon, 34141, Republic of Korea
| |
Collapse
|
14
|
Philips SGJ, Mądzik MT, Amitonov SV, de Snoo SL, Russ M, Kalhor N, Volk C, Lawrie WIL, Brousse D, Tryputen L, Wuetz BP, Sammak A, Veldhorst M, Scappucci G, Vandersypen LMK. Universal control of a six-qubit quantum processor in silicon. Nature 2022; 609:919-924. [PMID: 36171383 PMCID: PMC9519456 DOI: 10.1038/s41586-022-05117-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022]
Abstract
Future quantum computers capable of solving relevant problems will require a large number of qubits that can be operated reliably1. However, the requirements of having a large qubit count and operating with high fidelity are typically conflicting. Spins in semiconductor quantum dots show long-term promise2,3 but demonstrations so far use between one and four qubits and typically optimize the fidelity of either single- or two-qubit operations, or initialization and readout4-11. Here, we increase the number of qubits and simultaneously achieve respectable fidelities for universal operation, state preparation and measurement. We design, fabricate and operate a six-qubit processor with a focus on careful Hamiltonian engineering, on a high level of abstraction to program the quantum circuits, and on efficient background calibration, all of which are essential to achieve high fidelities on this extended system. State preparation combines initialization by measurement and real-time feedback with quantum-non-demolition measurements. These advances will enable testing of increasingly meaningful quantum protocols and constitute a major stepping stone towards large-scale quantum computers.
Collapse
Affiliation(s)
- Stephan G J Philips
- QuTech and the Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Mateusz T Mądzik
- QuTech and the Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Sergey V Amitonov
- QuTech and the Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Sander L de Snoo
- QuTech and the Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Maximilian Russ
- QuTech and the Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Nima Kalhor
- QuTech and the Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Christian Volk
- QuTech and the Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - William I L Lawrie
- QuTech and the Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Delphine Brousse
- QuTech and Netherlands Organization for Applied Scientific Research (TNO), Delft, the Netherlands
| | - Larysa Tryputen
- QuTech and Netherlands Organization for Applied Scientific Research (TNO), Delft, the Netherlands
| | - Brian Paquelet Wuetz
- QuTech and the Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Amir Sammak
- QuTech and Netherlands Organization for Applied Scientific Research (TNO), Delft, the Netherlands
| | - Menno Veldhorst
- QuTech and the Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Giordano Scappucci
- QuTech and the Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Lieven M K Vandersypen
- QuTech and the Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
15
|
Takeda K, Noiri A, Nakajima T, Kobayashi T, Tarucha S. Quantum error correction with silicon spin qubits. Nature 2022; 608:682-686. [PMID: 36002485 PMCID: PMC9402442 DOI: 10.1038/s41586-022-04986-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Abstract
Future large-scale quantum computers will rely on quantum error correction (QEC) to protect the fragile quantum information during computation1,2. Among the possible candidate platforms for realizing quantum computing devices, the compatibility with mature nanofabrication technologies of silicon-based spin qubits offers promise to overcome the challenges in scaling up device sizes from the prototypes of today to large-scale computers3-5. Recent advances in silicon-based qubits have enabled the implementations of high-quality one-qubit and two-qubit systems6-8. However, the demonstration of QEC, which requires three or more coupled qubits1, and involves a three-qubit gate9-11 or measurement-based feedback, remains an open challenge. Here we demonstrate a three-qubit phase-correcting code in silicon, in which an encoded three-qubit state is protected against any phase-flip error on one of the three qubits. The correction to this encoded state is performed by a three-qubit conditional rotation, which we implement by an efficient single-step resonantly driven iToffoli gate. As expected, the error correction mitigates the errors owing to one-qubit phase-flip, as well as the intrinsic dephasing mainly owing to quasi-static phase noise. These results show successful implementation of QEC and the potential of a silicon-based platform for large-scale quantum computing.
Collapse
Affiliation(s)
- Kenta Takeda
- Center for Emergent Matter Science (CEMS), RIKEN, Wako, Japan.
| | - Akito Noiri
- Center for Emergent Matter Science (CEMS), RIKEN, Wako, Japan
| | | | | | - Seigo Tarucha
- Center for Emergent Matter Science (CEMS), RIKEN, Wako, Japan.
- Center for Quantum Computing (RQC), RIKEN, Wako, Japan.
| |
Collapse
|
16
|
Dodson JP, Ercan HE, Corrigan J, Losert MP, Holman N, McJunkin T, Edge LF, Friesen M, Coppersmith SN, Eriksson MA. How Valley-Orbit States in Silicon Quantum Dots Probe Quantum Well Interfaces. PHYSICAL REVIEW LETTERS 2022; 128:146802. [PMID: 35476478 DOI: 10.1103/physrevlett.128.146802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/24/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The energies of valley-orbit states in silicon quantum dots are determined by an as yet poorly understood interplay between interface roughness, orbital confinement, and electron interactions. Here, we report measurements of one- and two-electron valley-orbit state energies as the dot potential is modified by changing gate voltages, and we calculate these same energies using full configuration interaction calculations. The results enable an understanding of the interplay between the physical contributions and enable a new probe of the quantum well interface.
Collapse
Affiliation(s)
- J P Dodson
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - H Ekmel Ercan
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - J Corrigan
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Merritt P Losert
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Nathan Holman
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Thomas McJunkin
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - L F Edge
- HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, California 90265, USA
| | - Mark Friesen
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - S N Coppersmith
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- University of New South Wales, Sydney, New South Wales 2052, Australia
| | - M A Eriksson
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
17
|
Jansen ND, Loucks M, Gilbert S, Fleming-Dittenber C, Egbert J, Hunt KLC. Shannon and von Neumann entropies of multi-qubit Schrödinger's cat states. Phys Chem Chem Phys 2022; 24:7666-7681. [PMID: 35297927 DOI: 10.1039/d1cp05255a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using IBM's publicly accessible quantum computers, we have analyzed the entropies of Schrödinger's cat states, which have the form Ψ = (1/2)1/2 [|0 0 0⋯0〉 + |1 1 1⋯1〉]. We have obtained the average Shannon entropy SSo of the distribution over measurement outcomes from 75 runs of 8192 shots, for each of the numbers of entangled qubits, on each of the quantum computers tested. For the distribution over N fault-free measurements on pure cat states, SSo would approach one as N → ∞, independent of the number of qubits; but we have found that SSo varies nearly linearly with the number of qubits n. The slope of SSoversus the number of qubits differs among computers with the same quantum volumes. We have developed a two-parameter model that reproduces the near-linear dependence of the entropy on the number of qubits, based on the probabilities of observing the output 0 when a qubit is set to |0〉 and 1 when it is set to |1〉. The slope increases as the error rate increases. The slope provides a sensitive measure of the accuracy of a quantum computer, so it serves as a quickly determinable index of performance. We have used tomographic methods with error mitigation as described in the qiskit documentation to find the density matrix ρ and evaluate the von Neumann entropies of the cat states. From the reduced density matrices for individual qubits, we have calculated the entanglement entropies. The reduced density matrices represent mixed states with approximately 50/50 probabilities for states |0〉 and |1〉. The entanglement entropies are very close to one.
Collapse
Affiliation(s)
- Nathan D Jansen
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824, USA.
| | - Matthew Loucks
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824, USA.
| | - Scott Gilbert
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824, USA.
| | | | - Julia Egbert
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824, USA.
| | - Katharine L C Hunt
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824, USA.
| |
Collapse
|
18
|
Precision tomography of a three-qubit donor quantum processor in silicon. Nature 2022; 601:348-353. [PMID: 35046601 DOI: 10.1038/s41586-021-04292-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/29/2021] [Indexed: 11/08/2022]
Abstract
Nuclear spins were among the first physical platforms to be considered for quantum information processing1,2, because of their exceptional quantum coherence3 and atomic-scale footprint. However, their full potential for quantum computing has not yet been realized, owing to the lack of methods with which to link nuclear qubits within a scalable device combined with multi-qubit operations with sufficient fidelity to sustain fault-tolerant quantum computation. Here we demonstrate universal quantum logic operations using a pair of ion-implanted 31P donor nuclei in a silicon nanoelectronic device. A nuclear two-qubit controlled-Z gate is obtained by imparting a geometric phase to a shared electron spin4, and used to prepare entangled Bell states with fidelities up to 94.2(2.7)%. The quantum operations are precisely characterized using gate set tomography (GST)5, yielding one-qubit average gate fidelities up to 99.95(2)%, two-qubit average gate fidelity of 99.37(11)% and two-qubit preparation/measurement fidelities of 98.95(4)%. These three metrics indicate that nuclear spins in silicon are approaching the performance demanded in fault-tolerant quantum processors6. We then demonstrate entanglement between the two nuclei and the shared electron by producing a Greenberger-Horne-Zeilinger three-qubit state with 92.5(1.0)% fidelity. Because electron spin qubits in semiconductors can be further coupled to other electrons7-9 or physically shuttled across different locations10,11, these results establish a viable route for scalable quantum information processing using donor nuclear and electron spins.
Collapse
|
19
|
Noiri A, Takeda K, Nakajima T, Kobayashi T, Sammak A, Scappucci G, Tarucha S. Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature 2022; 601:338-342. [PMID: 35046603 DOI: 10.1038/s41586-021-04182-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022]
Abstract
Fault-tolerant quantum computers that can solve hard problems rely on quantum error correction1. One of the most promising error correction codes is the surface code2, which requires universal gate fidelities exceeding an error correction threshold of 99 per cent3. Among the many qubit platforms, only superconducting circuits4, trapped ions5 and nitrogen-vacancy centres in diamond6 have delivered this requirement. Electron spin qubits in silicon7-15 are particularly promising for a large-scale quantum computer owing to their nanofabrication capability, but the two-qubit gate fidelity has been limited to 98 per cent owing to the slow operation16. Here we demonstrate a two-qubit gate fidelity of 99.5 per cent, along with single-qubit gate fidelities of 99.8 per cent, in silicon spin qubits by fast electrical control using a micromagnet-induced gradient field and a tunable two-qubit coupling. We identify the qubit rotation speed and coupling strength where we robustly achieve high-fidelity gates. We realize Deutsch-Jozsa and Grover search algorithms with high success rates using our universal gate set. Our results demonstrate universal gate fidelity beyond the fault-tolerance threshold and may enable scalable silicon quantum computers.
Collapse
Affiliation(s)
- Akito Noiri
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan.
| | - Kenta Takeda
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
| | | | | | - Amir Sammak
- QuTech, Delft University of Technology, Delft, The Netherlands.,Netherlands Organisation for Applied Scientific Research (TNO), Delft, The Netherlands
| | - Giordano Scappucci
- QuTech, Delft University of Technology, Delft, The Netherlands.,Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Seigo Tarucha
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan. .,RIKEN Center for Quantum Computing (RQC), Wako, Japan.
| |
Collapse
|
20
|
Xue X, Russ M, Samkharadze N, Undseth B, Sammak A, Scappucci G, Vandersypen LMK. Quantum logic with spin qubits crossing the surface code threshold. Nature 2022; 601:343-347. [PMID: 35046604 PMCID: PMC8770146 DOI: 10.1038/s41586-021-04273-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/22/2021] [Indexed: 11/12/2022]
Abstract
High-fidelity control of quantum bits is paramount for the reliable execution of quantum algorithms and for achieving fault tolerance-the ability to correct errors faster than they occur1. The central requirement for fault tolerance is expressed in terms of an error threshold. Whereas the actual threshold depends on many details, a common target is the approximately 1% error threshold of the well-known surface code2,3. Reaching two-qubit gate fidelities above 99% has been a long-standing major goal for semiconductor spin qubits. These qubits are promising for scaling, as they can leverage advanced semiconductor technology4. Here we report a spin-based quantum processor in silicon with single-qubit and two-qubit gate fidelities, all of which are above 99.5%, extracted from gate-set tomography. The average single-qubit gate fidelities remain above 99% when including crosstalk and idling errors on the neighbouring qubit. Using this high-fidelity gate set, we execute the demanding task of calculating molecular ground-state energies using a variational quantum eigensolver algorithm5. Having surpassed the 99% barrier for the two-qubit gate fidelity, semiconductor qubits are well positioned on the path to fault tolerance and to possible applications in the era of noisy intermediate-scale quantum devices.
Collapse
Affiliation(s)
- Xiao Xue
- QuTech, Delft University of Technology, Delft, The Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Maximilian Russ
- QuTech, Delft University of Technology, Delft, The Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Nodar Samkharadze
- QuTech, Delft University of Technology, Delft, The Netherlands
- Netherlands Organisation for Applied Scientific Research (TNO), Delft, The Netherlands
| | - Brennan Undseth
- QuTech, Delft University of Technology, Delft, The Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Amir Sammak
- QuTech, Delft University of Technology, Delft, The Netherlands
- Netherlands Organisation for Applied Scientific Research (TNO), Delft, The Netherlands
| | - Giordano Scappucci
- QuTech, Delft University of Technology, Delft, The Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Lieven M K Vandersypen
- QuTech, Delft University of Technology, Delft, The Netherlands.
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
21
|
Heinrich AJ, Oliver WD, Vandersypen LMK, Ardavan A, Sessoli R, Loss D, Jayich AB, Fernandez-Rossier J, Laucht A, Morello A. Quantum-coherent nanoscience. NATURE NANOTECHNOLOGY 2021; 16:1318-1329. [PMID: 34845333 DOI: 10.1038/s41565-021-00994-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 09/01/2021] [Indexed: 05/25/2023]
Abstract
For the past three decades nanoscience has widely affected many areas in physics, chemistry and engineering, and has led to numerous fundamental discoveries, as well as applications and products. Concurrently, quantum science and technology has developed into a cross-disciplinary research endeavour connecting these same areas and holds burgeoning commercial promise. Although quantum physics dictates the behaviour of nanoscale objects, quantum coherence, which is central to quantum information, communication and sensing, has not played an explicit role in much of nanoscience. This Review describes fundamental principles and practical applications of quantum coherence in nanoscale systems, a research area we call quantum-coherent nanoscience. We structure this Review according to specific degrees of freedom that can be quantum-coherently controlled in a given nanoscale system, such as charge, spin, mechanical motion and photons. We review the current state of the art and focus on outstanding challenges and opportunities unlocked by the merging of nanoscience and coherent quantum operations.
Collapse
Affiliation(s)
- Andreas J Heinrich
- Center for Quantum Nanoscience (QNS), Institute for Basic Science, Seoul, Korea.
- Physics Department, Ewha Womans University, Seoul, Korea.
| | - William D Oliver
- Department of Electrical Engineering and Computer Science, and Department of Physics, MIT, Cambridge, MA, USA
- Lincoln Laboratory, MIT, Lexington, MA, USA
| | | | - Arzhang Ardavan
- CAESR, The Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Roberta Sessoli
- Department of Chemistry 'U. Schiff' & INSTM, University of Florence, Sesto Fiorentino, Italy
| | - Daniel Loss
- Department of Physics, University of Basel, Basel, Switzerland
| | | | - Joaquin Fernandez-Rossier
- QuantaLab, International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
- Departamento de Física Aplicada, Universidad de Alicante, Alicante, Spain
| | - Arne Laucht
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, New South Wales, Australia
| | - Andrea Morello
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
22
|
Tadokoro M, Nakajima T, Kobayashi T, Takeda K, Noiri A, Tomari K, Yoneda J, Tarucha S, Kodera T. Designs for a two-dimensional Si quantum dot array with spin qubit addressability. Sci Rep 2021; 11:19406. [PMID: 34593827 PMCID: PMC8484262 DOI: 10.1038/s41598-021-98212-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Electron spins in Si are an attractive platform for quantum computation, backed with their scalability and fast, high-fidelity quantum logic gates. Despite the importance of two-dimensional integration with efficient connectivity between qubits for medium- to large-scale quantum computation, however, a practical device design that guarantees qubit addressability is yet to be seen. Here, we propose a practical 3 × 3 quantum dot device design and a larger-scale design as a longer-term target. The design goal is to realize qubit connectivity to the four nearest neighbors while ensuring addressability. We show that a 3 × 3 quantum dot array can execute four-qubit Grover’s algorithm more efficiently than the one-dimensional counterpart. To scale up the two-dimensional array beyond 3 × 3, we propose a novel structure with ferromagnetic gate electrodes. Our results showcase the possibility of medium-sized quantum processors in Si with fast quantum logic gates and long coherence times.
Collapse
Affiliation(s)
- Masahiro Tadokoro
- Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan.,Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama, 351-0198, Japan
| | - Takashi Nakajima
- Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama, 351-0198, Japan
| | - Takashi Kobayashi
- RIKEN Center for Quantum Computing, RIKEN, Wako-shi, Saitama, 351-0198, Japan
| | - Kenta Takeda
- Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama, 351-0198, Japan
| | - Akito Noiri
- Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama, 351-0198, Japan
| | - Kaito Tomari
- Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Jun Yoneda
- Tokyo Tech Academy for Super Smart Society, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Seigo Tarucha
- Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama, 351-0198, Japan.,RIKEN Center for Quantum Computing, RIKEN, Wako-shi, Saitama, 351-0198, Japan
| | - Tetsuo Kodera
- Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan.
| |
Collapse
|
23
|
Hu RZ, Ma RL, Ni M, Zhang X, Zhou Y, Wang K, Luo G, Cao G, Kong ZZ, Wang GL, Li HO, Guo GP. An Operation Guide of Si-MOS Quantum Dots for Spin Qubits. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2486. [PMID: 34684927 PMCID: PMC8540968 DOI: 10.3390/nano11102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 11/23/2022]
Abstract
In the last 20 years, silicon quantum dots have received considerable attention from academic and industrial communities for research on readout, manipulation, storage, near-neighbor and long-range coupling of spin qubits. In this paper, we introduce how to realize a single spin qubit from Si-MOS quantum dots. First, we introduce the structure of a typical Si-MOS quantum dot and the experimental setup. Then, we show the basic properties of the quantum dot, including charge stability diagram, orbital state, valley state, lever arm, electron temperature, tunneling rate and spin lifetime. After that, we introduce the two most commonly used methods for spin-to-charge conversion, i.e., Elzerman readout and Pauli spin blockade readout. Finally, we discuss the details of how to find the resonance frequency of spin qubits and show the result of coherent manipulation, i.e., Rabi oscillation. The above processes constitute an operation guide for helping the followers enter the field of spin qubits in Si-MOS quantum dots.
Collapse
Affiliation(s)
- Rui-Zi Hu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; (R.-Z.H.); (R.-L.M.); (M.N.); (X.Z.); (Y.Z.); (K.W.); (G.L.); (G.C.); (G.-P.G.)
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Rong-Long Ma
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; (R.-Z.H.); (R.-L.M.); (M.N.); (X.Z.); (Y.Z.); (K.W.); (G.L.); (G.C.); (G.-P.G.)
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ming Ni
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; (R.-Z.H.); (R.-L.M.); (M.N.); (X.Z.); (Y.Z.); (K.W.); (G.L.); (G.C.); (G.-P.G.)
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; (R.-Z.H.); (R.-L.M.); (M.N.); (X.Z.); (Y.Z.); (K.W.); (G.L.); (G.C.); (G.-P.G.)
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yuan Zhou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; (R.-Z.H.); (R.-L.M.); (M.N.); (X.Z.); (Y.Z.); (K.W.); (G.L.); (G.C.); (G.-P.G.)
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ke Wang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; (R.-Z.H.); (R.-L.M.); (M.N.); (X.Z.); (Y.Z.); (K.W.); (G.L.); (G.C.); (G.-P.G.)
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Gang Luo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; (R.-Z.H.); (R.-L.M.); (M.N.); (X.Z.); (Y.Z.); (K.W.); (G.L.); (G.C.); (G.-P.G.)
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Gang Cao
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; (R.-Z.H.); (R.-L.M.); (M.N.); (X.Z.); (Y.Z.); (K.W.); (G.L.); (G.C.); (G.-P.G.)
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhen-Zhen Kong
- Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
| | - Gui-Lei Wang
- Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
| | - Hai-Ou Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; (R.-Z.H.); (R.-L.M.); (M.N.); (X.Z.); (Y.Z.); (K.W.); (G.L.); (G.C.); (G.-P.G.)
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; (R.-Z.H.); (R.-L.M.); (M.N.); (X.Z.); (Y.Z.); (K.W.); (G.L.); (G.C.); (G.-P.G.)
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Origin Quantum Computing Company Limited, Hefei 230026, China
| |
Collapse
|