1
|
Zhang F, Ye J, Zhu J, Qian W, Wang H, Luo C. Key Cell-in-Cell Related Genes are Identified by Bioinformatics and Experiments in Glioblastoma. Cancer Manag Res 2024; 16:1109-1130. [PMID: 39253064 PMCID: PMC11382672 DOI: 10.2147/cmar.s475513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
Purpose This study aimed to explore the roles of cell-in-cell (CIC)-related genes in glioblastoma (GBM) using bioinformatics and experimental strategies. Patients and Methods The ssGSEA algorithm was used to calculate the CIC score for each patient. Subsequently, differentially expressed genes (DEGs) between the CIClow and CIChigh groups and between the tumor and control samples were screened using the limma R package. Key CIC-related genes (CICRGs) were further filtered using univariate Cox and LASSO analyses, followed by the construction of a CIC-related risk score model. The performance of the risk score model in predicting GBM prognosis was evaluated using ROC curves and an external validation cohort. Moreover, their location and differentiation trajectory in GBM were analyzed at the single-cell level using the Seurat R package. Finally, the expression of key CICRGs in clinical samples was examined by qPCR. Results In the current study, we found that CIC scorelow group had a significantly better survival in the TCGA-GBM cohort, supporting the important role of CICRGs in GBM. Using univariate Cox and LASSO analyses, PTX3, TIMP1, IGFBP2, SNCAIP, LOXL1, SLC47A2, and LGALS3 were identified as key CICRGs. Based on this data, a CIC-related prognostic risk score model was built using the TCGA-GBM cohort and validated in the CGGA-GBM cohort. Further mechanistic analyses showed that the CIC-related risk score is closely related to immune and inflammatory responses. Interestingly, at the single-cell level, key CICRGs were expressed in the neurons and myeloids of tumor tissues and exhibited unique temporal dynamics of expression changes. Finally, the expression of key CICRGs was validated by qPCR using clinical samples from GBM patients. Conclusion We identified novel CIC-related genes and built a reliable prognostic prediction model for GBM, which will provide further basic clues for studying the exact molecular mechanisms of GBM pathogenesis from a CIC perspective.
Collapse
Affiliation(s)
- Fenglin Zhang
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jingliang Ye
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Junle Zhu
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Wenbo Qian
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Haoheng Wang
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Zhou L, Fan S, Zhang W, Gong Z, Wang D, Tang D. The battle within: cell death by phagocytosis in cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03650-x. [PMID: 39167272 DOI: 10.1007/s12094-024-03650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
The process by which living cells are phagocytosed and digested to death is called cell death by phagocytosis, a term that has just recently been generalized and redefined. It is characterized by the phagocytosis of living cells and the cessation of cell death by phagocytosis. Phagocytosis of dead cells is a widely discussed issue in cancer, cell death by phagocytosis can stimulate phagocytosis and stimulate adaptive immunity in tumors, and at the same time, do not-eat-me signaling is an important site for cancer cells to evade recognition by phagocytes. Therefore, we discuss in this review cell death by phagocytosis occurring in cancer tissues and emphasize the difference between this new concept and the phagocytosis of dead tumor cells. Immediately thereafter, we describe the mechanisms by which cell death by phagocytosis occurs and how tumors escape phagocytosis. Finally, we summarize the potential clinical uses of cell death by phagocytosis in tumor therapy and strive to provide ideas for tumor therapy.
Collapse
Affiliation(s)
- Lujia Zhou
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Shiying Fan
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Zhiyuan Gong
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
| |
Collapse
|
3
|
Liu X, Guo R, Li D, Wang Y, Ning J, Yang S, Yang J. Homotypic cell-in-cell structure as a novel prognostic predictor in non-small cell lung cancer and frequently localized at the invasive front. Sci Rep 2024; 14:18952. [PMID: 39147858 PMCID: PMC11327305 DOI: 10.1038/s41598-024-69833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Homotypic cell-in-cell structures (hoCICs) are associated with tumor proliferation, invasion, and metastasis and is considered a promising prognostic marker in various cancers. However, the role of hoCICs in non-small cell lung cancer (NSCLC) remains unclear. Tumor tissue sections were obtained from 411 NSCLC patients. We analyzed the relationship between clinicopathological variables and the number of hoCICs. LASSO and multivariate Cox regression analysis were employed to identify prognostic factors for NSCLC. The impact of hoCICs on overall survival (OS) and disease-free survival (DFS) was assessed using the Kaplan-Meier curves and log-rank test. Prognostic models for OS and DFS were developed and validated using the C-index, time-dependent area under the curve (AUC), net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration curves and decision curve analysis (DCA). Among the cohort, 56% of patients had hoCICs while 44% did not. Notably, hoCICs were primarily found at the tumor invasion front. Male gender, smoking, squamous cell carcinoma, low differentiation, tumor size ≥ 3 cm, advanced TNM stage, lymph node metastasis, pleural invasion, vascular invasion, necrosis, P53 mutation, and high expression of Ki-67 were identified as relative risk factors for hoCICs. Furthermore, hoCICs was found to be a significant prognostic factor for both OS and DFS, with higher frequencies of hoCICs correlating with poorer outcomes. We constructed nomograms for predicting 1-, 3-, and 5-year OS and DFS based on hoCICs, and the calibration curves showed good agreement between the predicted and actual outcomes. The results of the C-index, time-dependent AUC, NRI, IDI, and DCA analyses demonstrated that incorporating hoCICs into the prognostic model significantly enhanced its predictive power and clinical applicability. HoCICs indicated independent perdictive value for OS and DFS in patients with NSCLC. Furthermore, the frequent localization of hoCICs at the tumor invasion front suggested a strong association between hoCICs and tumor invasion as well as metastasis.
Collapse
Affiliation(s)
- Xiaona Liu
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Rui Guo
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Dongxuan Li
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Ya'nan Wang
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Jingya Ning
- Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Shuanying Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China.
| | - Jun Yang
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China.
| |
Collapse
|
4
|
Liu Y, Zhao Y, Song H, Li Y, Liu Z, Ye Z, Zhao J, Wu Y, Tang J, Yao M. Metabolic reprogramming in tumor immune microenvironment: Impact on immune cell function and therapeutic implications. Cancer Lett 2024; 597:217076. [PMID: 38906524 DOI: 10.1016/j.canlet.2024.217076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Understanding of the metabolic reprogramming has revolutionized our insights into tumor progression and potential treatment. This review concentrates on the aberrant metabolic pathways in cancer cells within the tumor microenvironment (TME). Cancer cells differ from normal cells in their metabolic processing of glucose, amino acids, and lipids in order to adapt to heightened biosynthetic and energy needs. These metabolic shifts, which crucially alter lactic acid, amino acid and lipid metabolism, affect not only tumor cell proliferation but also TME dynamics. This review also explores the reprogramming of various immune cells in the TME. From a therapeutic standpoint, targeting these metabolic alterations represents a novel cancer treatment strategy. This review also discusses approaches targeting the regulation of metabolism of different nutrients in tumor cells and influencing the tumor microenvironment to enhance the immune response. In summary, this review summarizes metabolic reprogramming in cancer and its potential as a target for innovative therapeutic strategies, offering fresh perspectives on cancer treatment.
Collapse
Affiliation(s)
- Yuqiang Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yu Zhao
- Department of Thoracic Surgery, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China
| | - Huisheng Song
- Affiliated Qingyuan Hospital, Guangzhou Medica University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511500, China
| | - Yunting Li
- Department of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zihao Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zhiming Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jianzhu Zhao
- Department of oncology, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China
| | - Yuzheng Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jun Tang
- Department of Thoracic Surgery, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China.
| | - Maojin Yao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|
5
|
Thapa D, Kumar V, Naik B, Kumar V, Gupta AK, Mohanta YK, Mishra B, Rustagi S. Harnessing probiotic foods: managing cancer through gut health. Food Sci Biotechnol 2024; 33:2141-2160. [PMID: 39130664 PMCID: PMC11315834 DOI: 10.1007/s10068-024-01638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 08/13/2024] Open
Abstract
One of the greatest threats to global health is cancer. Probiotic foods have been shown to have therapeutic promise in the management of cancer, even though traditional treatments such as radiation therapy, chemotherapy, and surgery are still essential. The generation of anticarcinogenic compounds, immune system stimulation, and gut microbiota regulation are a few ways that probiotics when taken in sufficient quantities, might help health. The purpose of this review is to examine the therapeutic potential of probiotic foods in the management of cancer. Research suggests that certain strains of probiotics have anticancer effects by preventing the growth of cancer cells, triggering apoptosis, and reducing angiogenesis in new tumors. Probiotics have shown promise in mitigating treatment-related adverse effects, such as diarrhea, mucositis, and immunosuppression caused by chemotherapy, improving the general quality of life for cancer patients. However, there are several factors, such as patient-specific features, cancer subtype, and probiotic strain type and dosage, which affect how effective probiotic therapies are in managing cancer. More research is necessary to find the long-term safety and efficacy characteristics of probiotics as well as to clarify the best ways to incorporate them into current cancer treatment methods. Graphical abstract Graphical representation showing the role of probiotic foods in cancer management.
Collapse
Affiliation(s)
- Devika Thapa
- Department of Food Science and Technology, Graphic Era Deemed to be University, Clement Town, Dehradun, Uttarakhand 248002 India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand 248140 India
| | - Bindu Naik
- Department of Food Science and Technology, Graphic Era Deemed to be University, Clement Town, Dehradun, Uttarakhand 248002 India
- School of Agriculture, Graphic Era Hill University, Dehradun, Uttarakhand India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand 248140 India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era Deemed to be University, Clement Town, Dehradun, Uttarakhand 248002 India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9th Mile, Baridua, Ri-Bhoi, Meghalaya 793101 India
| | - Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology (CBIT), Gandipet, Hyderabad, Telangana 500075 India
| | - Sarvesh Rustagi
- Department of Food Technology, SALS, Uttaranchal University, Dehradun, 248007 Uttarakhand India
| |
Collapse
|
6
|
Wang S, Liu B, He H, Huang J, He F, He Y, Tao A. Cell-in-cell-mediated intercellular communication exacerbates the pro-inflammatory progression in asthma. Biochem Cell Biol 2024; 102:262-274. [PMID: 38567768 DOI: 10.1139/bcb-2023-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024] Open
Abstract
Cell-in-cell (CIC) structures have been suggested to mediate intracellular substance transport between cells and have been found widely in inflammatory lung tissue of asthma. The aim of this study was to investigate the significance of CIC structures in inflammatory progress of asthma. CIC structures and related inflammatory pathways were analyzed in asthmatic lung tissue and normal lung tissue of mouse model. In vitro, the activation of inflammatory pathways by CIC-mediated intercellular communication was analyzed by RNA-Seq and verified by Western blotting and immunofluorescence. Results showed that CIC structures of lymphocytes and alveolar epithelial cells in asthmatic lung tissue mediated intercellular substance (such as mitochondria) transfer and promoted pro-inflammation in two phases. At early phase, internal lymphocytes triggered inflammasome-dependent pro-inflammation and cell death of itself. Then, degraded lymphocytes released cellular contents such as mitochondria inside alveolar epithelial cells, further activated multi-pattern-recognition receptors and NF-kappa B signaling pathways of alveolar epithelial cells, and thereby amplified pro-inflammatory response in asthma. Our work supplements the mechanism of asthma pro-inflammation progression from the perspective of CIC structure of lymphocytes and alveolar epithelial cells, and provides a new idea for anti-inflammatory therapy of asthma.
Collapse
Affiliation(s)
- Shan Wang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Bowen Liu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Huiru He
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Jiahao Huang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Fangping He
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Ying He
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Ailin Tao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
7
|
Sun C, Zhan J, Li Y, Zhou C, Huang S, Zhu X, Huang K. Non-apoptotic regulated cell death mediates reprogramming of the tumour immune microenvironment by macrophages. J Cell Mol Med 2024; 28:e18348. [PMID: 38652105 PMCID: PMC11037416 DOI: 10.1111/jcmm.18348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/23/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Tumour immune microenvironment (TIME) plays an indispensable role in tumour progression, and tumour-associated macrophages (TAMs) are the most abundant immune cells in TIME. Non-apoptotic regulated cell death (RCD) can avoid the influence of tumour apoptosis resistance on anti-tumour immune response. Specifically, autophagy, ferroptosis, pyroptosis and necroptosis mediate the crosstalk between TAMs and tumour cells in TIME, thus reprogram TIME and affect the progress of tumour. In addition, although some achievements have been made in immune checkpoint inhibitors (ICIs), there is still defect that ICIs are only effective for some people because non-apoptotic RCD can bypass the apoptosis resistance of tumour. As a result, ICIs combined with targeting non-apoptotic RCD may be a promising solution. In this paper, the basic molecular mechanism of non-apoptotic RCD, the way in which non-apoptotic RCD mediates crosstalk between TAMs and tumour cells to reprogram TIME, and the latest research progress in targeting non-apoptotic RCD and ICIs are reviewed.
Collapse
Affiliation(s)
- Chengpeng Sun
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Yao Li
- The First Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Chulin Zhou
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Shuo Huang
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Xingen Zhu
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- JXHC Key Laboratory of Neurological MedicineNanchangJiangxiP. R. China
| | - Kai Huang
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- JXHC Key Laboratory of Neurological MedicineNanchangJiangxiP. R. China
| |
Collapse
|
8
|
Kim S, Lee D, Kim SE, Overholtzer M. Entosis: the core mechanism and crosstalk with other cell death programs. Exp Mol Med 2024; 56:870-876. [PMID: 38565900 PMCID: PMC11059358 DOI: 10.1038/s12276-024-01227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
Cell death pathways play critical roles in organism development and homeostasis as well as in the pathogenesis of various diseases. While studies over the last decade have elucidated numerous different forms of cell death that can eliminate cells in various contexts, how certain mechanisms impact physiology is still not well understood. Moreover, recent studies have shown that multiple forms cell death can occur in a cell population, with different forms of death eliminating individual cells. Here, we aim to describe the known molecular mechanisms of entosis, a non-apoptotic cell engulfment process, and discuss signaling mechanisms that control its induction as well as its possible crosstalk with other cell death mechanisms.
Collapse
Affiliation(s)
- Sunghoon Kim
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Seoul, Republic of Korea
| | - Donghyuk Lee
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Eun Kim
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, Republic of Korea.
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, Republic of Korea.
- L-HOPE Program for Community-Based Total Learning Health Systems, Seoul, Republic of Korea.
| | - Michael Overholtzer
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA.
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- BCMB Allied Program, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
9
|
Kapsetaki SE, Cisneros LH, Maley CC. Cell-in-cell phenomena across the tree of life. Sci Rep 2024; 14:7535. [PMID: 38553457 PMCID: PMC10980697 DOI: 10.1038/s41598-024-57528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Cells in obligately multicellular organisms by definition have aligned fitness interests, minimum conflict, and cannot reproduce independently. However, some cells eat other cells within the same body, sometimes called cell cannibalism. Such cell-in-cell events have not been thoroughly discussed in the framework of major transitions to multicellularity. We performed a systematic screening of 508 articles, from which we chose 115 relevant articles in a search for cell-in-cell events across the tree of life, the age of cell-in-cell-related genes, and whether cell-in-cell events are associated with normal multicellular development or cancer. Cell-in-cell events are found across the tree of life, from some unicellular to many multicellular organisms, including non-neoplastic and neoplastic tissue. Additionally, out of the 38 cell-in-cell-related genes found in the literature, 14 genes were over 2.2 billion years old, i.e., older than the common ancestor of some facultatively multicellular taxa. All of this suggests that cell-in-cell events may have originated before the origins of obligate multicellularity. Thus, our results show that cell-in-cell events exist in obligate multicellular organisms, but are not a defining feature of them. The idea of eradicating cell-in-cell events from obligate multicellular organisms as a way of treating cancer, without considering that cell-in-cell events are also part of normal development, should be abandoned.
Collapse
Affiliation(s)
- Stefania E Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA.
- Department of Biology, School of Arts and Sciences, Tufts University, Medford, MA, USA.
| | - Luis H Cisneros
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
10
|
Gaptulbarova KА, Tsydenova IA, Dolgasheva DS, Kravtsova EA, Ibragimova MK, Vtorushin SV, Litviakov NV. Mechanisms and significance of entosis for tumour growth and progression. Cell Death Discov 2024; 10:109. [PMID: 38429285 PMCID: PMC10907354 DOI: 10.1038/s41420-024-01877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
To date, numerous mechanisms have been identified in which one cell engulfs another, resulting in the creation of 'cell-in-cell' (CIC) structures, which subsequently cause cell death. One of the mechanisms of formation of these structures is entosis, which is presumably associated with possible carcinogenesis and tumour progression. The peculiarity of the process is that entotic cells themselves actively invade the host cell, and afterwards have several possible variants of fate. Entotic formations are structures where one cell is engulfed by another cell, creating a cell-in-cell structure. The nucleus of the outer cell has a crescent shape, while the inner cell is surrounded by a large entotic vacuole. These characteristics differentiate entosis from cell cannibalism. It's worth noting that entotic formations are not necessarily harmful and may even be beneficial in some cases. In this article we will consider the mechanism of entosis and variants of entotic cell death, and also put forward hypothesis about possible variants of participation of this process on the formation and progression of cancer. This article also presents our proposed classification of functional forms of entosis.
Collapse
Affiliation(s)
- Ksenia Аndreevna Gaptulbarova
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia.
- Siberian State Medical University, Moskovsky trakt, 2, 634050, Tomsk, Russia.
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia.
| | - Irina Alexandrovna Tsydenova
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| | - Daria Sergeevna Dolgasheva
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| | - Ekaterina Andreevna Kravtsova
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| | - Marina Konstantinovna Ibragimova
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- Siberian State Medical University, Moskovsky trakt, 2, 634050, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| | - Sergey Vladimirovich Vtorushin
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- Siberian State Medical University, Moskovsky trakt, 2, 634050, Tomsk, Russia
| | - Nikolai Vasilievich Litviakov
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- Siberian State Medical University, Moskovsky trakt, 2, 634050, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| |
Collapse
|
11
|
Tyagi IS, Tsui HYC, Chen S, Li X, Mat WK, Khan MA, Choy LB, Chan KYA, Chan TMD, Ng CPS, Ng HK, Poon WS, Xue H. Non-mitotic proliferation of malignant cancer cells revealed through live-cell imaging of primary and cell-line cultures. Cell Div 2024; 19:3. [PMID: 38341593 DOI: 10.1186/s13008-024-00109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Anti-mitosis has been a key strategy of anti-cancer therapies, targeting at a fundamental property of cancer cells, their non-controllable proliferation due to overactive mitotic divisions. For improved anti-cancer therapies, it is important to find out whether cancer cells can proliferate independent of mitosis and become resistant to anti-mitotic agents. RESULTS In this study, live-cell imaging was applied to both primary-cultures of tumor cells, and immortalized cancer cell lines, to detect aberrant proliferations. Cells isolated from various malignant tumors, such as Grade-III hemangiopericytoma, atypical meningioma, and metastatic brain tumor exhibit distinct cellular behaviors, including amoeboid sequestration, tailing, tunneling, nucleic DNA leakage, as well as prokaryote-like division such as binary fission and budding-shedding, which are collectively referred to and reported as 'non-mitotic proliferation' in this study. In contrast, benign tumors including Grade-I hemangiopericytoma and meningioma were not obvious in such behaviors. Moreover, when cultured in medium free of any anti-cancer drugs, cells from a recurrent Grade-III hemangiopericytoma that had been subjected to pre-operation adjuvant chemotherapy gradually shifted from non-mitotic proliferation to abnormal mitosis in the form of daughter number variation (DNV) and endomitosis, and eventually regular mitosis. Similarly, when treated with the anti-cancer drugs Epirubicin or Cisplatin, the cancer cell lines HeLa and A549 showed a shift from regular mitosis to abnormal mitosis, and further to non-mitosis as the dominant mode of proliferation with increasing drug concentrations. Upon removal of the drugs, the cells reversed back to regular mitosis with only minor occurrences of abnormal mitosis, accompanied by increased expression of the stem cell markers ALDH1, Sox, Oct4 and Nanog. CONCLUSIONS The present study revealed that various types of malignant, but not benign, cancer cells exhibited cellular behaviors indicative of non-mitotic proliferation such as binary fission, which was typical of prokaryotic cell division, suggesting cell level atavism. Moreover, reversible transitions through the three modes of proliferation, i.e., mitosis, abnormal mitosis and non-mitosis, were observed when anticancer drug concentrations were grossly increased inducing non-mitosis or decreased favoring mitosis. Potential clinical significance of non-mitotic proliferation in cancer drug resistance and recurrence, and its relationship with cancer stem cells are worthy of further studies.
Collapse
Affiliation(s)
- Iram Shazia Tyagi
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Ho Yin Calvin Tsui
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Si Chen
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Xinyi Li
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Wai-Kin Mat
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Muhammad A Khan
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Lucas Brendan Choy
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Ka-Yin Aden Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tat-Ming Danny Chan
- Division of Neurosurgery & CUHK Otto Wong Brain Tumour Centre, Department of Surgery, The Chinese University of Hong Kong (CUHK), Hong Kong, Hong Kong SAR, China
| | - Chi-Ping Stephanie Ng
- Division of Neurosurgery & CUHK Otto Wong Brain Tumour Centre, Department of Surgery, The Chinese University of Hong Kong (CUHK), Hong Kong, Hong Kong SAR, China
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wai Sang Poon
- Division of Neurosurgery & CUHK Otto Wong Brain Tumour Centre, Department of Surgery, The Chinese University of Hong Kong (CUHK), Hong Kong, Hong Kong SAR, China.
- Department of Neurosurgery, Neuro-Medical Centre, University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, Guangdong, China.
| | - Hong Xue
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
- Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
- Guangzhou HKUST Fok Ying Tung Research Institute, Science and Technology Building, Nansha Information Technology Park, Nansha, 511458, Guangzhou, China.
| |
Collapse
|
12
|
Sieler M, Dittmar T. Cell Fusion and Syncytia Formation in Cancer. Results Probl Cell Differ 2024; 71:433-465. [PMID: 37996689 DOI: 10.1007/978-3-031-37936-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The natural phenomenon of cell-cell fusion does not only take place in physiological processes, such as placentation, myogenesis, or osteoclastogenesis, but also in pathophysiological processes, such as cancer. More than a century ago postulated, today the hypothesis that the fusion of cancer cells with normal cells leads to the formation of cancer hybrid cells with altered properties is in scientific consensus. Some studies that have investigated the mechanisms and conditions for the fusion of cancer cells with other cells, as well as studies that have characterized the resulting cancer hybrid cells, are presented in this review. Hypoxia and the cytokine TNFα, for example, have been found to promote cell fusion. In addition, it has been found that both the protein Syncytin-1, which normally plays a role in placentation, and phosphatidylserine signaling on the cell membrane are involved in the fusion of cancer cells with other cells. In human cancer, cancer hybrid cells were detected not only in the primary tumor, but also in the circulation of patients as so-called circulating hybrid cells, where they often correlated with a worse outcome. Although some data are available, the questions of how and especially why cancer cells fuse with other cells are still not fully answered.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany.
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
13
|
Mishra AK, Rodriguez M, Torres AY, Smith M, Rodriguez A, Bond A, Morrissey MA, Montell DJ. Hyperactive Rac stimulates cannibalism of living target cells and enhances CAR-M-mediated cancer cell killing. Proc Natl Acad Sci U S A 2023; 120:e2310221120. [PMID: 38109551 PMCID: PMC10756302 DOI: 10.1073/pnas.2310221120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
The 21kD GTPase Rac is an evolutionarily ancient regulator of cell shape and behavior. Rac2 is predominantly expressed in hematopoietic cells where it is essential for survival and motility. The hyperactivating mutation Rac2E62K also causes human immunodeficiency, although the mechanism remains unexplained. Here, we report that in Drosophila, hyperactivating Rac stimulates ovarian cells to cannibalize neighboring cells, destroying the tissue. We then show that hyperactive Rac2E62K stimulates human HL60-derived macrophage-like cells to engulf and kill living T cell leukemia cells. Primary mouse Rac2+/E62K bone-marrow-derived macrophages also cannibalize primary Rac2+/E62K T cells due to a combination of macrophage hyperactivity and T cell hypersensitivity to engulfment. Additionally, Rac2+/E62K macrophages non-autonomously stimulate wild-type macrophages to engulf T cells. Rac2E62K also enhances engulfment of target cancer cells by chimeric antigen receptor-expressing macrophages (CAR-M) in a CAR-dependent manner. We propose that Rac-mediated cell cannibalism may contribute to Rac2+/E62K human immunodeficiency and enhance CAR-M cancer immunotherapy.
Collapse
Affiliation(s)
- Abhinava K. Mishra
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Melanie Rodriguez
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Alba Yurani Torres
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Morgan Smith
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Anthony Rodriguez
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Meghan A. Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Denise J. Montell
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| |
Collapse
|
14
|
Narykov O, Zhu Y, Brettin T, Evrard YA, Partin A, Shukla M, Xia F, Clyde A, Vasanthakumari P, Doroshow JH, Stevens RL. Integration of Computational Docking into Anti-Cancer Drug Response Prediction Models. Cancers (Basel) 2023; 16:50. [PMID: 38201477 PMCID: PMC10777918 DOI: 10.3390/cancers16010050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
Cancer is a heterogeneous disease in that tumors of the same histology type can respond differently to a treatment. Anti-cancer drug response prediction is of paramount importance for both drug development and patient treatment design. Although various computational methods and data have been used to develop drug response prediction models, it remains a challenging problem due to the complexities of cancer mechanisms and cancer-drug interactions. To better characterize the interaction between cancer and drugs, we investigate the feasibility of integrating computationally derived features of molecular mechanisms of action into prediction models. Specifically, we add docking scores of drug molecules and target proteins in combination with cancer gene expressions and molecular drug descriptors for building response models. The results demonstrate a marginal improvement in drug response prediction performance when adding docking scores as additional features, through tests on large drug screening data. We discuss the limitations of the current approach and provide the research community with a baseline dataset of the large-scale computational docking for anti-cancer drugs.
Collapse
Affiliation(s)
- Oleksandr Narykov
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
| | - Yitan Zhu
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
| | - Thomas Brettin
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
| | - Yvonne A. Evrard
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
| | - Alexander Partin
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
| | - Maulik Shukla
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
| | - Fangfang Xia
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
| | - Austin Clyde
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
- Department of Computer Science, The University of Chicago, Chicago, IL 60637, USA
| | - Priyanka Vasanthakumari
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
| | - James H. Doroshow
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA;
| | - Rick L. Stevens
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
- Department of Computer Science, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Song J, Xu R, Zhang H, Xue X, Ruze R, Chen Y, Yin X, Wang C, Zhao Y. Cell-in-Cell-Mediated Entosis Reveals a Progressive Mechanism in Pancreatic Cancer. Gastroenterology 2023; 165:1505-1521.e20. [PMID: 37657757 DOI: 10.1053/j.gastro.2023.08.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy with high intratumoral heterogeneity. There is a lack of effective therapeutics for PDAC. Entosis, a form of nonapoptotic regulated cell death mediated by cell-in-cell structures (CICs), has been reported in multiple cancers. However, the role of entosis in PDAC progression remains unclear. METHODS CICs were evaluated using immunohistochemistry and immunofluorescence staining. The formation of CICs was induced by suspension culture. Through fluorescence-activated cell sorting and single-cell RNA sequencing, entosis-forming cells were collected and their differential gene expression was analyzed. Cell functional assays and mouse models were used to investigate malignant phenotypes. Clinical correlations between entosis and PDAC were established by retrospective analysis. RESULTS Entosis was associated with an unfavorable prognosis for patients with PDAC and was more prevalent in liver metastases than in primary tumors. The single-cell RNA sequencing results revealed that several oncogenes were up-regulated in entosis-forming cells compared with parental cells. These highly entotic cells demonstrated higher oncogenic characteristics in vitro and in vivo. NET1, neuroepithelial cell transforming gene 1, is an entosis-related gene that plays a pivotal role in PDAC progression and is correlated with poor outcomes. CONCLUSIONS Entosis is correlated with PDAC progression, especially in liver metastasis. NET1 is a newly validated entosis-related gene and a molecular marker of poor outcomes. PDAC cells generate a highly aggressive subpopulation marked by up-regulated NET1 via entosis, which may drive PDAC progression.
Collapse
Affiliation(s)
- Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, People's Republic of China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, People's Republic of China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Hui Zhang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Diseases, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xuemin Xue
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, People's Republic of China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, People's Republic of China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, People's Republic of China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, People's Republic of China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China; Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, People's Republic of China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
16
|
Ghislanzoni S, Kang JW, Bresci A, Masella A, Kobayashi-Kirschvink KJ, Polli D, Bongarzone I, So PTC. Optical Diffraction Tomography and Raman Confocal Microscopy for the Investigation of Vacuoles Associated with Cancer Senescent Engulfing Cells. BIOSENSORS 2023; 13:973. [PMID: 37998148 PMCID: PMC10669708 DOI: 10.3390/bios13110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Wild-type p53 cancer therapy-induced senescent cells frequently engulf and degrade neighboring ones inside a massive vacuole in their cytoplasm. After clearance of the internalized cell, the vacuole persists, seemingly empty, for several hours. Despite large vacuoles being associated with cell death, this process is known to confer a survival advantage to cancer engulfing cells, leading to therapy resistance and tumor relapse. Previous attempts to resolve the vacuolar structure and visualize their content using dyes were unsatisfying for lack of known targets and ineffective dye penetration and/or retention. Here, we overcame this problem by applying optical diffraction tomography and Raman spectroscopy to MCF7 doxorubicin-induced engulfing cells. We demonstrated a real ability of cell tomography and Raman to phenotype complex microstructures, such as cell-in-cells and vacuoles, and detect chemical species in extremely low concentrations within live cells in a completely label-free fashion. We show that vacuoles had a density indistinguishable to the medium, but were not empty, instead contained diluted cell-derived macromolecules, and we could discern vacuoles from medium and cells using their Raman fingerprint. Our approach is useful for the noninvasive investigation of senescent engulfing (and other peculiar) cells in unperturbed conditions, crucial for a better understanding of complex biological processes.
Collapse
Affiliation(s)
- Silvia Ghislanzoni
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, 20133 Milan, Italy;
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (A.B.); (K.J.K.-K.); (P.T.C.S.)
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (A.B.); (K.J.K.-K.); (P.T.C.S.)
| | - Arianna Bresci
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (A.B.); (K.J.K.-K.); (P.T.C.S.)
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy;
| | | | - Koseki J. Kobayashi-Kirschvink
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (A.B.); (K.J.K.-K.); (P.T.C.S.)
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dario Polli
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy;
- CNR Institute for Photonics and Nanotechnologies (IFN), Piazza L. da Vinci 32, 20133 Milan, Italy
| | - Italia Bongarzone
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, 20133 Milan, Italy;
| | - Peter T. C. So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (A.B.); (K.J.K.-K.); (P.T.C.S.)
| |
Collapse
|
17
|
Gheorghe RO, Grosu AV, Magercu M, Ghenghea MS, Zbarcea CE, Tanase A, Negres S, Filippi A, Chiritoiu G, Gherghiceanu M, Dinescu S, Gaina G, Sapunar D, Ristoiu V. Switching Rat Resident Macrophages from M1 to M2 Phenotype by Iba1 Silencing Has Analgesic Effects in SNL-Induced Neuropathic Pain. Int J Mol Sci 2023; 24:15831. [PMID: 37958812 PMCID: PMC10648812 DOI: 10.3390/ijms242115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Resident macrophages from dorsal root ganglia are important for the development of traumatic-induced neuropathic pain. In the first 5-7 days after a traumatic sciatic nerve injury (i.e., spinal nerve ligation (SNL), spared nerve injury (SNI), sciatic nerve transection or sciatic nerve ligation and transection), Ionized binding adapter protein 1 (Iba1) (+) resident macrophages cluster around dorsal root ganglia neurons, possibly contributing to nerve injury-induced hypersensitivity. Since infiltrating macrophages gradually recruited to the lesion site peak at about 7 days, the first few days post-lesion offer a window of opportunity when the contribution of Iba1 (+) resident macrophages to neuropathic pain pathogenesis could be investigated. Iba1 is an actin cross-linking cytoskeleton protein, specifically located only in macrophages and microglia. In this study, we explored the contribution of rat Iba1 (+) macrophages in SNL-induced neuropathic pain by using intra-ganglionic injections of naked Iba1-siRNA, delivered at the time the lesion occurred. The results show that 5 days after Iba1 silencing, Iba1 (+) resident macrophages are switched from an M1 (pro-inflammatory) phenotype to an M2 (anti-inflammatory) phenotype, which was confirmed by a significant decrease of M1 markers (CD32 and CD86), a significant increase of M2 markers (CD163 and Arginase-1), a reduced secretion of pro-inflammatory cytokines (IL-6, TNF-α and IL-1β) and an increased release of pro-regenerative factors (BDNF, NGF and NT-3) which initiated the regrowth of adult DRG neurites and reduced SNL-induced neuropathic pain. Our data show for the first time, that it is possible to induce macrophages towards an anti-inflammatory phenotype by interacting with their cytoskeleton.
Collapse
Affiliation(s)
- Roxana-Olimpia Gheorghe
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Andreea Violeta Grosu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Melania Magercu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Mihail-Sebastian Ghenghea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Cristina Elena Zbarcea
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Alexandra Tanase
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Simona Negres
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Alexandru Filippi
- Department of Biophysics, University of Medicine and Pharmacy “Carol Davila”, 8 Eroilor Sanitari Blvd., 050474 Bucharest, Romania
| | - Gabriela Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Romanian Academy, 2996 Splaiul Independentei 296, District 6, 060031 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology and Bioimaging Laboratory, Victor Babeș National Institute of Pathology Bucharest, 99-101 Splaiul Independentei, District 5, 050096 Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| | - Gisela Gaina
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| | - Damir Sapunar
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Violeta Ristoiu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| |
Collapse
|
18
|
Okuyama K, Fukushima H, Naruse T, Yanamoto S. Cell-in-cell structure in cancer: evading strategies from anti-cancer therapies. Front Oncol 2023; 13:1248097. [PMID: 37790755 PMCID: PMC10544585 DOI: 10.3389/fonc.2023.1248097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
One of the regulated forms of cell death is the cell-in-cell (CIC) structure, in which a surviving cell is engulfed by another cell, a mechanism that causes the death of the engulfed cell by an adjacent cell. Several investigators have previously shown that the presence of CICs is an independent risk factor significantly associated with decreased survival in patients with various types of cancer. In this review, we summarize the role of CIC in the tumor microenvironment (TME), including changes and crosstalk of molecules and proteins in the surrounding CIC, and the role of these factors in contributing to therapeutic resistance acquisition. Moreover, CIC structure formation is influenced by the modulation of TME, which may lead to changes in cellular properties. Future use of CIC as a clinical diagnostic tool will require a better understanding of the effects of chemotherapy on CIC, biomarkers for each CIC formation process, and the development of automated CIC detection methods in tissue sections of tumor specimens.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromasa Fukushima
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomofumi Naruse
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
19
|
Unseld LH, Hildebrand LS, Putz F, Büttner-Herold M, Daniel C, Fietkau R, Distel LV. Non-Professional Phagocytosis Increases in Melanoma Cells and Tissues with Increasing E-Cadherin Expression. Curr Oncol 2023; 30:7542-7552. [PMID: 37623028 PMCID: PMC10453162 DOI: 10.3390/curroncol30080547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Non-professional phagocytosis in cancer has been increasingly studied in recent decades. In malignant melanoma metastasis, cell-in-cell structures have been described as a sign of cell cannibalism. To date, only low rates of cell-in-cell structures have been described in patients with malignant melanoma. To investigate these findings further, we examined twelve primary melanoma cell lines in both adherent and suspended co-incubation for evidence of engulfment. In addition, 88 malignant melanoma biopsies and 16 healthy tissue samples were evaluated. E-cadherin levels were determined in the cell lines and tissues. All primary melanoma cell lines were capable of phagocytosis, and phagocytosis increased when cells were in suspension during co-incubation. Cell-in-cell structures were also detected in most of the tissue samples. Early T stages and increasingly advanced N and M stages have correspondingly lower rates of cell-in-cell structures. Non-professional phagocytosis was also present in normal skin tissue. Non-professional phagocytosis appears to be a ubiquitous mechanism in malignant melanoma. The absence of phagocytosis in metastases may be one reason for the high rate of metastasis in malignant melanoma.
Collapse
Affiliation(s)
- Luzie Helene Unseld
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (L.H.U.); (L.S.H.); (F.P.); (R.F.)
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Laura S. Hildebrand
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (L.H.U.); (L.S.H.); (F.P.); (R.F.)
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (L.H.U.); (L.S.H.); (F.P.); (R.F.)
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.B.-H.); (C.D.)
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.B.-H.); (C.D.)
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (L.H.U.); (L.S.H.); (F.P.); (R.F.)
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Luitpold Valentin Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (L.H.U.); (L.S.H.); (F.P.); (R.F.)
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| |
Collapse
|
20
|
Abstract
Maintenance of protein homeostasis and organelle integrity and function is critical for cellular homeostasis and cell viability. Autophagy is the principal mechanism that mediates the delivery of various cellular cargoes to lysosomes for degradation and recycling. A myriad of studies demonstrate important protective roles for autophagy against disease. However, in cancer, seemingly opposing roles of autophagy are observed in the prevention of early tumour development versus the maintenance and metabolic adaptation of established and metastasizing tumours. Recent studies have addressed not only the tumour cell intrinsic functions of autophagy, but also the roles of autophagy in the tumour microenvironment and associated immune cells. In addition, various autophagy-related pathways have been described, which are distinct from classical autophagy, that utilize parts of the autophagic machinery and can potentially contribute to malignant disease. Growing evidence on how autophagy and related processes affect cancer development and progression has helped guide efforts to design anticancer treatments based on inhibition or promotion of autophagy. In this Review, we discuss and dissect these different functions of autophagy and autophagy-related processes during tumour development, maintenance and progression. We outline recent findings regarding the role of these processes in both the tumour cells and the tumour microenvironment and describe advances in therapy aimed at autophagy processes in cancer.
Collapse
Affiliation(s)
- Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
| | - Noor Gammoh
- MRC Institute of Genetics & Cancer, The University of Edinburgh, Edinburgh, UK.
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
21
|
Druzhkova I, Ignatova N, Shirmanova M. Cell-in-Cell Structures in Gastrointestinal Tumors: Biological Relevance and Clinical Applications. J Pers Med 2023; 13:1149. [DOI: https:/doi.org/10.3390/jpm13071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023] Open
Abstract
This review summarizes information about cell-in-cell (CIC) structures with a focus on gastrointestinal tumors. The phenomenon when one cell lives in another one has attracted an attention of researchers over the past decades. We briefly discuss types of CIC structures and mechanisms of its formation, as well as the biological basis and consequences of the cell-engulfing process. Numerous clinico-histopathological studies demonstrate the significance of these structures as prognostic factors, mainly correlated with negative prognosis. The presence of CIC structures has been identified in all gastrointestinal tumors. However, the majority of studies concern pancreatic cancer. In this field, in addition to the assessment of the prognostic markers, the attempts to manipulate the ability of cells to form CISs have been done in order to stimulate the death of the inner cell. Number of CIC structures also correlates with genetic features for some gastrointestinal tu-mors. The role of CIC structures in the responses of tumors to therapies, both chemotherapy and immunotherapy, seems to be the most poorly studied. However, there is some evidence of involvement of CIC structures in treatment failure. Here, we summarized the current literature on CIC structures in cancer with a focus on gastrointestinal tumors and specified future perspectives for investigation.
Collapse
Affiliation(s)
- Irina Druzhkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | - Nadezhda Ignatova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | - Marina Shirmanova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| |
Collapse
|
22
|
Druzhkova I, Ignatova N, Shirmanova M. Cell-in-Cell Structures in Gastrointestinal Tumors: Biological Relevance and Clinical Applications. J Pers Med 2023; 13:1149. [PMID: 37511762 PMCID: PMC10381133 DOI: 10.3390/jpm13071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
This review summarizes information about cell-in-cell (CIC) structures with a focus on gastrointestinal tumors. The phenomenon when one cell lives in another one has attracted an attention of researchers over the past decades. We briefly discuss types of CIC structures and mechanisms of its formation, as well as the biological basis and consequences of the cell-engulfing process. Numerous clinico-histopathological studies demonstrate the significance of these structures as prognostic factors, mainly correlated with negative prognosis. The presence of CIC structures has been identified in all gastrointestinal tumors. However, the majority of studies concern pancreatic cancer. In this field, in addition to the assessment of the prognostic markers, the attempts to manipulate the ability of cells to form CISs have been done in order to stimulate the death of the inner cell. Number of CIC structures also correlates with genetic features for some gastrointestinal tu-mors. The role of CIC structures in the responses of tumors to therapies, both chemotherapy and immunotherapy, seems to be the most poorly studied. However, there is some evidence of involvement of CIC structures in treatment failure. Here, we summarized the current literature on CIC structures in cancer with a focus on gastrointestinal tumors and specified future perspectives for investigation.
Collapse
Affiliation(s)
- Irina Druzhkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | - Nadezhda Ignatova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | - Marina Shirmanova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| |
Collapse
|
23
|
Wang S, Liu B, Huang J, He H, Li L, Tao A. Cell-in-cell promotes lung cancer malignancy by enhancing glucose metabolism through mitochondria transfer. Exp Cell Res 2023:113665. [PMID: 37236579 DOI: 10.1016/j.yexcr.2023.113665] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Heterotypic cell-in-cell structure (CICs) is the definition of the entry of one type of living cells into another type of cell. CICs between immune cells and tumor cells have been found to correlate with malignancy in many cancers. Since tumor immune microenvironment promotes non-small cell lung cancer (NSCLC) progression and drug resistance, we wondered the potential significance of heterotypic CICs in NSCLC. Heterotypic CICs was analyzed by histochemistry in an expanded spectrum of clinical lung cancer tissue specimens. In vitro study was performed using the mouse lung cancer cell line LLC and splenocytes. Our results revealed that CICs formed by lung cancer cells and infiltrated lymphocytes were correlated with malignancy of NSCLC. In addition, we found CICs mediated the transfer of lymphocyte mitochondria to tumor cells, and promoted cancer cell proliferation and anti-cytotoxicity by activating MAPK pathway and up-regulating PD-L1 expression. Furthermore, CICs induces glucose metabolism reprogramming of lung cancer cells by upregulating glucose intake and glycolytic enzyme. Our findings suggest that CICs formed by lung cancer cell and lymphocyte contribute to NSCLC progression and reprogramming of glucose metabolism, and might represent a previously undescribed pathway for drug resistance of NSCLC.
Collapse
Affiliation(s)
- Shan Wang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China
| | - Bowen Liu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jiahao Huang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China
| | - Huiru He
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China
| | - Linmei Li
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China
| | - Ailin Tao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
24
|
Chikaishi W, Higashi T, Hayashi H, Hanamatsu Y, Kito Y, Futamura M, Matsuhashi N, Saigo C, Takeuchi T. Potential activity of adiponectin-expressing regulatory T cells against triple-negative breast cancer cells through the cell-in-cell phenomenon. Thorac Cancer 2023. [PMID: 37220892 DOI: 10.1111/1759-7714.14940] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND A population of regulatory T cells (Treg), which reside within thymic nurse cell complexes, express adiponectin and abrogate breast cancer development in transgenic mice. In this study, we examined whether adiponectin-expressing Treg could impair triple-negative breast cancer, which is defined by a lack of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor-2. METHODS CD4- and CD25-positive cells were sorted from cultured T lymphocytes of a previously characterized experimental thymic tumor model composed of thymic nurse cells and abundant lymphoid stroma. These sorted cells were examined for FOXP3 and adiponectin immunoreactivity and subsequently exposed to triple-negative breast cancer MDA-MB-157 and -231 cells. RESULTS Adiponectin-expressing Treg were obtained by CD4- and CD25-positive sorting and cell death was induced in triple-negative breast cancer cells through the cell-in-cell phenomenon. CONCLUSIONS Adiponectin-expressing Treg may be candidates for adoptive cell therapy against triple-negative breast cancer.
Collapse
Affiliation(s)
- Wakana Chikaishi
- Department of Gastroenterological Surgery and Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiya Higashi
- Department of Gastroenterological Surgery and Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirokatsu Hayashi
- Department of Gastroenterological Surgery and Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuki Hanamatsu
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yusuke Kito
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Manabu Futamura
- Department of Breast Surgery, Gifu University Hospital, Gifu, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery and Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chiemi Saigo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| |
Collapse
|
25
|
Ren J, Fan L. A reliable elasticity sensing method for analysis of cell entosis using microfluidic cytometer. Biomed Eng Lett 2023; 13:175-183. [PMID: 37124106 PMCID: PMC10130291 DOI: 10.1007/s13534-023-00264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
Cell entosis is a novel cell death process starting from cell-in-cell invasion. In general, cancer cells own higher incidence rate of cell entosis comparing to non-cancerous cells. Studies arguing whether cell entosis is a tumor suppressing process or a tumor accelerating process can deepen our understanding of tumor development. Cell elasticity is recognized as one of tumor malignant biomarkers. There have been some researchers studying cell elasticity in cell entosis. However, existing cell elasticity sensing technique (i.e. micropipette aspiration) can hardly be reliable neither high-throughput. In this work, we introduce an elasticity sensing method for quantifying both cell elasticity in cell-in-cell structures and single floating cells using a microfluidic cytometer. We not only argue our cell elasticity sensing method is reliable for already occurred entosis but also apply such method on predicting the "outer" cells in entosis of different cell types. The elasticity sensing method proposed in this manuscript is able to provide an effective and reliable way to further study deeper mechanism in cell entosis. Supplementary Information The online version contains supplementary material available at 10.1007/s13534-023-00264-0.
Collapse
Affiliation(s)
- Jifeng Ren
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069 China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069 China
| | - Lei Fan
- Centre for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057 China
| |
Collapse
|
26
|
D'Imprima E, Garcia Montero M, Gawrzak S, Ronchi P, Zagoriy I, Schwab Y, Jechlinger M, Mahamid J. Light and electron microscopy continuum-resolution imaging of 3D cell cultures. Dev Cell 2023; 58:616-632.e6. [PMID: 36990090 PMCID: PMC10114294 DOI: 10.1016/j.devcel.2023.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
3D cell cultures, in particular organoids, are emerging models in the investigation of healthy or diseased tissues. Understanding the complex cellular sociology in organoids requires integration of imaging modalities across spatial and temporal scales. We present a multi-scale imaging approach that traverses millimeter-scale live-cell light microscopy to nanometer-scale volume electron microscopy by performing 3D cell cultures in a single carrier that is amenable to all imaging steps. This allows for following organoids' growth, probing their morphology with fluorescent markers, identifying areas of interest, and analyzing their 3D ultrastructure. We demonstrate this workflow on mouse and human 3D cultures and use automated image segmentation to annotate and quantitatively analyze subcellular structures in patient-derived colorectal cancer organoids. Our analyses identify local organization of diffraction-limited cell junctions in compact and polarized epithelia. The continuum-resolution imaging pipeline is thus suited to fostering basic and translational organoid research by simultaneously exploiting the advantages of light and electron microscopy.
Collapse
Affiliation(s)
- Edoardo D'Imprima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Marta Garcia Montero
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sylwia Gawrzak
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Martin Jechlinger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
27
|
Wang R, Zhong H, Wang C, Huang X, Huang A, Du N, Wang D, Sun Q, He M. Tumor malignancy by genetic transfer between cells forming cell-in-cell structures. Cell Death Dis 2023; 14:195. [PMID: 36914619 PMCID: PMC10011543 DOI: 10.1038/s41419-023-05707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023]
Abstract
Cell-in-cell structures (CICs) refer to a type of unique structure with one or more cells within another one, whose biological outcomes are poorly understood. The present study aims to investigate the effects of CICs formation on tumor progression. Using genetically marked hepatocellular cancer cell lines, we explored the possibility that tumor cells might acquire genetic information and malignant phenotypes from parental cells undergoing CICs formation. The present study showed that the derivatives, isolated from CICs formed between two subpopulations by flow cytometry sorting, were found to inherit aggressive features from the parental cells, manifested with increased abilities in both proliferation and invasiveness. Consistently, the CICs clones expressed a lower level of E-cadherin and a higher level of Vimentin, ZEB-1, Fibronectin, MMP9, MMP2 and Snail as compared with the parental cells, indicating epithelial-mesenchymal transition. Remarkably, the new derivatives exhibited significantly enhanced tumorigenicity in the xenograft mouse models. Moreover, whole exome sequencing analysis identified a group of potential genes which were involved in CIC-mediated genetic transfer. These results are consistent with a role of genetic transfer by CICs formation in genomic instability and malignancy of tumor cells, which suggest that the formation of CICs may promote genetic transfer and gain of malignancy during tumor progression.
Collapse
Affiliation(s)
- Ruizhi Wang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China.,Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Zhong
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Chenxi Wang
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China.,Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China
| | - Xiaohui Huang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Anpei Huang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Nannan Du
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China.,Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China
| | - Dong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China. .,Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China.
| | - Meifang He
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
28
|
Leak L, Dixon SJ. Surveying the landscape of emerging and understudied cell death mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119432. [PMID: 36690038 PMCID: PMC9969746 DOI: 10.1016/j.bbamcr.2023.119432] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Cell death can be a highly regulated process. A large and growing number of mammalian cell death mechanisms have been described over the past few decades. Major pathways with established roles in normal or disease biology include apoptosis, necroptosis, pyroptosis and ferroptosis. However, additional non-apoptotic cell death mechanisms with unique morphological, genetic, and biochemical features have also been described. These mechanisms may play highly specialized physiological roles or only become activated in response to specific lethal stimuli or conditions. Understanding the nature of these emerging and understudied mechanisms may provide new insight into cell death biology and suggest new treatments for diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Logan Leak
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Lalnunthangi A, Dakpa G, Tiwari S. Multifunctional role of the ubiquitin proteasome pathway in phagocytosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:179-217. [PMID: 36631192 DOI: 10.1016/bs.pmbts.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phagocytosis is a specialized form of endocytosis where large cells and particles (>0.5μm) are engulfed by the phagocytic cells, and ultimately digested in the phagolysosomes. This process not only eliminates unwanted particles and pathogens from the extracellular sources, but also eliminates apoptotic cells within the body, and is critical for maintenance of tissue homeostasis. It is believed that both endocytosis and phagocytosis share common pathways after particle internalization, but specialized features and differences between these two routes of internalization are also likely. The recruitment and removal of each protein/particle during the maturation of endocytic/phagocytic vesicles has to be tightly regulated to ensure their timely action. Ubiquitin proteasome pathway (UPP), degrades unwanted proteins by post-translational modification of proteins with chains of conserved protein Ubiquitin (Ub), with subsequent recognition of Ub chains by the 26S proteasomes and substrate degradation by this protease. This pathway utilizes different Ub linkages to modify proteins to regulate protein-protein interaction, localization, and activity. Due to its vast number of targets, it is involved in many cellular pathways, including phagocytosis. This chapters describes the basic steps and signaling in phagocytosis and different roles that UPP plays at multiple steps in regulating phagocytosis directly, or through its interaction with other phagosomal proteins. How aberrations in UPP function affect phagocytosis and their association with human diseases, and how pathogens exploit this pathway for their own benefit is also discussed.
Collapse
Affiliation(s)
| | | | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
30
|
Cell-In-Cell Structures in Early Breast Cancer Are Prognostically Valuable. Cells 2022; 12:cells12010081. [PMID: 36611874 PMCID: PMC9818278 DOI: 10.3390/cells12010081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Cell-in-cell (CIC) structures in breast cancer have so far been studied in a small inhomogeneous patient population, suggesting the prognostic importance of CIC. In the present study, we focused on CIC in early hormone-sensitive breast cancer. With in vitro co-culture experiments, we compared the homotypic phagocytic capacity of two breast cancer cell lines to that of primary human fibroblasts. Afterward, we studied 601 tissue specimens from 147 patients participating in an institutional accelerated partial breast irradiation (APBI) phase II trial. Both breast cancer cell lines performed non-professional phagocytosis at a higher rate than primary human fibroblasts. In this study cohort, 93.2% of the patients had T1 tumours, and 6.8% had T2 tumours. CIC was found in 61.2% of the patients, with a CIC rate ranging from <1/mm2 to 556.5/mm2 with a mean of 30.9/mm2 ± 68.4/mm2. CIC structures were prognostically favourable for local recurrence-free survival and disease-free survival. Regarding metastasis-free survival, CIC-positive patients had an unfavourable prognosis. Subgroup analysis indicated a correlation between a high proliferation index and high CIC rates. CIC had the highest prognostic value in young breast cancer patients (p = 0.004). With this study, we provide further evidence of CIC as a prognostic marker in breast cancer.
Collapse
|
31
|
Xu C, Ren XH, Han D, Peng Y, Lei JJ, Yu LX, Liu LJ, Xu WC, Cheng SX. Precise Detection on Cell-Cell Fusion by a Facile Molecular Beacon-Based Method. Anal Chem 2022; 94:17334-17340. [PMID: 36456915 DOI: 10.1021/acs.analchem.2c04852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cell-cell fusion studies provide an experimental platform for evaluating disease progression and investigating cell infection. However, to realize sensitive and quantitative detection on cell-cell fusion is still a challenge. Herein, we report a facile molecular beacon (MB)-based method for precise detection on cell-cell fusion. By transfection of the spike protein (S protein) and enhanced green fluorescent protein (EGFP) in HEK 293 cells, the virus-mimicking fusogenic effector cells 293-S-EGFP cells were constructed to interact with target cells. Before mixing the effector cells with the target cells, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression in 293-S-EGFP cells was silenced, and the MB for GAPDH mRNA detection was delivered into the GAPDH silenced 293-S-EGFP cells. Once cell-cell fusion occurred, MB migrated from the GAPDH silenced effector cells to the target cells and hybridized with GAPDH mRNA in the target cells to induce fluorescence emission. The cell-cell fusion can be easily visualized and quantitated by fluorescence microscopy and flow cytometry. The fluorescence intensity is strongly dependent on the number of fused target cells. This MB-based method can easily identify the differences in the cell fusions for various target cells with different angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) expression levels, resulting in dramatically different fluorescence intensities in fused target cells. Our study provides a convenient and efficient quantitative detection approach to study cell-cell fusion.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yan Peng
- Department of Pharmacy, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Jin-Ju Lei
- Cancer Center, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Luo-Xiao Yu
- Cancer Center, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Ling-Juan Liu
- Cancer Center, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Wei-Chao Xu
- Cancer Center, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
32
|
Liu Z, Xu Y, Liu X, Wang B. PCDH7 knockdown potentiates colon cancer cells to chemotherapy via inducing ferroptosis and changes in autophagy through restraining MEK1/2/ERK/c-Fos axis. Biochem Cell Biol 2022; 100:445-457. [PMID: 35926236 DOI: 10.1139/bcb-2021-0513] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chemotherapy is a commonly utilized treatment strategy for colon cancer, a prevalent malignancy. The study intends to probe the function and mechanism of protocadherin 7 (PCDH7) in colon cancer. Gain or loss of functional assays of PCDH7 was performed. MTT and colony formation assay monitored cell proliferation. Transwell measured migration and invasion. Real-time quantitative polymerase chain reaction and western blot verified the profiles of PCDH7 and the MEK1/2/ERK/c-FOS pathway. Western blot was implemented to confirm the profiles of PP1α, MLC2, and p-MLC2 for evaluating the impact of PCDH7 on homotypic cells in cell (hocic) structures. Further, an in-vivo nude mouse model was engineered to figure out the function and mechanism of PCDH7 in tumor cell growth. As indicated by the data, PCDH7 knockdown boosted the cells' sensitivity to chemotherapy. PCDH7 overexpression facilitated their proliferation and invasion, altered autophagy, induced ferroptosis and hocic, and initiated the profile of the MEK1/2/ERK/c-FOS pathway. MEK1/2/ERK inhibition impaired the inhibitory impact of PCDH7 on colon cancer cells' chemotherapy sensitivity and dampened its pro-cancer function in the cells. In-vivo experiments displayed that PCDH7 overexpression stepped up tumor growth and pulmonary metastasis in colon cancer cells. All in all, the research has discovered that PCDH7 knockdown affects autophagy and induces ferroptosis, hence strengthening colon cancer cells' sensitivity to chemotherapy by repressing the MEK1/2/ERK/c-FOS axis.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Yuyang Xu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Xin Liu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Baochun Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| |
Collapse
|
33
|
Zhu Y, Yang R, Law JH, Khan M, Yip KW, Sun Q. Editorial: Hallmark of cancer: Resisting cell death. Front Oncol 2022; 12:1069947. [PMID: 36419903 PMCID: PMC9678051 DOI: 10.3389/fonc.2022.1069947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yichao Zhu
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
| | - Risheng Yang
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
| | - Jacqueline H. Law
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Muhammad Khan
- Department of Zoology, University of the Punjab, Lahore, Pakistan
- *Correspondence: Qiang Sun, ; Kenneth W. Yip, ; Muhammad Khan,
| | - Kenneth W. Yip
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Qiang Sun, ; Kenneth W. Yip, ; Muhammad Khan,
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
- *Correspondence: Qiang Sun, ; Kenneth W. Yip, ; Muhammad Khan,
| |
Collapse
|
34
|
Wang R, Zhu Y, Zhong H, Gao X, Sun Q, He M. Homotypic cell-in-cell structures as an adverse prognostic predictor of hepatocellular carcinoma. Front Oncol 2022; 12:1007305. [PMID: 36419874 PMCID: PMC9676929 DOI: 10.3389/fonc.2022.1007305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/14/2022] [Indexed: 08/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant liver tumors. A homotypic cell-in-cell structure (hoCIC) refers to one or more cells internalized into the same type as their neighbors, which predominantly occurs in multiple tumors. The objective of this study was to investigate the prognostic value of hoCICs in HCC and its relationship with other clinicopathological features. By immunostaining analysis of a panel of HCC tissues, we found that hoCICs were prevalent in tumor tissues (54/90) but not in para-tumor tissues (17/90). The presence of hoCICs in tumor tissues was closely associated with E-cadherin expression. The presence of CICs was identified as significantly associated with poor survival rates of patients with HCC, comparable to traditional clinicopathological parameters, such as histological grade [hazard ratio (HR) = 0.734, p = 0.320]. Multivariate Cox regression analysis further confirmed that CICs were an independent risk factor for poor survival (HR = 1.902, p = 0.047). In addition, hoCICs were the predominant contributor in a nomogram model constructed for survival prediction at 1, 3, and 5 years [the areas under the curve (AUCs) were 0.760, 0.733, and 0.794, respectively]. Stratification analysis indicated that hoCICs tend to selectively affect patients with high-grade disease (HR = 2.477, p = 0.009) and at the early TNM stage (HR = 2.351, p = 0.05). Thus, hoCICs predict poor survival of patients with HCC, particularly those with higher grades and at an early stage.
Collapse
Affiliation(s)
- Ruizhi Wang
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yichao Zhu
- Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
| | - Hao Zhong
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xinyue Gao
- Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
| | - Qiang Sun
- Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
| | - Meifang He
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
35
|
Loss of contact inhibition of locomotion in the absence of JAM-A promotes entotic cell engulfment. iScience 2022; 25:105144. [PMID: 36185363 PMCID: PMC9519618 DOI: 10.1016/j.isci.2022.105144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Entosis is a cell competition process during which tumor cells engulf other tumor cells. It is initiated by metabolic stress or by loss of matrix adhesion, and it provides the winning cell with resources derived from the internalized cell. Using micropatterns as substrates for single cell migration, we find that the depletion of the cell adhesion receptor JAM-A strongly increases the rate of entosis in matrix-adherent cells. The activity of JAM-A in suppressing entosis depends on phosphorylation at Tyr280, which is a binding site for C-terminal Src kinase, and which we have previously found to regulate tumor cell motility and contact inhibition of locomotion (CIL). Loss of JAM-A triggers entosis in matrix-adherent cells but not matrix-deprived cells. Our findings strongly suggest that the increased motility and the perturbed CIL response after the depletion of JAM-A promote entotic cell engulfment, and they link a dysregulation of CIL to entosis in breast cancer cells. Cell adhesion receptor JAM-A acts as a suppressor of entosis in tumor cells JAM-A suppresses entosis by recruiting Csk, thus limiting Src activity Limiting Src activity is required to regulate contact inhibition of locomotion (CIL) JAM-A links the regulation of CIL to entosis
Collapse
|
36
|
Proposal to Consider Chemical/Physical Microenvironment as a New Therapeutic Off-Target Approach. Pharmaceutics 2022; 14:pharmaceutics14102084. [PMID: 36297518 PMCID: PMC9611316 DOI: 10.3390/pharmaceutics14102084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
The molecular revolution could lead drug discovery from chance observation to the rational design of new classes of drugs that could simultaneously be more effective and less toxic. Unfortunately, we are witnessing some failure in this sense, and the causes of the crisis involve a wide range of epistemological and scientific aspects. In pharmacology, one key point is the crisis of the paradigm the “magic bullet”, which is to design therapies based on specific molecular targets. Drug repurposing is one of the proposed ways out of the crisis and is based on the off-target effects of known drugs. Here, we propose the microenvironment as the ideal place to direct the off-targeting of known drugs. While it has been extensively investigated in tumors, the generation of a harsh microenvironment is also a phenotype of the vast majority of chronic diseases. The hostile microenvironment, on the one hand, reduces the efficacy of both chemical and biological drugs; on the other hand, it dictates a sort of “Darwinian” selection of those cells armed to survive in such hostile conditions. This opens the way to the consideration of the microenvironment as a convenient target for pharmacological action, with a clear example in proton pump inhibitors.
Collapse
|
37
|
Meng Z, Li Z, Xie M, Yu H, Jiang L, Yao X. TM9SF4 is an F-actin disassembly factor that promotes tumor progression and metastasis. Nat Commun 2022; 13:5728. [PMID: 36175399 PMCID: PMC9522921 DOI: 10.1038/s41467-022-33276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
F-actin dynamics is crucial for many fundamental properties of cancer cells, from cell-substrate adhesion to migration, invasion and metastasis. However, the regulatory mechanisms of actin dynamics are still incompletely understood. In this study, we demonstrate the function of a protein named TM9SF4 in regulating actin dynamics and controlling cancer cell motility and metastasis. We show that an N-terminal fragment (NTF) cleaved from TM9SF4 can directly bind to F-actin to induce actin oxidation at Cys374, consequently enhancing cofilin-mediated F-actin disassembly. Knockdown of TM9SF4 reduces cell migration and invasion in ovarian cancer cells A2780, SKOV3 and several high grade serous ovarian cancer lines (HGSOCs). In vivo, knockdown of TM9SF4 completely abolishes the tumor growth and metastasis in athymic nude mice. These data provide mechanistic insights into TM9SF4-mediated regulation of actin dynamics in ovarian cancer cells. F-actin dynamics influence cancer cell motility. Here the authors show that TM9SF4 facilitates the cofilin-induced disassembly of F-actin to promote cancer cell migration and metastasis.
Collapse
Affiliation(s)
- Zhaoyue Meng
- School of Biomedical Sciences and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhichao Li
- School of Biomedical Sciences and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Mingxu Xie
- School of Biomedical Sciences and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongyan Yu
- School of Biomedical Sciences and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Xiaoqiang Yao
- School of Biomedical Sciences and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China. .,Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
38
|
Intercellular communication in the tumour microecosystem: Mediators and therapeutic approaches for hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166528. [PMID: 36007784 DOI: 10.1016/j.bbadis.2022.166528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Hepatocellular carcinoma (HCC), one of the most common tumours worldwide, is one of the main causes of mortality in cancer patients. There are still numerous problems hindering its early diagnosis, which lead to late patients receiving treatment, and these problems need to be solved urgently. The tumour microecosystem is a complex network system comprising seven parts: the hypoxia niche, immune microenvironment, metabolic microenvironment, acidic niche, innervated niche, mechanical microenvironment, and microbial microenvironment. Intercellular communication is divided into direct contact and indirect communication. Direct contact communication includes gap junctions, tunneling nanotubes, and receptor-ligand interactions, whereas indirect communication includes exosomes, apoptotic vesicles, and soluble factors. Mechanical communication and cytoplasmic exchange are further means of intercellular communication. Intercellular communication mediates the crosstalk between the tumour microecosystem and the host as well as that between cells and cell-free components in the tumour microecosystem, causing changes in the tumour hallmarks of the HCC microecosystem such as changes in tumour proliferation, invasion, apoptosis, angiogenesis, metastasis, inflammatory response, gene mutation, immune escape, metabolic reprogramming, and therapeutic resistance. Here, we review the role of the above-mentioned intercellular communication in the HCC microecosystem and discuss the advantages of targeted intercellular communication in the clinical diagnosis and treatment of HCC. Finally, the current problems and prospects are discussed.
Collapse
|
39
|
Song J, Ruze R, Chen Y, Xu R, Yin X, Wang C, Xu Q, Zhao Y. Construction of a novel model based on cell-in-cell-related genes and validation of KRT7 as a biomarker for predicting survival and immune microenvironment in pancreatic cancer. BMC Cancer 2022; 22:894. [PMID: 35974300 PMCID: PMC9380297 DOI: 10.1186/s12885-022-09983-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Background Pancreatic cancer (PC) is a highly malignant tumor featured with high intra-tumoral heterogeneity and poor prognosis. Cell-in-cell (CIC) structures have been reported in multiple cancers, and their presence is associated with disease progression. Nonetheless, the prognostic values and biological functions of CIC-related genes in PC remain poorly understood. Methods The sequencing data, as well as corresponding clinicopathological information of PC were collected from public databases. Random forest screening, least absolute shrinkage, and selection operator (LASSO) regression and multivariate Cox regression analysis were performed to construct a prognostic model. The effectiveness and robustness of the model were evaluated using receiver operating characteristic (ROC) curves, survival analysis and establishing the nomogram model. Functional enrichment analyses were conducted to annotate the biological functions. The immune infiltration levels were evaluated by ESTIMATE and CIBERSORT algorithms. The expression of KRT7 (Keratin 7) was validated by quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry (IHC) staining. The CIC formation, cell clusters, cell proliferation, migration and invasion assays were applied to investigate the effects of silencing the expression of KRT7. Results A prognostic model based on four CIC-related genes was constructed to stratify the patients into the low- and high-risk subgroups. The high-risk group had a poorer prognosis, higher tumor mutation burden and lower immune cell infiltration than the low-risk group. Functional enrichment analyses showed that numerous terms and pathways associated with invasion and metastasis were enriched in the high-risk group. KRT7, as the most paramount risk gene in the prognostic model, was significantly associated with a worse prognosis of PC in TCGA dataset and our own cohort. High expression of KRT7 might be responsible for the immunosuppression in the PC microenvironment. KRT7 knockdown was significantly suppressed the abilities of CIC formation, cell cluster, cell proliferation, migration, and invasion in PC cell lines. Conclusions Our prognostic model based on four CIC-related genes has a significant potential in predicting the prognosis and immune microenvironment of PC, which indicates that targeting CIC processes could be a therapeutic option with great interests. Further studies are needed to reveal the underlying molecular mechanisms and biological implications of CIC phenomenon and related genes in PC progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09983-6.
Collapse
Affiliation(s)
- Jianlu Song
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Rexiati Ruze
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuan Chen
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruiyuan Xu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xinpeng Yin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chengcheng Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qiang Xu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
40
|
Fan J, Li P, Fang Q, Yang Y, Zhang H, Du W, Liu S, Luo R. Heterotypic neutrophil-in-tumor structure: A novel pathological feature first discovered in the tissues of OPSCC. Front Oncol 2022; 12:807597. [PMID: 36052249 PMCID: PMC9425089 DOI: 10.3389/fonc.2022.807597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo reveal a novel pathological feature: heterotypic neutrophil-in-tumor structure (hNiT) first discovered in patients with oropharyngeal squamous cell carcinoma (OPSCC), to analyze the prognostic role of hNiT in OPSCC patients and to explore the role of p16 in the formation of hNiT structures.MethodsClinically, 197 patients were enrolled. Clinicopathological information was extracted and analyzed. All pathologic sections made from primary tumors were re-evaluated by immunohistochemistry and immunostaining. In vitro, we cocultured OPSCC cell line SCC-15 with neutrophils to form hNiT structures, which were then subject to fluorescence staining. By RNAi and overexpression techniques, we investigated the role of CDKN2A in the formation of hNiTs. We validated the two techniques by qPCR and Western Blot.ResultsThe hNiT as a novel pathological feature was first discovered in the tissues of OPSCC. The FNiT was significantly associated with tumor stage, disease stage, p16 and tumor grade. A total of 119 patients died of the disease, and the 5-year disease-specific survival (DSS) rate was 36%. The median survival time was 52.6 months. In patients with an FNiT<0.5%, the 5-year DSS rate was 40%; in patients with an FNiT>=0.5%, the 5-year DSS was 28%, and the difference was significant (p=0.001). Cox model analysis showed that FNiT along with disease stage, p16 and tumor grade was an independent prognostic factor for DSS. Immunostaining results of p16 expression showed hNiT formation was negatively correlated to p16 in OPSCC as well as in the hNiT formation assays in vitro indicated by fluorescent staining. Function assays of CDKN2A implied that reduce CDKN2A promoted the formation of hNiT while elevated CDKN2A impeded the hNiT formation.ConclusionThe hNiT as a novel pathological feature is associated with the adverse prognosis of OPSCC patients with p16 inhibiting the formation of hNiT structures.
Collapse
Affiliation(s)
- Jie Fan
- Department of Head Neck and Thyroid Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Jie Fan, ; Shanting Liu, ; Ruihua Luo,
| | - Peng Li
- Department of Head Neck and Thyroid Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Qigen Fang
- Department of Head Neck and Thyroid Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yang Yang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - He Zhang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wei Du
- Department of Head Neck and Thyroid Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- Department of Anatomy, Zhengzhou University, Zhengzhou, China
| | - Shanting Liu
- Department of Head Neck and Thyroid Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Jie Fan, ; Shanting Liu, ; Ruihua Luo,
| | - Ruihua Luo
- Department of Head Neck and Thyroid Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Jie Fan, ; Shanting Liu, ; Ruihua Luo,
| |
Collapse
|
41
|
Choe YJ, Min JY, Lee H, Lee SY, Kwon J, Kim HJ, Lee J, Kim HM, Park HS, Cho MY, Hyun JY, Kim HM, Chung YH, Ha SK, Jeong HG, Choi I, Kim TD, Hong KS, Han EH. Heterotypic cell-in-cell structures between cancer and NK cells is associated with enhanced anti-cancer drug resistance. iScience 2022; 25:105017. [PMID: 36105584 PMCID: PMC9464952 DOI: 10.1016/j.isci.2022.105017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/13/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
The heterotypic CIC structures formed of cancer and immune cells have been observed in tumor tissues. We aimed to assess the feasibility of using heterotypic CICs as a functional biomarker to predict NK susceptibility and drug resistance. The heterotypic CIC-forming cancer cells showed a lower response to NK cytotoxicity and higher proliferative ability than non-CIC cancer cells. After treatment with anticancer drugs, cancer cells that formed heterotypic CICs showed a higher resistance to anticancer drugs than non-CIC cancer cells. We also observed the formation of more CIC structures in cancer cells treated with anticancer drugs than in the non-treated group. Our results confirm the association between heterotypic CIC structures and anticancer drug resistance in CICs formed from NK and cancer cells. These results suggest a mechanism underlying immune evasion in heterotypic CIC cancer cells and provide insights into the anticancer drug resistance of cancer cells. Conformation of heterotypic CIC structures formed between cancer and NK cells Heterotypic CICs exhibit a higher proliferative ability than non-CIC cells Heterotypic CICs are associated with NK susceptibility Heterotypic CICs are involved in anticancer drug resistance
Collapse
|
42
|
Tang M, Su Y, Zhao W, Niu Z, Ruan B, Li Q, Zheng Y, Wang C, Zhang B, Zhou F, Wang X, Huang H, Shi H, Sun Q. AIM-CICs: an automatic identification method for cell-in-cell structures based on convolutional neural network. J Mol Cell Biol 2022; 14:6649212. [PMID: 35869978 PMCID: PMC9701057 DOI: 10.1093/jmcb/mjac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/01/2022] [Accepted: 07/20/2022] [Indexed: 11/14/2022] Open
Abstract
Edited by Luonan Chen Whereas biochemical markers are available for most types of cell death, current studies on non-autonomous cell death by entosis rely strictly on the identification of cell-in-cell structures (CICs), a unique morphological readout that can only be quantified manually at present. Moreover, the manual CIC quantification is generally over-simplified as CIC counts, which represents a major hurdle against profound mechanistic investigations. In this study, we take advantage of artificial intelligence technology to develop an automatic identification method for CICs (AIM-CICs), which performs comprehensive CIC analysis in an automated and efficient way. The AIM-CICs, developed on the algorithm of convolutional neural network, can not only differentiate between CICs and non-CICs (the area under the receiver operating characteristic curve (AUC) > 0.99), but also accurately categorize CICs into five subclasses based on CIC stages and cell number involved (AUC > 0.97 for all subclasses). The application of AIM-CICs would systemically fuel research on CIC-mediated cell death, such as high-throughput screening.
Collapse
Affiliation(s)
| | | | | | | | - Banzhan Ruan
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Qinqin Li
- Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China
| | - You Zheng
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Chenxi Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Bo Zhang
- Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China,Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Xiaoning Wang
- National Clinic Center of Geriatric & State Key Laboratory of Kidney, Chinese PLA General Hospital, Beijing 100853, China
| | | | | | - Qiang Sun
- Correspondence to: Qiang Sun, E-mail:
| |
Collapse
|
43
|
Siquara da Rocha LDO, Souza BSDF, Lambert DW, Gurgel Rocha CDA. Cell-in-Cell Events in Oral Squamous Cell Carcinoma. Front Oncol 2022; 12:931092. [PMID: 35847959 PMCID: PMC9280122 DOI: 10.3389/fonc.2022.931092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
For over a century, cells within other cells have been detected by pathologists as common histopathological findings in tumors, being generally identified as “cell-in-cell” structures. Despite their characteristic morphology, these structures can originate from various processes, such as cannibalism, entosis and emperipolesis. However, only in the last few decades has more attention been given to these events due to their importance in tumor development. In cancers such as oral squamous cell carcinoma, cell-in-cell events have been linked to aggressiveness, metastasis, and therapeutic resistance. This review aims to summarize relevant information about the occurrence of various cell-in-cell phenomena in the context of oral squamous cell carcinoma, addressing their causes and consequences in cancer. The lack of a standard terminology in diagnosing these events makes it difficult to classify the existing cases and to map the behavior and impacts of these structures. Despite being frequently reported in oral squamous cell carcinoma and other cancers, their impacts on carcinogenesis aren’t fully understood. Cell-in-cell formation is seen as a survival mechanism in the face of a lack of nutritional availability, an acid microenvironment and potential harm from immune cell defense. In this deadly form of competition, cells that engulf other cells establish themselves as winners, taking over as the predominant and more malignant cell population. Understanding the link between these structures and more aggressive behavior in oral squamous cell carcinoma is of paramount importance for their incorporation as part of a therapeutic strategy.
Collapse
Affiliation(s)
- Leonardo de Oliveira Siquara da Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Department of Pathology and Legal Medicine, School of Medicine, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Daniel W. Lambert
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Clarissa de Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Department of Pathology and Legal Medicine, School of Medicine, Federal University of Bahia (UFBA), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Department of Clinical Propedeutics, School of Dentistry, Federal University of Bahia (UFBA), Salvador, Brazil
- *Correspondence: Clarissa de Araújo Gurgel Rocha,
| |
Collapse
|
44
|
Rex DAB, Keshava Prasad TS, Kandasamy RK. Revisiting Regulated Cell Death Responses in Viral Infections. Int J Mol Sci 2022; 23:ijms23137023. [PMID: 35806033 PMCID: PMC9266763 DOI: 10.3390/ijms23137023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
The fate of a viral infection in the host begins with various types of cellular responses, such as abortive, productive, latent, and destructive infections. Apoptosis, necroptosis, and pyroptosis are the three major types of regulated cell death mechanisms that play critical roles in viral infection response. Cell shrinkage, nuclear condensation, bleb formation, and retained membrane integrity are all signs of osmotic imbalance-driven cytoplasmic swelling and early membrane damage in necroptosis and pyroptosis. Caspase-driven apoptotic cell demise is considered in many circumstances as an anti-inflammatory, and some pathogens hijack the cell death signaling routes to initiate a targeted attack against the host. In this review, the selected mechanisms by which viruses interfere with cell death were discussed in-depth and were illustrated by compiling the general principles and cellular signaling mechanisms of virus–host-specific molecule interactions.
Collapse
Affiliation(s)
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
- Correspondence: (T.S.K.P.); (R.K.K.)
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O Box 505055, United Arab Emirates
- Correspondence: (T.S.K.P.); (R.K.K.)
| |
Collapse
|
45
|
Barik GK, Sahay O, Paul D, Santra MK. Ezrin gone rogue in cancer progression and metastasis: An enticing therapeutic target. Biochim Biophys Acta Rev Cancer 2022; 1877:188753. [PMID: 35752404 DOI: 10.1016/j.bbcan.2022.188753] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/12/2022]
Abstract
Cancer metastasis is the primary cause of morbidity and mortality in cancer as it remains the most complicated, devastating, and enigmatic aspect of cancer. Several decades of extensive research have identified several key players closely associated with metastasis. Among these players, cytoskeletal linker Ezrin (the founding member of the ERM (Ezrin-Radixin-Moesin) family) was identified as a critical promoter of metastasis in pediatric cancers in the early 21st century. Ezrin was discovered 40 years ago as a aminor component of intestinal epithelial microvillus core protein, which is enriched in actin-containing cell surface structures. It controls gastric acid secretion and plays diverse physiological roles including maintaining cell polarity, regulating cell adhesion, cell motility and morphogenesis. Extensive research for more than two decades evinces that Ezrin is frequently dysregulated in several human cancers. Overexpression, altered subcellular localization and/or aberrant activation of Ezrin are closely associated with higher metastatic incidence and patient mortality, thereby justifying Ezrin as a valuable prognostic biomarker in cancer. Ezrin plays multifaceted role in multiple aspects of cancer, with its significant contribution in the complex metastatic cascade, through reorganizing the cytoskeleton and deregulating various cellular signaling pathways. Current preclinical studies using genetic and/or pharmacological approaches reveal that inactivation of Ezrin results in significant inhibition of Ezrin-mediated tumor growth and metastasis as well as increase in the sensitivity of cancer cells to various chemotherapeutic drugs. In this review, we discuss the recent advances illuminating the molecular mechanisms responsible for Ezrin dysregulation in cancer and its pleiotropic role in cancer progression and metastasis. We also highlight its potential as a prognostic biomarker and therapeutic target in various cancers. More importantly, we put forward some potential questions, which we strongly believe, will stimulate both basic and translational research to better understand Ezrin-mediated malignancy, ultimately leading to the development of Ezrin-targeted cancer therapy for the betterment of human life.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Debasish Paul
- Laboratory of Cancer Biology and Genetics, Centre for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
46
|
Thomas DS, Cisneros LH, Anderson ARA, Maley CC. In Silico Investigations of Multi-Drug Adaptive Therapy Protocols. Cancers (Basel) 2022; 14:2699. [PMID: 35681680 PMCID: PMC9179496 DOI: 10.3390/cancers14112699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
The standard of care for cancer patients aims to eradicate the tumor by killing the maximum number of cancer cells using the maximum tolerated dose (MTD) of a drug. MTD causes significant toxicity and selects for resistant cells, eventually making the tumor refractory to treatment. Adaptive therapy aims to maximize time to progression (TTP), by maintaining sensitive cells to compete with resistant cells. We explored both dose modulation (DM) protocols and fixed dose (FD) interspersed with drug holiday protocols. In contrast to previous single drug protocols, we explored the determinants of success of two-drug adaptive therapy protocols, using an agent-based model. In almost all cases, DM protocols (but not FD protocols) increased TTP relative to MTD. DM protocols worked well when there was more competition, with a higher cost of resistance, greater cell turnover, and when crowded proliferating cells could replace their neighbors. The amount that the drug dose was changed, mattered less. The more sensitive the protocol was to tumor burden changes, the better. In general, protocols that used as little drug as possible, worked best. Preclinical experiments should test these predictions, especially dose modulation protocols, with the goal of generating successful clinical trials for greater cancer control.
Collapse
Affiliation(s)
- Daniel S. Thomas
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA; (D.S.T.); (L.H.C.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ 85287, USA
| | - Luis H. Cisneros
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA; (D.S.T.); (L.H.C.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ 85287, USA
| | | | - Carlo C. Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA; (D.S.T.); (L.H.C.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
47
|
Ibragimova M, Tsyganov M, Litviakov N. Tumour Stem Cells in Breast Cancer. Int J Mol Sci 2022; 23:ijms23095058. [PMID: 35563449 PMCID: PMC9099719 DOI: 10.3390/ijms23095058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022] Open
Abstract
Tumour stem cells (CSCs) are a self-renewing population that plays important roles in tumour initiation, recurrence, and metastasis. Although the medical literature is extensive, problems with CSC identification and cancer therapy remain. This review provides the main mechanisms of CSC action in breast cancer (BC): CSC markers and signalling pathways, heterogeneity, plasticity, and ecological behaviour. The dynamic heterogeneity of CSCs and the dynamic transitions of CSC− non-CSCs and their significance for metastasis are considered.
Collapse
Affiliation(s)
- Marina Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
- Correspondence:
| | - Matvey Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
| | - Nikolai Litviakov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
| |
Collapse
|
48
|
Su Y, Huang H, Luo T, Zheng Y, Fan J, Ren H, Tang M, Niu Z, Wang C, Wang Y, Zhang Z, Liang J, Ruan B, Gao L, Chen Z, Melino G, Wang X, Sun Q. Cell-in-cell structure mediates in-cell killing suppressed by CD44. Cell Discov 2022; 8:35. [PMID: 35436988 PMCID: PMC9016064 DOI: 10.1038/s41421-022-00387-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022] Open
Abstract
Penetration of immune cells into tumor cells was believed to be immune-suppressive via cell-in-cell (CIC) mediated death of the internalized immune cells. We unexpectedly found that CIC formation largely led to the death of the host tumor cells, but not the internalized immune cells, manifesting typical features of death executed by NK cells; we named this "in-cell killing" which displays the efficacy superior to the canonical way of "kiss-killing" from outside. By profiling isogenic cells, CD44 on tumor cells was identified as a negative regulator of "in-cell killing" via inhibiting CIC formation. CD44 functions to antagonize NK cell internalization by reducing N-cadherin-mediated intercellular adhesion and by enhancing Rho GTPase-regulated cellular stiffness as well. Remarkably, antibody-mediated blockade of CD44 signaling potentiated the suppressive effects of NK cells on tumor growth associated with increased heterotypic CIC formation. Together, we identified CIC-mediated "in-cell killing" as a promising strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Yan Su
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - You Zheng
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Jie Fan
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - He Ren
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Meng Tang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Zubiao Niu
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Chenxi Wang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Yuqi Wang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Zhengrong Zhang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Jianqing Liang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Banzhan Ruan
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Lihua Gao
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Zhaolie Chen
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Gerry Melino
- Departments of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- DZNE German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Xiaoning Wang
- National Research Center of Geriatrics Diseases, Chinese PLA General Hospital, Beijing, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qiang Sun
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China.
| |
Collapse
|
49
|
Vishnyakov IE. Cell-in-Cell Phenomena in Wall-Less Bacteria: Is It Possible? Int J Mol Sci 2022; 23:ijms23084345. [PMID: 35457161 PMCID: PMC9030286 DOI: 10.3390/ijms23084345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
This work describes curious structures formed by the mainly phytopathogenic mycoplasma Acholeplasma laidlawii, as well as the human pathogen Ureaplasma parvum cells which resemble cell-in-cell structures of higher eukaryotes and protists. The probable significance of such structures for the mycoplasma cell is discussed. The possibility of their formation in nature and their potential role in the transformation of genetic material, for example, by maintaining (on the one hand) the stability of the genome in the line of generations during asexual reproduction or (on the other hand) the genome plasticity, are substantiated. It should be especially noted that all the arguments presented are based only on morphological data. However, closer attention to unusual structures, the existence of which was shown by electron microscopy images in this case, may prompt researchers to analyze their data more carefully and find something rare and non-trivial among seemingly trivial things. If it is proven by additional methods that cell-in-cell structures can indeed be formed by prokaryotes without a cell wall, this phenomenon may acquire general biological significance.
Collapse
|
50
|
Zhang CZ, Pellman D. Cancer Genomic Rearrangements and Copy Number Alterations from Errors in Cell Division. ANNUAL REVIEW OF CANCER BIOLOGY 2022. [DOI: 10.1146/annurev-cancerbio-070620-094029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Analysis of cancer genomes has shown that a large fraction of chromosomal changes originate from catastrophic events including whole-genome duplication, chromothripsis, breakage-fusion-bridge cycles, and chromoplexy. Through sophisticated computational analysis of cancer genomes and experimental recapitulation of these catastrophic alterations, we have gained significant insights into the origin, mechanism, and evolutionary dynamics of cancer genome complexity. In this review, we summarize this progress and survey the major unresolved questions, with particular emphasis on the relative contributions of chromosome fragmentation and DNA replication errors to complex chromosomal alterations.
Collapse
Affiliation(s)
- Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biomedical Informatics, Blavatnik Institute of Harvard Medical School, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David Pellman
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|