1
|
Tang Z, Sun X, Yu F, Wang J, Wu Z, Zhao Z, Wang C, Mao J, Zhang Q, Cao F. High-Quality SnSe Thin Films for Self-Powered Devices and Multilevel Information Encryption. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2648-2655. [PMID: 39707949 DOI: 10.1021/acsami.4c18795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
As semiconductor technology advances toward miniaturization and portability, thin films with excellent thermoelectric performance have garnered increasing attention, particularly for applications in self-powered devices and temperature-responsive sensors. The high Seebeck coefficient of SnSe thin films makes them promising for temperature sensing, but their poor electrical conductivity limits their potential as thermoelectric generators. In this work, high-quality a-axis oriented SnSe thin films were deposited on quartz substrates by using magnetron sputtering. The substrate temperature was optimized to improve the crystallinity of the SnSe thin film, resulting in larger grain sizes, which subsequently contributes to the improved carrier mobility. The Seebeck coefficient is enhanced while optimizing the electrical conductivity, enabling the SnSe thin film to achieve both excellent sensing and power generation performance. The SnSe film deposited at 673 K exhibits a high power factor of approximately 346 μW m-1 K-2 at 620 K. A temperature-responsive sensing array was developed for multilevel information encryption, showing significant potential for applications in password encryption. The maximum output power density of the optimized thermoelectric generator with six SnSe legs is about 9 W m-2 at a temperature difference of 50 K.
Collapse
Affiliation(s)
- Zunqian Tang
- School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaoyu Sun
- School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
| | - Fangyuan Yu
- School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jian Wang
- School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zuoxu Wu
- School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zirui Zhao
- School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chong Wang
- School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jun Mao
- School of Materials Science and Engineering and Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Qian Zhang
- School of Materials Science and Engineering and Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen 518055, China
| | - Feng Cao
- School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Hu M, Yang J, Wang Y, Xia J, Gan Q, Yang S, Xu J, Liu S, Yin W, Jia B, Xie L, Li H, He J. Helical dislocation-driven plasticity and flexible high-performance thermoelectric generator in α-Mg 3Bi 2 single crystals. Nat Commun 2025; 16:128. [PMID: 39747202 PMCID: PMC11695975 DOI: 10.1038/s41467-024-55689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025] Open
Abstract
Inorganic plastic semiconductors play a crucial role in the realm of flexible electronics. In this study, we present a cost-effective plastic thermoelectric semimetal magnesium bismuthide (α-Mg3Bi2), exhibiting remarkable thermoelectric performance. Bulk single-crystalline α-Mg3Bi2 exhibits considerable plastic deformation at room temperature, allowing for the fabrication of intricate shapes such as the letters "SUSTECH" and a flexible chain. Transmission electron microscopy, time-of-flight neutron diffraction, and chemical bonding theoretic analyses elucidate that the plasticity of α-Mg3Bi2 stems from the helical dislocation-driven interlayer slip, small-sized Mg atoms induced weak interlayer Mg-Bi bonds, and low modulus of intralayer Mg2Bi22- networks. Moreover, we achieve a power factor value of up to 26.2 µW cm-1 K-2 along the c-axis at room temperature in an n-type α-Mg3Bi2 crystal. Our out-of-plane flexible thermoelectric generator exhibit a normalized power density of 8.1 μW cm-2 K-2 with a temperature difference of 7.3 K. This high-performance plastic thermoelectric semimetal promises to advance the field of flexible and deformable electronics.
Collapse
Affiliation(s)
- Mingyuan Hu
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Advanced Thermoelectric Materials and Device Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianmin Yang
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yan Wang
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Junchao Xia
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Quan Gan
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shuhuan Yang
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Juping Xu
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Shulin Liu
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Wen Yin
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Baohai Jia
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Xie
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haifeng Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Jiaqing He
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Advanced Thermoelectric Materials and Device Physics, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Ji D, Li B, Zhang D, Raj BT, Rezeq M, Cantwell W, Zheng L. A Multifunctional MXene/PVA Hydrogel as a Continuous Ionic Thermoelectric Generator and a Strain/Temperature Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407529. [PMID: 39564719 PMCID: PMC11753485 DOI: 10.1002/smll.202407529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/29/2024] [Indexed: 11/21/2024]
Abstract
This research reports a continuous output ionic thermoelectric (i-TE) system based on MXene/PVA (polyvinyl alcohol) hydrogel, by utilizing thermo-diffusion of Cu2+ and Cl- ions and the redox reaction involving Cu/Cu2+ at the electrode interfaces. The thermopower of the i-TE system can be independently tuned to a value of -3.13 mVK-1 by adjusting the ion diffusivity via MXene (Ti3C2Tx). The i-TE system demonstrates a rapid response time of less than 100 s, outperforming any other polyelectrolyte-based system. Crucially, the i-TE system achieves continuous current output when equipped with copper electrodes, facilitated by the redox reaction involving Cu/Cu2+, and maintains stable long-term outputs across a range of resistances from 1 kΩ to 1 MΩ. A three-serial-connected i-TE module demonstrates an output voltage of 26 mV with 6 °C temperature difference, confirming the feasibility of creating an array of i-TE devices for substantial energy output. Beyond energy harvesting, the MXene/PVA hydrogel serves as multifunctional strain/temperature sensors, capable of detecting mechanical strains via the piezoresistive effect and locating finger contact points via the ionic thermoelectric effect.
Collapse
Affiliation(s)
- Dezhuang Ji
- Department of Mechanical and Nuclear EngineeringKhalifa University of Science and TechnologyP.O. BoxAbu Dhabi127788UAE
| | - Baosong Li
- Department of Aerospace EngineeringKhalifa University of Science and TechnologyP.O. BoxAbu Dhabi127788UAE
- Research & Innovation Center for Graphene and 2D Materials (RIC‐2D)Khalifa University of Science and TechnologyP.O. BoxAbu Dhabi127788UAE
| | - Dawei Zhang
- Department of Mechanical and Nuclear EngineeringKhalifa University of Science and TechnologyP.O. BoxAbu Dhabi127788UAE
| | - Balamurugan Thirumal Raj
- Department of Mechanical and Nuclear EngineeringKhalifa University of Science and TechnologyP.O. BoxAbu Dhabi127788UAE
- Research & Innovation Center for Graphene and 2D Materials (RIC‐2D)Khalifa University of Science and TechnologyP.O. BoxAbu Dhabi127788UAE
| | - Moh'd Rezeq
- Department of PhysicsKhalifa University of Science and TechnologyP.O. BoxAbu Dhabi127788UAE
- System on Chip CenterKhalifa University of Science and TechnologyP.O. BoxAbu Dhabi127788UAE
| | - Wesley Cantwell
- Department of Aerospace EngineeringKhalifa University of Science and TechnologyP.O. BoxAbu Dhabi127788UAE
| | - Lianxi Zheng
- Department of Mechanical and Nuclear EngineeringKhalifa University of Science and TechnologyP.O. BoxAbu Dhabi127788UAE
- Research & Innovation Center for Graphene and 2D Materials (RIC‐2D)Khalifa University of Science and TechnologyP.O. BoxAbu Dhabi127788UAE
- Research and Innovation on CO2 and H2 Center (RICH)Khalifa University of Science and TechnologyP.O. BoxAbu Dhabi127788UAE
| |
Collapse
|
4
|
Chen W, Shi XL, Li M, Liu T, Mao Y, Liu Q, Dargusch M, Zou J, Lu GQM, Chen ZG. Nanobinders advance screen-printed flexible thermoelectrics. Science 2024; 386:1265-1271. [PMID: 39666792 DOI: 10.1126/science.ads5868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024]
Abstract
Limited flexibility, complex manufacturing processes, high costs, and insufficient performance are major factors restricting the scalability and commercialization of flexible inorganic thermoelectrics for wearable electronics and other high-end cooling applications. We developed an innovative, cost-effective technology that integrates solvothermal, screen-printing, and sintering techniques to produce an inorganic flexible thermoelectric film. Our printable film, comprising Bi2Te3-based nanoplates as highly orientated grains and Te nanorods as "nanobinders," shows excellent thermoelectric performance for printable films, good flexibility, large-scale manufacturability, and low cost. We constructed a flexible thermoelectric device assembled by printable n-type Bi2Te3-based and p-type Bi0.4Sb1.6Te3 films, which achieved a normalized power density of >3 μW cm-2 K-2, ranking among the highest in screen-printed devices. Moreover, this technology can be extended to other inorganic thermoelectric film systems, such as Ag2Se, showing broad applicability.
Collapse
Affiliation(s)
- Wenyi Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Australia
| | - Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
| | - Meng Li
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
| | - Ting Liu
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Australia
| | - Yuanqing Mao
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Australia
| | - Qingyi Liu
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
| | - Matthew Dargusch
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Australia
| | - Jin Zou
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Australia
| | | | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
5
|
Liang Z, Shu R, Xu C, Wang Y, Shang H, Mao J, Ren Z. Substrate-Free Inorganic-Based Films for Thermoelectric Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2416394. [PMID: 39663748 DOI: 10.1002/adma.202416394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Indexed: 12/13/2024]
Abstract
The development of highly integrated electronic components and the Internet of Things demands efficient thermal management and uninterrupted energy harvesting, which provides exciting opportunities for thermoelectric (TE) technology since it allows direct conversion between electricity and thermal energy. The improved output performance of TE devices has traditionally been driven by advancements in inorganic materials. Recently, there has been growing interest in studying substrate-free inorganic-based TE thin films because they provide improved adherence to curved surfaces and offer a more compact size compared to the corresponding rigid form of these materials. This review begins by summarizing various methods for fabricating freestanding inorganic-based TE films, including leveraging the intrinsic plasticity of certain materials, exfoliating layered-structure materials, using sacrificial substrates, and creating composites with flexible components such as polymers and carbon-based materials. A key challenge in achieving high device performance is determining how to maintain the favorable TE properties of inorganic materials. This can be addressed through strategies such as high inorganic content loading, multicomponent engineering, and interfacial structure design. The review also discusses the applications of substrate-free inorganic-based TE devices in both power generation and solid-state cooling. Finally, it outlines current challenges and proposes potential research directions to further advance the field.
Collapse
Affiliation(s)
- Zhongxin Liang
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Rui Shu
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Congcong Xu
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Yu Wang
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Hongjing Shang
- Key Laboratory of Applied Superconductivity and Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jun Mao
- School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Zhifeng Ren
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
6
|
Deng T, Gao Z, Li Z, Qiu P, Li Z, Yuan X, Ming C, Wei TR, Chen L, Shi X. Room-temperature exceptional plasticity in defective Bi 2Te 3-based bulk thermoelectric crystals. Science 2024; 386:1112-1117. [PMID: 39636976 DOI: 10.1126/science.adr8450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
The recently discovered metal-like room-temperature plasticity in inorganic semiconductors reshapes our knowledge of the physical properties of materials, giving birth to a series of new-concept functional materials. However, current room-temperature plastic inorganic semiconductors are still very rare, and their performance is inferior to that of classic brittle semiconductors. Taking classic bismuth telluride (Bi2Te3)-based thermoelectric semiconductors as an example, we show that antisite defects can lead to high-density, diverse microstructures that substantially affect mechanical properties and thus successfully transform these bulk semiconductors from brittle to plastic, leading to a high figure of merit of up to 1.05 at 300 kelvin compared with other plastic semiconductors, similar to the best brittle semiconductors. We provide an effective strategy to plastify brittle semiconductors to display good plasticity and excellent functionality simultaneously.
Collapse
Affiliation(s)
- Tingting Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zhiqiang Gao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinjie Yuan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Ming
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Tian-Ran Wei
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lidong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Zhang F, He M, Zhu L, Jia B, Shi Y, Wang W, Peng Z, Liang P, Chao X, Yang Z, Wu D. Thermoelectric Cooling-Oriented Large Power Factor Realized in N-Type Bi 2Te 3 Via Deformation Potential Modulation and Giant Deformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405182. [PMID: 39300867 DOI: 10.1002/smll.202405182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Thermoelectric refrigeration, utilizing Peltier effect, has great potential in all-solid-state active cooling field near room temperature. The performance of a thermoelectric cooling device is highly determined by the power factor of consisting materials besides the figure of merit. In this work, it is demonstrated that successive addition of Cu and Nd can realize non-trivial modulation of deformation potential in n-type room temperature thermoelectric material Bi2Te2.7Se0.3 and result in a significant increment of electron mobility and remarkably enhanced power factor. Following giant hot deformation process improves grain texturing and strengthens inter-layer interaction in Bi2Te2.7Se0.3 lattice, further pushing the power factor to ≈47 µW cm-1 K-2 at 300 K and maximal figure of merit ZTmax to ≈1.34 at 423 K with average ZTave of ≈1.27 at 300-473 K. Moreover, robust compressive strength is enhanced to ≈146.6 MPa. The corresponding finite element simulations demonstrate large temperature differences ΔT of ≈70 K and a maximal coefficient of performance COP ≈ 10.6 (hot end temperature at 300 K), which can be achieved in a ten-pair thermoelectric cooling virtual module. The strategies and results as shown in this work can further advance the application of n-type Bi2Te3 for thermoelectric cooling.
Collapse
Affiliation(s)
- Fudong Zhang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Mingkai He
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Lujun Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Beiquan Jia
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Yalin Shi
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Weishuai Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhanhui Peng
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Pengfei Liang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaolian Chao
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Zupei Yang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Di Wu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
8
|
Jia S, Ma H, Gao S, Yang L, Sun Q. Thermoelectric Materials and Devices for Advanced Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405019. [PMID: 39392147 DOI: 10.1002/smll.202405019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Thermoelectrics (TEs), enabling the direct conversion between heat and electrical energy, have demonstrated extensive application potential in biomedical fields. Herein, the mechanism of the TE effect, recent developments in TE materials, and the biocompatibility assessment of TE materials are provided. In addition to the fundamentals of TEs, a timely and comprehensive review of the recent progress of advanced TE materials and their applications is presented, including wearable power generation, personal thermal management, and biosensing. In addition, the new-emerged medical applications of TE materials in wound healing, disease treatment, antimicrobial therapy, and anti-cancer therapy are thoroughly reviewed. Finally, the main challenges and future possibilities are outlined for TEs in biomedical fields, as well as their material selection criteria for specific application scenarios. Together, these advancements can provide innovative insights into the development of TEs for broader applications in biomedical fields.
Collapse
Affiliation(s)
- Shiyu Jia
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610017, China
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
9
|
Kim J, Lee G, Lee S, Park J, Lee K, Jung JE, Lim S, Jang J, Bae H, Lee JU, Im S, Soon A, Kim K. Thermally Induced Irreversible Disorder in Interlayer Stacking of γ-GeSe. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407459. [PMID: 39439138 DOI: 10.1002/smll.202407459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/08/2024] [Indexed: 10/25/2024]
Abstract
The interlayer stacking shift in van der Waals (vdW) crystals represents an important degree of freedom to control various material properties, including magnetism, ferroelectricity, and electrical properties. On the other hand, the structural phase transitions driven by interlayer sliding in vdW crystals often exhibit thickness-dependent, sample-specific behaviors with significant hysteresis, complicating a clear understanding of their intrinsic nature. Here, the stacking configuration of the recently identified vdW crystal, γ-GeSe, is investigated, and the disordering manipulation of stacking sequence is demonstrated. It is observed that the well-ordered AB' stacking configuration in as-synthesized samples undergoes irreversible disordering upon Joule heating via electrical biasing or thermal treatment, as confirmed by atomic resolution scanning transmission electron microscopy (STEM). Statistical analysis of STEM data reveal the emergence of stacking disorder, with samples subjected to high electrical bias reaching the maximum levels of disorder. The energies of various stacking configurations and energy barriers for interlayer sliding are examined using first-principles calculation and a parameterized model to elucidate the key structural parameters related to stacking shift. The susceptibility of interlayer stacking to disorder through electrical or thermal treatments should be carefully considered to fully comprehend the structural and electrical properties of vdW crystals.
Collapse
Affiliation(s)
- Joonho Kim
- Department of Physics, Yonsei University, Seoul, 03722, South Korea
| | - Giyeok Lee
- Department of Materials Science & Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Sol Lee
- Department of Physics, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Jinsub Park
- Department of Physics, Yonsei University, Seoul, 03722, South Korea
| | - Kihyun Lee
- Department of Physics, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Joong-Eon Jung
- Department of Physics, Yonsei University, Seoul, 03722, South Korea
| | - Seungjae Lim
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Jeongsu Jang
- Department of Physics, Yonsei University, Seoul, 03722, South Korea
| | - Heesun Bae
- Department of Physics, Yonsei University, Seoul, 03722, South Korea
| | - Jae-Ung Lee
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Seongil Im
- Department of Physics, Yonsei University, Seoul, 03722, South Korea
| | - Aloysius Soon
- Department of Materials Science & Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Kwanpyo Kim
- Department of Physics, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| |
Collapse
|
10
|
Guo S, Zhu W, Han G, Zhang Q, Zhou J, Guo Z, Bao S, Liu Y, Zhao S, Wang B, Deng Y. Direct Melt-Calendaring of Highly Textured (Bi,Sb) 2Te 3 Thick Films: Superior Thermoelectric and Mechanical Performance via Strain Engineering. SMALL METHODS 2024; 8:e2400589. [PMID: 38934342 DOI: 10.1002/smtd.202400589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/14/2024] [Indexed: 06/28/2024]
Abstract
The evolutions of chip thermal management and micro energy harvesting put forward urgent need for micro thermoelectric devices. Nevertheless, low-performance thermoelectric thick films as well as the complicated precision cutting process for hundred-micron thermoelectric legs still remain the bottleneck hindering the advancement of micro thermoelectric devices. In this work, an innovative direct melt-calendaring manufacturing technology is first proposed with specially designed and assembled equipment, that enables direct, rapid, and cost-effective continuous manufacturing of Bi2Te3-based films with thickness of hundred microns. Based on the strain engineering with external glass coating confinement and controlled calendaring deformation degree, enhanced thermoelectric performance has been achieved for (Bi,Sb)2Te3 thick films with highly textured nanocrystals, which can promote carrier mobility over 182.6 cm2 V-1 s-1 and bring out a record-high zT value of 0.96 and 1.16 for n-type and p-type (Bi,Sb)2Te3 thick films, respectively. The nanoscale interfaces also further improve the mechanical strength with excellent elastic modules (over 42.0 GPa) and hardness (over 1.7 GPa), even superior to the commercial zone-melting ingots and comparable to the hot-extrusion (Bi,Sb)2Te3 alloys. This new fabrication strategy is versatile to a wide range of inorganic thermoelectric thick films, which lays a solid foundation for the development of micro thermoelectric devices.
Collapse
Affiliation(s)
- Siming Guo
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Wei Zhu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051, China
| | - Guangyu Han
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Qingqing Zhang
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051, China
| | - Jie Zhou
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhanpeng Guo
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051, China
| | - Shucheng Bao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yutong Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Shijie Zhao
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051, China
| | - Boyi Wang
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051, China
| | - Yuan Deng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051, China
| |
Collapse
|
11
|
Ding W, Shen X, Jin M, Hu Y, Chen Z, Meng E, Luo J, Li W, Pei Y. Robust bendable thermoelectric generators enabled by elasticity strengthening. Nat Commun 2024; 15:9767. [PMID: 39528515 PMCID: PMC11555379 DOI: 10.1038/s41467-024-54084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Using body heat for instance, thermoelectric generators have promising applications for driving wearable electronics continuously but remain a challenge in terms of recoverable flexibility, as known highly-performing thermoelectrics are usually inorganics showing rigidity. It is conceptualized in this work a large elastic strain ensuring both a largely-curved recoverable bending and a full recoverability in thermoelectric performance after enormous bendings. This leads the current work to focus on a microstructure engineering approach for strengthening the elasticity of Ag2Se, in which dense dislocations and refined grain induced by a multi-pass hot-rolling technique enable a significant enhancement in elasticity. The resultant hot-rolled elastic thin thermoelectric generators realize a record bendability, for at least 1,000,000 times at a tiny bending radius of 3 mm with an extraordinary power density. Such a bendability is applicable to the most curved surfaces of a human body, suggesting a promising strategy for powerful wearable thermoelectrics of all inorganics.
Collapse
Affiliation(s)
- Wenjun Ding
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Xinyi Shen
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Min Jin
- College of Materials, Shanghai Dianji University, Shanghai, China
| | - Yixin Hu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Zhiwei Chen
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Erchao Meng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jun Luo
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, China.
| | - Wen Li
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, China.
| | - Yanzhong Pei
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, China.
| |
Collapse
|
12
|
Dong G, Feng J, Qiu G, Yang Y, Chen Q, Xiong Y, Wu H, Ling Y, Xi L, Long C, Lu J, Qiao Y, Li G, Li J, Liu R, Sun R. Oriented Bi 2Te 3-based films enabled high performance planar thermoelectric cooling device for hot spot elimination. Nat Commun 2024; 15:9695. [PMID: 39516458 PMCID: PMC11549465 DOI: 10.1038/s41467-024-54017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Film-thermoelectric cooling devices are expected to provide a promising active thermal management solution with the continues increase of the power density of integrated circuit chips and other electronic devices. However, because the microstructure-related performance of thermoelectric films has not been perfectly matched with the device configuration, the potential of planar devices on chip heat dissipation has still not been fully exploited. Here, by liquid Te assistant growth method, highly (00 l) orientated Bi2Te3-based films which is comparable to single crystals are obtained in polycrystal films in this work. The high mobility stem from high orientation and low lattice thermal conductivity resulting from excess Te induced staggered stacking faults leads to high in-plane zT values ~1.53 and ~1.10 for P-type Bi0.4Sb1.6Te3 and N-type Bi2Te3 films, respectively. The planar devices basing on the geometrically designed high orientation films produce a remarkable temperature reduction of ~8.2 K in the hot spot elimination experiment, demonstrating the great benefit of Te assistant growth method for oriented planar Bi2Te3 films and planar devices devices design, and also bring great enlightenment to the next generation active thermal management for integrated circuits.
Collapse
Affiliation(s)
- Guoying Dong
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianghe Feng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guojuan Qiu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuxuan Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Qiyong Chen
- Materials Genome Institute, Shanghai University, Shanghai, China
| | - Yang Xiong
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haijun Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.
| | - Yifeng Ling
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lili Xi
- Materials Genome Institute, Shanghai University, Shanghai, China
| | - Chen Long
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jibao Lu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yixin Qiao
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guijuan Li
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Juan Li
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Ruiheng Liu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
13
|
Li C, Li S, Zhao L, Zhang J. Bi 2Te 3/Carbon Nanotube Hybrid Nanomaterials as Catalysts for Thermoelectric Hydrogen Peroxide Generation. Molecules 2024; 29:5242. [PMID: 39598631 PMCID: PMC11596737 DOI: 10.3390/molecules29225242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Harnessing waste heat from environmental or industrial sources presents a promising approach to eco-friendly and sustainable chemical synthesis. In this study, we introduce a thermoelectrocatalytic (TECatal) system capable of utilizing even small amounts of heat for hydrogen peroxide (H2O2) production. We developed a nanohybrid structure, combining carbon nanotubes (CNTs) and Bi2Te3 nanoflakes (Bi2Te3/CNTs), through a one-pot synthesis method. Bi2Te3, as a thermoelectric (TE) material, generates charge carriers under a temperature gradient via the Seebeck effect, enabling them to participate in surface redox reactions. However, the rapid recombination of these charge carriers greatly limits the TECatal activity. In the Bi2Te3/CNTs nanohybrid system, the introduction of CNTs substantially enhances the efficiency of H2O2 production, as the strong bonding between CNTs and Bi2Te3, along with the excellent conductivity of CNTs, facilitates charge carrier separation and transport, as confirmed by TE electrochemical tests. This study underscores the significant potential of thermoelectric nanomaterials for converting waste heat into green chemical synthesis.
Collapse
Affiliation(s)
| | | | | | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212000, China; (C.L.); (S.L.); (L.Z.)
| |
Collapse
|
14
|
Jia B, Zhang H, Zhang F, Li H, Ma B, Wang W, Shi Y, Chao X, Yang Z, Wu D. Broad-Temperature Thermoelectric Figure of Merit Enhancement in Unconventional n-Type Bi 2Te 2.3Se 0.7 Alloys. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60588-60598. [PMID: 39453308 DOI: 10.1021/acsami.4c14717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Bi2Te2.7Se0.3-based alloys are conventional n-type thermoelectric materials for solid-state cooling and heat harvest near room temperature; high thermoelectric performance over a wide temperature range and superior mechanical properties are essential for their use in practical thermoelectric devices. In this work, we demonstrated that decent thermoelectric performance can also be realized in an unconventional composite with a nominal composition of Bi2Te2.3Se0.7 since the emergence of a Bi2Te2Se phase with Se ordered occupation could induce an enlargement of the electronic band gap. Follow-up Cu/Na codoping could generate a dynamic optimization of carrier concentration, significantly broadening the temperature range of high thermoelectric performance. Further B incorporation and annealing treatment resulted in obvious grain refinement and stacking fault structures, which help pushing the ultimate maximal figure of merit up to ∼1.3 at 423 K with an average value of ∼1.2 at 300-573 K. This work might provide insights for further research on bismuth tellurides and other thermoelectric materials.
Collapse
Affiliation(s)
- Beiquan Jia
- Key Laboratory for Macromolecular Science of Shaanxi Province and Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials and Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Hu Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Fudong Zhang
- Key Laboratory for Macromolecular Science of Shaanxi Province and Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials and Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Huisi Li
- Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Baopeng Ma
- Key Laboratory for Macromolecular Science of Shaanxi Province and Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials and Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Weishuai Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province and Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials and Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yalin Shi
- Key Laboratory for Macromolecular Science of Shaanxi Province and Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials and Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaolian Chao
- Key Laboratory for Macromolecular Science of Shaanxi Province and Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials and Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Zupei Yang
- Key Laboratory for Macromolecular Science of Shaanxi Province and Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials and Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Di Wu
- Key Laboratory for Macromolecular Science of Shaanxi Province and Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials and Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
15
|
Zhan S, Bai S, Qiu Y, Zheng L, Wang S, Zhu Y, Tan Q, Zhao LD. Insight into Carrier and Phonon Transports of PbSnS 2 Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412967. [PMID: 39363688 DOI: 10.1002/adma.202412967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Indexed: 10/05/2024]
Abstract
The simultaneous optimization of n-type and p-type thermoelectric materials is advantageous to the practical application of the device. As an emerging thermoelectric material, PbSnS2 exhibits highly competitive thermoelectric properties due to its unique carrier and phonon transport characteristics. To promote the utilization of this low-cost thermoelectric material, p-type PbSnS2 crystals are synthesized and optimized through Na doping and Se alloying. The resulting thermoelectric transport properties differ significantly from those reported for n-type crystals, prompting us to compare and analyze both n-type (Cl-doped) and p-type (Na-doped) PbSnS2 crystals from various perspectives. Cl doping is subject to weaker "Fermi pinning" and lower impurity ionization energy compared with Na doping, leading to higher doping efficiency. The different optimal performance directions in n-type and p-type crystals can be attributed to the distinct charge density distributions near the conduction band minimum (CBM) and the valence band maximum (VBM). Additionally, both n-type and p-type crystals exhibit ultralow lattice thermal conductivity due to the low symmetry of their twisted NaCl structure combined with the strong anharmonicity. This comprehensive analysis of PbSnS2 crystals provides a solid foundation for further performance optimization and device assembly, while also sheds light on the investigation of layered thermoelectric materials.
Collapse
Affiliation(s)
- Shaoping Zhan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Shulin Bai
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yuting Qiu
- Beihang School, Beihang University, Beijing, 100191, China
| | - Lei Zheng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Sining Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yingcai Zhu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Institute of Atomic Manufacturing, Beihang University, Beijing, 100191, China
| | - Qing Tan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Li-Dong Zhao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Yuhang District, Hangzhou, 311115, China
| |
Collapse
|
16
|
Hu B, Shi X, Cao T, Liu S, Zhang M, Lyu W, Yin L, Tesfamichael T, Liu Q, Chen Z. High-Performing Flexible Mg 3Bi 2 Thin-Film Thermoelectrics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409788. [PMID: 39352315 PMCID: PMC11600257 DOI: 10.1002/advs.202409788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/07/2024] [Indexed: 11/28/2024]
Abstract
With the advances in bulk Mg3Bi2, there is increasing interest in pursuing whether Mg3Bi2 can be fabricated into flexible thin films for wearable electronics to expand the practical applications. However, the development of fabrication processes for flexible Mg3Bi2 thin films and the effective enhancement of their thermoelectric performance remain underexplored. Here, magnetron sputtering and ex-situ annealing techniques is used to fabricate flexible Mg3Bi2 thermoelectric thin films with a power factor of up to 1.59 µW cm-1 K-2 at 60 °C, ranking as the top value among all reported n-type Mg3Bi2 thin films. Extensive characterizations show that ex-situ annealing, and optimized sputtering processes allow precise control over film thickness. These techniques ensure high adhesion of the films to various substrates, resulting in excellent flexibility, with <10% performance degradation after 500 bending cycles with a radius of 5 mm. Furthermore, for the first time, flexible thermoelectric devices are fabricated with both p-type and n-type Mg3Bi2 legs, which achieve an output power of 0.17 nW and a power density of 1.67 µW cm-2 at a very low temperature difference of 2.5 °C, highlighting the practical application potential of the device.
Collapse
Affiliation(s)
- Boxuan Hu
- School of Chemistry and PhysicsARC Research Hub in Zero‐emission Power Generation for Carbon Neutralityand Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4000Australia
| | - Xiao‐Lei Shi
- School of Chemistry and PhysicsARC Research Hub in Zero‐emission Power Generation for Carbon Neutralityand Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4000Australia
| | - Tianyi Cao
- School of Chemistry and PhysicsARC Research Hub in Zero‐emission Power Generation for Carbon Neutralityand Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4000Australia
| | - Siqi Liu
- School of Chemistry and PhysicsARC Research Hub in Zero‐emission Power Generation for Carbon Neutralityand Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4000Australia
| | - Min Zhang
- School of Chemistry and PhysicsARC Research Hub in Zero‐emission Power Generation for Carbon Neutralityand Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4000Australia
| | - Wanyu Lyu
- School of Chemistry and PhysicsARC Research Hub in Zero‐emission Power Generation for Carbon Neutralityand Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4000Australia
| | - Liangcao Yin
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech UniversityNanjing211816China
| | - Tuquabo Tesfamichael
- School of MechanicalMedical and Process EngineeringQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Qingfeng Liu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech UniversityNanjing211816China
| | - Zhi‐Gang Chen
- School of Chemistry and PhysicsARC Research Hub in Zero‐emission Power Generation for Carbon Neutralityand Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4000Australia
| |
Collapse
|
17
|
Li NH, Zhang Q, Shi XL, Jiang J, Chen ZG. Silver Copper Chalcogenide Thermoelectrics: Advance, Controversy, and Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313146. [PMID: 38608290 DOI: 10.1002/adma.202313146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Thermoelectric technology, which enables a direct and pollution-free conversion of heat into electricity, provides a promising path to address the current global energy crisis. Among the broad range of thermoelectric materials, silver copper chalcogenides (AgCuQ, Q = S, Se, Te) have garnered significant attention in thermoelectric community in light of inherently ultralow lattice thermal conductivity, controllable electronic transport properties, excellent thermoelectric performance across various temperature ranges, and a degree of ductility. This review epitomizes the recent progress in AgCuQ-based thermoelectric materials, from the optimization of thermoelectric performance to the rational design of devices, encompassing the fundamental understanding of crystal structures, electronic band structures, mechanical properties, and quasi-liquid behaviors. The correlation between chemical composition, mechanical properties, and thermoelectric performance in this material system is also highlighted. Finally, several key issues and prospects are proposed for further optimizing AgCuQ-based thermoelectric materials.
Collapse
Affiliation(s)
- Nan-Hai Li
- School of Chemistry and Physics, ARC Research Hub in Zero-Emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Qiang Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Science, Beijing, 101408, China
| | - Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-Emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Jun Jiang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Science, Beijing, 101408, China
| | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-Emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
18
|
Li C, Li W, Sun C, Ma Z, Wei Y, Ma W, Yang B, Li X, Luo Y, Yang J. Enhancing Thermoelectric and Cooling Performance of Bi 0.5Sb 1.5Te 3 through Ferroelectric Polarization in Flexible Ag/PZT/PVDF/Bi 0.5Sb 1.5Te 3 Film. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45224-45233. [PMID: 39149867 DOI: 10.1021/acsami.4c11129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Bi2Te3-based thin films are gaining recognition for their remarkable room temperature thermoelectric performance. Beyond the conventional "process-composition-performance" paradigm, it is highly desirable to explore new methods to enhance their performance further. Here, we designed a sandwich-structured Ag/PZT/PVDF/Bi0.5Sb1.5Te3(BST) thin film device and effectively regulated the performance of the BST film by controlling the polarization state of the PZT/PVDF layers. Results indicate that polarization induces interlayer charge redistribution and charge transfer between PZT/PVDF and BST, thereby achieving the continuous modulation of the electrical transport characteristics of BST films. Finally, following polarization at a saturation voltage of 3 kV, the power factor of the BST film increased by 13% compared to the unpolarized condition, reaching 20.8 μW cm-1 K-2. Furthermore, a device with 7 pairs of P-N legs was fabricated, achieving a cooling temperature difference of 11.0 K and a net cooling temperature difference of 2.4 K at a current of 10 mA after the saturation polarization of the PZT/PVDF layer. This work reveals the critical effect of introducing ferroelectric layer polarization to achieve excellent thermoelectric performance of the BST film.
Collapse
Affiliation(s)
- Chengjun Li
- Sate Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wang Li
- Sate Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chengwei Sun
- Sate Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zheng Ma
- Sate Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yingchao Wei
- Sate Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wenyuan Ma
- Sate Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Boyu Yang
- Sate Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xin Li
- Sate Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yubo Luo
- Sate Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Junyou Yang
- Sate Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
19
|
Wang D, Ding J, Ma Y, Xu C, Li Z, Zhang X, Zhao Y, Zhao Y, Di Y, Liu L, Dai X, Zou Y, Kim B, Zhang F, Liu Z, McCulloch I, Lee M, Chang C, Yang X, Wang D, Zhang D, Zhao LD, Di CA, Zhu D. Multi-heterojunctioned plastics with high thermoelectric figure of merit. Nature 2024; 632:528-535. [PMID: 39048826 DOI: 10.1038/s41586-024-07724-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Conjugated polymers promise inherently flexible and low-cost thermoelectrics for powering the Internet of Things from waste heat1,2. Their valuable applications, however, have been hitherto hindered by the low dimensionless figure of merit (ZT)3-6. Here we report high-ZT thermoelectric plastics, which were achieved by creating a polymeric multi-heterojunction with periodic dual-heterojunction features, where each period is composed of two polymers with a sub-ten-nanometre layered heterojunction structure and an interpenetrating bulk-heterojunction interface. This geometry produces significantly enhanced interfacial phonon-like scattering while maintaining efficient charge transport. We observed a significant suppression of thermal conductivity by over 60 per cent and an enhanced power factor when compared with individual polymers, resulting in a ZT of up to 1.28 at 368 kelvin. This polymeric thermoelectric performance surpasses that of commercial thermoelectric materials and existing flexible thermoelectric candidates. Importantly, we demonstrated the compatibility of the polymeric multi-heterojunction structure with solution coating techniques for satisfying the demand for large-area plastic thermoelectrics, which paves the way for polymeric multi-heterojunctions towards cost-effective wearable thermoelectric technologies.
Collapse
Affiliation(s)
- Dongyang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiamin Ding
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yingqiao Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Chunlin Xu
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Zhiyi Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xiao Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yue Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqiu Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liyao Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Ye Zou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - BongSoo Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, UK
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Myeongjae Lee
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Cheng Chang
- School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Xiao Yang
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China
| | - Dong Wang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Li-Dong Zhao
- School of Materials Science and Engineering, Beihang University, Beijing, China.
- Tianmushan Laboratory, Hangzhou, China.
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Shen K, Yang Q, Qiu P, Zhou Z, Yang S, Wei TR, Shi X. Ductile P-Type AgCu(Se,S,Te) Thermoelectric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407424. [PMID: 38967315 DOI: 10.1002/adma.202407424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Ductile inorganic thermoelectric (TE) materials open a new approach to develop high-performance flexible TE devices. N-type Ag2(S,Se,Te) and p-type AgCu(Se,S,Te) pseudoternary solid solutions are two typical categories of ductile inorganic TE materials reported so far. Comparing with the Ag2(S,Se,Te) pseudoternary solid solutions, the phase composition, crystal structure, and physical properties of AgCu(Se,S,Te) pseudoternary solid solutions are more complex, but their relationships are still ambiguous now. In this work, via systematically investigating the phase composition, crystal structure, mechanical, and TE properties of about 60 AgCu(Se,S,Te) pseudoternary solid solutions, the comprehensive composition-structure-property phase diagrams of the AgCuSe-AgCuS-AgCuTe pseudoternary system is constructed. By mapping the complex phases, the "ductile-brittle" and "n-p" transition boundaries are determined and the composition ranges with high TE performance and inherent ductility are illustrated. On this basis, high performance p-type ductile TE materials are obtained, with a maximum zT of 0.81 at 340 K. Finally, flexible in-plane TE devices are prepared by using the AgCu(Se,S,Te)-based ductile TE materials, showing high output performance that is superior to those of organic and inorganic-organic hybrid flexible devices.
Collapse
Affiliation(s)
- Kelin Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingyu Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhengyang Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiqi Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Tian-Ran Wei
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xun Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Zhang F, Zhu L, Song M, Cao X, Pang X, Liang P, Peng Z, Chao X, Yang Z, Wu D. Giant Deformation Induced Staggered-Layer Structure Promoting the Thermoelectric and Mechanical Performance in n-Type Bi 2(Te, Se) 3. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401070. [PMID: 38528434 DOI: 10.1002/smll.202401070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Indexed: 03/27/2024]
Abstract
Bismuth telluride has long been recognized as the most promising near-room temperature thermoelectric material for commercial application; however, the thermoelectric performance for n-type Bi2(Te, Se)3-based alloys is far lagging behind that of its p-type counterpart. In this work, a giant hot deformation (GD) process is implemented in an optimized Bi2Te2.694Se0.3I0.006+3 wt%K2Bi8Se13 precursor and generates a unique staggered-layer structure. The staggered-layered structure, which is only observed in severely deformed crystals, exhibits a preferential scattering on heat-carrying phonons rather than charge-carrying electrons, thus resulting in an ultralow lattice thermal conductivity while retaining high-weight carrier mobility. Moreover, the staggered-layer structure is located adjacent to the van der Waals gap in Bi2(Te, Se)3 lattice and is able to strengthen the interaction between anion layers across the gap, leading to obviously improved compressive strength and Vickers hardness. Consequently, a high peak figure of merit ZT of ≈ 1.3 at 423 K, and an average ZT of ≈ 1.2 at 300-473 K can be achieved in GD sample. This study demonstrates that the GD process can successfully decouple the electrical and thermal transports with simultaneously enhanced mechanic performance.
Collapse
Affiliation(s)
- Fudong Zhang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Lujun Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Mingzhen Song
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiaofang Cao
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiaohui Pang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Pengfei Liang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhanhui Peng
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiaolian Chao
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Zupei Yang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Di Wu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
22
|
Wang H, Li K, Hao X, Pan J, Zhuang T, Dai X, Wang J, Chen B, Chong D. Capillary compression induced outstanding n-type thermoelectric power factor in CNT films towards intelligent temperature controller. Nat Commun 2024; 15:5617. [PMID: 38965250 PMCID: PMC11224367 DOI: 10.1038/s41467-024-50057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024] Open
Abstract
One-dimensional carbon nanotubes are promising candidates for thermoelectrics because of their excellent electrical and mechanical properties. However, the large n-type power factor remains elusive in macroscopic carbon nanotubes films. Herein, we report an outstanding n-type power factor of 6.75 mW m-1 K-2 for macroscopic carbon nanotubes films with high electrical and thermal conductivity. A high-power density curl-able thermoelectric generator is fabricated with the obtained carbon nanotubes films, which exhibits a high normalized power output density of 2.75 W m-1 at a temperature difference of 85 K. The value is higher than that of previously reported flexible all-inorganic thermoelectric generators (<0.3 W m-1). An intelligent temperature controller with automated temperature-controlling ability is fabricated by assembling these thermoelectric generators, which demonstrates the potential application of the carbon nanotubes films in automated thermal management of electronic devices where requires a large thermoelectric power factor and a large thermal conductivity simultaneously.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China.
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Kuncai Li
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xin Hao
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jiahao Pan
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Tiantian Zhuang
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xu Dai
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jing Wang
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bin Chen
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Daotong Chong
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
23
|
Xie S, Wan X, Wu Y, Li C, Yan F, Ouyang Y, Ge H, Li X, Liu Y, Wang R, Toriyama MY, Snyder GJ, Yang J, Zhang Q, Liu W, Tang X. Topological Electronic Transition Contributing to Improved Thermoelectric Performance in p-Type Mg 3Sb 2- xBi x Solid Solutions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400845. [PMID: 38651256 DOI: 10.1002/adma.202400845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Topological electronic transition is the very promising strategy for achieving high band degeneracy (NV) and for optimizing thermoelectric performance. Herein, this work verifies in p-type Mg3Sb2- xBix that topological electronic transition could be the key mechanism responsible for elevating the NV of valence band edge from 1 to 6, leading to much improved thermoelectric performance. Through comprehensive spectroscopy characterizations and theoretical calculations of electronic structures, the topological electronic transition from trivial semiconductor is unambiguously demonstrated to topological semimetal of Mg3Sb2- xBix with increasing the Bi content, due to the strong spin-orbit coupling of Bi and the band inversion. The distinct evolution of Fermi surface configuration and the multivalley valence band edge with NV of 6 are discovered in the Bi-rich compositions, while a peculiar two-step band inversion is revealed for the first time in the end compound Mg3Bi2. As a result, the optimal p-type Mg3Sb0.5Bi1.5 simultaneously obtains a positive bandgap and high NV of 6, and thus acquires the largest thermoelectric power factor of 3.54 and 6.93 µW cm-1 K-2 at 300 and 575 K, respectively, outperforming the values in other compositions. This work provides important guidance on improving thermoelectric performance of p-type Mg3Sb2- xBix utilizing the topological electronic transition.
Collapse
Affiliation(s)
- Sen Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaolin Wan
- Institute for Structure and Function & Department of Physics, Chongqing University, Chongqing, 400044, China
| | - Yasong Wu
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
- Zhejiang Laboratory, Hangzhou, 311100, China
| | - Chunxia Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Fan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Yujie Ouyang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Haoran Ge
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Xianda Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yong Liu
- School of Physics and Technology and The Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Rui Wang
- Institute for Structure and Function & Department of Physics, Chongqing University, Chongqing, 400044, China
| | - Michael Y Toriyama
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - G Jeffrey Snyder
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jiong Yang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
- Zhejiang Laboratory, Hangzhou, 311100, China
| | - Qingjie Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Xinfeng Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
24
|
Cheng R, Ge H, Huang S, Xie S, Tong Q, Sang H, Yan F, Zhu L, Wang R, Liu Y, Hong M, Uher C, Zhang Q, Liu W, Tang X. Unraveling electronic origins for boosting thermoelectric performance of p-type (Bi,Sb) 2Te 3. SCIENCE ADVANCES 2024; 10:eadn9959. [PMID: 38787957 PMCID: PMC11122684 DOI: 10.1126/sciadv.adn9959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
P-type Bi2-xSbxTe3 compounds are crucial for thermoelectric applications at room temperature, with Bi0.5Sb1.5Te3 demonstrating superior performance, attributed to its maximum density-of-states effective mass (m*). However, the underlying electronic origin remains obscure, impeding further performance optimization. Herein, we synthesized high-quality Bi2-xSbxTe3 (00 l) films and performed comprehensive angle-resolved photoemission spectroscopy (ARPES) measurements and band structure calculations to shed light on the electronic structures. ARPES results directly evidenced that the band convergence along the [Formula: see text]-[Formula: see text] direction contributes to the maximum m* of Bi0.5Sb1.5Te3. Moreover, strategic manipulation of intrinsic defects optimized the hole density of Bi0.5Sb1.5Te3, allowing the extra valence band along [Formula: see text]-[Formula: see text] to contribute to the electrical transport. The synergy of the above two aspects documented the electronic origins of the Bi0.5Sb1.5Te3's superior performance that resulted in an extraordinary power factor of ~5.5 milliwatts per meter per square kelvin. The study offers valuable guidance for further performance optimization of p-type Bi2-xSbxTe3.
Collapse
Affiliation(s)
- Rui Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haoran Ge
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Shengpu Huang
- Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400044, China
| | - Sen Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Qiwei Tong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Hao Sang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Fan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Liangyu Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Rui Wang
- Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400044, China
| | - Yong Liu
- School of Physics and Technology and The Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Min Hong
- Centre for Future Materials, and School of Engineering, University of Southern Queensland, Springfield Central, Brisbane, Queensland 4300, Australia
| | - Ctirad Uher
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qingjie Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xinfeng Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
25
|
Li D, Shi XL, Zhu J, Cao T, Ma X, Li M, Han Z, Feng Z, Chen Y, Wang J, Liu WD, Zhong H, Li S, Chen ZG. High-performance flexible p-type Ce-filled Fe 3CoSb 12 skutterudite thin film for medium-to-high-temperature applications. Nat Commun 2024; 15:4242. [PMID: 38762562 PMCID: PMC11102547 DOI: 10.1038/s41467-024-48677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
P-type Fe3CoSb12-based skutterudite thin films are successfully fabricated, exhibiting high thermoelectric performance, stability, and flexibility at medium-to-high temperatures, based on preparing custom target materials and employing advanced pulsed laser deposition techniques to address the bonding challenge between the thin films and high-temperature flexible polyimide substrates. Through the optimization of fabrication processing and nominal doping concentration of Ce, the thin films show a power factor of >100 μW m-1 K-2 and a ZT close to 0.6 at 653 K. After >2000 bending cycle tests at a radius of 4 mm, only a 6 % change in resistivity can be observed. Additionally, the assembled p-type Fe3CoSb12-based flexible device exhibits a power density of 135.7 µW cm-2 under a temperature difference of 100 K with the hot side at 623 K. This work fills a gap in the realization of flexible thermoelectric devices in the medium-to-high-temperature range and holds significant practical application value.
Collapse
Affiliation(s)
- Dou Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Jiaxi Zhu
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Tianyi Cao
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Xiao Ma
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Meng Li
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Zhuokun Han
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zhenyu Feng
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yixing Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jianyuan Wang
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei-Di Liu
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Hong Zhong
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Shuangming Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia.
| |
Collapse
|
26
|
Shin W, Nishibori M, Itoh T, Izu N, Matsubara I. Enhancing the Responsiveness of Thermoelectric Gas Sensors with Boron-Doped and Thermally Annealed SiGe Thin Films via Low-Pressure Chemical Vapor Deposition. SENSORS (BASEL, SWITZERLAND) 2024; 24:3058. [PMID: 38793910 PMCID: PMC11124772 DOI: 10.3390/s24103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Thermoelectric gas sensor (THGS) devices with catalysts and Si0.8Ge0.2 thin films of different boron doping levels of 1018, 1019, and 1020 cm-3 were fabricated, and their transport properties are investigated. SiGe films were deposited on Si3N4/SiO2 multilayers on Si substrates using low-pressure chemical vapor deposition (LPCVD) and thermally annealed at 1050 °C. The Seebeck coefficients of the SiGe films were increased after thermal annealing, ranging from 191 to 275 μV/K at temperatures of 74 to 468 °C in air, and reaching the highest power factor of 6.78 × 10-4 W/mK2 at 468 °C. The thermal conductivity of the SiGe films varied from 2.4 to 3.0 W/mK at 25 °C. The THGS detection performance was tested for the H2 gas in air from 0.01 to 1.0%, and compared to the thermoelectric properties of the SiGe films. The high-temperature annealing treatment process was successful in enhancing the thermoelectric performance of both the SiGe films and sensor devices, achieving the best THGS performance with the sensor device fabricated from the annealed SiGe film with 1018 cm-3 boron-doped Si0.8Ge0.2.
Collapse
Affiliation(s)
- Woosuck Shin
- National Institute of Advanced Industrial Science and Technology (AIST) Sakurazaka, Moriyama-ku, Nagoya 463-8560, Japan
| | | | | | | | | |
Collapse
|
27
|
An D, Zhang S, Zhai X, Yang W, Wu R, Zhang H, Fan W, Wang W, Chen S, Cojocaru-Mirédin O, Zhang XM, Wuttig M, Yu Y. Metavalently bonded tellurides: the essence of improved thermoelectric performance in elemental Te. Nat Commun 2024; 15:3177. [PMID: 38609361 PMCID: PMC11014947 DOI: 10.1038/s41467-024-47578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Elemental Te is important for semiconductor applications including thermoelectric energy conversion. Introducing dopants such as As, Sb, and Bi has been proven critical for improving its thermoelectric performance. However, the remarkably low solubility of these elements in Te raises questions about the mechanism with which these dopants can improve the thermoelectric properties. Indeed, these dopants overwhelmingly form precipitates rather than dissolve in the Te lattice. To distinguish the role of doping and precipitation on the properties, we have developed a correlative method to locally determine the structure-property relationship for an individual matrix or precipitate. We reveal that the conspicuous enhancement of electrical conductivity and power factor of bulk Te stems from the dopant-induced metavalently bonded telluride precipitates. These precipitates form electrically beneficial interfaces with the Te matrix. A quantum-mechanical-derived map uncovers more candidates for advancing Te thermoelectrics. This unconventional doping scenario adds another recipe to the design options for thermoelectrics and opens interesting pathways for microstructure design.
Collapse
Affiliation(s)
- Decheng An
- College of Chemistry, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Senhao Zhang
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Xin Zhai
- School of Electronic Science & Engineering, Southeast University, 210096, Nanjing, China
| | - Wutao Yang
- College of Chemistry, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Riga Wu
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Huaide Zhang
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Wenhao Fan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering, Instrumental Analysis Center, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Wenxian Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering, Instrumental Analysis Center, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Shaoping Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering, Instrumental Analysis Center, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Oana Cojocaru-Mirédin
- Department of Sustainable Systems Engineering (INATECH), Albert-Ludwigs-Universität Freiburg, 79110, Freiburg, Germany
| | - Xian-Ming Zhang
- College of Chemistry, Taiyuan University of Technology, 030024, Taiyuan, China.
- Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering, Instrumental Analysis Center, Taiyuan University of Technology, 030024, Taiyuan, China.
| | - Matthias Wuttig
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany.
- Peter Grünberg Institute (PGI 10), Forschungszentrum Jülich, 52428, Jülich, Germany.
| | - Yuan Yu
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany.
| |
Collapse
|
28
|
Tian Y, Florenciano I, Xia H, Li Q, Baysal HE, Zhu D, Ramunni E, Meyers S, Yu TY, Baert K, Hauffman T, Nider S, Göksel B, Molina-Lopez F. Facile Fabrication of Flexible and High-Performing Thermoelectrics by Direct Laser Printing on Plastic Foil. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307945. [PMID: 38100238 DOI: 10.1002/adma.202307945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The emerging fields of wearables and the Internet of Things introduce the need for electronics and power sources with unconventional form factors: large area, customizable shape, and flexibility. Thermoelectric (TE) generators can power those systems by converting abundant waste heat into electricity, whereas the versatility of additive manufacturing suits heterogeneous form factors. Here, additive manufacturing of high-performing flexible TEs is proposed. Maskless and large-area patterning of Bi2Te3-based films is performed by laser powder bed fusion directly on plastic foil. Mechanical interlocking allows simultaneous patterning, sintering, and attachment of the films to the substrate without using organic binders that jeopardize the final performance. Material waste could be minimized by recycling the unexposed powder. The particular microstructure of the laser-printed material renders the-otherwise brittle-Bi2Te3 films highly flexible despite their high thickness. The films survive 500 extreme-bending cycles to a 0.76 mm radius. Power factors above 1500 µW m-1K-2 and a record-low sheet resistance for flexible TEs of 0.4 Ω sq-1 are achieved, leading to unprecedented potential for power generation. This versatile fabrication route enables innovative implementations, such as cuttable arrays adapting to specific applications in self-powered sensing, and energy harvesting from unusual scenarios like human skin and curved hot surfaces.
Collapse
Affiliation(s)
- Yuan Tian
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Isidro Florenciano
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Heyi Xia
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Qiyuan Li
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Hasan Emre Baysal
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Daiman Zhu
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Eduardo Ramunni
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Sebastian Meyers
- KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300 - bus 2420, Leuven, 3001, Belgium
| | - Tzu-Yi Yu
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Kitty Baert
- Vrije Universiteit Brussel, Department of Materials and Chemistry, Research Group Sustainable Materials Engineering (SUME), Lab Electrochemical and Surface Engineering (SURF), Pleinlaan 2, Brussels, 1050, Belgium
| | - Tom Hauffman
- Vrije Universiteit Brussel, Department of Materials and Chemistry, Research Group Sustainable Materials Engineering (SUME), Lab Electrochemical and Surface Engineering (SURF), Pleinlaan 2, Brussels, 1050, Belgium
| | - Souhaila Nider
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200J - bus 2424, Leuven, 3001, Belgium
| | - Berfu Göksel
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Francisco Molina-Lopez
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| |
Collapse
|
29
|
Fu Y, Kang S, Xiang G, Su C, Gao C, Tan L, Gu H, Wang S, Zheng Z, Dai S, Lin C. Ultraflexible Temperature-Strain Dual-Sensor Based on Chalcogenide Glass-Polymer Film for Human-Machine Interaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313101. [PMID: 38417448 DOI: 10.1002/adma.202313101] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Indexed: 03/01/2024]
Abstract
Skin-like thermoelectric (TE) films with temperature- and strain-sensing functions are highly desirable for human-machine interaction systems and wearable devices. However, current TE films still face challenges in achieving high flexibility and excellent sensing performance simultaneously. Herein, for the first time, a facile roll-to-roll strategy is proposed to fabricate an ultraflexible chalcogenide glass-polytetrafluoroethylene composite film with superior temperature- and strain-sensing performance. The unique reticular network of the composite film endows it with efficient Seebeck effect and flexibility, leading to a high Seebeck coefficient (731 µV/K), rapid temperature response (≈0.7 s), and excellent strain sensitivity (gauge factor = 836). Based on this high-performance composite film, an intelligent robotic hand for action feedback and temperature alarm is fabricated, demonstrating its great potential in human-machine interaction. Such TE film fabrication strategy not only brings new inspiration for wearable inorganic TE devices, but also sets the stage for a wide implementation of multifunctional human-machine interaction systems.
Collapse
Affiliation(s)
- Yanqing Fu
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Shiliang Kang
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Guofeng Xiang
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Chengran Su
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Chengwei Gao
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Linling Tan
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Hao Gu
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Shengpeng Wang
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Zhuanghao Zheng
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shixun Dai
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Changgui Lin
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| |
Collapse
|
30
|
Xue Y, Wang Q, Gao Z, Qian X, Wang J, Yan G, Chen M, Zhao LD, Wang SF, Li Z. Constructing quasi-layered and self-hole doped SnSe oriented films to achieve excellent thermoelectric power factor and output power density. Sci Bull (Beijing) 2023; 68:2769-2778. [PMID: 37806799 DOI: 10.1016/j.scib.2023.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/22/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
Thermoelectric (TE) technology can achieve the mutual conversion between electric energy and waste heat, and it has exhibited great prospects in multifunctional energy applications to alleviate the energy crisis. In the recent decade, SnSe has been explored widely because of its potentially high energy harvesting efficiency, green nature, and low cost. However, the relatively poor power factor (PF) derived from the intrinsic low carrier concentration (∼1017 cm-3) limits the output power density of the stoichiometric SnSe devices. Therefore, the advancement of novel optimization strategies for controlling carrier concentration is of utmost importance. Besides, compared with 3D bulks, 2D thin films are more compatible with modern semiconductor technology and have unique advantages in the construction and application of TE micro- and nano-devices. In this study, post-selenization technology were applied to increase the carrier concentration of the a-axis oriented SnSe epitaxial films utilizing the charge transfer and self-hole doped effects. The quasi-layered and self-hole doped films exhibited a high power factor of ∼5.9 µW cm-1 K-2 at 600 K along the in-plane direction when the carrier concentration is enhanced to ∼1018 cm-3 by increasing the selenization time to ∼20 min. The TE generator composed of four P-type film legs demonstrated the ultrahigh maximum power density of ∼83, ∼838 µW cm-2 at the temperature difference of ∼50 and ∼90 K, respectively. Post-selenization can effectively optimize the carrier concentration of SnSe-based materials, which is also feasible to other anion deficient TE films.
Collapse
Affiliation(s)
- Yuli Xue
- Hebei Key Laboratory of Optic-Electronic Information and Materials, Key Laboratory of High-Precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Qing Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, Key Laboratory of High-Precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Zhi Gao
- Hebei Key Laboratory of Optic-Electronic Information and Materials, Key Laboratory of High-Precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Xin Qian
- Hebei Key Laboratory of Optic-Electronic Information and Materials, Key Laboratory of High-Precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Jianglong Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, Key Laboratory of High-Precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Guoying Yan
- Hebei Key Laboratory of Optic-Electronic Information and Materials, Key Laboratory of High-Precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Mingjing Chen
- Hebei Key Laboratory of Optic-Electronic Information and Materials, Key Laboratory of High-Precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Li-Dong Zhao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| | - Shu-Fang Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, Key Laboratory of High-Precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding 071002, China; Engineering Research Center of Zero-Carbon Energy Buildings and Measurement Techniques, Ministry of Education, Hebei University, Baoding 071002, China.
| | - Zhiliang Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, Key Laboratory of High-Precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding 071002, China; Engineering Research Center of Zero-Carbon Energy Buildings and Measurement Techniques, Ministry of Education, Hebei University, Baoding 071002, China.
| |
Collapse
|
31
|
Mori T. A flexible feature for the long-reigning thermoelectric champion bismuth telluride. NATURE NANOTECHNOLOGY 2023; 18:1255-1256. [PMID: 37500775 DOI: 10.1038/s41565-023-01464-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Affiliation(s)
- Takao Mori
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan.
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
32
|
Zhang J, Nisar M, Xu H, Li F, Zheng Z, Liang G, Fan P, Chen YX. High-Performance Thermoelectric Flexible Ag 2Se-Based Films with Wave-Shaped Buckling via a Thermal Diffusion Method. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47158-47167. [PMID: 37782895 DOI: 10.1021/acsami.3c12486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Herein, an n-type Ag2Se thermoelectric flexible thin film has been fabricated on a polyimide (PI) substrate via a novel thermal diffusion method, and the thermoelectric performance is well-optimized by adjusting the pressure and temperature of thermal diffusion. All of the Ag2Se films are beneficial to grow (013) preferred orientations, which is conducive to performing a high Seebeck coefficient. By increasing the thermal diffusion temperature, the electrical conductivity can be rationally regulated while maintaining the independence of the Seebeck coefficient, which is mainly attributed to the increased electric mobility. As a result, the fabricated Ag2Se thin film achieves a high power factor of 18.25 μW cm-1 K-2 at room temperature and a maximum value of 21.7 μW cm-1 K-2 at 393 K. Additionally, the thermal diffusion method has resulted in a wave-shaped buckling, which is further verified as a promising structure to realize a larger temperature difference by the simulation results of finite element analysis (FEA). Additionally, this unique surface morphology of the Ag2Se thin film also exhibits outstanding mechanical properties, for which the elasticity modulus is only 0.42 GPa. Finally, a flexible round-shaped module assembled with Sb2Te3 has demonstrated an output power of 166 nW at a temperature difference of 50 K. This work not only introduces a new method of preparing Ag2Se thin films but also offers a convincing strategy of optimizing the microstructure to enhance low-grade heat utilization efficiency.
Collapse
Affiliation(s)
- Junze Zhang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Mohammad Nisar
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Hanwen Xu
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Fu Li
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhuanghao Zheng
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Guangxing Liang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ping Fan
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yue-Xing Chen
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|