1
|
Lin J, Zhou Y, Li C, Li B, Hao H, Tian F, Li H, Liu Z, Wang G, Shen XC, Tang R, Wang X. Hydrogel activation of Mincle receptors for tumor cell processing: A novel approach in cancer immunotherapy. Biomaterials 2024; 311:122703. [PMID: 39002516 DOI: 10.1016/j.biomaterials.2024.122703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
An obstacle in current tumor immunotherapies lies in the challenge of achieving sustained and tumor-targeting T cell immunity, impeded by the limited antigen processing and cross-presentation of tumor antigens. Here, we propose a hydrogel-based multicellular immune factory within the body that autonomously converts tumor cells into an antitumor vaccine. Within the body, the scaffold, formed by a calcium-containing chitosan hydrogel complex (ChitoCa) entraps tumor cells and attracts immune cells to establish a durable and multicellular microenvironment. Within this context, tumor cells are completely eliminated by antigen-presenting cells (APCs) and processed for cross-antigen presentation. The regulatory mechanism relies on the Mincle receptor, a cell-phagocytosis-inducing C-type lectin receptor specifically activated on ChitoCa-recruited APCs, which serves as a recognition synapse, facilitating a tenfold increase in tumor cell engulfment and subsequent elimination. The ChitoCa-induced tumor cell processing further promotes the cross-presentation of tumor antigens to prime protective CD8+ T cell responses. Therefore, the ChitoCa treatment establishes an immune niche within the tumor microenvironment, resulting in effective tumor regression either used alone or in combination with other immunotherapies. This hydrogel-induced immune factory establishes a functional organ-like multicellular colony for tumor-specific immunotherapy, paving the way for innovative strategies in cancer treatment.
Collapse
Affiliation(s)
- Jiake Lin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Liangzhu Laboratory, Hangzhou, Zhejiang, 311113, China
| | - Yuemin Zhou
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chen Li
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Benke Li
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haibin Hao
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Fengchao Tian
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huixin Li
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhenyu Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Guangchuan Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Liangzhu Laboratory, Hangzhou, Zhejiang, 311113, China; Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Liangzhu Laboratory, Hangzhou, Zhejiang, 311113, China; Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
2
|
Laccourreye O, Garcia D, Holsinger FC, Weinstein GS. Ten-Year Outcome After Supracricoid Partial Laryngectomy in cT3M0 Laryngeal Squamous Cell Carcinoma-A STROBE Analysis. Laryngoscope 2024; 134:4557-4563. [PMID: 39152757 DOI: 10.1002/lary.31568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVES The aim of this study was to document 10-year outcomes after supracricoid partial laryngectomy (SCPL) in selected cT3M0 laryngeal squamous cell carcinoma (SCC) patients. METHODS This real-life retrospective observational study analyzed an inception cohort of 168 patients with isolated, untreated, selected cT3M0 laryngeal SCC, that were consecutively managed by SCPL during the period 1973-2013, and followed up until death or for a minimum of 10 years in 92% of cases at a single French academic and tertiary referral care center. Prior induction chemotherapy, arytenoid cartilage removal, level II-IV neck dissection, and postoperative radiation therapy were performed on 148, 77, 136, and 27 patients, respectively. The main objective was to determine 10-year actuarial local control and laryngeal preservation estimates. Secondary objectives included 10-year actuarial survival and cause-of-death analysis, and assessment of correlations between endpoints and clinical variables. The significance threshold was set at p < 0.005. RESULTS Ten-year actuarial local control, laryngeal preservation, and survival estimates were 90%, 85%, and 52%, respectively. Salvage treatment resulted in an overall 99% local control rate. Metachronous second primary cancer, intercurrent disease without evidence of SCC, SCPL-related death, and uncontrolled local recurrence accounted for 31%, 26%, 7%, and 2% of causes of death. On univariate analysis, overall local recurrence and laryngeal preservation rates varied significantly, from 5% to 54% and 90% to 46% when resection margins were R0 and R1, respectively. CONCLUSION The present study highlighted successful 10-year outcomes after SCPL, providing further evidence in favor of its integration into the conservative armamentarium for endolaryngeal cT3 SCC. LEVEL OF EVIDENCE 4 Laryngoscope, 134:4557-4563, 2024.
Collapse
Affiliation(s)
- Ollivier Laccourreye
- Service d'Otorhinolaryngologie et de Chirurgie Cervico-Faciale Hôpital Européen Georges Pompidou, Université Paris Cité, Paris, France
| | - Dominique Garcia
- Service d'Otorhinolaryngologie et de Chirurgie Cervico-Faciale Hôpital Européen Georges Pompidou, Université Paris Cité, Paris, France
| | - F Christopher Holsinger
- Division Head & Neck Surgery, Department of Otolaryngology, Stanford University, Palo Alto, California, U.S.A
| | - Gregory Steven Weinstein
- Penn Center for Head & Neck Cancer, Department of Otorhinolaryngology Head & Neck Surgery, Pennsylvania University, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
3
|
Wang K, Zhu S, Zhang Y, Wang Y, Bian Z, Lu Y, Shao Q, Jin X, Xu X, Mo R. Targeting the GTPase RAN by liposome delivery for tackling cancer stemness-emanated therapeutic resistance. J Control Release 2024; 375:589-600. [PMID: 39245420 DOI: 10.1016/j.jconrel.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Cancer therapeutic resistance as a common hallmark of cancer is often responsible for treatment failure and poor patient survival. Cancer stem-like cells (CSCs) are one of the main contributors to therapeutic resistance, cancer relapse and metastasis. Through screening from our in-house library of natural products, we found polyphyllin II (PPII) as a potent anti-CSC compound for triple-negative breast cancer (TNBC). To enhance anti-CSC selectivity and improve druggability of PPII, we leverage the liposome-mediated delivery technique for increasing solubility of PPII, and more significantly, attaining broader therapeutic window. Liposomal PPII demonstrates its marked potency to inhibit tumor growth, post-surgical recurrence and metastasis compared to commercial liposomal chemotherapeutics in the mouse models of CSC-enriched TNBC tumor. We further identify PPII as an inhibitor of the Ras-related nuclear (RAN) protein whose upregulated expression is correlated with poor clinical outcomes. The direct binding of PPII to RAN reduces TNBC stemness, thereby suppressing tumor progression. Our work offers a significance from drug discovery to drug delivery benefiting from liposome technique for targeted treatment of high-stemness tumor.
Collapse
Affiliation(s)
- Kaili Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Sitong Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Ying Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yuqian Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenqian Bian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yougong Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Quanlin Shao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Xiang Jin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; Department of Pharmacy, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu 322001, Zhejiang, China.
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
4
|
Li J, Yi H, Fu Y, Zhuang J, Zhan Z, Guo L, Zheng J, Yu X, Zhang DY. Biodegradable iridium coordinated nanodrugs potentiate photodynamic therapy and immunotherapy of lung cancer. J Colloid Interface Sci 2024; 680:9-24. [PMID: 39488900 DOI: 10.1016/j.jcis.2024.10.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Hypoxia, which is a common characteristic of most solid tumors, not only contributes to the immunosuppressive nature of the tumor microenvironment (TME) but also reduces the efficacy of many oxygen-depleting therapies, including photodynamic therapy (PDT). In this study, we developed acidity-responsive biodegradable iridium-coordinated (IPC) nanodrugs consisting of iridium ions, the photosensitizer chlorin e6 (Ce6), and polyvinylpyrrolidone to potentiate the effects of PDT and immunotherapy by modulating the TME. IPC nanodrugs that accumulate at high levels in tumors catalyze excess hydrogen peroxide to produce oxygen while depleting glutathione levels within cancer cells; thus, the released Ce6 is more efficient at producing reactive oxygen species (ROS) in response to laser irradiation. In addition, IPC nanodrugs alleviate tumor hypoxia, induce more immunogenic cell death by amplifying PDT responses, and synergistically inhibit tumor growth by initiating robust antitumor immunity and reversing the immunosuppressive nature of the TME. As a result, IPC nanodrugs exert pronounced combined therapeutic effects in vitro and in vivo, without obvious toxic effects due to acidity-responsive degradation. These iridium-coordinated nanodrugs have the potential to modulate the TME, amplify the effects of PDT, and substantially inhibit tumors, and they are expected to provide novel ideas for combination therapy of hypoxic cancer.
Collapse
Affiliation(s)
- Jingyao Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Huixi Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuanyuan Fu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiani Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhixiong Zhan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Liyou Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400042, China.
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Dong-Yang Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
5
|
Ren XH, Guo T, Xu MF, Huang Y, Liao XR, Qi LJ, Cheng SX. A Multiple Targeting Genome Editing System for Remodulation of Circulating Malignant Cells to Eliminate Cancer Immunosuppression and Restore Immune Responses. Adv Healthc Mater 2024:e2401223. [PMID: 39440615 DOI: 10.1002/adhm.202401223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Cancer immunotherapy, which aims to eliminate cancer immunosuppression and reactivate anticancer immunity, holds great promise in oncology treatments. However, it is challenging to accurately study the efficacy of immunotherapy based on human-derived cells through animal experiments due to xenogeneic immune rejection. Herein, a personalized and precise strategy to evaluate the effectiveness of immunotherapy using the blood samples of cancer patients is presented. Through the utilization of multiple cancer-targeting delivery system decorated with the epidermal growth factor receptor (EGFR)-specific aptamer CL4 and the AXL-specific aptamer GL21.T to achieve superior efficiency in delivering the genome editing plasmid for MUC1 knockout, effective modulation on the behavior of circulating malignant cells (CMCs) is realized. After genome editing, both mucin 1 (MUC1) and programmed death-ligand 1 (PD-L1) are significantly downregulated in CMCs. The elimination of immunosuppression results in markedly enhanced secretion of pro-inflammatory anticancer cytokines encompassing interleukins 2, 12, and 15 and interferon-γ by immune cells. The study not only provides a strategy to overcome immunosuppression but also yields critical insights for personalized immunotherapy approaches.
Collapse
Affiliation(s)
- Xiao-He Ren
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230011, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Tao Guo
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, Anhui, 230011, China
| | - Ma-Fei Xu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230011, China
| | - Yun Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, Anhui, 230011, China
| | - Xin-Ru Liao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Li-Jin Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Si-Xue Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
6
|
Sætersmoen M, Kotchetkov IS, Torralba-Raga L, Mansilla-Soto J, Sohlberg E, Krokeide SZ, Hammer Q, Sadelain M, Malmberg KJ. Targeting HLA-E-overexpressing cancers with a NKG2A/C switch receptor. MED 2024:S2666-6340(24)00377-5. [PMID: 39423821 DOI: 10.1016/j.medj.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/06/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Human leukocyte antigen (HLA)-E is overexpressed by a large proportion of solid tumors, including malignant glioblastoma, and acts as a major checkpoint for NKG2A+ CD8+ T cells and natural killer (NK) cells in the tumor microenvironment and circulation. This axis operates alongside PD-L1 to inhibit effector responses by T and NK cells. METHODS We engineered a chimeric A/C switch receptor, combining the high HLA-E binding affinity of the NKG2A receptor ectodomain with the activating signaling of the NKG2C receptor endodomain. The cytotoxic function of A/C switch-transduced NK and T cells was evaluated against tumor cells with varying levels of HLA-E expression. In vivo efficacy was assessed using a xenograft model of glioblastoma. FINDINGS A/C switch-transduced NK and T cells exhibited superior and specific cytotoxicity against tumor cells with medium to high HLA-E expression. A/C switch-expressing human T cells demonstrated enhanced anti-tumor function in a glioblastoma xenograft model. The activity of the modified T cells was governed by an equilibrium between A/C switch levels and HLA-E expression, creating a therapeutic window to minimize on-target, off-tumor toxicities. Normal cells remained insensitive to A/C switch T cells, even after interferon (IFN)-γ pretreatment to induce HLA-E expression. CONCLUSIONS The A/C switch receptor effectively targets tumor cells expressing high levels of HLA-E, either alone or in combination with other engineered specificities, to overcome the suppressive NKG2A/HLA-E checkpoint. This approach offers a promising therapeutic strategy with a favorable safety profile for targeting HLA-E-overexpressing tumors. FUNDING This work was funded by The Research Council of Norway, the Norwegian Cancer Society, and the National Cancer Institute.
Collapse
Affiliation(s)
- Michelle Sætersmoen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ivan S Kotchetkov
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lamberto Torralba-Raga
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jorge Mansilla-Soto
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Silje Zandstra Krokeide
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Michel Sadelain
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl-Johan Malmberg
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
7
|
Zhou W, Qu M, Yue Y, Zhong Z, Nan K, Sun X, Wu Q, Zhang J, Chen W, Miao C. Acetylcysteine synergizes PD-1 blockers against colorectal cancer progression by promoting TCF1 +PD1 +CD8 + T cell differentiation. Cell Commun Signal 2024; 22:503. [PMID: 39420342 PMCID: PMC11484120 DOI: 10.1186/s12964-024-01848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Programmed cell death protein 1 (PD-1) blockade is essential in treating progressive colorectal cancer (CRC). However, some patients with CRC do not respond well to immunotherapy, possibly due to the exhaustion of CD8+ T cells in the tumor microenvironment. N-Acetylcysteine (NAC) can reduce CD8+ T cell exhaustion in vitro and induce their differentiation into long-lasting phenotypes, thus enhancing the anti-tumor effect of adoptive T cell transfer. However, whether NAC can be combined with PD-1 blockade in CRC treatment and how NAC regulates CD8+ T cell differentiation remain unclear. Hence, in this study, we aimed to investigate whether NAC has a synergistic effect with PD-1 blockers against CRC progression. METHODS We constructed a mouse CRC model to study the effect of NAC on tumors. The effect of NAC on CD8 + T cell differentiation and its potential mechanism were explored using cell flow assay and other studies in vitro and ex vivo. RESULTS We demonstrated that NAC synergized PD-1 antibodies to inhibit CRC progression in a mouse CRC model mediated by CD8+ T cells. We further found that NAC can induce TCF1+PD1+CD8+ T cell differentiation and reduce the formation of exhausted T cells in vitro and in vivo. Moreover, NAC enhanced the expression of Glut4 in CD8+ T cells, promoting the differentiation of TCF1+PD1+CD8+ T cells. CONCLUSIONS Our study provides a novel idea for immunotherapy for clinically progressive CRC and suggests that Glut4 may be a new immunometabolic molecular target for regulating CD8+ T cell differentiation.
Collapse
Affiliation(s)
- Wenchang Zhou
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ziwen Zhong
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ke Nan
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Xingfeng Sun
- Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200438, China
| | - Qichao Wu
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jie Zhang
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
8
|
Ding Q, Weng Y, Li Y, Lin W, Lin X, Lin T, Yang H, Xu W, Wang J, Ying H, Qiu S. Inhibition of PNCK inflames tumor microenvironment and sensitizes head and neck squamous cell carcinoma to immune checkpoint inhibitors. J Immunother Cancer 2024; 12:e009893. [PMID: 39395840 PMCID: PMC11474745 DOI: 10.1136/jitc-2024-009893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND The landscape of the tumor microenvironment (TME) is intricately linked to the development of head and neck squamous cell carcinoma (HNSCC) and significantly influences immunotherapy efficacy. Recent research has underscored the pivotal role of PNCK in cancer progression, yet its relationship with immunotherapy remains elusive. METHODS We leveraged sequencing data from our cohort and public databases to evaluate PNCK expression, prognostic significance, and immune efficacy prediction. In vitro and in vivo experiments explored the role of PNCK in HNSCC progression. Animal models assessed the therapeutic effects and survival benefits of PNCK knockdown combined with immune checkpoint inhibitors (ICIs). Single-cell transcriptomics analyzed the impact of PNCK on the TME, and proteomic studies elucidated the mechanisms. RESULTS PNCK exerts multifaceted critical roles in the progression of HNSCC. Lower PNCK expression is associated with improved prognosis, enhanced immune cell infiltration, and increased responsiveness to ICIs. Conversely, PNCK promotes HNSCC cell migration, invasion, proliferation, colony formation, zebrafish angiogenesis, and tumor growth in mice. Moreover, targeting PNCK enhances sensitivity to ICIs and leads to significant alterations in the T-cell and B-cell ratios within the TME. These changes are attributed to the inhibition of nuclear transcription of PNCK-phosphorylated ZEB1, which restricts cytokine release and inflames the immune microenvironment to regulate the TME. CONCLUSIONS Inhibition of PNCK may be a potential strategy for treating HNSCC, as it may activate the immune response and improve the TME, thereby enhancing the efficacy of immunotherapy for HNSCC patients.
Collapse
Affiliation(s)
- Qin Ding
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Youliang Weng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Ying Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Wanzun Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Xiaosan Lin
- Department of Stomatology, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Tingting Lin
- Department of Medical and Radiation Oncology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, China
| | - Hanxuan Yang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Wenqian Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Jianming Wang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Hongmei Ying
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Zhang Z, Lu Y, Liu W, Huang Y. Nanomaterial-assisted delivery of CpG oligodeoxynucleotides for boosting cancer immunotherapy. J Control Release 2024; 376:184-199. [PMID: 39368710 DOI: 10.1016/j.jconrel.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/03/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Cancer immunotherapy aims to improve immunity to not only eliminate the primary tumor but also inhibit metastasis and recurrence. It is considered an extremely promising therapeutic approach that breaks free from the traditional paradigm of oncological treatment. As the medical community learns more about the immune system's mechanisms that "turn off the brake" and "step on the throttle", there is increasingly successful research on immunomodulators. However, there are still more restrictions than countermeasures with immunotherapy related to immunomodulators, such as low responsiveness and immune-related adverse events that cause multiple adverse reactions. Therefore, medical experts and materials scientists attempted to the efficacy of immunomodulatory treatments through various methods, especially nanomaterial-assisted strategies. CpG oligodeoxynucleotides (CpG) not only act as an adjuvant to promote immune responses, but also induce autophagy. In this review, the enhancement of immunotherapy using nanomaterial-based CpG formulations is systematically elaborated, with a focus on the delivery, protection, synergistic promotion of CpG efficacy by nanomaterials, and selection of the timing of treatment. In addition, we also discuss and prospect the existing problems and future directions of research on nanomaterials in auxiliary CpG therapy.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Lu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Wenjing Liu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
10
|
He Q, Zhang Y, Li W, Chen S, Xiong J, Zhao R, Yuan K, Hu Q, Liu S, Gao G, Bedford MT, Tang DG, Xu B, Zou C, Zhang D. Inhibition of PRMT5 moderately suppresses prostate cancer growth in vivo but enhances its response to immunotherapy. Cancer Lett 2024; 602:217214. [PMID: 39218291 DOI: 10.1016/j.canlet.2024.217214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Protein arginine methylation is a common post-translational modification (PTM) catalyzed by nine protein arginine methyltransferases (PRMTs). As the major symmetric arginine methyltransferase that methylates both histone and non-histone substrates, PRMT5 plays key roles in a number of biological processes critical for development and tumorigenesis. PRMT5 overexpression has been reported in multiple cancer types including prostate cancer (PCa), but the exact biological and mechanistic understanding of PRMT5 in aggressive PCa remains ill-defined. Here, we show that PRMT5 is upregulated in PCa, correlates with worse patient survival, promotes corrupted RNA splicing, and functionally cooperates with an array of pro-tumorigenic pathways to enhance oncogenesis. PRMT5 inhibition via either genetic knockdown or pharmacological inhibition reduces stemness with paralleled differentiation and arrests cell cycle progression without causing appreciable apoptosis. Strikingly, the severity of antitumor effect of PRMT5 inhibition correlates with disease aggressiveness, with AR+ PCa being less affected. Molecular characterization pinpoints MYC, but not (or at least to a lesser degree) AR, as the main partner of PRMT5 to form a positive feedback loop to exacerbate malignancy in both AR+ and AR- PCa cells. Inspired by the surprising finding that PRMT5 negatively correlates with tumor immune infiltration and transcriptionally suppresses an immune-gene program, we further show that although PRMT5 inhibitor (PRMT5i) EPZ015666 or anti-PD-1 immunotherapy alone exhibits limited antitumor effects, combination of PRMT5i with anti-PD-1 displays superior efficacy in inhibiting castration-resistant PCa (CRPC) in vivo. Finally, to expand the potential use of PRMT5i through a synthetic lethality concept, we also perform a global CRISPR/Cas9 knockout screen to unravel that many clinical-grade drugs of known oncogenic pathways can be repurposed to target CRPC when used in combination with PRMT5i at low doses. Collectively, our findings establish a rationale to exploit PRMT5i in combination with immunotherapy or other targeted therapies to treat aggressive PCa.
Collapse
Affiliation(s)
- Qinju He
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Yuanzhen Zhang
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Wenchao Li
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Saisai Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Jiangling Xiong
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Ruizhe Zhao
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA; Current Address: Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, 14263, New York, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, 14263, New York, USA
| | - Guozhen Gao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
| | - Cheng Zou
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China.
| | - Dingxiao Zhang
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China.
| |
Collapse
|
11
|
Cheng F, He L, Wang J, Lai L, Ma L, Qu K, Yang Z, Wang X, Zhao R, Weng L, Wang L. Synergistic immunotherapy with a calcium-based nanoinducer: evoking pyroptosis and remodeling tumor-associated macrophages for enhanced antitumor immune response. NANOSCALE 2024; 16:18570-18583. [PMID: 39291343 DOI: 10.1039/d4nr01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The challenges posed by low immunogenicity and the immunosuppressive tumor microenvironment (TME) significantly hinder the efficacy of cancer immunotherapy. Pyroptosis, characterized as a pro-inflammatory cell death pathway, emerges as a promising approach to augment immunotherapy by promoting immunogenic cell death (ICD). The predominance of M2 phenotype tumor-associated macrophages (TAMs) in the TME underscores the critical need for TAM reprogramming to mitigate this immunosuppression. Herein, we introduce a calcium-based, intelligent-responsive nanoinducer (CaZCH NPs), designed to concurrently initiate pyroptosis and remodel TAMs, thereby amplifying antitumor immunotherapy effects. Modified with hyaluronic acid, CaZCH NPs can target tumor cells. Once internalized, CaZCH NPs respond to the acidic environment, releasing Ca2+, curcumin and H2O2 to induce mitochondrial Ca2+ overload and oxidation stress, leading to caspase-3/GSDME-mediated cell pyroptosis. Concurrently, O2 produced by CaZCH and pro-inflammatory cytokines from pyroptotic cells work together to shift TAM polarization towards the M1 phenotype, effectively countering TME's immunosuppressive effect. Notably, the synergistic effect of Ca2+-mediated pyroptosis and TAM remodeling demonstrates superior antitumor efficiency in colorectal cancer models. The induced ICD, coupled with M1-type TAMs, effectively enhances immunogenicity and mitigates immunosuppression, promoting dendritic cell maturation and activating CD8+ T cell-dependent systemic antitumor immunity. Our study presents a promising synergistic strategy for achieving highly efficient immunotherapy using a simple calcium-based nanoinducer.
Collapse
Affiliation(s)
- Fang Cheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Lei He
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Jiaqi Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Lunhui Lai
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Li Ma
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Kuiming Qu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Zicheng Yang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Xinyue Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Ruyu Zhao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Lixing Weng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| |
Collapse
|
12
|
Liu S, Guo H, Li D, Wang C. Immunologically effective biomaterials enhance immunotherapy of prostate cancer. J Mater Chem B 2024; 12:9821-9834. [PMID: 39239675 DOI: 10.1039/d3tb03044j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Prostate cancer (PCa) is one of the most common malignant neoplasms affecting the male population. The onset of the disease is insidious and often associated with severe consequences, such as bone metastases at the time of initial diagnosis. Once it advances to metastatic castration-resistant PCa (mCRPC), conventional treatment methods become ineffective. As research on the mechanism of tumor therapy advances, immunotherapy has been evolving rapidly. However, PCa is a solid tumor type that primarily faces the challenges of poor immunogenicity and inhibitory tumor microenvironment (TME). Fortunately, the extensive use of biomaterials has led to continuous advancement in PCa immunotherapy. These innovative materials aim to address intractable issues, such as immune escape and immune desert, to inhibit tumor progression and metastasis. This detailed review focuses on the regulation of different aspects of tumor immunity by immunologically effective biomaterials, including modulating adaptive immunity, innate immunity, and the immune microenvironment, to enhance the efficacy of PCa immunotherapy. In addition, this review provides a perspective on the future prospects of immunotherapeutic nanoplatforms based on biomaterials in the treatment of PCa.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Hui Guo
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Di Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Chunxi Wang
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| |
Collapse
|
13
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024:S1535-6108(24)00358-1. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Cai C, Zhang X, Sun X, Wang H, Chen E, Chen L, Gu B, Wang J, Huang X, Lao W, Wang X, Chen M, Ding S, Du J, Song Z. Node-sparing modified short-course Radiotherapy Combined with CAPOX and Tislelizumab for locally Advanced MSS of Middle and low rectal Cancer (mRCAT): an open-label, single-arm, prospective, multicentre clinical trial. BMC Cancer 2024; 24:1247. [PMID: 39385104 PMCID: PMC11463141 DOI: 10.1186/s12885-024-12994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Neoadjuvant chemoradiotherapy followed by total mesorectal excision is a standard treatment for locally advanced rectal cancer. Mismatch repair-deficient locally advanced rectal cancer (LARC) was highly sensitive to PD-1 blockade. However, most rectal cancers are microsatellite stable (MSS) or mismatch repair-proficient (pMMR) subtypes for which PD-1 blockade is ineffective. Radiation can trigger the activation of CD8 + T cells, further enhancing the responses of MSS/pMMR rectal cancer to PD-1 blockade. Radioimmunotherapy offers a promising therapeutic modality for rectal cancer. Progenitor T exhausted cells are abundant in tumour-draining lymph nodes and play an important role in immunotherapy. Conventional irradiation fields include the mesorectum and regional lymph nodes, which might cause considerable damage to T lymphocytes and radiation-induced fibrosis, ultimately leading to a poor response to immunotherapy and rectal fibrosis. This study investigated whether node-sparing modified short-course irradiation combined with chemotherapy and PD-1 blockade could be effective in patients with MSS/ pMMR LARC. METHODS This was a open-label, single-arm, multicentre, prospective phase II trial. 32 LARC patients with MSS/pMMR will receive node-sparing modified short-course radiotherapy (the irradiated planned target volume only included the primary tumour bed but not the tumour-draining lymph nodes, 25 Gy/5f, 5 Gy/f) followed by CAPOX and tislelizumab. CAPOX and tislelizumab will be started two days after the completion of radiotherapy: oxaliplatin 130 mg/m2 intravenous infusion, day 1; capecitabine 1000 mg/m2 oral administration, days 1-14; and tislelizumab 200 mg, intravenous infusion, day 1. There will be four 21-day cycles. TME will be performed at weeks 14-15. We will collect blood, tumour, and lymphoid specimens; perform flow cytometry and in situ multiplexed immunofluorescence detection; and analyse the changes in various lymphocyte subsets. The primary endpoint is the rate of pathological complete response. The organ preservation rate, tumour regression grade, local recurrence rate, disease-free survival, overall survival, adverse effects, and quality of life will also be analysed. DISCUSSION In our research, node-sparing modified radiotherapy combined with immunotherapy probably increased the responsiveness of immunotherapy for MSS/pMMR rectal cancer patients, reduced the occurrence of postoperative rectal fibrosis, and improved survival and quality of life. This is the first clinical trial to utilize a node-sparing radiation strategy combined with chemotherapy and PD-1 blockade in the neoadjuvant treatment of rectal cancer, which may result in a breakthrough in the treatment of MSS/pMMR rectal cancer. TRIAL REGISTRATION This study was registered at www. CLINICALTRIALS gov . TRIAL REGISTRATION NUMBER NCT05972655. Date of registration: 31 July 2023.
Collapse
Affiliation(s)
- Cheng Cai
- Department of Colorectal and Anal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Zhang
- Department of Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiaonan Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huogang Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Engeng Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Benxing Gu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianping Wang
- Department of Colorectal and Anal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xuefeng Huang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weifeng Lao
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaowei Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shubo Ding
- Department of Radiology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jinlin Du
- Department of Colorectal and Anal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China.
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
15
|
Zhang MG, Gallo RA, Tan CH, Camacho M, Fasih-Ahmad S, Moeyersoms AH, Sayegh Y, Dubovy SR, Pelaez D, Rong AJ. Single-cell RNA profiling of ocular adnexal sebaceous carcinoma reveals a complex tumor microenvironment and identifies new biomarkers. Am J Ophthalmol 2024:S0002-9394(24)00471-9. [PMID: 39393421 DOI: 10.1016/j.ajo.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
PURPOSE Ocular adnexal sebaceous carcinoma (OaSC) is an aggressive malignancy that often necessitates orbital exenteration. Its tumor composition and transcriptional profile remain largely unknown, which poses a significant barrier to medical advances. Here, we report the first in-depth transcriptomic analysis of OaSC at the single-cell resolution and discern mechanisms underlying cancer progression for the discovery of potential globe-sparing immunotherapies, targeted therapies, and biomarkers to guide clinical management. DESIGN Laboratory investigation with a retrospective observational case series. METHODS Single-cell RNA sequencing was performed on six patient specimens: three primary tumors, two tumors with pagetoid spread, and a normal tarsus sample. Cellular components were identified via gene signatures. Molecular pathways underlying tumorigenesis and pagetoid spread were discerned via gene ontology analysis of the differentially expressed genes between specimens. CALML5 immunohistochemistry was performed on an archival cohort of OaSC, squamous cell carcinoma (SCC), ocular surface squamous neoplasia (OSSN), and basal cell carcinoma (BCC) cases. RESULTS Analysis of 29,219 cells from OaSC specimens revealed tumor, immune, and stromal cells. Tumor-infiltrating immune cells include a diversity of cell types, including exhausted T-cell populations. In primary OaSC tumors, mitotic nuclear division and oxidative phosphorylation pathways are upregulated, while lipid biosynthesis and metabolism pathways are downregulated. Epithelial tissue migration pathways are upregulated in tumor cells undergoing pagetoid spread. scRNA-seq analyses also revealed that CALML5 is upregulated in OaSC tumor cells. Diffuse nuclear and cytoplasmic CALML5 staining was present in 28 of 28 (100%) OaSC cases. Diffuse nuclear and membranous CALML5 staining was present in 5 of 25 (20%) SCC and OSSN cases, while diffuse nuclear staining was present in 1 of 12 (8%) BCC cases. CONCLUSIONS This study reveals a complex OaSC tumor microenvironment and confirms that the CALML5 immunohistochemical stain is a sensitive diagnostic marker.
Collapse
Affiliation(s)
- Michelle G Zhang
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ryan A Gallo
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Charissa H Tan
- Florida Lions Ocular Pathology Laboratory, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthew Camacho
- Florida Lions Ocular Pathology Laboratory, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sohaib Fasih-Ahmad
- Florida Lions Ocular Pathology Laboratory, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Acadia H Moeyersoms
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yoseph Sayegh
- Florida Lions Ocular Pathology Laboratory, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sander R Dubovy
- Florida Lions Ocular Pathology Laboratory, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Pelaez
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew J Rong
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Division of Oculofacial Plastic, Reconstructive, and Orbital Surgery, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
16
|
Zhong X, Zheng H, Zhao S, Wang Z, Su Y, Zhong K, Wang M, Shi Y. Effects and mechanisms of Helicobacter pylori on cancers development and immunotherapy. Front Immunol 2024; 15:1469096. [PMID: 39434880 PMCID: PMC11491387 DOI: 10.3389/fimmu.2024.1469096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Tumor immunotherapy has been widely used in clinical treatment of various cancers. However, some patients of these cancers do not respond to immunotherapy effectively. And H. pylori infection has been considered to be related to the efficacy of immunotherapy. This review aims to summarize the different effects and mechanisms of H. pylori infection on immunotherapy in different kinds of cancers. We searched the relevant literature on H. pylori and tumor immunotherapy, and summarized to form a review. Generally, H. pylori infection plays a role in affecting kinds of cancers' development, besides gastric cancer. Current evidence suggests that H. pylori infection may reduce the efficacy of immunotherapy for colorectal cancer, non-small cell lung cancer and melanoma, but due to the lack of sufficient evidence, more data is needed to prove that. While for gastric cancer, the effects remain controversial. The H. pylori regulation effects and metabolisms involved in systematic related cancers should be paid attention to. Whether H. pylori should be eradicated when immunotherapy performed may be a critical consideration for some kinds of tumors.
Collapse
Affiliation(s)
- Xiaotian Zhong
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Huiling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Shiqing Zhao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Ziye Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Yi Su
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Kaili Zhong
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mopei Wang
- Department of Tumor Chemotherapy and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
17
|
Raghavan S, Kim KS. Host immunomodulation strategies to combat pandemic-associated antimicrobial-resistant secondary bacterial infections. Int J Antimicrob Agents 2024; 64:107308. [PMID: 39168417 DOI: 10.1016/j.ijantimicag.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/20/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
The incidence of secondary bacterial infections has increased in recent decades owing to various viral pandemics. These infections further increase the morbidity and mortality rates associated with viral infections and remain a significant challenge in clinical practice. Intensive antibiotic therapy has mitigated the threat of such infections; however, overuse and misuse of antibiotics have resulted in poor outcomes, such as inducing the emergence of bacterial populations with antimicrobial resistance (AMR) and reducing the therapeutic options for this crisis. Several antibiotic substitutes have been suggested and employed; however, they have certain limitations and novel alternatives are urgently required. This review highlights host immunomodulation as a promising strategy against secondary bacterial infections to overcome AMR. The definition and risk factors of secondary bacterial infections, features and limitations of currently available therapeutic strategies, host immune responses, and future perspectives for treating such infections are discussed.
Collapse
Affiliation(s)
- Srimathi Raghavan
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Korea.
| |
Collapse
|
18
|
Naseri S, Asgarpanah J, Ziai SA. Immunomodulatory and antioxidant effect of liposomal auraptene against cyclophosphamide-induced immunosuppression in BALB/c mice. Exp Gerontol 2024; 195:112552. [PMID: 39173782 DOI: 10.1016/j.exger.2024.112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Cyclophosphamide (CP), which is a commonly used chemotherapy drug, can lead to a range of side effects such as immunosuppression, bone marrow suppression, leukopenia, and oxidative stress. This study aims to explore the effects of Auraptene (AUR), which has immunomodulatory and antioxidant properties, on immune function in mice that are experiencing suppression induced by CP. MATERIALS AND METHODS The experiment involved 60 male BALB/c mice that underwent a 10-day treatment. On days 1, 3, and 9, CP was given at 80 mg/kg IP doses to induce immunosuppression. The mice were divided into five groups: Control group, CP group, CP + liposomal AUR 0.2 mg/kg (AUR 0.2), CP + liposomal AUR 0.25 mg/kg (AUR 0.25), and liposomal vehicle group. Various parameters were measured, including mouse weight, immune organ weight index (spleen and thymus), spleen and thymus histopathology, levels of inflammatory cytokines (IL2, IL10, IL4, IFN-γ), TH1/TH2 balance ratio, IgG and IgM immunoglobulin levels, white blood cell count, platelets, neutrophils, lymphocytes, and oxidative activity measured by MDA, SOD, and Total Antioxidant. RESULTS In the group treated with CP, the mice showed a significant decrease in weight compared to the control group. In contrast, the group treated with AUR maintained their weight and did not show a significant difference from the control group. AUR 0.25 reduced the damage to the spleen and thymus caused by CP. Additionally, AUR 0.25 demonstrated a significant decrease in IL4 and IL10 levels compared to the CP group (p = 0.04), approaching the levels of the control group. Furthermore, IL2 and IFN-γ levels in the AUR 0.25 group significantly increased (p = 0.04) compared to the CP group, reaching levels similar to the control group. AUR also increased serum IgM and IgG levels two to three times compared to the CP group, approaching the levels of the control group. MDA levels in the AUR 0.25 group decreased to normal and control levels. AUR 0.25 also showed increased SOD and Total Antioxidant levels. Additionally, white blood cells, platelets, neutrophils, and lymphocytes in the AUR group significantly increased compared to the CP group, reaching normal levels similar to the control group. The TH1/TH2 ratio in the AUR group exhibited a significant increase of two and a half times (p = 0.002) compared to the CP group. CONCLUSION These results show that AUR protects against the side effects of CP by increasing the function of the humoral and cellular immune system through the balance of TH1/TH2 and increasing the level of immunoglobulins, as well as increasing the antioxidant activity and the protective role of cytotoxicity.
Collapse
Affiliation(s)
- Saeed Naseri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Jinous Asgarpanah
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Ali Ziai
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Prasanna PGS, Ahmed MM, Hong JA, Coleman CN. Best practices and novel approaches for the preclinical development of drug-radiotherapy combinations for cancer treatment. Lancet Oncol 2024; 25:e501-e511. [PMID: 39362261 DOI: 10.1016/s1470-2045(24)00199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 10/05/2024]
Abstract
Drug-radiation combination therapy is a practical approach to improving clinical outcomes for many tumours. Unfortunately, most clinical combination studies combine drugs with radiotherapy empirically and do not exploit mechanistic synergy in cell death and the interconnectivity of molecular pathways of tumours or rationale for selecting the dose, fractionation, and schedule, which can result in suboptimal efficacy and exacerbation of toxic effects. However, opportunities exist to generate compelling preclinical evidence for combination therapies from fit-for-purpose translational studies for simulating the intended clinical study use scenarios with standardised preclinical assays and algorithms to evaluate complex molecular interactions and analysis of synergy before clinical research. Here, we analyse and discuss the core issues in the translation of preclinical data to enhance the relevance of preclinical assays, in vitro clonogenic survival along with apoptosis, in vivo tumour regression and growth delay assays, and toxicology of organs at risk without creating barriers to innovation and provide a synopsis of emerging areas in preclinical radiobiology.
Collapse
Affiliation(s)
- Pataje G S Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Mansoor M Ahmed
- Division of Radiation Biology and Molecular Therapeutics, Department of Radiation Oncology, Albert Einstein College of Medicine, New York, NY, USA
| | - Julie A Hong
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Qian YL, Jiang Y, Gong YH, Yu JK, Liu C, Wu WT, Shen D. Autoimmune encephalitis following treatment with durvalumab for small-cell lung cancer. J Int Med Res 2024; 52:3000605241287015. [PMID: 39435557 PMCID: PMC11497526 DOI: 10.1177/03000605241287015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
The traditional treatment for small-cell lung cancer (SCLC) has been traditional systemic platinum-containing chemotherapy because the response rate is 50-90%. Durvalumab is an immune checkpoint inhibitor that blocks the binding of programmed cell death protein 1 and programmed cell death 1 ligand 1. Durvalumab combined with traditional chemotherapy agents has been recommended as the first-line treatment for extensive-stage SCLC, but its use may cause immune-related adverse events. Autoimmune encephalitis is a rare and potentially fatal neurological adverse event. This current case report describes a male patient in his late 50s with ES-SCLC who developed autoimmune encephalitis associated with durvalumab treatment after three cycles of combination chemotherapy. This current case furthers the understanding of autoimmune encephalitis caused by durvalumab treatment.
Collapse
Affiliation(s)
- Yu-Lan Qian
- Department of Pharmacy, The First affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ye Jiang
- Department of Pharmacy, The First affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Department of Pharmacy, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu Province, China
| | - Yin-Hua Gong
- Department of Pharmacy, The First affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jian-Kang Yu
- Department of Pharmacy, The First affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Chao Liu
- Department of Pulmonary and Critical Care Medicine, The First affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Wen-Ting Wu
- Department of Pulmonary and Critical Care Medicine, The First affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dan Shen
- Department of Pulmonary and Critical Care Medicine, The First affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
21
|
Shen S, Zhang H, Qian Y, Zhou X, Li J, Zhang L, Sun Z, Wang W. Prognostic Analysis of Lactic Acid Metabolism Genes in Oral Squamous Cell Carcinoma. Int Dent J 2024; 74:1053-1063. [PMID: 38677972 DOI: 10.1016/j.identj.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVES Oral squamous cell carcinoma (OSCC) is the most common malignant tumour in the oral and maxillofacial region. Lactic acid accumulation in the tumour microenvironment (TME) has gained attention for its dual role as an energy source for cancer cells and an activator of signalling pathways crucial to tumour progression. This study aims to reveal the impact of lactate-related genes (LRGs) on the prognosis, TME, and immune characteristics of OSCC, with the ultimate goal of developing a novel prognostic model. METHODS Unsupervised clustering analysis of LRGs in OSCC patients from The Cancer Genome Atlas database was conducted to evaluate and compare TME, immune features, and clinical characteristics across various lactate subtypes. A refined prognostic model was developed through the application of Cox and Least absolute shrinkage and selection operator (LASSO) regression techniques. External validation sets were then utilised to improve model accuracy, along with a detailed correlation analysis of drug sensitivity. RESULTS The Cancer Genome Atlas-OSCC patients were categorised into 4 distinct lactate subtypes based on LRGs. Notably, patients in subtype 1 and subtype 2 exhibited the least and most favourable prognoses, respectively. Subtype 1 patients showed elevated expression levels of immune checkpoint genes. Further analysis identified 1086 genes with significant expression differences between cancer and noncancer tissues, as well as between subtype 1 and subtype 2 patients. Selected genes for the prognostic model included ZNF662, CGNL1, VWCE, and ZFP42. The high-risk group defined by this model had a significantly poorer prognosis (P < .0001) and functioned as an independent prognostic factor (P < .001), accurately predicting 1-, 3-, and 5-year survival rates. Additionally, individuals in the high-risk category exhibited heightened sensitivity to chemotherapy drugs such as AZ6102 and Venetoclax. CONCLUSIONS The predictive model based on the genes ZNF662, CGNL1, VWCE, and ZFP42 can serve as a reliable biomarker, providing accurate prognostic predictions for OSCC patients and potential opportunities for pharmaceutical interventions.
Collapse
Affiliation(s)
- Shiying Shen
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Hongrong Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yemei Qian
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Xue Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Jingyi Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Liqin Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Zheyi Sun
- Yunnan Key Laboratory of Stomatology, Kunming, China; Department of Operative Dentistry, Preventive Dentistry and Endodontics, School of Stomatology, The Affiliated Stomatology Hospital, Kunming Medical University, Kunming, China.
| | - Weihong Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China.
| |
Collapse
|
22
|
Li Z, Chen Z, Shi K, Huang P, Zeng W, Huang Q, Peng J, Yang L, Chen H, Zhao Y, Zeng X. Polyphenol-Based Self-Assembled Nanomedicine for a Three-Pronged Approach to Reversing Tumor Immunosuppression. Adv Healthc Mater 2024:e2402127. [PMID: 39344218 DOI: 10.1002/adhm.202402127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/14/2024] [Indexed: 10/01/2024]
Abstract
The challenges of multi-pathway immune resistance and systemic toxicity caused by the direct injection of immune checkpoint inhibitors are critical factors that compromise the effectiveness of clinical immune checkpoint blockade therapy. In this context, natural polyphenols have been employed as the primary component to construct a targeted and acid-responsive PD-L1 antibody (αPD-L1) delivery nanoplatform. This platform incorporates garcinol, an inhibitor of the Nuclear Factor Kappa-B (NF-κB) signaling pathway, to regulate pro-tumor immune escape cytokines and regulatory T cells. Additionally, the nanoplatform has been verified to induce immunogenic cell death (ICD), which promotes the maturation of dendritic cells and enhances the activity of cytotoxic T lymphocytes. In vivo and in vitro experimental results demonstrated that the nanoplatform can boost the immune response through a PD-L1 and NF-κB blocking/ICD inducing three-pronged strategy, thereby effectively combating tumor growth and metastasis.
Collapse
Affiliation(s)
- Zimu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zirui Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Kexin Shi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Ping Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenfeng Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qili Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jingwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
23
|
Wang J, Hu X, Wang Y, A R, Li X, Sun Y, Guan Z, Li X, Wu Y, Wang J, Zhao F, Liu Y, Wang H, Yu H, Wang T, Zhu M, Li X, Zhang D, Chen W, Han Z, Sun X. Development and characterisation of [ 18F]TTDP, a novel T cell immunoglobulin and ITIM domain tracer, in humanised mice and non-human primates. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06911-7. [PMID: 39297961 DOI: 10.1007/s00259-024-06911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024]
Abstract
PURPOSE The T cell immunoglobulin and ITIM domain (TIGIT) blockade immunotherapy response is directly associated with individual differences of TIGIT expression on tumour-infiltrating lymphocytes (TILs) in tumour immune microenvironment (TIME) of non-small cell lung cancer (NSCLC). Here, we developed a TIGIT-targeted PET tracer to evaluate its feasibility in predicting immunotherapy efficacy, aiming to manage NSCLC patients accurately. METHODS We synthesised a 18F-labeled TIGIT-targeted D-peptide, [18F]TTDP, and investigated the specificity of [18F]TTDP both to murine TIGIT and human TIGIT by a series of in vitro and in vivo assays. [18F]TTDP PET imaging was performed in humanised immune system (HIS) mice models bearing NSCLC patient-derived xenografts (PDXs) to evaluate the predictive value of FDA-approved combination immunotherapy of atezolizumab plus tiragolumab. Lastly, rhesus macaque was applied for [18F] TTDP PET to explore the tracer's in vivo distribution and translational potential in non-human primates. RESULTS [18F]TTDP showed high specificity for both murine TIGIT and human TIGIT in vitro and in vivo. The HIS NSCLC PDX platform was successfully established for [18F]TTDP PET imaging, and tumour uptake of [18F]TTDP was significantly correlated with the TIGIT expression of TILs in the TIME. [18F]TTDP PET imaging, in predicting treatment response to the combination immunotherapy in NSCLC HIS-PDX models, showed a sensitivity of 83.33% and a specificity of 100%. In addition, [18F]TTDP PET also showed cross-species consistency of the tracer biodistribution between non-human primate and murine animals, and no adverse events were observed. CONCLUSION The combined implementation of the [18F]TTDP and HIS-PDX model creates a state-of-the-art preclinical platform that will impact the identification and validation of TIGIT-targeted PET image-guided diagnosis, treatment response prediction, beneficial patient screening, novel immunotherapies, and ultimately the outcome of NSCLC patients. We first provided in vivo biodistribution of [18F]TTDP PET imaging in rhesus macaque, indicating its excellent translational potential in the clinic.
Collapse
Affiliation(s)
- Jing Wang
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinxin Hu
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yueqi Wang
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong A
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoqian Li
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Sun
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhengqi Guan
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaona Li
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongyi Wu
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiannan Wang
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fangyu Zhao
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Liu
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongbin Wang
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hong Yu
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tianyi Wang
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Mengyuan Zhu
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinyu Li
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Duoyi Zhang
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Chen
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoguo Han
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China.
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xilin Sun
- Department of Nuclear Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Xiangan N Street, Songbei District, Harbin, 150028, Heilongjiang, China.
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
24
|
Fang L, Meng Q, Wang J, Tu Y, Qu H, Diao Y, Li W, Wen H, Fang J, Hang L, Ma P, Jiang G. Multifunctional single-component photosensitizers as metal-free ferroptosis inducers for enhanced photodynamic immunotherapy. Acta Biomater 2024; 186:383-395. [PMID: 39069112 DOI: 10.1016/j.actbio.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Immunotherapy can enhance primary tumor efficacy, restrict distant growth, and combat lung metastasis. Unfortunately, it remains challenging to effectively activate the immune response. Here, tertiary butyl, methoxy, and triphenylamine (TPA) were utilized as electron donors to develop multifunctional photosensitizers (PSs). CNTPA-TPA, featuring TPA as the donor (D) and cyano as the acceptor (A), excelled in reactive oxygen species (ROS) generation due to its smaller singlet-triplet energy gap (ΔES-T) and larger spin-orbit coupling constant (SOC). Additionally, cyano groups reacted with glutamate (Glu) and glutathione (GSH), reducing intracellular GSH levels. This not only enhanced PDT efficacy but also triggered redox dyshomeostasis-mediated ferroptosis. The positive effects of photodynamic therapy (PDT) and ferroptosis promoted immunogenic cell death (ICD) and immune activation. By further combining anti-programmed cell death protein ligand-1 (anti-PD-L1) antibody, the powerful treatments of ferroptosis-assisted photodynamic immunotherapy significantly eradicated the primary tumors, inhibited the growth of distant tumors, and suppressed lung metastasis. In this study, a three-pronged approach was realized by single-component CNTPA-TPA, which simultaneously served as metal-free ferroptosis inducers, type-I photosensitizers, and immunologic adjuvants for near-infrared fluorescence imaging (NIR FLI)-guided multimodal phototheranostics of tumor. STATEMENT OF SIGNIFICANCE: (1) CNTPA-TPA shared the smallest singlet-triplet energy gap and the largest spin-orbit coupling constant, which boosted intersystem crossing for efficient type-I photodynamic therapy (PDT); (2) Special reactions between cyano groups with glutamate and glutathione in mild conditions restricted the biosynthesis of intracellular GSH. GSH-depletion efficiently induced glutathione peroxidase 4 inactivation and lipid peroxide, resulting in ferroptosis of tumor cells; (3) The combination treatments of ferroptosis-assisted photodynamic immunotherapy induced by single-component CNTPA-TPA with the participation of anti-PD-L1 antibody resulted in increased T-cell infiltration and profound suppression of both primary and distant tumor growth, as well as lung metastasis.
Collapse
Affiliation(s)
- Laiping Fang
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, School of Medicine, Jinan University, Xingangzhong Road 466, Guangzhou 518037, PR China
| | - Qi Meng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130012, PR China
| | - Jizhuang Wang
- College of Chemistry and Materials Science, Jinan University, Huangpu Avenue West 601, Guangzhou 510632, PR China
| | - Yike Tu
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Xingangzhong Road 466, Guangzhou 518037, PR China
| | - Hong Qu
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Xingangzhong Road 466, Guangzhou 518037, PR China
| | - Yanzhao Diao
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Xingangzhong Road 466, Guangzhou 518037, PR China
| | - Wuming Li
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Xingangzhong Road 466, Guangzhou 518037, PR China
| | - Hua Wen
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Xingangzhong Road 466, Guangzhou 518037, PR China
| | - Jin Fang
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Xingangzhong Road 466, Guangzhou 518037, PR China
| | - Lifeng Hang
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Xingangzhong Road 466, Guangzhou 518037, PR China.
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130012, PR China.
| | - Guihua Jiang
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Xingangzhong Road 466, Guangzhou 518037, PR China.
| |
Collapse
|
25
|
Liu Z, Li S, Xiao Y, Liu X, Zhang B, Zeng Q, Ao Q, Zhang X. A Multi-Functional Nanoadjuvant Coupling Manganese with Toll-Like 9 Agonist Stimulates Potent Innate and Adaptive Anti-Tumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2402678. [PMID: 39258810 DOI: 10.1002/advs.202402678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/20/2024] [Indexed: 09/12/2024]
Abstract
The effectiveness of Toll-like 9 agonists (CpG) as an adjuvant for tumor immunotherapy is restricted due to their insufficient ability to activate anti-tumor immunity. To address that, the common nutrient metal ions are explored (Mn2+, Cu2+, Ca2+, Mg2+, Zn2+, Fe3+, and Al3+), identifying Mn2+ as a key enhancer of CpG to mediate immune activation by augmenting the STING-NF-κB pathway. Mn2+ and CpG are then self-assembled with epigallocatechin gallate (EGCG) into a nanoadjuvant MPN/CpG. Local delivery of MPN/CpG effectively inhibits tumor growth in a B16 melanoma-bearing mouse model, reshaping the tumor microenvironment (TME) by repolarizing M2-type tumor-associated macrophages (TAMs) to an M1-type and boosting intra-tumoral infiltration of CD8+/CD4+ T lymphocytes and DCs. Furthermore, compared to free CpG, MPN/CpG exhibits heightened accumulation in lymph nodes, enhancing CpG uptake and DC activation, consequently inducing significant antigen-specific cytotoxic CD8+ T cell immune response and humoral immunity. In a prophylactic tumor-bearing mouse model, MPN/CpG vaccination with OVA antigen significantly delays B16-OVA melanoma growth and extends mouse survival. These findings underscore the potential of MPN/CpG as a multifunctional adjuvant platform to drive powerful innate and adaptive immunity and regulate TME against tumors.
Collapse
Affiliation(s)
- Zhongjie Liu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Shu Li
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yang Xiao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiaoyang Liu
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Qin Zeng
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Qiang Ao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xingdong Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
26
|
Li X, Liu Y, Gui J, Gan L, Xue J. Cell Identity and Spatial Distribution of PD-1/PD-L1 Blockade Responders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2400702. [PMID: 39248327 DOI: 10.1002/advs.202400702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/08/2024] [Indexed: 09/10/2024]
Abstract
The programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) axis inhibits T cell activity, impairing anti-tumor immunity. Blocking this axis with therapeutic antibodies is one of the most promising anti-tumor immunotherapies. It has long been recognized that PD-1/PD-L1 blockade reinvigorates exhausted T (TEX) cells already present in the tumor microenvironment (TME). However, recent advancements in high-throughput gene sequencing and bioinformatic tools have provided researchers with a more granular and dynamic insight into PD-1/PD-L1 blockade-responding cells, extending beyond the TME and TEX populations. This review provides an update on the cell identity, spatial distribution, and treatment-induced spatiotemporal dynamics of PD-1/PD-L1 blockade responders. It also provides a synopsis of preliminary reports of potential PD-1/PD-L1 blockade responders other than T cells to depict a panoramic picture. Important questions to answer in further studies and the translational and clinical potential of the evolving understandings are also discussed.
Collapse
Affiliation(s)
- Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Lu Gan
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
27
|
Taylor C, Patterson KM, Friedman D, Bacot SM, Feldman GM, Wang T. Mechanistic Insights into the Successful Development of Combination Therapy of Enfortumab Vedotin and Pembrolizumab for the Treatment of Locally Advanced or Metastatic Urothelial Cancer. Cancers (Basel) 2024; 16:3071. [PMID: 39272928 PMCID: PMC11393896 DOI: 10.3390/cancers16173071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Antibody-drug conjugates (ADCs) consist of an antibody backbone that recognizes and binds to a target antigen expressed on tumor cells and a small molecule chemotherapy payload that is conjugated to the antibody via a linker. ADCs are one of the most promising therapeutic modalities for the treatment of various cancers. However, many patients have developed resistance to this form of therapy. Extensive efforts have been dedicated to identifying an effective combination of ADCs with other types of anticancer therapies to potentially overcome this resistance. A recent clinical study demonstrated that a combination of the ADC enfortumab vedotin (EV) with the immune checkpoint inhibitor (ICI) pembrolizumab can achieve remarkable clinical efficacy as the first-line therapy for the treatment of locally advanced or metastatic urothelial carcinoma (la/mUC)-leading to the first approval of a combination therapy of an ADC with an ICI for the treatment of cancer patients. In this review, we highlight knowledge and understanding gained from the successful development of EV and the combination therapy of EV with ICI for the treatment of la/mUC. Using urothelial carcinoma as an example, we will focus on dissecting the underlying mechanisms necessary for the development of this type of combination therapy for a variety of cancers.
Collapse
Affiliation(s)
- Caroline Taylor
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Kamai M Patterson
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Devira Friedman
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Silvia M Bacot
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Gerald M Feldman
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tao Wang
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
28
|
Panuccio G, Correale P, d'Apolito M, Mutti L, Giannicola R, Pirtoli L, Giordano A, Labate D, Macheda S, Carabetta N, Abdelwahed YS, Landmesser U, Tassone P, Tagliaferri P, De Rosa S, Torella D. Immuno-related cardio-vascular adverse events associated with immuno-oncological treatments: an under-estimated threat for cancer patients. Basic Res Cardiol 2024:10.1007/s00395-024-01077-7. [PMID: 39225869 DOI: 10.1007/s00395-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Immunotherapy represents an emergent and heterogeneous group of anticancer treatments harnessing the human immune-surveillance system, including immune-checkpoint inhibitor monoclonal antibodies (mAbs), Chimeric Antigen Receptor T Cells (CAR-T) therapy, cancer vaccines and lymphocyte activation gene-3 (LAG-3) therapy. While remarkably effective against several malignancies, these therapies, often in combination with other cancer treatments, have showed unforeseen toxicity, including cardiovascular complications. The occurrence of immuno-mediated adverse (irAEs) events has been progressively reported in the last 10 years. These irAEs present an extended range of severity, from self-limiting to life-threatening conditions. Although recent guidelines in CardioOncology have provided important evidence in managing cancer treatments, they often encompass general approaches. However, a specific focus is required due to the particular etiology, unique risk factors, and associated side effects of immunotherapy. This review aims to deepen the understanding of the prevalence and nature of cardiovascular issues in patients undergoing immunotherapy, offering insights into strategies for risk stratification and management.
Collapse
Affiliation(s)
- Giuseppe Panuccio
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany.
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Pierpaolo Correale
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Maria d'Apolito
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Department of Applied Sciences and Biotechnology, Università dell'Aquila, L'Aquila, Italy
| | - Rocco Giannicola
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnology, University of Siena, 53100, Siena, Italy
| | - Demetrio Labate
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Sebastiano Macheda
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Youssef S Abdelwahed
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), 10785, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), 10785, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
29
|
De Martino M, Rathmell JC, Galluzzi L, Vanpouille-Box C. Cancer cell metabolism and antitumour immunity. Nat Rev Immunol 2024; 24:654-669. [PMID: 38649722 PMCID: PMC11365797 DOI: 10.1038/s41577-024-01026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Accumulating evidence suggests that metabolic rewiring in malignant cells supports tumour progression not only by providing cancer cells with increased proliferative potential and an improved ability to adapt to adverse microenvironmental conditions but also by favouring the evasion of natural and therapy-driven antitumour immune responses. Here, we review cancer cell-intrinsic and cancer cell-extrinsic mechanisms through which alterations of metabolism in malignant cells interfere with innate and adaptive immune functions in support of accelerated disease progression. Further, we discuss the potential of targeting such alterations to enhance anticancer immunity for therapeutic purposes.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
30
|
Parladé E, García-Leon A, Voltà-Durán E, Unzueta U, Mangues R, Casanova I, Villaverde A, Vázquez E. Paradoxical cell targeting of calreticulin-empowered, protein-only nanoparticles. Eur J Pharm Biopharm 2024; 202:114410. [PMID: 39004320 DOI: 10.1016/j.ejpb.2024.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Surface-exposed calreticulin (CRT) serves as a crucial cell damage-associated molecular pattern for immunogenic apoptosis, by generating an "eat me" signal to macrophages. Aiming at precision immunotherapies we intended to artificially label tumoral cells in vivo with a recombinant CRT, in a targeted way. For that, we have constructed a CRT fusion protein intended to surface attach CXCR4+ cancer cells, to stimulate their immunological destruction. As a targeting ligand of the CRT construct and to drive its specific cell adhesion, we used the peptide V1, a derivative of the vMIP-II cytokine and an antagonist of CXCR4. The modular protein tends to self-assemble as regular 16 nm nanoparticles, assisted by ionic Zn. Through both in vivo and in vitro experiments, we have determined that CRT itself confers cell targeting capabilities to the construct overcoming those of V1, that are only moderate. In particular, CRT binds HeLa cells in absence of further internalization, by a route fully independent of CXCR4. Furthermore, by cytometry in THP-1 cells, we observed that the binding of the protein is preferential for dead cells over live cells, a fact that cannot be associated to a mere artefactual adsorption. These data are discussed in the context of the oligomerizing properties of CRT and the potential clinical applicability of proteins and protein materials functionalized with this novel cell surface ligand.
Collapse
Affiliation(s)
- Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Annabel García-Leon
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Carretera de Can Ruti, Badalona, 08916, Barcelona, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Carretera de Can Ruti, Badalona, 08916, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain
| | - Ramon Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Carretera de Can Ruti, Badalona, 08916, Barcelona, Spain
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Carretera de Can Ruti, Badalona, 08916, Barcelona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
31
|
Young RWC, Rodriguez GR, Kucera J, Carrera D, Antevil JL, Trachiotis GD. Molecular Markers, Immune Therapy, and Non-Small Cell Lung Cancer-State-of-the-Art Review for Surgeons. J Laparoendosc Adv Surg Tech A 2024; 34:786-797. [PMID: 38900703 DOI: 10.1089/lap.2024.0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Background: Lung cancer is a leading cause of cancer deaths in the United States. An increasing understanding of relevant non-small cell lung cancer (NSCLC) biomarkers has led to the recent development of molecular-targeted therapies and immune checkpoint inhibitors that have revolutionized treatment for patients with advanced and metastatic disease. The purpose of this review is to provide surgeons with a state-of-the-art understanding of the current medical and surgical treatment trends and their implications in the future of management of NSCLC. Materials and Methods: A systematic search of PubMed was conducted to identify English language articles published between January 2010 and March 2024 focusing on molecular markers, tumor targeting, and immunotherapy in the diagnosis and treatment of NSCLC. Case series, observational studies, randomized trials, guidelines, narrative reviews, systematic reviews, and meta-analyses were included. Results: There is now increasing data to suggest that molecular-targeted therapies and immune therapies have a role in the neoadjuvant setting. Advances in intraoperative imaging allow surgeons to perform increasingly parenchymal-sparing lung resections without compromising tumor margins. Liquid biopsies can noninvasively detect targetable mutations in cancer cells and DNA from a blood draw, potentially allowing for earlier diagnosis, personalized therapy, and long-term monitoring for disease recurrence. Conclusions: The management of NSCLC has advanced dramatically in recent years fueled by a growing understanding of the cancer biology of NSCLC. Advances in medical therapies, surgical techniques, and diagnostic and surveillance modalities continue to evolve but have already impacted current treatment strategies for NSCLC, which are encompassed in this review.
Collapse
Affiliation(s)
- Robert W C Young
- Department of Surgery, George Washington University Hospital, Washington, District of Columbia, USA
| | - Gustavo R Rodriguez
- Department of Surgery, George Washington University Hospital, Washington, District of Columbia, USA
| | - John Kucera
- Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Daniel Carrera
- Department of Surgery, George Washington University Hospital, Washington, District of Columbia, USA
| | - Jared L Antevil
- Department of Surgery, George Washington University Hospital, Washington, District of Columbia, USA
- Division of Cardiothoracic Surgery and Heart Center, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, USA
| | - Gregory D Trachiotis
- Department of Surgery, George Washington University Hospital, Washington, District of Columbia, USA
- Division of Cardiothoracic Surgery and Heart Center, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
32
|
Deng XC, Liang JL, Zhang SM, Wang YZ, Lin YT, Meng R, Wang JW, Feng J, Chen WH, Zhang XZ. Interference of ATP-Adenosine Axis by Engineered Biohybrid for Amplifying Immunogenic Cell Death-Mediated Antitumor Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405673. [PMID: 39022876 DOI: 10.1002/adma.202405673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Immunogenic cell death (ICD) often results in the production and accumulation of adenosine (ADO), a byproduct that negatively impacts the therapeutic effect as well as facilitates tumor development and metastasis. Here, an innovative strategy is elaborately developed to effectively activate ICD while avoiding the generation of immunosuppressive adenosine. Specifically, ZIF-90, an ATP-responsive consumer, is synthesized as the core carrier to encapsulate AB680 (CD73 inhibitor) and then coated with an iron-polyphenol layer to prepare the ICD inducer (AZTF), which is further grafted onto prebiotic bacteria via the esterification reaction to obtain the engineered biohybrid (Bc@AZTF). Particularly, the designed Bc@AZTF can actively enrich in tumor sites and respond to the acidic tumor microenvironment to offload AZTF nanoparticles, which can consume intracellular ATP (iATP) content and simultaneously inhibit the ATP-adenosine axis to reduce the accumulation of adenosine, thereby alleviating adenosine-mediated immunosuppression and strikingly amplifying ICD effect. Importantly, the synergy of anti-PD-1 (αPD-1) with Bc@AZTF not only establishes a collaborative antitumor immune network to potentiate effective tumoricidal immunity but also activates long-lasting immune memory effects to manage tumor recurrence and rechallenge, presenting a new paradigm for ICD treatment combined with adenosine metabolism.
Collapse
Affiliation(s)
- Xin-Chen Deng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Shi-Man Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Yu-Zhang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Yan-Tong Lin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Ran Meng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Jia-Wei Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| |
Collapse
|
33
|
Li Z, Liu X, Cai N, Zhou Z, Huang H, Wu Q, Xu L, Zhu WG, Zhang C, Wei Z, Li D. Immune checkpoint reprogramming via sequential nucleic acid delivery strategy optimizes systemic immune responses for gastrointestinal cancer immunotherapy. Cancer Lett 2024; 599:217152. [PMID: 39094825 DOI: 10.1016/j.canlet.2024.217152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Monoclonal antibodies targeting immune checkpoints have been widely applied in gastrointestinal cancer immunotherapy. However, systemic administration of various monoclonal antibodies does not often result in sustained effects in reversing the immunosuppressive tumor microenvironment (TME), which may be due to the spatiotemporal dynamic changes of immune checkpoints. Herein, we reported a novel immune checkpoint reprogramming strategy for gastrointestinal cancer immunotherapy. It was achieved by the sequential delivery of siPD-L1 (siRNA for programmed cell death ligand 1) and pOX40L (plasmid for OX40 ligand), which were complexed with two cationic polymer brush-grafted carbon nanotubes (dense short (DS) and dense long (DL)) designed based on the structural characteristics of nucleic acids and brush architectures. Upon administrating DL/pOX40L for the first three dosages, then followed by DS/siPD-L1 for the next three dosages to the TME, it upregulated the stimulatory checkpoint OX40L on dendritic cells (DCs) and downregulated inhibitory checkpoint PD-L1 on tumor cells and DCs in a sequential reprogramming manner. Compared with other combination treatments, this sequential strategy drastically boosted the DCs maturation, and CD8+ cytotoxic T lymphocytes infiltration in tumor site. Furthermore, it could augment the local antitumor response and improve the T cell infiltration in tumor-draining lymph nodes to reverse the peripheral immunosuppression. Our study demonstrated that sequential nucleic acid delivery strategy via personalized nanoplatforms effectively reversed the immunosuppression status in both tumor microenvironment and peripheral immune landscape, which significantly enhanced the systemic antitumor immune responses and established an optimal immunotherapy strategy against gastrointestinal cancer.
Collapse
Affiliation(s)
- Zhuoyuan Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinran Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Nan Cai
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Huaping Huang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Qiang Wu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Lizhou Xu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518055, China.
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Zhewei Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Gastric Cancer Center of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Danyang Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
34
|
Zhang X, Wu Y, Lin J, Lu S, Lu X, Cheng A, Chen H, Zhang W, Luan X. Insights into therapeutic peptides in the cancer-immunity cycle: Update and challenges. Acta Pharm Sin B 2024; 14:3818-3833. [PMID: 39309492 PMCID: PMC11413705 DOI: 10.1016/j.apsb.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/05/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapies hold immense potential for achieving durable potency and long-term survival opportunities in cancer therapy. As vital biological mediators, peptides with high tissue penetration and superior selectivity offer significant promise for enhancing cancer immunotherapies (CITs). However, physicochemical peptide features such as conformation and stability pose challenges to their on-target efficacy. This review provides a comprehensive overview of recent advancements in therapeutic peptides targeting key steps of the cancer-immunity cycle (CIC), including tumor antigen presentation, immune cell regulation, and immune checkpoint signaling. Particular attention is given to the opportunities and challenges associated with these peptides in boosting CIC within the context of clinical progress. Furthermore, possible future developments in this field are also discussed to provide insights into emerging CITs with robust efficacy and safety profiles.
Collapse
Affiliation(s)
- Xiaokun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shengxin Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinchen Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Aoyu Cheng
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science &, Peking Union Medical College, Beijing 100193, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
35
|
Chen Q, Xiao H, Hu L, Huang Y, Cao Z, Shuai X, Su Z. 19F MRI/CEUS Dual Imaging-Guided Sonodynamic Therapy Enhances Immune Checkpoint Blockade in Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401182. [PMID: 39051482 PMCID: PMC11423248 DOI: 10.1002/advs.202401182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Treatment of highly aggressive triple-negative breast cancer (TNBC) in the clinic is challenging. Here, a liposome nanodrug (LP@PFH@HMME) integrating imaging agents and therapeutic agents for bimodal imaging-guided sonodynamic therapy (SDT) is developed, which boosted immunogenicity to enable potent immunotherapy via immune checkpoint blockade (ICB) in TNBC. In the acidic tumor microenvironment (TME), LP@PFH@HMME undergoes "nano-to-micro" transformation due to a pH-responsive lipid fusion, which makes droplets much more sensitive to ultrasound (US) in contrast-enhanced ultrasound (CEUS) and SDT studies. The nanodrug demonstrates robust bimodal imaging ability through fluorine-19 magnetic resonance imaging (19F MRI) and CEUS bimodal imaging, and it exhibits excellent solubility in aqueous solution with relatively high 19F content and desirable long transverse relaxation time (T2 = 1.072 s), making it suitable for high-performance 19F MRI, in addition to effective accumulation of nanodrugs after tail vein injection. Thus, 19F MRI/CEUS dual imaging is achievable to show adequate time points for US irradiation of tumor sites to induce highly effective SDT, which produces abundant reactive oxygen species (ROS) triggering immunogenic cell death (ICD) to assist ICB-based immunotherapy. The combination treatment design of sonodynamic therapy with immunotherapy effectively inhibited TNBC growth and recurrence, highlighting the promise of multifunctional nanodrugs in treating TNBC.
Collapse
Affiliation(s)
- Qiu Chen
- Department of UltrasoundThe Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhai519000P. R. China
| | - Hong Xiao
- Department of Medical UltrasonicThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Lijun Hu
- Department of UltrasoundThe Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhai519000P. R. China
| | - Yongquan Huang
- Department of UltrasoundThe Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhai519000P. R. China
| | - Zhong Cao
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
- Shenzhen International Institute for Biomedical ResearchLonghua DistrictShenzhenGuangdong518116P. R. China
| | - Xintao Shuai
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Zhongzhen Su
- Department of UltrasoundThe Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhai519000P. R. China
| |
Collapse
|
36
|
Wang R, Ling Y, Chen B, Zhu Y, Hu Y, Liu M, Yang Y, Zhang L, Lv Y, Liu S, Li Q, Xi M. Long-term survival and post-hoc analysis of toripalimab plus definitive chemoradiotherapy for oesophageal squamous cell carcinoma: insights from the EC-CRT-001 phase II trial. EClinicalMedicine 2024; 75:102806. [PMID: 39281099 PMCID: PMC11402426 DOI: 10.1016/j.eclinm.2024.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Background In the EC-CRT-001 phase II study, the combination of toripalimab (an anti-programmed death-1 antibody) and definitive chemoradiotherapy (CRT) has shown promising efficacy in patients with locally advanced oesophageal squamous cell carcinoma (ESCC). Here, we reported the long-term outcomes and post-hoc exploratory analyses. Methods This single-arm, phase II trial enrolled 42 patients diagnosed with unresectable stage I-IVA ESCC was conducted at Sun Yat-sen University Cancer Center between November 2019 and January 2021. Treatment consisted of chemotherapy (weekly 50 mg/m2 of paclitaxel and 25 mg/m2 of cisplatin for five cycles), concurrent radiotherapy (50.4 Gy in 28 fractions), and toripalimab (240 mg every 3 weeks for up to 1 year). The primary endpoint was clinical complete response (CR) rate at 3 months after CRT completion. The 3-year overall survival (OS) and progression-free survival (PFS) rates were evaluated. Additionally, the exploratory objectives included analysing recurrence patterns, assessing the associations between immune-related adverse events (irAEs) and efficacy, and identifying potential predictors for irAEs. The trial was registered with ClinicalTrials.gov (NCT04005170). Findings With a median follow-up of 44.3 months (IQR 40.8-46.1), the 3-year OS and PFS rates were 44.8% (95% CI 31.9-62.8) and 35.7% (95% CI 23.8-53.6), respectively. Patients who failed to achieve a clinical complete response (CR) demonstrated significantly worse OS (hazard ratio [HR] = 13.73, 95% CI 4.43-42.54, P < 0.0001) and PFS (HR = 32.08, 95% CI 8.57-120.10, P < 0.0001). Disease recurrence occurred in 23 of 42 patients (55%), with recurrences being earlier and more frequent in the non-CR group compared to the CR group. Patients experiencing irAEs showed a significantly higher CR rate (72% vs. 39%, P = 0.082) and better PFS (HR = 0.43, 95% CI 0.19-0.93, P = 0.027) than those without irAEs. GON4L mutation was associated with a lower incidence of irAEs (P = 0.036). Interpretation The updated survival outcomes confirmed the efficacy of toripalimab plus definitive CRT in locally advanced ESCC. Moreover, the development of irAEs may predict a more favourable prognosis. Funding National Natural Science Foundation of China, Beijing Xisike Clinical Oncology Research Foundation, and Sci-Tech Project Foundation of Guangzhou.
Collapse
Affiliation(s)
- Ruixi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yihong Ling
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Baoqing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yujia Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yonghong Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengzhong Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yadi Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yingxin Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shiliang Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiaoqiao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mian Xi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
37
|
Nie W, He Y, Mi X, He S, Chen J, Zhang Y, Wang B, Zheng S, Qian Z, Gao X. Immunostimulatory CKb11 gene combined with immune checkpoint PD-1/PD-L1 blockade activates immune response and simultaneously overcomes the immunosuppression of cancer. Bioact Mater 2024; 39:239-254. [PMID: 38832303 PMCID: PMC11145080 DOI: 10.1016/j.bioactmat.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 06/05/2024] Open
Abstract
Immunosuppression tumor microenvironment (TME) seriously impedes anti-tumor immune response, resulting in poor immunotherapy effect of cancer. This study develops a folate-modified delivery system to transport the plasmids encoding immune stimulatory chemokine CKb11 and PD-L1 inhibitors to tumor cells, resulting in high CKb11 secretion from tumor cells, successfully activating immune cells and increasing cytokine secretion to reshape the TME, and ultimately delaying tumor progression. The chemokine CKb11 enhances the effectiveness of tumor immunotherapy by increasing the infiltration of immune cells in TME. It can cause high expression of IFN-γ, which is a double-edged sword that inhibits tumor growth while causing an increase in the expression of PD-L1 on tumor cells. Therefore, combining CKb11 with PD-L1 inhibitors can counterbalance the suppressive impact of PD-L1 on anti-cancer defense, leading to a collaborative anti-tumor outcome. Thus, utilizing nanotechnology to achieve targeted delivery of immune stimulatory chemokines and immune checkpoint inhibitors to tumor sites, thereby reshaping immunosuppressive TME for cancer treatment, has great potential as an immunogene therapy in clinical applications.
Collapse
Affiliation(s)
- Wen Nie
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Yihong He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Xue Mi
- Department of Pharmacy, West China Second University Hospital of Sichuan University, 610041, Chengdu, PR China
| | - Shi He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Jing Chen
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Yunchu Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Bilan Wang
- Department of Pharmacy, West China Second University Hospital of Sichuan University, 610041, Chengdu, PR China
| | - Songping Zheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Zhiyong Qian
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| |
Collapse
|
38
|
Kang W, Wang C, Wang M, Liu M, Hu W, Liang X, Zhang Y. The CXCR2 chemokine receptor: A new target for gastric cancer therapy. Cytokine 2024; 181:156675. [PMID: 38896956 DOI: 10.1016/j.cyto.2024.156675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Gastric cancer (GC) is one of the most common malignant tumors in the world, and current treatments are still based on surgery and drug therapy. However, due to the complexity of immunosuppression and drug resistance, the treatment of gastric cancer still faces great challenges. Chemokine receptor 2 (CXCR2) is one of the most common therapeutic targets in targeted therapy. As a G protein-coupled receptor, CXCR2 and its ligands play important roles in tumorigenesis and progression. The abnormal expression of these genes in cancer plays a decisive role in the recruitment and activation of white blood cells, angiogenesis, and cancer cell proliferation, and CXCR2 is involved in various stages of tumor development. Therefore, interfering with the interaction between CXCR2 and its ligands is considered a possible target for the treatment of various tumors, including gastric cancer.
Collapse
Affiliation(s)
- Wenyan Kang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Chengkun Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Minhui Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Meiqi Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Wei Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China.
| | - Yang Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China.
| |
Collapse
|
39
|
Bashraheel SS, Al-Sulaiti H, Goda SK. Generation of Novel Tumour-Selective SEA Superantigen-Based Peptides with Improved Safety and Efficacy for Precision Cancer Immunotherapy. Int J Mol Sci 2024; 25:9423. [PMID: 39273378 PMCID: PMC11395200 DOI: 10.3390/ijms25179423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Bacterial superantigens are T-cell-stimulatory protein molecules which produce massive cytokines and cause human diseases. Due to their ability to activate up to 20% of resting T-cells, they have effectively killed T-cell-dependent tumours in vivo. However, the intrinsic toxicity of whole SAg molecules highlights the urgent need to develop more effective and safer SAg-based immunotherapy. With its unique approach, our study is a significant step towards developing safer tumour-targeted superantigen peptides (TTSP). We identified the T-cell activation function regions on the SEA superantigen and produced variants with minimal lethality, ensuring a safer approach to cancer treatment. This involved the creation of twenty 50-amino-acid-long overlapping peptides covering the full-length SEA superantigen (P1-P20). We then screened these peptides for T-cell activation, successfully isolating two peptides (P5 and P15) with significant T-cell activation. These selected peptides were used to design and synthesise tumour-targeted superantigen peptides, which were linked to a cancer-specific third loop (L3) of transforming growth factor-α (TGF-α), TGFαL3 from either a C' or N' terminal with an eight-amino-acid flexible linker in between. We also produced several P15 variants by changing single amino acids or by amino acid deletions. The novel molecules were then investigated for cytokine production and tumour-targeted killing. The findings from our previous study and the current work open up new avenues for peptide-based immunotherapy, particularly when combined with other immunotherapy techniques, thereby ensuring effective and safer cancer treatment.
Collapse
Affiliation(s)
- Sara S Bashraheel
- College of Medicine, QU Health, Qatar University (QU), Doha P.O. Box 2713, Qatar
| | - Haya Al-Sulaiti
- College of Health and Science, QU Health, Qatar University (QU), Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Sayed K Goda
- College of Science and Technology, University of Derby, Derby DE22 1GB, UK
| |
Collapse
|
40
|
Monteagudo M, Calsina B, Salazar-Hidalgo ME, Martínez-Montes ÁM, Piñeiro-Yáñez E, Caleiras E, Martín MC, Rodríguez-Perales S, Letón R, Gil E, Buffet A, Burnichon N, Fernández-Sanromán Á, Díaz-Talavera A, Mellid S, Arroba E, Reglero C, Martínez-Puente N, Roncador G, Del Olmo MI, Corrales PJP, Oliveira CL, Álvarez-Escolá C, Gutiérrez MC, López-Fernández A, García NP, Regojo RM, Díaz LR, Laorden NR, Guadarrama OS, Bechmann N, Beuschlein F, Canu L, Eisenhofer G, Fassnacht M, Nölting S, Quinkler M, Rapizzi E, Remde H, Timmers HJ, Favier J, Gimenez-Roqueplo AP, Rodriguez-Antona C, Currás-Freixes M, Al-Shahrour F, Cascón A, Leandro-García LJ, Montero-Conde C, Robledo M. MAML3-fusions modulate vascular and immune tumour microenvironment and confer high metastatic risk in pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2024:101931. [PMID: 39218714 DOI: 10.1016/j.beem.2024.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pheochromocytomas and paragangliomas are rare neuroendocrine tumours. Around 20-25 % of patients develop metastases, for which there is an urgent need of prognostic markers and therapeutic stratification strategies. The presence of a MAML3-fusion is associated with increased metastatic risk, but neither the processes underlying disease progression, nor targetable vulnerabilities have been addressed. We have compiled a cohort of 850 patients, which has shown a 3.65 % fusion prevalence and represents the largest MAML3-positive series reported to date. While MAML3-fusions mainly cause single pheochromocytomas, we also observed somatic post-zygotic events, resulting in multiple tumours in the same patient. MAML3-tumours show increased expression of neuroendocrine-to-mesenchymal transition markers, MYC-targets, and angiogenesis-related genes, leading to a distinct tumour microenvironment with unique vascular and immune profiles. Importantly, our findings have identified MAML3-tumours specific vulnerabilities beyond Wnt-pathway dysregulation, such as a rich vascular network, and overexpression of PD-L1 and CD40, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- María Monteagudo
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, Madrid, Spain
| | - Bruna Calsina
- Familial Cancer Clinical Unit, Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Milton E Salazar-Hidalgo
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ángel M Martínez-Montes
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Piñeiro-Yáñez
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Core Unit Biotechnology Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Carmen Martín
- Molecular Citogenetic Unit Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Citogenetic Unit Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rocío Letón
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Gil
- Familial Cancer Clinical Unit, Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alexandre Buffet
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France
| | - Nelly Burnichon
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France
| | - Ángel Fernández-Sanromán
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alberto Díaz-Talavera
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Sara Mellid
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ester Arroba
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Clara Reglero
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Natalia Martínez-Puente
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, Madrid, Spain
| | - Giovanna Roncador
- Monoclonal Antibodies Core Unit Biotechnology Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Isabel Del Olmo
- Department of Endocrinology and Nutrition, University Hospital La Fe, Valencia, Spain
| | | | - Cristina Lamas Oliveira
- Department of Endocrinology and Nutrition Albacete University Hospital, SESCAM, Albacete, Spain
| | | | | | | | | | | | - Luis Robles Díaz
- Department of Oncology, 12 de Octubre University Hospital, Madrid, Spain
| | | | | | - Nicole Bechmann
- Institute for Clinical Chemistry and Laboratory Medicine Faculty of Medicine and University Hospital Carl Gustav Carus Technische Universität Dresden, Dresden Germany, Germany
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV Klinikum der Universität München, Munich, Germany; Klinik für Endokrinologie Diabetologie und Klinische Ernährung UniversitätsSpital Zürich, Zürich, Switzerland; LOOP Zurich - Medical Research Center, Zurich, Switzerland
| | - Letizia Canu
- Department of Experimental and Clinical Medicine University of Florence, Florence, Italy
| | - Graeme Eisenhofer
- Department of Medicine III University Hospital Carl Gustav Carus Technische Universität Dresden, Dresden, Germany
| | - Martin Fassnacht
- Department of Internal Medicine I Division of Endocrinology and Diabetes University Hospital Würzburg University of Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken University of Würzburg, Würzburg, Germany
| | - Svenja Nölting
- Klinik für Endokrinologie Diabetologie und Klinische Ernährung UniversitätsSpital Zürich, Zürich, Switzerland
| | - Marcus Quinkler
- Endocrinology in Charlottenburg Stuttgarter Platz 1, Berlin, Germany
| | - Elena Rapizzi
- Department of Experimental and Clinical Medicine University of Florence, Florence, Italy
| | - Hanna Remde
- Comprehensive Cancer Center Mainfranken University of Würzburg, Würzburg, Germany
| | - Henri J Timmers
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Judith Favier
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France
| | - Cristina Rodriguez-Antona
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Currás-Freixes
- Familial Cancer Clinical Unit, Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Fatima Al-Shahrour
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Luis J Leandro-García
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
41
|
Liu D, Li C, Deng Z, Luo N, Li W, Hu W, Li X, Qiu Z, Chen J, Peng J. Multi-omics analysis reveals the landscape of tumor microenvironments in left-sided and right-sided colon cancer. Front Med (Lausanne) 2024; 11:1403171. [PMID: 39267963 PMCID: PMC11391487 DOI: 10.3389/fmed.2024.1403171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Background Distinct clinical features and molecular characteristics of left-sided colon cancer (LCC) and right-sided colon cancer (RCC) suggest significant variations in their tumor microenvironments (TME). These differences can impact the efficacy of immunotherapy, making it essential to investigate and understand these disparities. Methods We conducted a multi-omics analysis, including bulk RNA sequencing (bulk RNA-seq), single-cell RNA sequencing (scRNA-seq), and whole-exome sequencing (WES), to investigate the constituents and characteristic differences of the tumor microenvironment (TME) in left-sided colon cancer (LCC) and right-sided colon cancer (RCC). Result Deconvolution algorithms revealed significant differences in infiltrated immune cells between left-sided colon cancer (LCC) and right-sided colon cancer (RCC), including dendritic cells, neutrophils, natural killer (NK) cells, CD4 and CD8 T cells, and M1 macrophages (P < 0.05). Notably, whole-exome sequencing (WES) data analysis showed a significantly higher mutation frequency in RCC compared to LCC (82,187/162 versus 18,726/115, P < 0.01). Single-cell analysis identified predominant tumor cell subclusters in RCC characterized by heightened proliferative potential and increased expression of major histocompatibility complex class I molecules. However, the main CD8 + T cell subpopulations in RCC exhibited a highly differentiated state, marked by T cell exhaustion and recent activation, defined as tumor-specific cytotoxic T lymphocytes (CTLs). Immunofluorescence and flow cytometry results confirmed this trend. Additionally, intercellular communication analysis demonstrated a greater quantity and intensity of interactions between tumor-specific CTLs and tumor cells in RCC. Conclusion RCC patients with an abundance of tumor-specific cytotoxic T lymphocytes (CTLs) and increased immunogenicity of tumor cells in the TME may be better candidates for immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Dongfang Liu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chen Li
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zenghua Deng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Nan Luo
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenxia Li
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenzhe Hu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiang Li
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zichao Qiu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jianfei Chen
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Ninth School of Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
42
|
Feng T, Li Q, Zhu R, Yu C, Xu L, Ying L, Wang C, Xu W, Wang J, Zhu J, Huang M, Xu C, Jin J, Zhang X, Lu T, Yang Y, Zhu C, Chen Q, Su D. Tumor microenvironment biomarkers predicting pathological response to neoadjuvant chemoimmunotherapy in locally advanced esophageal squamous cell carcinoma: post-hoc analysis of a single center, phase 2 study. J Immunother Cancer 2024; 12:e008942. [PMID: 39209452 PMCID: PMC11367339 DOI: 10.1136/jitc-2024-008942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Neoadjuvant chemoimmunotherapy has a promising effect on locally advanced esophageal squamous cell carcinoma (ESCC). However, reliable biomarkers robustly predicting therapeutic response are still lacking. METHODS Formalin-fixed and paraffin-embedded pre-neoadjuvant chemoimmunotherapy biopsy samples from locally advanced ESCC patients were collected. Cohort 1 composed of 66 locally advanced ESCC patients from a prospective clinical trial (NCT04506138) received two cycles of camrelizumab in combination with nab-paclitaxel and carboplatin every 3 weeks. Cohort 2 included 48 patients receiving various types of immune checkpoint inhibitors with (nab-)paclitaxel and platinum-based chemotherapy as neoadjuvant therapy. Cohort 3 consisted of 27 ESCC patients receiving neoadjuvant treatment of toripalimab with chemotherapy and was used as the external validation dataset. Targeted RNA sequencing, immunohistochemistry for programmed death ligand 1 (PD-L1), and multiplex immunofluorescence (mIF) imaging were performed. RESULTS Integration of targeted RNA sequencing, PD-L1 immunohistochemistry, and mIF revealed a significant immune-suppressive microenvironment with higher neutrophil infiltration, enriched TGF-β, and cell cycle pathways in non-pathological complete response (non-pCR) patients. NK, activated CD4+ T cell infiltration, interferon-gamma, antigen processing and presentation, and other immune response signatures were significantly associated with pCR. Based on discovered tumor microenvironmental characteristics and their closely related genes were screened. Consequently, a seven-gene neoadjuvant chemoimmunotherapy risk prediction signature (NCIRPs) model, was constructed. In addition to cohort 1, this model alone or with PD-L1-combined positive score (CPS) demonstrated a higher prediction accuracy of pathological response than PD-L1 CPS or other routinely used immune signatures, such as IFN-γ, in cohorts 2 and 3. Neither prognostic association nor correlation with response to chemoradiotherapy was observed in The Cancer Genome Atlas Program ESCC dataset or in ESCC patients in the neoadjuvant chemoradiotherapy cohort (cohort 4). CONCLUSION The NCIRPs model that was developed and validated using treatment-naïve endoscopic samples from the largest ESCC neoadjuvant chemoimmunotherapy dataset represents a robust and clinically meaningful approach to select a putative responder for neoadjuvant chemoimmunotherapy in locally advanced ESCC patients.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Qian Li
- Medical Department, Amoy Diagnostics Co Ltd, Xiamen, Fujian, China
| | - Rui Zhu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Chang Yu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Liwei Xu
- Department of Pulmonary Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lisha Ying
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Canming Wang
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Weiming Xu
- Department of Pathology, Taizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Jinchao Wang
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Jing Zhu
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Minran Huang
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Chenyang Xu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Jiaoyue Jin
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Xiaotian Zhang
- Medical Department, Amoy Diagnostics Co Ltd, Xiamen, Fujian, China
| | - Tingting Lu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ying Yang
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Changbin Zhu
- Medical Department, Amoy Diagnostics Co Ltd, Xiamen, Fujian, China
| | - Qixun Chen
- Department of Pulmonary Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
43
|
Tanaka A, Ogawa M, Zhou Y, Otani Y, Hendrickson RC, Miele MM, Li Z, Klimstra DS, Wang JY, Roehrl MH. Proteogenomic characterization of pancreatic neuroendocrine tumors uncovers hypoxia and immune signatures in clinically aggressive subtypes. iScience 2024; 27:110544. [PMID: 39206147 PMCID: PMC11350455 DOI: 10.1016/j.isci.2024.110544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) represent well-differentiated endocrine neoplasms with variable clinical outcomes. Predicting patient outcomes using the current tumor grading system is challenging. In addition, traditional systemic treatment options for PanNETs, such as somatostatin analogs or cytotoxic chemotherapies, are very limited. To address these issues, we characterized PanNETs using integrated proteogenomics and identified four subtypes. Two proteomic subtypes showed high recurrence rates, suggesting clinical aggressiveness that was missed by current classification. Hypoxia and inflammatory pathways were significantly enriched in the clinically aggressive subtypes. Detailed analyses revealed metabolic adaptation via glycolysis upregulation and oxidative phosphorylation downregulation under hypoxic conditions. Inflammatory signature analysis revealed that immunosuppressive molecules were enriched in immune hot tumors and might be immunotherapy targets. In this study, we characterized clinically aggressive proteomic subtypes of well-differentiated PanNETs and identified candidate therapeutic targets.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Makiko Ogawa
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yihua Zhou
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- ICU Department, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yusuke Otani
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ronald C. Hendrickson
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew M. Miele
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhuoning Li
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David S. Klimstra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Michael H. Roehrl
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
44
|
Wei Y, Weng X, Wang Y, Yang W. Stimuli-Responsive Polymersomes: Reshaping the Immunosuppressive Tumor Microenvironment. Biomacromolecules 2024; 25:4663-4676. [PMID: 39054960 DOI: 10.1021/acs.biomac.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The progression of cancer involves mutations in normal cells, leading to uncontrolled division and tissue destruction, highlighting the complexity of tumor microenvironments (TMEs). Immunotherapy has emerged as a transformative approach, yet the balance between efficacy and safety remains a challenge. Nanoparticles such as polymersomes offer the possibility to precisely target tumors, deliver drugs in a controlled way, effectively modulate the antitumor immunity, and notably reduce side effects. Herein, stimuli-responsive polymersomes, with capabilities for carrying multiple therapeutics, are highlighted for their potential in enhancing antitumor immunity through mechanisms like inducing immunogenic cell death and activating STING (stimulator of interferon genes), etc. The recent progress of utilizing stimuli-responsive polymersomes to reshape the TME is reviewed here. The advantages and limitations to applied stimuli-responsive polymersomes are outlined. Additionally, challenges and future prospects in leveraging polymersomes for cancer therapy are discussed, emphasizing the need for future research and clinical translation.
Collapse
Affiliation(s)
- Yaohua Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiao Weng
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Yayun Wang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| |
Collapse
|
45
|
Feng HR, Shen XN, Zhu XM, Zhong WT, Zhu DX, Zhao J, Chen YJ, Shen F, Liu K, Liang L. Unveiling major histocompatibility complex-mediated pan-cancer immune features by integrated single-cell and bulk RNA sequencing. Cancer Lett 2024; 597:217062. [PMID: 38878852 DOI: 10.1016/j.canlet.2024.217062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/22/2024] [Accepted: 06/08/2024] [Indexed: 06/25/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have transformed cancer therapy, yet persistent challenges such as low response rate and significant heterogeneity necessitate attention. The pivotal role of the major histocompatibility complex (MHC) in ICI efficacy, its intricate impacts and potentials as a prognostic marker, warrants comprehensive exploration. This study integrates single-cell RNA sequencing (scRNA-seq), bulk RNA-seq, and spatial transcriptomic analyses to unveil pan-cancer immune characteristics governed by the MHC transcriptional feature (MHC.sig). Developed through scRNA-seq analysis of 663,760 cells across diverse cohorts and validated in 30 solid cancer types, the MHC.sig demonstrates a robust correlation between immune-related genes and infiltrating immune cells, highlighting its potential as a universal pan-cancer marker for anti-tumor immunity. Screening the MHC.sig for therapeutic targets using CRISPR data identifies potential genes for immune therapy synergy and validates its predictive efficacy for ICIs responsiveness across diverse datasets and cancer types. Finally, analysis of cellular communication patterns reveals interactions between C1QC+macrophages and malignant cells, providing insights into potential therapeutic agents and their sensitivity characteristics. This comprehensive analysis positions the MHC.sig as a promising marker for predicting immune therapy outcomes and guiding combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Hao-Ran Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Xiao-Nan Shen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Xiao-Ming Zhu
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200082, People's Republic of China
| | - Wen-Tao Zhong
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, People's Republic of China
| | - De-Xiang Zhu
- Department of Colorectal Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ji Zhao
- Department of Breast Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People's Republic of China
| | - Yan-Jie Chen
- Department of Gastroenterology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, People's Republic of China; Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Feng Shen
- Department of Medical Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, People's Republic of China.
| | - Kun Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Li Liang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
46
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
47
|
Jing C, Bai Z, Tong K, Yang X, Liu K, Wu H, Zhu J, Guo W, Zhang Z, Deng W. Efficacy and safety of camrelizumab, apatinib, and capecitabine combination therapy in advanced biliary tract cancer: a phase 2, nonrandomized, prospective study. Oncologist 2024:oyae154. [PMID: 39102756 DOI: 10.1093/oncolo/oyae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/22/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Biliary tract cancer (BTC) is a highly malignant tumor, with limited therapy regimens and short response duration. In this study, we aim to assess the efficacy and safety of the combination of camrelizumab, apatinib, and capecitabine as the first- or second-line treatment in patients with advanced BTC. METHODS In this phase 2, nonrandomized, prospective study, eligible patients received camrelizumab (200 mg, d1, Q3W), apatinib (250 mg, qd, d1-d21, Q3W), and capecitabine (1000 mg/m², bid, d1-d14, Q3W) until trial discontinued. The primary endpoint was the objective response rate (ORR). The secondary endpoints were disease control rate, progression-free survival (PFS), overall survival (OS), and safety. RESULTS From July 2019 to April 2023, we enrolled a total of 28 patients, of whom 14 patients were in the first-line treatment setting and 14 patients were in the second-line setting. At the data cutoff (April 30, 2023), the median follow-up duration was 18.03 months. Eight of 28 patients reached objective response (ORR: 28.57%), with an ORR of 50% and 7.1% for first-line and second-line treatment patients (P = .033). The median PFS was 6.30 months and the median OS was 12.80 months. Grade 3 or 4 adverse events (AEs) occurred in 9 (32.14%) patients, including elevated transaminase, thrombocytopenia, etc. No serious treatment-related AEs or treatment-related deaths occurred. CONCLUSIONS In this trial, the combination of camrelizumab, apatinib, and capecitabine showed promising antitumor activity and manageable toxicity in patients with advanced BTC, especially in the first-line setting. CLINICAL TRIAL REGISTRATION NCT04720131.
Collapse
Affiliation(s)
- Chao Jing
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- National Clinical Research Center for Digestive Diseases, Beijing, People's Republic of China
| | - Kuinan Tong
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaobao Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Kun Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hongwei Wu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jiegao Zhu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wei Guo
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- National Clinical Research Center for Digestive Diseases, Beijing, People's Republic of China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- National Clinical Research Center for Digestive Diseases, Beijing, People's Republic of China
| | - Wei Deng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- National Clinical Research Center for Digestive Diseases, Beijing, People's Republic of China
| |
Collapse
|
48
|
Dong Y, Luo J, Pei M, Liu S, Gao Y, Zhou H, Nueraihemaiti Y, Zhan X, Xie T, Yao X, Guan X, Xu Y. Biomimetic Hydrogel-Mediated Mechano-Immunometabolic Therapy for Inhibition of ccRCC Recurrence After Surgery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308734. [PMID: 38884220 PMCID: PMC11321661 DOI: 10.1002/advs.202308734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/18/2024] [Indexed: 06/18/2024]
Abstract
The unique physical tumor microenvironment (TME) and aberrant immune metabolic status are two obstacles that must be overcome in cancer immunotherapy to improve clinical outcomes. Here, an in situ mechano-immunometabolic therapy involving the injection of a biomimetic hydrogel is presented with sequential release of the anti-fibrotic agent pirfenidone, which softens the stiff extracellular matrix, and small interfering RNA IDO1, which disrupts kynurenine-mediated immunosuppressive metabolic pathways, together with the multi-kinase inhibitor sorafenib, which induces immunogenic cell death. This combination synergistically augmented tumor immunogenicity and induced anti-tumor immunity. In mouse models of clear cell renal cell carcinoma, a single-dose peritumoral injection of a biomimetic hydrogel facilitated the perioperative TME toward a more immunostimulatory landscape, which prevented tumor relapse post-surgery and prolonged mouse survival. Additionally, the systemic anti-tumor surveillance effect induced by local treatment decreased lung metastasis by inhibiting epithelial-mesenchymal transition conversion. The versatile localized mechano-immunometabolic therapy can serve as a universal strategy for conferring efficient tumoricidal immunity in "cold" tumor postoperative interventions.
Collapse
Affiliation(s)
- Yunze Dong
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Jun Luo
- Department of UrologyShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434P. R. China
| | - Mingliang Pei
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Shuai Liu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Yuchen Gao
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Hongmin Zhou
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Yimingniyizi Nueraihemaiti
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Xiangcheng Zhan
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Tiancheng Xie
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Xudong Yao
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Xin Guan
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yunfei Xu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| |
Collapse
|
49
|
Park R, Yu J, Shahzad M, Lee S, Ji JD. The immune regulatory function of B7-H3 in malignancy: spotlight on the IFN-STAT1 axis and regulation of tumor-associated macrophages. Immunol Res 2024; 72:526-537. [PMID: 38265550 DOI: 10.1007/s12026-024-09458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
B7-H3 is a member of the B7 superfamily and a putative inhibitory immune checkpoint molecule. Several early-phase clinical trials have reported promising anti-tumor activity and safety of anti-cancer drugs targeting B7-H3, suggesting that it may be a promising target for a potential next-generation immune checkpoint inhibitor. Despite ongoing clinical studies, most B7-H3-targeted drugs being currently investigated rely on direct cytotoxicity as their mechanisms of action rather than modulating its function as an immune checkpoint, at least in part due to its incompletely understood immune regulatory function. Recent studies have begun to elucidate the role of B7-H3 in regulating the tumor microenvironment (TME). Emerging evidence suggests that B7-H3 may regulate the interferon-STAT1 axis in the TME and promote immune suppression. Similarly, increasing evidence shows B7-H3 may be implicated in promoting M1 to M2 polarization of tumor-associated macrophages (TAMs). There is also accumulating evidence suggesting that B7-H3 may play a role in the heterotypic fusion of cancer stem cells and macrophages, thereby promoting tumor invasion and metastasis. Here, we review the recent advances in the understanding of B7-H3 cancer immunobiology with a focus on highlighting its potential role in the interferon priming of TAMs and the heterotypic fusion of TAMs with cancer stem cells and suggest future direction in elucidating its immune checkpoint function.
Collapse
Affiliation(s)
- Robin Park
- Department of Hematology/Oncology, Moffitt Cancer Center/University of South Florida, Tampa, FL, USA
| | - James Yu
- Department of Hematology/Oncology, Moffitt Cancer Center/University of South Florida, Tampa, FL, USA
| | - Moazzam Shahzad
- Department of Hematology/Oncology, Moffitt Cancer Center/University of South Florida, Tampa, FL, USA
| | - Sunggon Lee
- Department of Internal Medicine, Korea University, Seoul, South Korea
| | - Jong Dae Ji
- Department of Rheumatology, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
50
|
Polak R, Zhang ET, Kuo CJ. Cancer organoids 2.0: modelling the complexity of the tumour immune microenvironment. Nat Rev Cancer 2024; 24:523-539. [PMID: 38977835 DOI: 10.1038/s41568-024-00706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 07/10/2024]
Abstract
The development of neoplasia involves a complex and continuous interplay between malignantly transformed cells and the tumour microenvironment (TME). Cancer immunotherapies targeting the immune TME have been increasingly validated in clinical trials but response rates vary substantially between tumour histologies and are often transient, idiosyncratic and confounded by resistance. Faithful experimental models of the patient-specific tumour immune microenvironment, capable of recapitulating tumour biology and immunotherapy effects, would greatly improve patient selection, target identification and definition of resistance mechanisms for immuno-oncology therapeutics. In this Review, we discuss currently available and rapidly evolving 3D tumour organoid models that capture important immune features of the TME. We highlight diverse opportunities for organoid-based investigations of tumour immunity, drug development and precision medicine.
Collapse
Affiliation(s)
- Roel Polak
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elisa T Zhang
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|