1
|
Hashemi M, Finklea FB, Hammons H, Tian Y, Young N, Kim E, Halloin C, Triebert W, Zweigerdt R, Mitra AK, Lipke EA. Hydrogel microsphere stem cell encapsulation enhances cardiomyocyte differentiation and functionality in scalable suspension system. Bioact Mater 2025; 43:423-440. [PMID: 39399838 PMCID: PMC11471139 DOI: 10.1016/j.bioactmat.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024] Open
Abstract
A reliable suspension-based platform for scaling engineered cardiac tissue (ECT) production from human induced pluripotent stem cells (hiPSCs) is crucial for regenerative therapies. Here, we compared the production and functionality of ECTs formed using our scaffold-based, engineered tissue microsphere differentiation approach with those formed using the prevalent scaffold-free aggregate platform. We utilized a microfluidic system for the rapid (1 million cells/min), high density (30, 40, 60 million cells/ml) encapsulation of hiPSCs within PEG-fibrinogen hydrogel microspheres. HiPSC-laden microspheres and aggregates underwent suspension-based cardiac differentiation in chemically defined media. In comparison to aggregates, microspheres maintained consistent size and shape initially, over time, and within and between batches. Initial size and shape coefficients of variation for microspheres were eight and three times lower, respectively, compared to aggregates. On day 10, microsphere cardiomyocyte (CM) content was 27 % higher and the number of CMs per initial hiPSC was 250 % higher than in aggregates. Contraction and relaxation velocities of microspheres were four and nine times higher than those of aggregates, respectively. Microsphere contractile functionality also improved with culture time, whereas aggregate functionality remained unchanged. Additionally, microspheres displayed improved β-adrenergic signaling responsiveness and uniform calcium transient propagation. Transcriptomic analysis revealed that while both microspheres and aggregates demonstrated similar gene regulation patterns associated with cardiomyocyte differentiation, heart development, cardiac muscle contraction, and sarcomere organization, the microspheres exhibited more pronounced transcriptional changes over time. Taken together, these results highlight the capability of the microsphere platform for scaling up biomanufacturing of ECTs in a suspension-based culture platform.
Collapse
Affiliation(s)
| | - Ferdous B. Finklea
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Hanna Hammons
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Yuan Tian
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Nathan Young
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Emma Kim
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Caroline Halloin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Wiebke Triebert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Amit Kumar Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, United States
| | - Elizabeth A. Lipke
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| |
Collapse
|
2
|
Shi X, Xu J, Zhong X, Qian Y, Lin L, Fang Z, Ye B, Lyu Y, Zhang R, Zheng Z, Han J. Deubiquitinase MYSM1 promotes doxorubicin-induced cardiotoxicity by mediating TRIM21-ferroptosis axis in cardiomyocytes. Cell Commun Signal 2024; 22:593. [PMID: 39695708 DOI: 10.1186/s12964-024-01955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Anthracycline antitumor drug doxorubicin (DOX) induces severe cardiotoxicity. Deubiquitinating enzymes (DUBs) are crucial for protein stability and function and play a significant role in cardiac pathophysiology. By comparing RNA sequencing datasets and conducting functional screening, we determined that Myb-like, SWIRM, and MPN domains 1 (MYSM1) is a key regulator of DOX-induced cardiotoxicity. In this study, we aimed to explore the function and regulatory mechanisms of MYSM1 in DOX-induced cardiotoxicity. Genetic knockdown of MYSM1 significantly mitigated DOX-induced cardiomyopathy. Correspondingly, cardiomyocyte-specific knockdown of MYSM1 by AAV9 protected the heart from DOX-induced cardiotoxicity. Gain- and loss-of-function analysis verified that MYSM1 mediated DOX-induced cardiomyocyte injury in vitro. Through a Co-IP combined with LC-MS/MS analysis, we discovered that MYSM1 directly interacted with tripartite motif-containing protein 21 (TRIM21). Mechanistic investigations revealed that MYSM1 regulates the deubiquitination and the stability of TRIM21 via its MPN domain. Furthermore, MYSM1 exacerbated DOX-induced cardiotoxicity by enhancing ferroptosis. This study identified MYSM1 as a potential therapeutic target for DOX-induced cardiotoxicity and illustrated a MYSM1-TRIM21-ferroptosis axis in regulating DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jianjiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xin Zhong
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuanyuan Qian
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liming Lin
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zimin Fang
- Department of Ultrasound, Puer People's Hospital, Puer, Yunnan, China
| | - Bozhi Ye
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiting Lyu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Ran Zhang
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhanxiong Zheng
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Jibo Han
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
3
|
Ramirez-Calderon G, Saleh A, Hidalgo Castillo TC, Druet V, Almarhoon B, Almulla L, Adamo A, Inal S. Enhancing the Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes with an n-Type Organic Semiconductor Coating. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66900-66910. [PMID: 38620064 DOI: 10.1021/acsami.3c18919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are a promising cell source for cardiac regenerative medicine and in vitro modeling. However, hPSC-CMs exhibit immature structural and functional properties compared with adult cardiomyocytes. Various electrical, mechanical, and biochemical cues have been applied to enhance hPSC-CM maturation but with limited success. In this work, we investigated the potential application of the semiconducting polymer poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2)) as a light-sensitive material to stimulate hPSC-CMs optically. Our results indicated that P(NDI2OD-T2)-mediated photostimulation caused cell damage at irradiances applied long-term above 36 μW/mm2 and did not regulate cardiac monolayer beating (after maturation) at higher intensities applied in a transient fashion. However, we discovered that the cells grown on P(NDI2OD-T2)-coated substrates showed significantly enhanced expression of cardiomyocyte maturation markers in the absence of a light exposure stimulus. A combination of techniques, such as atomic force microscopy, scanning electron microscopy, and quartz crystal microbalance with dissipation monitoring, which we applied to investigate the interface of the cell with the n-type coating, revealed that P(NDI2OD-T2) impacted the nanostructure, adsorption, and viscoelasticity of the Matrigel coating used as a cell adhesion promoter matrix. This modified cellular microenvironment promoted the expression of cardiomyocyte maturation markers related to contraction, calcium handling, metabolism, and conduction. Overall, our findings demonstrate that conjugated polymers such as P(NDI2OD-T2) can be used as passive coatings to direct stem cell fate through interfacial engineering of cell growth substrates.
Collapse
Affiliation(s)
- Gustavo Ramirez-Calderon
- Laboratory of Stem Cells and Diseases, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Tania Cecilia Hidalgo Castillo
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Victor Druet
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Bayan Almarhoon
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Latifah Almulla
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Antonio Adamo
- Laboratory of Stem Cells and Diseases, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Yang P, Xie F, Zhu L, Selvaraj JN, Zhang D, Cai J. Fabrication of chitin-fibrin hydrogels to construct the 3D artificial extracellular matrix scaffold for vascular regeneration and cardiac tissue engineering. J Biomed Mater Res A 2024; 112:2257-2272. [PMID: 39007419 DOI: 10.1002/jbm.a.37774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
As the cornerstone of tissue engineering and regeneration medicine research, developing a cost-effective and bionic extracellular matrix (ECM) that can precisely modulate cellular behavior and form functional tissue remains challenging. An artificial ECM combining polysaccharides and fibrillar proteins to mimic the structure and composition of natural ECM provides a promising solution for cardiac tissue regeneration. In this study, we developed a bionic hydrogel scaffold by combining a quaternized β-chitin derivative (QC) and fibrin-matrigel (FM) in different ratios to mimic a natural ECM. We evaluated the stiffness of those composite hydrogels with different mixing ratios and their effects on the growth of human umbilical vein endothelial cells (HUVECs). The optimal hydrogels, QCFM1 hydrogels were further applied to load HUVECs into nude mice for in vivo angiogenesis. Besides, we encapsulated human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) into QCFM hydrogels and employed 3D bioprinting to achieve batch fabrication of human-engineered heart tissue (hEHT). Finally, the myocardial structure and electrophysiological function of hEHT were evaluated by immunofluorescence and optical mapping. Designed artificial ECM has a tunable modulus (220-1380 Pa), which determines the different cellular behavior of HUVECs when encapsulated in these. QCFM1 composite hydrogels with optimal stiffness (800 Pa) and porous architecture were finally identified, which could adapt for in vitro cell spreading and in vivo angiogenesis of HUVECs. Moreover, QCFM1 hydrogels were applied in 3D bioprinting successfully to achieve batch fabrication of both ring-shaped and patch-shaped hEHT. These QCFM1 hydrogels-based hEHTs possess organized sarcomeres and advanced function characteristics comparable to reported hEHTs. The chitin-derived hydrogels are first used for cardiac tissue engineering and achieve the batch fabrication of functionalized artificial myocardium. Specifically, these novel QCFM1 hydrogels provided a reliable and economical choice serving as ideal ECM for application in tissue engineering and regeneration medicine.
Collapse
Affiliation(s)
- Pengcheng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Fang Xie
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
- Institute of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lihang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Jonathan Nimal Selvaraj
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Jie Cai
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
- Institute of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Ireland J, Kilian KA. The importance of matrix in cardiomyogenesis: Defined substrates for maturation and chamber specificity. Matrix Biol Plus 2024; 24:100160. [PMID: 39291079 PMCID: PMC11403269 DOI: 10.1016/j.mbplus.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Human embryonic stem cell-derived cardiomyocytes (hESC-CM) are a promising source of cardiac cells for disease modelling and regenerative medicine. However, current protocols invariably lead to mixed population of cardiac cell types and often generate cells that resemble embryonic phenotypes. Here we developed a combinatorial approach to assess the importance of extracellular matrix proteins (ECMP) in directing the differentiation of cardiomyocytes from human embryonic stem cells (hESC). We did this by focusing on combinations of ECMP commonly found in the developing heart with a broad goal of identifying combinations that promote maturation and influence chamber specific differentiation. We formulated 63 unique ECMP combinations fabricated from collagen 1, collagen 3, collagen 4, fibronectin, laminin, and vitronectin, presented alone and in combinations, leading to the identification of specific ECMP combinations that promote hESC proliferation, pluripotency, and germ layer specification. When hESC were subjected to a differentiation protocol on the ECMP combinations, it revealed precise protein combinations that enhance differentiation as determined by the expression of cardiac progenitor markers kinase insert domain receptor (KDR) and mesoderm posterior transcription factor 1 (MESP1). High expression of cardiac troponin (cTnT) and the relative expression of myosin light chain isoforms (MLC2a and MLC2v) led to the identification of three surfaces that promote a mature cardiomyocyte phenotype. Action potential morphology was used to assess chamber specificity, which led to the identification of matrices that promote chamber-specific cardiomyocytes. This study provides a matrix-based approach to improve control over cardiomyocyte phenotypes during differentiation, with the scope for translation to cardiac laboratory models and for the generation of functional chamber specific cardiomyocytes for regenerative therapies.
Collapse
Affiliation(s)
- Jake Ireland
- School of Chemistry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kristopher A Kilian
- School of Chemistry, UNSW Sydney, Sydney, New South Wales, Australia
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Aalders J, Léger L, Hassannia B, Goossens V, Vanden Berghe T, van Hengel J. Improving cardiac differentiation of human pluripotent stem cells by targeting ferroptosis. Regen Ther 2024; 27:21-31. [PMID: 38496011 PMCID: PMC10940893 DOI: 10.1016/j.reth.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/19/2024] Open
Abstract
Generation of cardiomyocytes from human pluripotent stem cells (hPSCs) is of high interest for disease modelling and regenerative medicine. hPSCs can provide an unlimited source of patient-specific cardiomyocytes that are otherwise difficult to obtain from individuals. Moreover, the low proliferation rate of adult cardiomyocytes and low viability ex vivo limits the quantity of study material. Most protocols for the differentiation of cardiomyocytes from hPSCs are based on the temporal modulation of the Wnt pathway. However, during the initial stage of GSK-3 inhibition, a substantial number of cells are lost due to detachment. In this study, we aimed to increase the efficiency of generating cardiomyocytes from hPSCs. We identified cell death as a detrimental factor during this initial stage of in vitro cardiomyocyte differentiation. Through pharmacological targeting of different types of cell death, we discovered that ferroptosis was the main cell death type during the first 48 h of the in vitro differentiation procedure. Inhibiting ferroptosis using ferrostatin-1 during cardiomyocyte differentiation resulted in increased robustness and cell yield.
Collapse
Affiliation(s)
- Jeffrey Aalders
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 37a, 2nd floor, 9000, Ghent, Belgium
| | - Laurens Léger
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 37a, 2nd floor, 9000, Ghent, Belgium
| | - Behrouz Hassannia
- Cell Death Signalling Lab, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | | | - Tom Vanden Berghe
- Cell Death Signalling Lab, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium
| | - Jolanda van Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 37a, 2nd floor, 9000, Ghent, Belgium
| |
Collapse
|
7
|
Du T, Han Y, Han H, Xu T, Yan Y, Wu J, Li Y, Liu C, Liao X, Dong Y, Chen D, Ou J, Lin S, Huang ZP. The tRNA methyltransferase Mettl1 governs ketogenesis through translational regulation and drives metabolic reprogramming in cardiomyocyte maturation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1438-1453. [PMID: 39587264 DOI: 10.1038/s44161-024-00565-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024]
Abstract
After birth, the heart undergoes a shift in energy metabolism and cytoarchitecture to enhance efficient energy production and cardiac contraction, which is essential for postnatal development and growth. However, the precise mechanisms regulating this process remain elusive. Here we show that the RNA modification enzyme Mettl1 is a critical regulator of postnatal metabolic reprogramming and cardiomyocyte maturation in mice, primarily through its influence on the translation of the rate-limiting ketogenesis enzyme Hmgcs2. Our findings reveal that ketogenesis is vital for the postnatal transition of fuel from glucose to fatty acids in cardiomyocytes, achieved by modulating tricarboxylic acid cycle-related enzymatic activity via lysine β-hydroxybutyrylation protein modification. Loss of Mettl1 results in aberrant metabolic reprogramming and cardiomyocyte immaturity, leading to heart failure, although some clinical features can be rescued by β-hydroxybutyrate supplementation. Our study provides mechanistic insights into how Mettl1 regulates metabolic reprogramming in neonatal cardiomyocytes and highlights the importance of ketogenesis in cardiomyocyte maturation.
Collapse
Affiliation(s)
- Tailai Du
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Yanchuang Han
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Hui Han
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Ting Xu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Youchen Yan
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Jialing Wu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Yan Li
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Chen Liu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Xinxue Liao
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Demeng Chen
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingsong Ou
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Shuibin Lin
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China.
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
8
|
Ruiz-Lozano P, Mercola M. tRNA methylation drives early postnatal cardiomyocyte maturation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1375-1376. [PMID: 39587265 DOI: 10.1038/s44161-024-00572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Affiliation(s)
- Pilar Ruiz-Lozano
- Regencor, Inc., San Carlos, CA, USA
- National Heart Lung Institute, Imperial College London, London, UK
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Carnicer-Lombarte A, Malliaras GG, Barone DG. The Future of Biohybrid Regenerative Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408308. [PMID: 39564751 DOI: 10.1002/adma.202408308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/13/2024] [Indexed: 11/21/2024]
Abstract
Biohybrid regenerative bioelectronics are an emerging technology combining implantable devices with cell transplantation. Once implanted, biohybrid regenerative devices integrate with host tissue. The combination of transplant and device provides an avenue to both replace damaged or dysfunctional tissue, and monitor or control its function with high precision. While early challenges in the fusion of the biological and technological components limited development of biohybrid regenerative technologies, progress in the field has resulted in a rapidly increasing number of applications. In this perspective the great potential of this emerging technology for the delivery of therapy is discussed, including both recent research progress and potential new directions. Then the technology barriers are discussed that will need to be addressed to unlock the full potential of biohybrid regenerative devices.
Collapse
Affiliation(s)
| | - George G Malliaras
- Department of Engineering, Electrical Engineering Division, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Damiano G Barone
- Department of Engineering, Electrical Engineering Division, University of Cambridge, Cambridge, CB3 0FA, UK
- Department of Neurosurgery, Houston Methodist, Houston, 77030, USA
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
10
|
Ewoldt JK, DePalma SJ, Jewett ME, Karakan MÇ, Lin YM, Mir Hashemian P, Gao X, Lou L, McLellan MA, Tabares J, Ma M, Salazar Coariti AC, He J, Toussaint KC, Bifano TG, Ramaswamy S, White AE, Agarwal A, Lejeune E, Baker BM, Chen CS. Induced pluripotent stem cell-derived cardiomyocyte in vitro models: benchmarking progress and ongoing challenges. Nat Methods 2024:10.1038/s41592-024-02480-7. [PMID: 39516564 DOI: 10.1038/s41592-024-02480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/15/2024] [Indexed: 11/16/2024]
Abstract
Recent innovations in differentiating cardiomyocytes from human induced pluripotent stem cells (hiPSCs) have unlocked a viable path to creating in vitro cardiac models. Currently, hiPSC-derived cardiomyocytes (hiPSC-CMs) remain immature, leading many in the field to explore approaches to enhance cell and tissue maturation. Here, we systematically analyzed 300 studies using hiPSC-CM models to determine common fabrication, maturation and assessment techniques used to evaluate cardiomyocyte functionality and maturity and compiled the data into an open-access database. Based on this analysis, we present the diversity of, and current trends in, in vitro models and highlight the most common and promising practices for functional assessments. We further analyzed outputs spanning structural maturity, contractile function, electrophysiology and gene expression and note field-wide improvements over time. Finally, we discuss opportunities to collectively pursue the shared goal of hiPSC-CM model development, maturation and assessment that we believe are critical for engineering mature cardiac tissue.
Collapse
Affiliation(s)
- Jourdan K Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Maggie E Jewett
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - M Çağatay Karakan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Yih-Mei Lin
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Paria Mir Hashemian
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Lihua Lou
- Department of Mechanical and Material Engineering, Florida International University, Miami, FL, USA
| | - Micheal A McLellan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jonathan Tabares
- Department of Physics, Florida International University, Miami, FL, USA
| | - Marshall Ma
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | | | - Jin He
- Department of Physics, Florida International University, Miami, FL, USA
| | - Kimani C Toussaint
- School of Engineering, Brown University, Providence, RI, USA
- Brown-Lifespan Center for Digital Health, Providence, RI, USA
| | - Thomas G Bifano
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Sharan Ramaswamy
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Alice E White
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Arvind Agarwal
- Department of Mechanical and Material Engineering, Florida International University, Miami, FL, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
11
|
Chen ZY, Ji SJ, Huang CW, Tu WZ, Ren XY, Guo R, Xie X. In situ reprogramming of cardiac fibroblasts into cardiomyocytes in mouse heart with chemicals. Acta Pharmacol Sin 2024; 45:2290-2299. [PMID: 38890526 PMCID: PMC11489685 DOI: 10.1038/s41401-024-01308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
Cardiomyocytes are terminal differentiated cells and have limited ability to proliferate or regenerate. Condition like myocardial infarction causes massive death of cardiomyocytes and is the leading cause of death. Previous studies have demonstrated that cardiac fibroblasts can be induced to transdifferentiate into cardiomyocytes in vitro and in vivo by forced expression of cardiac transcription factors and microRNAs. Our previous study have demonstrated that full chemical cocktails could also induce fibroblast to cardiomyocyte transdifferentiation both in vitro and in vivo. With the development of tissue clearing techniques, it is possible to visualize the reprogramming at the whole-organ level. In this study, we investigated the effect of the chemical cocktail CRFVPTM in inducing in situ fibroblast to cardiomyocyte transdifferentiation with two strains of genetic tracing mice, and the reprogramming was observed at whole-heart level with CUBIC tissue clearing technique and 3D imaging. In addition, single-cell RNA sequencing (scRNA-seq) confirmed the generation of cardiomyocytes from cardiac fibroblasts which carries the tracing marker. Our study confirms the use of small molecule cocktails in inducing in situ fibroblast to cardiomyocyte reprogramming at the whole-heart level and proof-of-conceptly providing a new source of naturally incorporated cardiomyocytes to help heart regeneration.
Collapse
Affiliation(s)
- Zi-Yang Chen
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si-Jia Ji
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Chen-Wen Huang
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wan-Zhi Tu
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Xin-Yue Ren
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ren Guo
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264119, China
| | - Xin Xie
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264119, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
12
|
Finklea FB, Hashemi M, Tian Y, Hammons H, Halloin C, Triebert W, Zweigerdt R, Lipke EA. Chemically defined production of engineered cardiac tissue microspheres from hydrogel-encapsulated pluripotent stem cells. Biotechnol Bioeng 2024; 121:3614-3628. [PMID: 39104025 DOI: 10.1002/bit.28818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Chemically defined, suspension culture conditions are a key requirement in realizing clinical translation of engineered cardiac tissues (ECTs). Building on our previous work producing functional ECT microspheres through differentiation of biomaterial encapsulated human induced pluripotent stem cells (hiPSCs), here we establish the ability to use chemically defined culture conditions, including stem cell media (E8) and cardiac differentiation media (chemically defined differentiation media with three components, CDM3). A custom microfluidic cell encapsulation system was used to encapsulate hiPSCs at a range of initial cell concentrations and diameters in the hybrid biomaterial, poly(ethylene glycol)-fibrinogen (PF), for the formation of highly spherical and uniform ECT microspheres for subsequent cardiac differentiation. Initial microsphere diameter could be tightly controlled, and microspheres could be produced with an initial diameter between 400 and 800 µm. Three days after encapsulation, cardiac differentiation was initiated through small molecule modulation of Wnt signaling in CDM3. Cardiac differentiation occurred resulting in in situ ECT formation; results showed that this differentiation protocol could be used to achieve cardiomyocyte (CM) contents greater than 90%, although there was relatively high variability in CM content and yield between differentiation batches. Spontaneous contraction of ECT microspheres initiated between Days 7 and 10 of differentiation and ECT microspheres responded to electrical pacing up to 1.5 Hz. Resulting CMs had well-defined sarcomeres and the gap junction protein, connexin 43, and had appropriate temporal changes in gene expression. In summary, this study demonstrated the proof-of-concept to produce functional ECT microspheres with chemically defined media in suspension culture in combination with biomaterial support of microsphere encapsulated hiPSCs.
Collapse
Affiliation(s)
- Ferdous B Finklea
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | | | - Yuan Tian
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Hanna Hammons
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Caroline Halloin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Wiebke Triebert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
13
|
Zhang X, Zhao G, Ma T, Simmons CA, Santerre JP. A critical review on advances and challenges of bioprinted cardiac patches. Acta Biomater 2024; 189:1-24. [PMID: 39374681 DOI: 10.1016/j.actbio.2024.09.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Myocardial infarction (MI), which causes irreversible myocardium necrosis, affects 0.25 billion people globally and has become one of the most significant epidemics of our time. Over the past few years, bioprinting has moved beyond a concept of simply incorporating cells into biomaterials, to strategically defining the microenvironment (e.g., architecture, biomolecular signalling, mechanical stimuli, etc.) within which the cells are printed. Among the different bioprinting applications, myocardial repair is a field that has seen some of the most significant advances towards the management of the repaired tissue microenvironment. This review critically assesses the most recent biomedical innovations being carried out in cardiac patch bioprinting, with specific considerations given to the biomaterial design parameters, growth factors/cytokines, biomechanical and bioelectrical conditioning, as well as innovative biomaterial-based "4D" bioprinting (3D scaffold structure + temporal morphology changes) of myocardial tissues, immunomodulation and sustained delivery systems used in myocardium bioprinting. Key challenges include the ability to generate large quantities of cardiac cells, achieve high-density capillary networks, establish biomaterial designs that are comparable to native cardiac extracellular matrix, and manage the sophisticated systems needed for combining cardiac tissue microenvironmental cues while simultaneously establishing bioprinting technologies yielding both high-speed and precision. This must be achieved while considering quality assurance towards enabling reproducibility and clinical translation. Moreover, this manuscript thoroughly discussed the current clinical translational hurdles and regulatory issues associated with the post-bioprinting evaluation, storage, delivery and implantation of the bioprinted myocardial patches. Overall, this paper provides insights into how the clinical feasibility and important regulatory concerns may influence the design of the bioink (biomaterials, cell sources), fabrication and post-fabrication processes associated with bioprinting of the cardiac patches. This paper emphasizes that cardiac patch bioprinting requires extensive collaborations from imaging and 3D modelling technical experts, biomaterial scientists, additive manufacturing experts and healthcare professionals. Further, the work can also guide the field of cardiac patch bioprinting moving forward, by shedding light on the potential use of robotics and automation to increase productivity, reduce financial cost, and enable standardization and true commercialization of bioprinted cardiac patches. STATEMENT OF SIGNIFICANCE: The manuscript provides a critical review of important themes currently pursued for heart patch bioprinting, including critical biomaterial design parameters, physiologically-relevant cardiac tissue stimulations, and newly emerging cardiac tissue bioprinting strategies. This review describes the limited number of studies, to date in the literature, that describe systemic approaches to combine multiple design parameters, including capabilities to yield high-density capillary networks, establish biomaterial composite designs similar to native cardiac extracellular matrix, and incorporate cardiac tissue microenvironmental cues, while simultaneously establishing bioprinting technologies that yield high-speed and precision. New tools such as artificial intelligence may provide the analytical power to consider multiple design parameters and identify an optimized work-flow(s) for enabling the clinical translation of bioprinted cardiac patches.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, China; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario M5G 1M1, Canada.
| | - Guangtao Zhao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Tianyi Ma
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China
| | - Craig A Simmons
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, China; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario M5G 1M1, Canada.
| | - J Paul Santerre
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, China; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario M5G 1M1, Canada.
| |
Collapse
|
14
|
Kakizuka T, Natsume T, Nagai T. Compact lens-free imager using a thin-film transistor for long-term quantitative monitoring of stem cell culture and cardiomyocyte production. LAB ON A CHIP 2024. [PMID: 39436381 DOI: 10.1039/d4lc00528g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
With advancements in human induced pluripotent stem cell (hiPSC) technology, there is an increasing demand for quality control techniques to manage the long-term process of target cell production effectively. While monitoring systems designed for use within incubators are promising for assessing culture quality, existing systems still face challenges in terms of compactness, throughput, and available metrics. To address these limitations, we have developed a compact and high-throughput lens-free imaging device named INSPCTOR. The device is as small as a standard culture plate, which allows for the installation of multiple units within an incubator. INSPCTOR utilises a large thin-film transistor image sensor, enabling simultaneous observation of six independent culture environments, each approximately 1 cm2. With this device, we successfully monitored the confluency of hiPSC cultures and identified the onset timing of epithelial-to-mesenchymal transition during mesodermal induction. Additionally, we quantified the beating frequency and conduction of hiPSC-derived cardiomyocytes by using high-speed imaging modes. This enabled us to identify the onset of spontaneous beating during differentiation and assess chronotropic responses in drug evaluations. Moreover, by tracking beating frequency over 10 days of cardiomyocyte maturation, we identified week-scale and daily-scale fluctuations, the latter of which correlated with cellular metabolic activity. The metrics derived from this device would enhance the reproducibility and quality of target cell production.
Collapse
Affiliation(s)
- Taishi Kakizuka
- SANKEN, The University of Osaka, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, The University of Osaka, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Tohru Natsume
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-3-26 Aoumi, Koto-ku, Tokyo 135-0064, Japan
| | - Takeharu Nagai
- SANKEN, The University of Osaka, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, The University of Osaka, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Feng Y, Wang Y, Li L, Yang Y, Tan X, Chen T. Exosomes Induce Crosstalk Between Multiple Types of Cells and Cardiac Fibroblasts: Therapeutic Potential for Remodeling After Myocardial Infarction. Int J Nanomedicine 2024; 19:10605-10621. [PMID: 39445157 PMCID: PMC11498042 DOI: 10.2147/ijn.s476995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Recanalization therapy can significantly improve the prognosis of patients with acute myocardial infarction (AMI). However, infarction or reperfusion-induced cardiomyocyte death, immune cell infiltration, fibroblast proliferation, and scarring formation lead to cardiac remodeling and gradually progress to heart failure or arrhythmia, resulting in a high mortality rate. Due to the inability of cardiomyocytes to regenerate, the healing of infarcted myocardium mainly relies on the formation of scars. Cardiac fibroblasts, as the main effector cells involved in repair and scar formation, play a crucial role in maintaining the structural integrity of the heart after MI. Recent studies have revealed that exosome-mediated intercellular communication plays a huge role in myocardial repair and signaling transduction after myocardial infarction (MI). Exosomes can regulate the biological behavior of fibroblasts by activating or inhibiting the intracellular signaling pathways through their contents, which are derived from cardiomyocytes, immune cells, endothelial cells, mesenchymal cells, and others. Understanding the interactions between fibroblasts and other cell types during cardiac remodeling will be the key to breakthrough therapies. This review examines the role of exosomes from different sources in the repair process after MI injury, especially the impacts on fibroblasts during myocardial remodeling, and explores the use of exosomes in the treatment of myocardial remodeling after MI.
Collapse
Affiliation(s)
- Yijuan Feng
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yan Wang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Li Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
16
|
Lyu X, Fang J, Liu D, Wu Q, Li Y, Qin C, Zheng J, Hu N. Near-infrared-triggered plasmonic regulation and cardiomyocyte-based biosensing system for in vitro bradyarrhythmia treatment. Biosens Bioelectron 2024; 262:116554. [PMID: 38971038 DOI: 10.1016/j.bios.2024.116554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Bradyarrhythmia, a life-threatening cardiovascular disease, is an increasing burden for the healthcare system. Currently, surgery, implanted device, and drug are introduced to treat the bradyarrhythmia in clinical practice. However, these conventional therapeutic strategies suffer from the invasive surgery, power supply, or drug side effect, respectively, hence developing the alternative therapeutic strategy is necessarily imperative. Here, a convenient and effective strategy to treat the bradyarrhythmia is proposed using near-infrared-triggered Au nanorod (NR) based plasmonic photothermal effect (PPE). Moreover, electrophysiology of cardiomyocytes is dynamically monitored by the integrated biosensing-regulating system during and after the treatment. Cardiomyocyte-based bradyarrhythmia recover rhythmic for a long time by regulating plasmonic photothermal effect. Furthermore, the regulatory mechanism is qualitatively investigated to verify the significant thermal stimulation in the recovery process. This study establishes a reliable platform for long-term recording and evaluation of mild photothermal therapy for bradyarrhythmia in vitro, offering an efficient and non-invasive strategy for the potential clinical applications.
Collapse
Affiliation(s)
- Xuelian Lyu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Jiaru Fang
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Dong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qianni Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chunlian Qin
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Jilin Zheng
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China; General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China.
| |
Collapse
|
17
|
Czosseck A, Chen MM, Hsu CC, Shamrin G, Meeson A, Oldershaw R, Nguyen H, Livkisa D, Lundy DJ. Extracellular vesicles from human cardiac stromal cells up-regulate cardiomyocyte protective responses to hypoxia. Stem Cell Res Ther 2024; 15:363. [PMID: 39396003 PMCID: PMC11470622 DOI: 10.1186/s13287-024-03983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Cell therapy can protect cardiomyocytes from hypoxia, primarily via paracrine secretions, including extracellular vesicles (EVs). Since EVs fulfil specific biological functions based on their cellular origin, we hypothesised that EVs from human cardiac stromal cells (CMSCLCs) obtained from coronary artery bypass surgery may have cardioprotective properties. OBJECTIVES This study characterises CMSCLC EVs (C_EVs), miRNA cargo, cardioprotective efficacy and transcriptomic modulation of hypoxic human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). C_EVs are compared to bone marrow mesenchymal stromal cell EVs (B_EVs) which are a known therapeutic EV type. METHODS Cells were characterised for surface markers, gene expression and differentiation potential. EVs were compared for yield, phenotype, and ability to protect hiPSC-CMs from hypoxia/reoxygenation injury. EV dose was normalised by both protein concentration and particle count, allowing direct comparison. C_EV and B_EV miRNA cargo was profiled and RNA-seq was performed on EV-treated hypoxic hiPSC-CMs, then data were integrated by multi-omics. Confirmatory experiments were carried out using miRNA mimics. RESULTS At the same dose, C_EVs were more effective than B_EVs at protecting CM integrity, reducing apoptotic markers, and cell death during hypoxia. While C_EVs and B_EVs shared 70-77% similarity in miRNA content, C_EVs contained unique miRNAs, including miR-202-5p, miR-451a and miR-142-3p. Delivering miRNA mimics confirmed that miR-1260a and miR-202/451a/142 were cardioprotective, and the latter upregulated protective pathways similar to whole C_EVs. CONCLUSIONS This study demonstrates the potential of cardiac tissues, routinely discarded following surgery, as a valuable source of EVs for myocardial infarction therapy. We also identify miR-1260a as protective of CM hypoxia.
Collapse
Affiliation(s)
- Andreas Czosseck
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan
| | - Max M Chen
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan
| | - Chuan-Chih Hsu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Medical University Hospital, 250 Wuxing Street, Taipei, 110, Taiwan
| | - Gleb Shamrin
- Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
| | - Annette Meeson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Rachel Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Helen Nguyen
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan
| | - Dora Livkisa
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan
| | - David J Lundy
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan.
- Center for Cell Therapy, Taipei Medical University Hospital, 250 Wuxing Street, Taipei, 110, Taiwan.
- College of Biomedical Engineering, 301 Yuantong Road, Taipei, 235605, Taiwan.
| |
Collapse
|
18
|
Shi G, Jiang C, Wang J, Cui P, Shan W. Mechanical stimulation promotes the maturation of cardiomyocyte-like cells from P19 cells and the function in a mouse model of myocardial infarction. Cell Tissue Res 2024:10.1007/s00441-024-03922-6. [PMID: 39395051 DOI: 10.1007/s00441-024-03922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
In this study, we aimed to promote the maturation of cardiomyocytes-like cells by mechanical stimulation, and evaluate their therapeutic potential against myocardial infarction. The cyclic tensile strain was used to induce the maturation of cardsiomyocyte-like cells from P19 cells in vitro. Western blot and qPCR assays were performed to examine protein and gene expression, respectively. High-resolution respirometry was used to assay cell function. The induced cells were then evaluated for their therapeutic effect. In vitro, we observed cyclic tensile strain induced P19 cell differentiation into cardiomyocyte-like cells, as indicated by the increased expression of cardiomyocyte maturation-related genes such as Myh6, Myl2, and Gja1. Furthermore, cyclic tensile strain increased the antioxidant capacity of cardiomyocytes by upregulating the expression Sirt1, a gene important for P19 maturation into cardiomyocyte-like cells. High-resolution respirometry analysis of P19 cells following cyclic tensile strain showed enhanced metabolic function. In vivo, stimulated P19 cells enhanced cardiac function in a mouse model of myocardial infarction, and these mice showed decreased infarction-related biomarkers. The current study demonstrates a simple yet effective mean to induce the maturation of P19 cells into cardiomyocyte-like cells, with a promising therapeutic potential for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Guiliang Shi
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Chaopeng Jiang
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China.
| | - Jiwei Wang
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Ping Cui
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Weixin Shan
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| |
Collapse
|
19
|
Jiang X, Lian X, Wei K, Zhang J, Yu K, Li H, Ma H, Cai Y, Pang L. Maturation of pluripotent stem cell-derived cardiomyocytes: limitations and challenges from metabolic aspects. Stem Cell Res Ther 2024; 15:354. [PMID: 39380099 PMCID: PMC11462682 DOI: 10.1186/s13287-024-03961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Acute coronary syndromes, such as myocardial infarction (MI), lack effective therapies beyond heart transplantation, which is often hindered by donor scarcity and postoperative complications. Human induced pluripotent stem cells (hiPSCs) offer the possibility of myocardial regeneration by differentiating into cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-cardiomyocytes) exhibit fetal-like calcium flux and energy metabolism, which inhibits their engraftment. Several strategies have been explored to improve the therapeutic efficacy of hiPSC-cardiomyocytes, such as selectively enhancing energy substrate utilization and improving the transplantation environment. In this review, we have discussed the impact of altered mitochondrial biogenesis and metabolic switching on the maturation of hiPSC-cardiomyocytes. Additionally, we have discussed the limitations inherent in current methodologies for assessing metabolism in hiPSC-cardiomyocytes, and the challenges in achieving sufficient metabolic flexibility akin to that in the healthy adult heart.
Collapse
Affiliation(s)
- Xi Jiang
- Health management center, the First Hospital of Jilin University, Changchun, China
| | - Xin Lian
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Kun Wei
- Department of Rehabilitation, The Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jie Zhang
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Kaihua Yu
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Haoming Li
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Haichun Ma
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yin Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Pang
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
20
|
Bufi S, Santoro R. Three-Dimensional iPSC-Based In Vitro Cardiac Models for Biomedical and Pharmaceutical Research Applications. Int J Mol Sci 2024; 25:10690. [PMID: 39409018 PMCID: PMC11477044 DOI: 10.3390/ijms251910690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular diseases are a major cause of death worldwide. Advanced in vitro models can be the key stone for a better understanding of the mechanisms at the basis of the different pathologies, supporting the development of novel therapeutic protocols. In particular, the implementation of induced pluripotent stem cell (iPSC) technology allows for the generation of a patient-specific pluripotent cell line that is able to differentiate in several organ-specific cell subsets while retaining the patient genetic background, thus putting the basis for personalized in vitro modeling toward personalized medicine. The design of iPSC-based models able to recapitulate the complexity of the cardiac environment is a critical goal. Here, we review some of the published efforts to exploit three dimensional (3D) iPSC-based methods to recapitulate the relevant cardiomyopathies, including genetically and non-genetically determined cardiomyopathies and cardiotoxicity studies. Finally, we discuss the actual method limitations and the future perspectives in the field.
Collapse
Affiliation(s)
- Simona Bufi
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy
| | - Rosaria Santoro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
21
|
Han K, Mao M, Fu L, Zhang Y, Kang Y, Li D, He J. Multimaterial Printing of Serpentine Microarchitectures with Synergistic Mechanical/Piezoelectric Stimulation for Enhanced Cardiac-Specific Functional Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401561. [PMID: 38899348 DOI: 10.1002/smll.202401561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Recreating the natural heart's mechanical and electrical environment is crucial for engineering functional cardiac tissue and repairing infarcted myocardium in vivo. In this study, multimaterial-printed serpentine microarchitectures are presented with synergistic mechanical/piezoelectric stimulation, incorporating polycaprolactone (PCL) microfibers for mechanical support, polyvinylidene fluoride (PVDF) microfibers for piezoelectric stimulation, and magnetic PCL/Fe3O4 for controlled deformation via an external magnet. Rat cardiomyocytes in piezoelectric constructs, subjected to dynamic mechanical stimulation, exhibit advanced maturation, featuring superior sarcomeric structures, improved calcium transients, and upregulated maturation genes compared to non-piezoelectric constructs. Furthermore, these engineered piezoelectric cardiac constructs demonstrate significant structural and functional repair of infarcted myocardium, as evidenced by enhanced ejection and shortening fraction, reduced fibrosis and inflammation, and increased angiogenesis. The findings underscore the therapeutic potential of piezoelectric cardiac constructs for myocardial infarction therapy.
Collapse
Affiliation(s)
- Kang Han
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mao Mao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Liyan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, P. R. China
| | - Yabo Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, P. R. China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
22
|
Mair DB, Tsui JH, Higashi T, Koenig P, Dong Z, Chen JF, Meir JU, Smith AST, Lee PHU, Ahn EH, Countryman S, Sniadecki NJ, Kim DH. Spaceflight-induced contractile and mitochondrial dysfunction in an automated heart-on-a-chip platform. Proc Natl Acad Sci U S A 2024; 121:e2404644121. [PMID: 39312653 PMCID: PMC11459163 DOI: 10.1073/pnas.2404644121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
With current plans for manned missions to Mars and beyond, the need to better understand, prevent, and counteract the harmful effects of long-duration spaceflight on the body is becoming increasingly important. In this study, an automated heart-on-a-chip platform was flown to the International Space Station on a 1-mo mission during which contractile cardiac function was monitored in real-time. Upon return to Earth, engineered human heart tissues (EHTs) were further analyzed with ultrastructural imaging and RNA sequencing to investigate the impact of prolonged microgravity on cardiomyocyte function and health. Spaceflight EHTs exhibited significantly reduced twitch forces, increased incidences of arrhythmias, and increased signs of sarcomere disruption and mitochondrial damage. Transcriptomic analyses showed an up-regulation of genes and pathways associated with metabolic disorders, heart failure, oxidative stress, and inflammation, while genes related to contractility and calcium signaling showed significant down-regulation. Finally, in silico modeling revealed a potential link between oxidative stress and mitochondrial dysfunction that corresponded with RNA sequencing results. This represents an in vitro model to faithfully reproduce the adverse effects of spaceflight on three-dimensional (3D)-engineered heart tissue.
Collapse
Affiliation(s)
- Devin B. Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Jonathan H. Tsui
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Ty Higashi
- Department of Mechanical Engineering, University of Washington, Seattle, WA98195
| | - Paul Koenig
- BioServe Space Technologies, Ann and HJ Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO80303
| | - Zhipeng Dong
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Jeffrey F. Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Jessica U. Meir
- The National Aeronautics and Space Administration, NASA Johnson Space Center, Houston, TX77058
| | - Alec S. T. Smith
- Department of Physiology and Biophysics, University of Washington, Seattle, WA98195
| | - Peter H. U. Lee
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI02912
| | - Eun Hyun Ahn
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD21205
| | - Stefanie Countryman
- BioServe Space Technologies, Ann and HJ Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO80303
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA98195
- Department of Bioengineering, University of Washington, Seattle, WA98195
- Center for Cardiovascular Biology, University of Washington, Seattle, WA98109
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA98109
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
- Department of Bioengineering, University of Washington, Seattle, WA98195
- Center for Cardiovascular Biology, University of Washington, Seattle, WA98109
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA98109
- Department of Medicine, Johns Hopkins University, Baltimore, MD21205
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
23
|
Du X, Jia H, Chang Y, Zhao Y, Song J. Progress of organoid platform in cardiovascular research. Bioact Mater 2024; 40:88-103. [PMID: 38962658 PMCID: PMC11220467 DOI: 10.1016/j.bioactmat.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
Cardiovascular disease is a significant cause of death in humans. Various models are necessary for the study of cardiovascular diseases, but once cellular and animal models have some defects, such as insufficient fidelity. As a new technology, organoid has certain advantages and has been used in many applications in the study of cardiovascular diseases. This article aims to summarize the application of organoid platforms in cardiovascular diseases, including organoid construction schemes, modeling, and application of cardiovascular organoids. Advances in cardiovascular organoid research have provided many models for different cardiovascular diseases in a variety of areas, including myocardium, blood vessels, and valves. Physiological and pathological models of different diseases, drug research models, and methods for evaluating and promoting the maturation of different kinds of organ tissues are provided for various cardiovascular diseases, including cardiomyopathy, myocardial infarction, and atherosclerosis. This article provides a comprehensive overview of the latest research progress in cardiovascular organ tissues, including construction protocols for cardiovascular organoid tissues and their evaluation system, different types of disease models, and applications of cardiovascular organoid models in various studies. The problems and possible solutions in organoid development are summarized.
Collapse
Affiliation(s)
- Xingchao Du
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| |
Collapse
|
24
|
Han J, Lin L, Fang Z, Ye B, Han X, Xu J, Han B, Min J, Qian J, Wu G, Wang Y, Liang G. Cardiomyocyte-derived USP28 negatively regulates antioxidant response and promotes cardiac hypertrophy via deubiquitinating TRIM21. Theranostics 2024; 14:6236-6248. [PMID: 39431010 PMCID: PMC11488095 DOI: 10.7150/thno.99340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024] Open
Abstract
Rationale: Cardiac hypertrophy is an important pathological basis for heart failure. Most physiological activities of cardiomyocytes are regulated by proteins and their post-translational modification. Deubiquitinating enzymes (DUBs) are involved in protein stability maintenance and closely related to myocardial hypertrophy. In this study, we aimed to clarify the regulatory role of a DUB, ubiquitin-specific peptidase 28 (USP28), in cardiac hypertrophy and explore the molecular mechanism behind. Methods: Transcriptome and single-cell mRNA sequencing was used to demonstrate the association of USP28 and cardiac hypertrophy. Cardiomyocyte-specific USP28 knockout mice (USP28CKO) were subjected to angiotensin II (Ang II) infusion or transverse aortic constriction (TAC) models. Coimmunoprecipitation combined mass spectrum analysis (Co-IP/MS) was applied to screen out the substrate of USP28. Results: We first showed the up-regulation of USP28 in cardiac hypertrophy, and its cellular localization of cardiomyocytes. USP28CKO protects mouse heart against Ang II- or TAC-induced cardiac dysfunction and hypertrophy. Mechanistically, we identified tripartite motif-containing protein 21 (TRIM21) as the potential substrate of USP28 by Co-IP/MS analysis. Cardiomyocyte USP28 deubiquitinates and stabilizes TRIM21 to negatively regulate nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant response, increasing oxidative stress in cardiomyocytes and promoting cardiac hypertrophy and injury. Finally, using a selective USP28 inhibitor Otilonium Bromide, we confirmed the therapeutic effect of pharmacological inhibition of USP28 against TAC-induced established hypertrophic heart failure. Conclusion: Our study illustrates a cardiomyocyte-specific USP28-TRIM21 axis in regulating hypertrophic cardiomyopathy and presents USP28 as a potential target for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Jibo Han
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cardiology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Liming Lin
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zimin Fang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bozhi Ye
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Han
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pharmacy and School of Pharmaceutical Sciences, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jiachen Xu
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Binjiang Han
- Department of Cardiology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Julian Min
- Department of Pharmacy and School of Pharmaceutical Sciences, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jinfu Qian
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaojun Wu
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Guang Liang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pharmacy and School of Pharmaceutical Sciences, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
25
|
Xiong H, Lin B, Liu J, Lu R, Lin Z, Hang C, Liu W, Zhang L, Ding J, Guo H, Zhang M, Wang S, Gong Z, Xie D, Liu Y, Shi D, Liang D, Liu Z, Chen YH, Yang J. SALL2 regulates neural differentiation of mouse embryonic stem cells through Tuba1a. Cell Death Dis 2024; 15:710. [PMID: 39349437 PMCID: PMC11442768 DOI: 10.1038/s41419-024-07088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024]
Abstract
The spalt (Sal) gene family has four members (Sall1-4) in vertebrates, all of which play pivotal roles in various biological processes and diseases. However, the expression and function of SALL2 in development are still less clear. Here, we first charted SALL2 protein expression pattern during mouse embryo development by immunofluorescence, which revealed its dominant expression in the developing nervous system. With the establishment of Sall2 deficient mouse embryonic stem cells (ESCs), the in vitro neural differentiation system was leveraged to interrogate the function of SALL2, which showed impaired neural differentiation of Sall2 knockout (KO) ESCs. Furthermore, neural stem cells (NSCs) could not be derived from Sall2 KO ESCs and the generation of neural tube organoids (NTOs) was greatly inhibited in the absence of SALL2. Meanwhile, transgenic expression of E1 isoform of SALL2 restored the defects of neural differentiation in Sall2 KO ESCs. By chromatin immunoprecipitation sequencing (ChIP-seq), Tuba1a was identified as downstream target of SALL2, whose function in neural differentiation was confirmed by rescuing neural phenotypes of Sall2 KO ESCs when overexpressed. In sum, by elucidating SALL2 expression dynamics during early mouse development and mechanistically characterizing its indispensable role in neural differentiation, this study offers insights into SALL2's function in human nervous system development, associated pathologies stemming from its mutations and relevant therapeutic strategy.
Collapse
Affiliation(s)
- Hui Xiong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
| | - Bowen Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
| | - Renhong Lu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zheyi Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chengwen Hang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wenjun Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Zhang
- Department of Anatomy, Histology and Embryology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jie Ding
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Huixin Guo
- Department of Cardiology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
| | - Siyu Wang
- Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Zheng Gong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Duanyang Xie
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Dan Shi
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Han Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| | - Jian Yang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| |
Collapse
|
26
|
Rody E, Zwaig J, Derish I, Khan K, Kachurina N, Gendron N, Giannetti N, Schwertani A, Cecere R. Evaluating the Reparative Potential of Secretome from Patient-Derived Induced Pluripotent Stem Cells during Ischemia-Reperfusion Injury in Human Cardiomyocytes. Int J Mol Sci 2024; 25:10279. [PMID: 39408608 PMCID: PMC11477076 DOI: 10.3390/ijms251910279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/20/2024] Open
Abstract
During a heart attack, ischemia causes losses of billions of cells; this is especially concerning given the minimal regenerative capability of cardiomyocytes (CMs). Heart remuscularization utilizing stem cells has improved cardiac outcomes despite little cell engraftment, thereby shifting focus to cell-free therapies. Consequently, we chose induced pluripotent stem cells (iPSCs) given their pluripotent nature, efficacy in previous studies, and easy obtainability from minimally invasive techniques. Nonetheless, using iPSC secretome-based therapies for treating injured CMs in a clinical setting is ill-understood. We hypothesized that the iPSC secretome, regardless of donor health, would improve cardiovascular outcomes in the CM model of ischemia-reperfusion (IR) injury. Episomal-generated iPSCs from healthy and dilated cardiomyopathy (DCM) donors, passaged 6-10 times, underwent 24 h incubation in serum-free media. Protein content of the secretome was analyzed by mass spectroscopy and used to treat AC16 immortalized CMs during 5 h reperfusion following 24 h of hypoxia. IPSC-derived secretome content, independent of donor health status, had elevated expression of proteins involved in cell survival pathways. In IR conditions, iPSC-derived secretome increased cell survival as measured by metabolic activity (p < 0.05), cell viability (p < 0.001), and maladaptive cellular remodelling (p = 0.052). Healthy donor-derived secretome contained increased expression of proteins related to calcium contractility compared to DCM donors. Congruently, only healthy donor-derived secretomes improved CM intracellular calcium concentrations (p < 0.01). Heretofore, secretome studies mainly investigated differences relating to cell type rather than donor health. Our work suggests that healthy donors provide more efficacious iPSC-derived secretome compared to DCM donors in the context of IR injury in human CMs. These findings illustrate that the regenerative potential of the iPSC secretome varies due to donor-specific differences.
Collapse
Affiliation(s)
- Elise Rody
- Department of Surgery, Division of Cardiac Surgery, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Jeremy Zwaig
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (J.Z.)
| | - Ida Derish
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (J.Z.)
- Department of Surgical and Interventional Sciences, McGill University, Montreal, QC H3G 1A4, Canada
| | - Kashif Khan
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (J.Z.)
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Nadezda Kachurina
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Natalie Gendron
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Nadia Giannetti
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Adel Schwertani
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Renzo Cecere
- Department of Surgery, Division of Cardiac Surgery, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
27
|
Taghvimi S, Soltani Fard E, Khatami SH, Zafaranchi Z M S, Taheri-Anganeh M, Movahedpour A, Ghasemi H. lncRNA HOTAIR and Cardiovascular diseases. Funct Integr Genomics 2024; 24:165. [PMID: 39294422 DOI: 10.1007/s10142-024-01444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Cardiovascular diseases (CVDs) a major contributor to global mortality rates, with a steadily rising prevalence observed across the world. Understanding the molecular mechanisms that underlie the signaling pathways implicated in the pathogenesis of CVDs represents a salient and advantageous avenue toward the development of precision and targeted therapeutics. A recent development in CVDs research is the discovery of long non-coding RNAs (lncRNAs), which are now understood to have crucial roles in the onset and development of several pathophysiological processes. The distinct expression patterns exhibited by lncRNAs in various CVDs contexts, present a significant opportunity for their utilization as both biomarkers and targets for therapeutic intervention. Among the various identified lncRNAs, HOX antisense intergenic RNA (HOTAIR) functions as signaling molecules that are significantly implicated in the pathogenesis of cardiovascular disorders in response to risk factors. HOTAIR has been observed to circulate within the bloodstream and possesses an integral epigenetic regulatory function in the transcriptional pathways of many diseases. Recent studies have suggested that HOTAIR offers promise as a biomarker for the detection and treatment of CVDs. The investigation on HOTAIR's role in CVDs, however, is still in its early phases. The goal of the current study is to give a thorough overview of recent developments in the field of analyzing the molecular mechanism of HOTAIR in controlling the pathophysiological processes of CVDs as well as its possible therapeutic uses.
Collapse
Affiliation(s)
- Sina Taghvimi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elahe Soltani Fard
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Zafaranchi Z M
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
28
|
Snyder CA, Dwyer KD, Coulombe KLK. Advancing Human iPSC-Derived Cardiomyocyte Hypoxia Resistance for Cardiac Regenerative Therapies through a Systematic Assessment of In Vitro Conditioning. Int J Mol Sci 2024; 25:9627. [PMID: 39273573 PMCID: PMC11395605 DOI: 10.3390/ijms25179627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Acute myocardial infarction (MI) is a sudden, severe cardiac ischemic event that results in the death of up to one billion cardiomyocytes (CMs) and subsequent decrease in cardiac function. Engineered cardiac tissues (ECTs) are a promising approach to deliver the necessary mass of CMs to remuscularize the heart. However, the hypoxic environment of the heart post-MI presents a critical challenge for CM engraftment. Here, we present a high-throughput, systematic study targeting several physiological features of human induced pluripotent stem cell-derived CMs (hiPSC-CMs), including metabolism, Wnt signaling, substrate, heat shock, apoptosis, and mitochondrial stabilization, to assess their efficacy in promoting ischemia resistance in hiPSC-CMs. The results of 2D experiments identify hypoxia preconditioning (HPC) and metabolic conditioning as having a significant influence on hiPSC-CM function in normoxia and hypoxia. Within 3D engineered cardiac tissues (ECTs), metabolic conditioning with maturation media (MM), featuring high fatty acid and calcium concentration, results in a 1.5-fold increase in active stress generation as compared to RPMI/B27 control ECTs in normoxic conditions. Yet, this functional improvement is lost after hypoxia treatment. Interestingly, HPC can partially rescue the function of MM-treated ECTs after hypoxia. Our systematic and iterative approach provides a strong foundation for assessing and leveraging in vitro culture conditions to enhance the hypoxia resistance, and thus the successful clinical translation, of hiPSC-CMs in cardiac regenerative therapies.
Collapse
Affiliation(s)
- Caroline A Snyder
- Institute for Biology, Engineering and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Kiera D Dwyer
- Institute for Biology, Engineering and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Kareen L K Coulombe
- Institute for Biology, Engineering and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
29
|
Yang J, Daily NJ, Pullinger TK, Wakatsuki T, Sobie EA. Creating cell-specific computational models of stem cell-derived cardiomyocytes using optical experiments. PLoS Comput Biol 2024; 20:e1011806. [PMID: 39259757 PMCID: PMC11460686 DOI: 10.1371/journal.pcbi.1011806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 10/08/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have gained traction as a powerful model in cardiac disease and therapeutics research, since iPSCs are self-renewing and can be derived from healthy and diseased patients without invasive surgery. However, current iPSC-CM differentiation methods produce cardiomyocytes with immature, fetal-like electrophysiological phenotypes, and the variety of maturation protocols in the literature results in phenotypic differences between labs. Heterogeneity of iPSC donor genetic backgrounds contributes to additional phenotypic variability. Several mathematical models of iPSC-CM electrophysiology have been developed to help to predict cell responses, but these models individually do not capture the phenotypic variability observed in iPSC-CMs. Here, we tackle these limitations by developing a computational pipeline to calibrate cell preparation-specific iPSC-CM electrophysiological parameters. We used the genetic algorithm (GA), a heuristic parameter calibration method, to tune ion channel parameters in a mathematical model of iPSC-CM physiology. To systematically optimize an experimental protocol that generates sufficient data for parameter calibration, we created in silico datasets by simulating various protocols applied to a population of models with known conductance variations, and then fitted parameters to those datasets. We found that calibrating to voltage and calcium transient data under 3 varied experimental conditions, including electrical pacing combined with ion channel blockade and changing buffer ion concentrations, improved model parameter estimates and model predictions of unseen channel block responses. This observation also held when the fitted data were normalized, suggesting that normalized fluorescence recordings, which are more accessible and higher throughput than patch clamp recordings, could sufficiently inform conductance parameters. Therefore, this computational pipeline can be applied to different iPSC-CM preparations to determine cell line-specific ion channel properties and understand the mechanisms behind variability in perturbation responses.
Collapse
Affiliation(s)
- Janice Yang
- Department of Pharmacological Sciences & Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Neil J. Daily
- InvivoSciences Inc., Madison, Wisconsin, United States of America
| | - Taylor K. Pullinger
- Department of Pharmacological Sciences & Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | | | - Eric A. Sobie
- Department of Pharmacological Sciences & Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
30
|
Hu J, Anderson W, Hayes E, Strauss EA, Lang J, Bacos J, Simacek N, Vu HH, McCarty OJ, Kim H, Kang Y(A. The development, use, and challenges of electromechanical tissue stimulation systems. Artif Organs 2024; 48:943-960. [PMID: 38887912 PMCID: PMC11321926 DOI: 10.1111/aor.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Tissue stimulations greatly affect cell growth, phenotype, and function, and they play an important role in modeling tissue physiology. With the goal of understanding the cellular mechanisms underlying the response of tissues to external stimulations, in vitro models of tissue stimulation have been developed in hopes of recapitulating in vivo tissue function. METHODS Herein we review the efforts to create and validate tissue stimulators responsive to electrical or mechanical stimulation including tensile, compression, torsion, and shear. RESULTS Engineered tissue platforms have been designed to allow tissues to be subjected to selected types of mechanical stimulation from simple uniaxial to humanoid robotic stain through equal-biaxial strain. Similarly, electrical stimulators have been developed to apply selected electrical signal shapes, amplitudes, and load cycles to tissues, lending to usage in stem cell-derived tissue development, tissue maturation, and tissue functional regeneration. Some stimulators also allow for the observation of tissue morphology in real-time while cells undergo stimulation. Discussion on the challenges and limitations of tissue simulator development is provided. CONCLUSIONS Despite advances in the development of useful tissue stimulators, opportunities for improvement remain to better reproduce physiological functions by accounting for complex loading cycles, electrical and mechanical induction coupled with biological stimuli, and changes in strain affected by applied inputs.
Collapse
Affiliation(s)
- Jie Hu
- Department of Mechanical Engineering; University of Massachusetts; Lowell, MA 01854 USA
| | - William Anderson
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Emily Hayes
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Ellie Annah Strauss
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Jordan Lang
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Josh Bacos
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Noah Simacek
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Helen H. Vu
- Department of Biomedical Engineering; Oregon Health & Science University; Portland, OR 97239 USA
| | - Owen J.T. McCarty
- Department of Biomedical Engineering; Oregon Health & Science University; Portland, OR 97239 USA
- Cell, Developmental and Cancer Biology; Oregon Health & Science University; Portland, OR 97201 USA
| | - Hoyeon Kim
- Department of Engineering; Loyola University Maryland; Baltimore, MD 21210 USA
| | - Youngbok (Abraham) Kang
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| |
Collapse
|
31
|
Zhu W, Guo S, Sun J, Zhao Y, Liu C. Lactate and lactylation in cardiovascular diseases: current progress and future perspectives. Metabolism 2024; 158:155957. [PMID: 38908508 DOI: 10.1016/j.metabol.2024.155957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Cardiovascular diseases (CVDs) are often linked to structural and functional impairments, such as heart defects and circulatory dysfunction, leading to compromised peripheral perfusion and heightened morbidity risks. Metabolic remodeling, particularly in the context of cardiac fibrosis and inflammation, is increasingly recognized as a pivotal factor in the pathogenesis of CVDs. Metabolic syndromes further predispose individuals to these conditions, underscoring the need to elucidate the metabolic underpinnings of CVDs. Lactate, a byproduct of glycolysis, is now recognized as a key molecule that connects cellular metabolism with the regulation of cellular activity. The transport of lactate between different cells is essential for metabolic homeostasis and signal transduction. Disruptions to lactate dynamics are implicated in various CVDs. Furthermore, lactylation, a novel post-translational modification, has been identified in cardiac cells, where it influences protein function and gene expression, thereby playing a significant role in CVD pathogenesis. In this review, we summarized recent advancements in understanding the role of lactate and lactylation in CVDs, offering fresh insights that could guide future research directions and therapeutic interventions. The potential of lactate metabolism and lactylation as innovative therapeutic targets for CVD is a promising avenue for exploration.
Collapse
Affiliation(s)
- Wengen Zhu
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou 510080, PR China.
| | - Siyu Guo
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Junyi Sun
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Yudan Zhao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, PR China.
| | - Chen Liu
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou 510080, PR China.
| |
Collapse
|
32
|
Fujikawa Y, Kato K, Unno K, Narita S, Okuno Y, Sato Y, Takefuji M, Murohara T. Dynamic upregulation of retinoic acid signal in the early postnatal murine heart promotes cardiomyocyte cell cycle exit and maturation. Sci Rep 2024; 14:20222. [PMID: 39215116 PMCID: PMC11364823 DOI: 10.1038/s41598-024-70918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The adult mammalian heart has extremely limited cardiac regenerative capacity. Most cardiomyocytes live in a state of permanent cell-cycle arrest and are unable to re-enter the cycle. Cardiomyocytes switch from cell proliferation to a maturation state during neonatal development. Although several signaling pathways are involved in this transition, the molecular mechanisms by which these inputs coordinately regulate cardiomyocyte maturation are not fully understood. Retinoic acid (RA) plays a pivotal role in development, morphogenesis, and regeneration. Despite the importance of RA signaling in embryo heart development, little is known about its function in the early postnatal period. We found that mRNA expression of aldehyde dehydrogenase 1 family member A2 (Aldh1a2), which encodes the key enzyme for synthesizing all-trans retinoic acid (ATRA) and is an important regulator for RA signaling, was transiently upregulated in neonatal mouse ventricles. Single-cell transcriptome analysis and immunohistochemistry revealed that Aldh1a2 expression was enriched in cardiac fibroblasts during the early postnatal period. Administration of ATRA inhibited cardiomyocyte proliferation in cultured neonatal rat cardiomyocytes and human cardiomyocytes. RNA-seq analysis indicated that cell proliferation-related genes were downregulated in prenatal rat ventricular cardiomyocytes treated with ATRA, while cardiomyocyte maturation-related genes were upregulated. These findings suggest that RA signaling derived from cardiac fibroblasts is one of the key regulators of cardiomyocyte proliferation and maturation during neonatal heart development.
Collapse
Affiliation(s)
- Yusuke Fujikawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
| | - Kazumasa Unno
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
| | - Shingo Narita
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Mikito Takefuji
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
33
|
Pushpan CK, Kumar SR. iPSC-Derived Cardiomyocytes as a Disease Model to Understand the Biology of Congenital Heart Defects. Cells 2024; 13:1430. [PMID: 39273002 PMCID: PMC11393881 DOI: 10.3390/cells13171430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The discovery of human pluripotent stem cells (hiPSCs) and advances in DNA editing techniques have opened opportunities for personalized cell-based therapies for a wide spectrum of diseases. It has gained importance as a valuable tool to investigate genetic and functional variations in congenital heart defects (CHDs), enabling the customization of treatment strategies. The ability to understand the disease process specific to the individual patient of interest provides this technology with a significant advantage over generic animal models. However, its utility as a disease-in-a-dish model requires identifying effective and efficient differentiation protocols that accurately reproduce disease traits. Currently, iPSC-related research relies heavily on the quality of cells and the properties of the differentiation technique In this review, we discuss the utility of iPSCs in bench CHD research, the molecular pathways involved in the differentiation of cardiomyocytes, and their applications in CHD disease modeling, therapeutics, and drug application.
Collapse
Affiliation(s)
- Chithra K Pushpan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-7616, USA
| | - Subramanyan Ram Kumar
- Division of Cardiothoracic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-7616, USA
- Dr. C.C. and Mabel, L. Criss Heart Center, Children's Nebraska, 8200 Dodge St, Omaha, NE 68114, USA
| |
Collapse
|
34
|
Lee SG, Rhee J, Seok J, Kim J, Kim MW, Song GE, Park S, Jeong KS, Lee S, Lee YH, Jeong Y, Kim CY, Chung HM. Promotion of maturation of human pluripotent stem cell-derived cardiomyocytes via treatment with the peroxisome proliferator-activated receptor alpha agonist Fenofibrate. Stem Cells Transl Med 2024; 13:750-762. [PMID: 38946019 PMCID: PMC11328931 DOI: 10.1093/stcltm/szae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/04/2024] [Indexed: 07/02/2024] Open
Abstract
As research on in vitro cardiotoxicity assessment and cardiac disease modeling becomes more important, the demand for human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is increasing. However, it has been reported that differentiated hPSC-CMs are in a physiologically immature state compared to in vivo adult CMs. Since immaturity of hPSC-CMs can lead to poor drug response and loss of acquired heart disease modeling, various approaches have been attempted to promote maturation of CMs. Here, we confirm that peroxisome proliferator-activated receptor alpha (PPARα), one of the representative mechanisms of CM metabolism and cardioprotective effect also affects maturation of CMs. To upregulate PPARα expression, we treated hPSC-CMs with fenofibrate (Feno), a PPARα agonist used in clinical hyperlipidemia treatment, and demonstrated that the structure, mitochondria-mediated metabolism, and electrophysiology-based functions of hPSC-CMs were all mature. Furthermore, as a result of multi electrode array (MEA)-based cardiotoxicity evaluation between control and Feno groups according to treatment with arrhythmia-inducing drugs, drug response was similar in a dose-dependent manner. However, main parameters such as field potential duration, beat period, and spike amplitude were different between the 2 groups. Overall, these results emphasize that applying matured hPSC-CMs to the field of preclinical cardiotoxicity evaluation, which has become an essential procedure for new drug development, is necessary.
Collapse
Affiliation(s)
- Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-Gu, Seoul 05029, Republic of Korea
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jooeon Rhee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin Seok
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin Kim
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Min Woo Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyeong-Eun Song
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Shinhye Park
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyu Sik Jeong
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Suemin Lee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun Hyeong Lee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Youngin Jeong
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-Gu, Seoul 05029, Republic of Korea
- Miraecell Bio Co. Ltd., Seoul 04795, Korea
| |
Collapse
|
35
|
Marvin Tan XH, Wang Y, Zhu X, Mendes FN, Chung PS, Chow YT, Man T, Lan H, Lin YJ, Zhang X, Zhang X, Nguyen T, Ardehali R, Teitell MA, Deb A, Chiou PY. Massive field-of-view sub-cellular traction force videography enabled by Single-Pixel Optical Tracers (SPOT). Biosens Bioelectron 2024; 258:116318. [PMID: 38701538 DOI: 10.1016/j.bios.2024.116318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
We report a massive field-of-view and high-speed videography platform for measuring the sub-cellular traction forces of more than 10,000 biological cells over 13 mm2 at 83 frames per second. Our Single-Pixel Optical Tracers (SPOT) tool uses 2-dimensional diffraction gratings embedded into a soft substrate to convert cells' mechanical traction force into optical colors detectable by a video camera. The platform measures the sub-cellular traction forces of diverse cell types, including tightly connected tissue sheets and near isolated cells. We used this platform to explore the mechanical wave propagation in a tightly connected sheet of Neonatal Rat Ventricular Myocytes (NRVMs) and discovered that the activation time of some tissue regions are heterogeneous from the overall spiral wave behavior of the cardiac wave.
Collapse
Affiliation(s)
- Xing Haw Marvin Tan
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Electronics and Photonics, Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, 138632, Singapore
| | - Yijie Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Xiongfeng Zhu
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Felipe Nanni Mendes
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Pei-Shan Chung
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Yu Ting Chow
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Tianxing Man
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Hsin Lan
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Yen-Ju Lin
- Department of Electrical and Computer Engineering, University of California at Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Xiang Zhang
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Xiaohe Zhang
- Department of Mathematics, University of California Los Angeles, 520 Portola Plaza, Los Angeles, CA, 90095, United States
| | - Thang Nguyen
- Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Reza Ardehali
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Michael A Teitell
- Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States.
| |
Collapse
|
36
|
Patrick R, Naval-Sanchez M, Deshpande N, Huang Y, Zhang J, Chen X, Yang Y, Tiwari K, Esmaeili M, Tran M, Mohamed AR, Wang B, Xia D, Ma J, Bayliss J, Wong K, Hun ML, Sun X, Cao B, Cottle DL, Catterall T, Barzilai-Tutsch H, Troskie RL, Chen Z, Wise AF, Saini S, Soe YM, Kumari S, Sweet MJ, Thomas HE, Smyth IM, Fletcher AL, Knoblich K, Watt MJ, Alhomrani M, Alsanie W, Quinn KM, Merson TD, Chidgey AP, Ricardo SD, Yu D, Jardé T, Cheetham SW, Marcelle C, Nilsson SK, Nguyen Q, White MD, Nefzger CM. The activity of early-life gene regulatory elements is hijacked in aging through pervasive AP-1-linked chromatin opening. Cell Metab 2024; 36:1858-1881.e23. [PMID: 38959897 DOI: 10.1016/j.cmet.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs. Conversely, cCREs gaining accessibility throughout life have a lower abundance of cell identity TFBSs but elevated activator protein 1 (AP-1) levels. We implicate TF redistribution toward these AP-1 TFBS-rich cCREs, in synergy with mild downregulation of cell identity TFs, as driving early-life cCRE accessibility loss and altering developmental and metabolic gene expression. Such remodeling can be triggered by elevating AP-1 or depleting repressive H3K27me3. We propose that AP-1-linked chromatin opening drives organismal maturation by disrupting cell identity TFBS-rich cCREs, thereby reprogramming transcriptome and cell function, a mechanism hijacked in aging through ongoing chromatin opening.
Collapse
Affiliation(s)
- Ralph Patrick
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Marina Naval-Sanchez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Nikita Deshpande
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Yifei Huang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jingyu Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Ying Yang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Kanupriya Tiwari
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Mohammadhossein Esmaeili
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Minh Tran
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Amin R Mohamed
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Binxu Wang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Di Xia
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jun Ma
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jacqueline Bayliss
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kahlia Wong
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Michael L Hun
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Xuan Sun
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Denny L Cottle
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Tara Catterall
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Hila Barzilai-Tutsch
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Robin-Lee Troskie
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhian Chen
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Andrea F Wise
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sheetal Saini
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ye Mon Soe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Snehlata Kumari
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anne L Fletcher
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Konstantin Knoblich
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Walaa Alsanie
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Kylie M Quinn
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Tobias D Merson
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann P Chidgey
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Surgery, Cabrini Monash University, Malvern, VIC 3144, Australia
| | - Seth W Cheetham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Susan K Nilsson
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Melanie D White
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christian M Nefzger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
37
|
Logotheti S, Pavlopoulou A, Rudsari HK, Galow AM, Kafalı Y, Kyrodimos E, Giotakis AI, Marquardt S, Velalopoulou A, Verginadis II, Koumenis C, Stiewe T, Zoidakis J, Balasingham I, David R, Georgakilas AG. Intercellular pathways of cancer treatment-related cardiotoxicity and their therapeutic implications: the paradigm of radiotherapy. Pharmacol Ther 2024; 260:108670. [PMID: 38823489 DOI: 10.1016/j.pharmthera.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Advances in cancer therapeutics have improved patient survival rates. However, cancer survivors may suffer from adverse events either at the time of therapy or later in life. Cardiovascular diseases (CVD) represent a clinically important, but mechanistically understudied complication, which interfere with the continuation of best-possible care, induce life-threatening risks, and/or lead to long-term morbidity. These concerns are exacerbated by the fact that targeted therapies and immunotherapies are frequently combined with radiotherapy, which induces durable inflammatory and immunogenic responses, thereby providing a fertile ground for the development of CVDs. Stressed and dying irradiated cells produce 'danger' signals including, but not limited to, major histocompatibility complexes, cell-adhesion molecules, proinflammatory cytokines, and damage-associated molecular patterns. These factors activate intercellular signaling pathways which have potentially detrimental effects on the heart tissue homeostasis. Herein, we present the clinical crosstalk between cancer and heart diseases, describe how it is potentiated by cancer therapies, and highlight the multifactorial nature of the underlying mechanisms. We particularly focus on radiotherapy, as a case known to often induce cardiovascular complications even decades after treatment. We provide evidence that the secretome of irradiated tumors entails factors that exert systemic, remote effects on the cardiac tissue, potentially predisposing it to CVDs. We suggest how diverse disciplines can utilize pertinent state-of-the-art methods in feasible experimental workflows, to shed light on the molecular mechanisms of radiotherapy-related cardiotoxicity at the organismal level and untangle the desirable immunogenic properties of cancer therapies from their detrimental effects on heart tissue. Results of such highly collaborative efforts hold promise to be translated to next-generation regimens that maximize tumor control, minimize cardiovascular complications, and support quality of life in cancer survivors.
Collapse
Affiliation(s)
- Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece; Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | - Anne-Marie Galow
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Yağmur Kafalı
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Efthymios Kyrodimos
- First Department of Otorhinolaryngology, Head and Neck Surgery, Hippocrateion General Hospital Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Aris I Giotakis
- First Department of Otorhinolaryngology, Head and Neck Surgery, Hippocrateion General Hospital Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Stephan Marquardt
- Institute of Translational Medicine for Health Care Systems, Medical School Berlin, Hochschule Für Gesundheit Und Medizin, 14197 Berlin, Germany
| | - Anastasia Velalopoulou
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, 35043 Marburg, Germany; German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany; Genomics Core Facility, Philipps-University, 35043 Marburg, Germany; Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece; Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany; Department of Life, Light & Matter, Interdisciplinary Faculty, Rostock University, 18059 Rostock, Germany
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece.
| |
Collapse
|
38
|
Bettini A, Camelliti P, Stuckey DJ, Day RM. Injectable biodegradable microcarriers for iPSC expansion and cardiomyocyte differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404355. [PMID: 38900068 PMCID: PMC11348074 DOI: 10.1002/advs.202404355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Cell therapy is a potential novel treatment for cardiac regeneration and numerous studies have attempted to transplant cells to regenerate the myocardium lost during myocardial infarction. To date, only minimal improvements to cardiac function have been reported. This is likely to be the result of low cell retention and survival following transplantation. This study aimed to improve the delivery and engraftment of viable cells by using an injectable microcarrier that provides an implantable, biodegradable substrate for attachment and growth of cardiomyocytes derived from induced pluripotent stem cells (iPSC). We describe the fabrication and characterisation of Thermally Induced Phase Separation (TIPS) microcarriers and their surface modification to enable iPSC-derived cardiomyocyte attachment in xeno-free conditions is described. The selected formulation resulted in iPSC attachment, expansion, and retention of pluripotent phenotype. Differentiation of iPSC into cardiomyocytes on the microcarriers is investigated in comparison with culture on 2D tissue culture plastic surfaces. Microcarrier culture is shown to support culture of a mature cardiomyocyte phenotype, be compatible with injectable delivery, and reduce anoikis. The findings from this study demonstrate that TIPS microcarriers provide a supporting matrix for culturing iPSC and iPSC-derived cardiomyocytes in vitro and are suitable as an injectable cell-substrate for cardiac regeneration.
Collapse
Affiliation(s)
- Annalisa Bettini
- Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
- Centre for Precision Healthcare, Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| | - Patrizia Camelliti
- School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Daniel J. Stuckey
- Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Richard M. Day
- Centre for Precision Healthcare, Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| |
Collapse
|
39
|
Yu C, Qiu Y, Yao F, Wang C, Li J. Chemically Programmed Hydrogels for Spatiotemporal Modulation of the Cardiac Pathological Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404264. [PMID: 38830198 DOI: 10.1002/adma.202404264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Indexed: 06/05/2024]
Abstract
After myocardial infarction (MI), sustained ischemic events induce pathological microenvironments characterized by ischemia-hypoxia, oxidative stress, inflammatory responses, matrix remodeling, and fibrous scarring. Conventional clinical therapies lack spatially targeted and temporally responsive modulation of the infarct microenvironment, leading to limited myocardial repair. Engineered hydrogels have a chemically programmed toolbox for minimally invasive localization of the pathological microenvironment and personalized responsive modulation over different pathological periods. Chemically programmed strategies for crosslinking interactions, interfacial binding, and topological microstructures in hydrogels enable minimally invasive implantation and in situ integration tailored to the myocardium. This enhances substance exchange and signal interactions within the infarcted microenvironment. Programmed responsive polymer networks, intelligent micro/nanoplatforms, and biological therapeutic cues contribute to the formation of microenvironment-modulated hydrogels with precise targeting, spatiotemporal control, and on-demand feedback. Therefore, this review summarizes the features of the MI microenvironment and chemically programmed schemes for hydrogels to conform, integrate, and modulate the cardiac pathological microenvironment. Chemically programmed strategies for oxygen-generating, antioxidant, anti-inflammatory, provascular, and electrointegrated hydrogels to stimulate iterative and translational cardiac tissue engineering are discussed.
Collapse
Affiliation(s)
- Chaojie Yu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Yuwei Qiu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Changyong Wang
- Tissue Engineering Research Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
40
|
Busley AV, Gutiérrez-Gutiérrez Ó, Hammer E, Koitka F, Mirzaiebadizi A, Steinegger M, Pape C, Böhmer L, Schroeder H, Kleinsorge M, Engler M, Cirstea IC, Gremer L, Willbold D, Altmüller J, Marbach F, Hasenfuss G, Zimmermann WH, Ahmadian MR, Wollnik B, Cyganek L. Mutation-induced LZTR1 polymerization provokes cardiac pathology in recessive Noonan syndrome. Cell Rep 2024; 43:114448. [PMID: 39003740 DOI: 10.1016/j.celrep.2024.114448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/03/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Noonan syndrome patients harboring causative variants in LZTR1 are particularly at risk to develop severe and early-onset hypertrophic cardiomyopathy. In this study, we investigate the mechanistic consequences of a homozygous variant LZTR1L580P by using patient-specific and CRISPR-Cas9-corrected induced pluripotent stem cell (iPSC) cardiomyocytes. Molecular, cellular, and functional phenotyping in combination with in silico prediction identify an LZTR1L580P-specific disease mechanism provoking cardiac hypertrophy. The variant is predicted to alter the binding affinity of the dimerization domains facilitating the formation of linear LZTR1 polymers. LZTR1 complex dysfunction results in the accumulation of RAS GTPases, thereby provoking global pathological changes of the proteomic landscape ultimately leading to cellular hypertrophy. Furthermore, our data show that cardiomyocyte-specific MRAS degradation is mediated by LZTR1 via non-proteasomal pathways, whereas RIT1 degradation is mediated by both LZTR1-dependent and LZTR1-independent pathways. Uni- or biallelic genetic correction of the LZTR1L580P missense variant rescues the molecular and cellular disease phenotype, providing proof of concept for CRISPR-based therapies.
Collapse
Affiliation(s)
- Alexandra Viktoria Busley
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Óscar Gutiérrez-Gutiérrez
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany
| | - Elke Hammer
- DZHK (German Center for Cardiovascular Research), Greifswald, Germany; Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Fabian Koitka
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Constantin Pape
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | - Linda Böhmer
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Schroeder
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mandy Kleinsorge
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany
| | - Melanie Engler
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | | | - Lothar Gremer
- Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dieter Willbold
- Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Faculty of Medicine, and University Hospital Cologne, Cologne, Germany; Genomics Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine-Berlin, Berlin, Germany
| | - Felix Marbach
- Institute of Human Genetics, University Hospital Cologne, Cologne, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Gerd Hasenfuss
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Wolfram-Hubertus Zimmermann
- DZHK (German Center for Cardiovascular Research), Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany; Translational Neuroinflammation and Automated Microscopy, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bernd Wollnik
- DZHK (German Center for Cardiovascular Research), Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Translational Neuroinflammation and Automated Microscopy, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany.
| |
Collapse
|
41
|
Lyu J, Pan Z, Li R, Yu H, Zhang Y, Wang D, Yin X, He Y, Zhao L, Chen S, Zhang S, Cheng H, Guo X. Cypher/ZASP drives cardiomyocyte maturation via actin-mediated MRTFA-SRF signalling. Theranostics 2024; 14:4462-4480. [PMID: 39113806 PMCID: PMC11303069 DOI: 10.7150/thno.98734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Rationale: Cardiomyocytes (CMs) undergo dramatic structural and functional changes in postnatal maturation; however, the regulatory mechanisms remain greatly unclear. Cypher/Z-band alternatively spliced PDZ-motif protein (ZASP) is an essential sarcomere component maintaining Z-disc stability. Deletion of mouse Cypher and mutation in human ZASP result in dilated cardiomyopathy (DCM). Whether Cypher/ZASP participates in CM maturation and thereby affects cardiac function has not been answered. Methods: Immunofluorescence, transmission electron microscopy, real-time quantitative PCR, and Western blot were utilized to identify the role of Cypher in CM maturation. Subsequently, RNA sequencing and bioinformatics analysis predicted serum response factor (SRF) as the key regulator. Rescue experiments were conducted using adenovirus or adeno-associated viruses encoding SRF, both in vitro and in vivo. The molecular mechanisms were elucidated through G-actin/F-actin fractionation, nuclear-cytoplasmic extraction, actin disassembly assays, and co-sedimentation assays. Results: Cypher deletion led to impaired sarcomere isoform switch and morphological abnormalities in mitochondria, transverse-tubules, and intercalated discs. RNA-sequencing analysis revealed significant dysregulation of crucial genes related to sarcomere assembly, mitochondrial metabolism, and electrophysiology in the absence of Cypher. Furthermore, SRF was predicted as key transcription factor mediating the transcriptional differences. Subsequent rescue experiments showed that SRF re-expression during the critical postnatal period effectively rectified CM maturation defects and notably improved cardiac function in Cypher-depleted mice. Mechanistically, Cypher deficiency resulted in the destabilization of F-actin and a notable increase in G-actin levels, thereby impeding the nuclear localisation of myocardin-related transcription factor A (MRTFA) and subsequently initiating SRF transcription. Conclusion: Cypher/ZASP plays a crucial role in CM maturation through actin-mediated MRTFA-SRF signalling. The linkage between CM maturation abnormalities and the late-onset of DCM is suggested, providing further insights into the pathogenesis of DCM and potential treatment strategies.
Collapse
Affiliation(s)
- Jialan Lyu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhicheng Pan
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruobing Li
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hailong Yu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuesheng Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongfei Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Yin
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan He
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liding Zhao
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyuan Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shan Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, and Department of Cardiology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Kriedemann N, Manstein F, Hernandez-Bautista CA, Ullmann K, Triebert W, Franke A, Mertens M, Stein ICAP, Leffler A, Witte M, Askurava T, Fricke V, Gruh I, Piep B, Kowalski K, Kraft T, Zweigerdt R. Protein-free media for cardiac differentiation of hPSCs in 2000 mL suspension culture. Stem Cell Res Ther 2024; 15:213. [PMID: 39020441 PMCID: PMC11256493 DOI: 10.1186/s13287-024-03826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Commonly used media for the differentiation of human pluripotent stem cells into cardiomyocytes (hPSC-CMs) contain high concentrations of proteins, in particular albumin, which is prone to quality variations and presents a substantial cost factor, hampering the clinical translation of in vitro-generated cardiomyocytes for heart repair. To overcome these limitations, we have developed chemically defined, entirely protein-free media based on RPMI, supplemented with L-ascorbic acid 2-phosphate (AA-2P) and either the non-ionic surfactant Pluronic F-68 or a specific polyvinyl alcohol (PVA). METHODS AND RESULTS Both media compositions enable the efficient, directed differentiation of embryonic and induced hPSCs, matching the cell yields and cardiomyocyte purity ranging from 85 to 99% achieved with the widely used protein-based CDM3 medium. The protein-free differentiation approach was readily up-scaled to a 2000 mL process scale in a fully controlled stirred tank bioreactor in suspension culture, producing > 1.3 × 109 cardiomyocytes in a single process run. Transcriptome analysis, flow cytometry, electrophysiology, and contractile force measurements revealed that the mass-produced cardiomyocytes differentiated in protein-free medium exhibit the expected ventricular-like properties equivalent to the well-established characteristics of CDM3-control cells. CONCLUSIONS This study promotes the robustness and upscaling of the cardiomyogenic differentiation process, substantially reduces media costs, and provides an important step toward the clinical translation of hPSC-CMs for heart regeneration.
Collapse
Affiliation(s)
- Nils Kriedemann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Felix Manstein
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
- Evotec SE, Hamburg, Germany
| | - Carlos A Hernandez-Bautista
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Kevin Ullmann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Wiebke Triebert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
- Evotec SE, Hamburg, Germany
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Mira Mertens
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School (MHH), Hannover, Germany
| | - Merlin Witte
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Tamari Askurava
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Veronika Fricke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Birgit Piep
- Institute of Molecular and Cell Physiology, Hannover Medical School (MHH), Hannover, Germany
| | - Kathrin Kowalski
- Institute of Molecular and Cell Physiology, Hannover Medical School (MHH), Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School (MHH), Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
43
|
Waldron CJ, Kelly LA, Stan N, Kawakami Y, Abrahante JE, Magli A, Ogle BM, Singh BN. The HH-GLI2-CKS1B network regulates the proliferation-to-maturation transition of cardiomyocytes. Stem Cells Transl Med 2024; 13:678-692. [PMID: 38761090 PMCID: PMC11227970 DOI: 10.1093/stcltm/szae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/09/2023] [Indexed: 05/20/2024] Open
Abstract
Cardiomyocyte (CM) proliferation and maturation are highly linked processes, however, the extent to which these processes are controlled by a single signaling axis is unclear. Here, we show the previously undescribed role of Hedgehog (HH)-GLI2-CKS1B cascade in regulation of the toggle between CM proliferation and maturation. Here we show downregulation of GLI-signaling in adult human CM, adult murine CM, and in late-stage hiPSC-CM leading to their maturation. In early-stage hiPSC-CM, inhibition of HH- or GLI-proteins enhanced CM maturation with increased maturation indices, increased calcium handling, and transcriptome. Mechanistically, we identified CKS1B, as a new effector of GLI2 in CMs. GLI2 binds the CKS1B promoter to regulate its expression. CKS1B overexpression in late-stage hiPSC-CMs led to increased proliferation with loss of maturation in CMs. Next, analysis of datasets of patients with heart disease showed a significant enrichment of GLI2-signaling in patients with ischemic heart failure (HF) or dilated-cardiomyopathy (DCM) disease, indicating operational GLI2-signaling in the stressed heart. Thus, the Hh-GLI2-CKS1B axis regulates the proliferation-maturation transition and provides targets to enhance cardiac tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Christina J Waldron
- Department of Biomedical Engineering, University of Minnesota, MN 55455, United States
| | - Lauren A Kelly
- Department of Biomedical Engineering, University of Minnesota, MN 55455, United States
| | - Nicholas Stan
- Department of Biomedical Engineering, University of Minnesota, MN 55455, United States
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, MN 55455, United States
- Stem Cell Institute, University of Minnesota, MN 55455, United States
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, MN 55455, United States
| | - Alessandro Magli
- Department of Medicine, University of Minnesota, MN 55455, United States
- Stem Cell Institute, University of Minnesota, MN 55455, United States
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota, MN 55455, United States
- Stem Cell Institute, University of Minnesota, MN 55455, United States
- Department of Pediatrics, University of Minnesota, MN 55455, United States
| | - Bhairab N Singh
- Department of Biomedical Engineering, University of Minnesota, MN 55455, United States
- Stem Cell Institute, University of Minnesota, MN 55455, United States
- Department of Rehabilitation Medicine, University of Minnesota, MN 55455, United States
| |
Collapse
|
44
|
Wulkan F, Romagnuolo R, Qiang B, Valdman Sadikov T, Kim KP, Quesnel E, Jiang W, Andharia N, Weyers JJ, Ghugre NR, Ozcan B, Alibhai FJ, Laflamme MA. Stem cell-derived cardiomyocytes expressing a dominant negative pacemaker HCN4 channel do not reduce the risk of graft-related arrhythmias. Front Cardiovasc Med 2024; 11:1374881. [PMID: 39045008 PMCID: PMC11263024 DOI: 10.3389/fcvm.2024.1374881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Background Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) show tremendous promise for cardiac regeneration following myocardial infarction (MI), but their transplantation gives rise to transient ventricular tachycardia (VT) in large-animal MI models, representing a major hurdle to translation. Our group previously reported that these arrhythmias arise from a focal mechanism whereby graft tissue functions as an ectopic pacemaker; therefore, we hypothesized that hPSC-CMs engineered with a dominant negative form of the pacemaker ion channel HCN4 (dnHCN4) would exhibit reduced automaticity and arrhythmogenic risk following transplantation. Methods We used CRISPR/Cas9-mediated gene-editing to create transgenic dnHCN4 hPSC-CMs, and their electrophysiological behavior was evaluated in vitro by patch-clamp recordings and optical mapping. Next, we transplanted WT and homozygous dnHCN4 hPSC-CMs in a pig MI model and compared post-transplantation outcomes including the incidence of spontaneous arrhythmias and graft structure by immunohistochemistry. Results In vitro dnHCN4 hPSC-CMs exhibited significantly reduced automaticity and pacemaker funny current (I f ) density relative to wildtype (WT) cardiomyocytes. Following transplantation with either dnHCN4 or WT hPSC-CMs, all recipient hearts showed transmural infarct scar that was partially remuscularized by scattered islands of human myocardium. However, in contrast to our hypothesis, both dnHCN4 and WT hPSC-CM recipients exhibited frequent episodes of ventricular tachycardia (VT). Conclusions While genetic silencing of the pacemaker ion channel HCN4 suppresses the automaticity of hPSC-CMs in vitro, this intervention is insufficient to reduce VT risk post-transplantation in the pig MI model, implying more complex mechanism(s) are operational in vivo.
Collapse
Affiliation(s)
- Fanny Wulkan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Rocco Romagnuolo
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Beiping Qiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | | | | | - Elya Quesnel
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Wenlei Jiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Naaz Andharia
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Jill J. Weyers
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nilesh R. Ghugre
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Bilgehan Ozcan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Faisal J. Alibhai
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Michael A. Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
45
|
Lin Y, Sato N, Hong S, Nakamura K, Ferrante EA, Yu ZX, Chen MY, Nakamura DS, Yang X, Clevenger RR, Hunt TJ, Taylor JL, Jeffries KR, Keeran KJ, Neidig LE, Mehta A, Schwartzbeck R, Yu SJ, Kelly C, Navarengom K, Takeda K, Adler SS, Choyke PL, Zou J, Murry CE, Boehm M, Dunbar CE. Long-term engraftment and maturation of autologous iPSC-derived cardiomyocytes in two rhesus macaques. Cell Stem Cell 2024; 31:974-988.e5. [PMID: 38843830 PMCID: PMC11227404 DOI: 10.1016/j.stem.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/14/2024] [Accepted: 05/10/2024] [Indexed: 07/08/2024]
Abstract
Cellular therapies with cardiomyocytes produced from induced pluripotent stem cells (iPSC-CMs) offer a potential route to cardiac regeneration as a treatment for chronic ischemic heart disease. Here, we report successful long-term engraftment and in vivo maturation of autologous iPSC-CMs in two rhesus macaques with small, subclinical chronic myocardial infarctions, all without immunosuppression. Longitudinal positron emission tomography imaging using the sodium/iodide symporter (NIS) reporter gene revealed stable grafts for over 6 and 12 months, with no teratoma formation. Histological analyses suggested capability of the transplanted iPSC-CMs to mature and integrate with endogenous myocardium, with no sign of immune cell infiltration or rejection. By contrast, allogeneic iPSC-CMs were rejected within 8 weeks of transplantation. This study provides the longest-term safety and maturation data to date in any large animal model, addresses concerns regarding neoantigen immunoreactivity of autologous iPSC therapies, and suggests that autologous iPSC-CMs would similarly engraft and mature in human hearts.
Collapse
Affiliation(s)
- Yongshun Lin
- iPSC Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Noriko Sato
- Laboratory of Cellular Therapeutics, Molecular Imaging Branch, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Sogun Hong
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Kenta Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA
| | - Elisa A Ferrante
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Zu Xi Yu
- Pathology Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Marcus Y Chen
- Cardiovascular Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Daisy S Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Timothy J Hunt
- Animal Surgery and Resources Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Joni L Taylor
- Animal Surgery and Resources Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | | | - Karen J Keeran
- Animal Surgery and Resources Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Lauren E Neidig
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Atul Mehta
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Robin Schwartzbeck
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Shiqin Judy Yu
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Conor Kelly
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Keron Navarengom
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Kazuyo Takeda
- Microscopy and Imaging Core, CBER, FDA, Silver Spring, MD, USA
| | - Stephen S Adler
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Peter L Choyke
- Laboratory of Cellular Therapeutics, Molecular Imaging Branch, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | - Manfred Boehm
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA.
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Guerrelli D, Pressman J, Salameh S, Posnack N. hiPSC-CM electrophysiology: impact of temporal changes and study parameters on experimental reproducibility. Am J Physiol Heart Circ Physiol 2024; 327:H12-H27. [PMID: 38727253 PMCID: PMC11390151 DOI: 10.1152/ajpheart.00631.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are frequently used for preclinical cardiotoxicity testing and remain an important tool for confirming model-based predictions of drug effects in accordance with the comprehensive in vitro proarrhythmia assay (CiPA). Despite the considerable benefits hiPSC-CMs provide, concerns surrounding experimental reproducibility have emerged. We investigated the effects of temporal changes and experimental parameters on hiPSC-CM electrophysiology. iCell cardiomyocytes2 were cultured and biosignals were acquired using a microelectrode array (MEA) system (2-14 days). Continuous recordings revealed a 22.6% increase in the beating rate and 7.7% decrease in the field potential duration (FPD) during a 20-min equilibration period. Location-specific differences across a multiwell plate were also observed, with iCell cardiomyocytes2 in the outer rows beating 8.8 beats/min faster than the inner rows. Cardiac endpoints were also impacted by cell culture duration; from 2 to 14 days, the beating rate decreased (-12.7 beats/min), FPD lengthened (+257 ms), and spike amplitude increased (+3.3 mV). Cell culture duration (4-10 days) also impacted cardiomyocyte drug responsiveness (E-4031, nifedipine, isoproterenol). qRT-PCR results suggest that daily variations in cardiac metrics may be linked to the continued maturation of hiPSC-CMs in culture (2-30 days). Daily experiments were also repeated using a second cell line (Cor.4U). Collectively, our study highlights multiple sources of variability to consider and address when performing hiPSC-CM MEA studies. To improve reproducibility and data interpretation, MEA-based studies should establish a standardized protocol and report key experimental conditions (e.g., cell line, culture time, equilibration time, electrical stimulation settings, and raw data values).NEW & NOTEWORTHY We demonstrate that iCell cardiomyocytes2 electrophysiology measurements are impacted by deviations in experimental techniques including electrical stimulation protocols, equilibration time, well-to-well variability, and length of hiPSC-CM culture. Furthermore, our results indicate that hiPSC-CM drug responsiveness changes within the first 2 wk following defrost.
Collapse
Affiliation(s)
- Devon Guerrelli
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Department of Biomedical Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, United States
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
| | - Jenna Pressman
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Department of Biomedical Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, United States
| | - Shatha Salameh
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
| | - Nikki Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| |
Collapse
|
47
|
Karpov OA, Stotland A, Raedschelders K, Chazarin B, Ai L, Murray CI, Van Eyk JE. Proteomics of the heart. Physiol Rev 2024; 104:931-982. [PMID: 38300522 PMCID: PMC11381016 DOI: 10.1152/physrev.00026.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Mass spectrometry-based proteomics is a sophisticated identification tool specializing in portraying protein dynamics at a molecular level. Proteomics provides biologists with a snapshot of context-dependent protein and proteoform expression, structural conformations, dynamic turnover, and protein-protein interactions. Cardiac proteomics can offer a broader and deeper understanding of the molecular mechanisms that underscore cardiovascular disease, and it is foundational to the development of future therapeutic interventions. This review encapsulates the evolution, current technologies, and future perspectives of proteomic-based mass spectrometry as it applies to the study of the heart. Key technological advancements have allowed researchers to study proteomes at a single-cell level and employ robot-assisted automation systems for enhanced sample preparation techniques, and the increase in fidelity of the mass spectrometers has allowed for the unambiguous identification of numerous dynamic posttranslational modifications. Animal models of cardiovascular disease, ranging from early animal experiments to current sophisticated models of heart failure with preserved ejection fraction, have provided the tools to study a challenging organ in the laboratory. Further technological development will pave the way for the implementation of proteomics even closer within the clinical setting, allowing not only scientists but also patients to benefit from an understanding of protein interplay as it relates to cardiac disease physiology.
Collapse
Affiliation(s)
- Oleg A Karpov
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Aleksandr Stotland
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Koen Raedschelders
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Blandine Chazarin
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Lizhuo Ai
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Christopher I Murray
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
48
|
Bettini A, Patrick PS, Day RM, Stuckey DJ. CT-Visible Microspheres Enable Whole-Body In Vivo Tracking of Injectable Tissue Engineering Scaffolds. Adv Healthc Mater 2024; 13:e2303588. [PMID: 38678393 PMCID: PMC11468734 DOI: 10.1002/adhm.202303588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/27/2024] [Indexed: 04/30/2024]
Abstract
Targeted delivery and retention are essential requirements for implantable tissue-engineered products. Non-invasive imaging methods that can confirm location, retention, and biodistribution of transplanted cells attached to implanted tissue engineering scaffolds will be invaluable for the optimization and enhancement of regenerative therapies. To address this need, an injectable tissue engineering scaffold consisting of highly porous microspheres compatible with transplantation of cells is modified to contain the computed tomography (CT) contrast agent barium sulphate (BaSO4). The trackable microspheres show high x-ray absorption, with contrast permitting whole-body tracking. The microspheres are cellularized with GFP+ Luciferase+ mesenchymal stem cells and show in vitro biocompatibility. In vivo, cellularized BaSO4-loaded microspheres are delivered into the hindlimb of mice where they remain viable for 14 days. Co-registration of 3D-bioluminescent imaging and µCT reconstructions enable the assessment of scaffold material and cell co-localization. The trackable microspheres are also compatible with minimally-invasive delivery by ultrasound-guided transthoracic intramyocardial injections in rats. These findings suggest that BaSO4-loaded microspheres can be used as a novel tool for optimizing delivery techniques and tracking persistence and distribution of implanted scaffold materials. Additionally, the microspheres can be cellularized and have the potential to be developed into an injectable tissue-engineered combination product for cardiac regeneration.
Collapse
Affiliation(s)
- Annalisa Bettini
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College LondonLondonWC1E 6DDUK
- Centre for Precision HealthcareDivision of MedicineUniversity College LondonLondonWC1E 6JFUK
| | - Peter Stephen Patrick
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Richard M. Day
- Centre for Precision HealthcareDivision of MedicineUniversity College LondonLondonWC1E 6JFUK
| | - Daniel J. Stuckey
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College LondonLondonWC1E 6DDUK
| |
Collapse
|
49
|
Zhang Y, Wang Y, Yin H, Wang J, Liu N, Zhong S, Li L, Zhang Q, Yue T. Strain sensor on a chip for quantifying the magnitudes of tensile stress on cells. MICROSYSTEMS & NANOENGINEERING 2024; 10:88. [PMID: 38919164 PMCID: PMC11196625 DOI: 10.1038/s41378-024-00719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
During cardiac development, mechanotransduction from the in vivo microenvironment modulates cardiomyocyte growth in terms of the number, area, and arrangement heterogeneity. However, the response of cells to different degrees of mechanical stimuli is unclear. Organ-on-a-chip, as a platform for investigating mechanical stress stimuli in cellular mimicry of the in vivo microenvironment, is limited by the lack of ability to accurately quantify externally induced stimuli. However, previous technology lacks the integration of external stimuli and feedback sensors in microfluidic platforms to obtain and apply precise amounts of external stimuli. Here, we designed a cell stretching platform with an in-situ sensor. The in-situ liquid metal sensors can accurately measure the mechanical stimulation caused by the deformation of the vacuum cavity exerted on cells. The platform was applied to human cardiomyocytes (AC16) under cyclic strain (5%, 10%, 15%, 20 and 25%), and we found that cyclic strain promoted cell growth induced the arrangement of cells on the membrane to gradually unify, and stabilized the cells at 15% amplitude, which was even more effective after 3 days of culture. The platform's precise control and measurement of mechanical forces can be used to establish more accurate in vitro microenvironmental models for disease modeling and therapeutic research.
Collapse
Affiliation(s)
- Yuyin Zhang
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China
| | - Yue Wang
- School of Future Technology, Shanghai University, Shanghai, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Hongze Yin
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China
| | - Jiahao Wang
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China
| | - Na Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
| | - Songyi Zhong
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China
- School of Future Technology, Shanghai University, Shanghai, China
| | - Long Li
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Quan Zhang
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China
- School of Future Technology, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Tao Yue
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China
- School of Future Technology, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
| |
Collapse
|
50
|
Chen EZ, Kannan S, Murphy S, Farid M, Kwon C. Protocol for quantifying stem-cell-derived cardiomyocyte maturity using transcriptomic entropy score. STAR Protoc 2024; 5:103083. [PMID: 38781077 PMCID: PMC11145390 DOI: 10.1016/j.xpro.2024.103083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/15/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
The inability to quantify cardiomyocyte (CM) maturation remains a significant barrier to evaluating the effects of ongoing efforts to produce adult-like CMs from pluripotent stem cells (PSCs). Here, we present a protocol to quantify stem-cell-derived CM maturity using a single-cell RNA sequencing-based metric "entropy score." We describe steps for generating an entropy score using customized R code. This tool can be used to quantify maturation levels of PSC-CMs and potentially other cell types. For complete details on the use and execution of this protocol, please refer to Kannan et al.1.
Collapse
Affiliation(s)
- Elaine Zhelan Chen
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA
| | - Suraj Kannan
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA
| | - Sean Murphy
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA
| | - Michael Farid
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA.
| |
Collapse
|