1
|
Colón-Mercado JM, Torrado-Tapias AI, Salgado IK, Santiago JM, Rivera SEO, Bracho-Rincon DP, Rivera LHP, Miranda JD. The sexually dimorphic expression of glutamate transporters and their implication in pain after spinal cord injury. Neural Regen Res 2025; 20:3317-3329. [PMID: 39314150 PMCID: PMC11881711 DOI: 10.4103/nrr.nrr-d-24-00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00033/figure1/v/2024-12-20T164640Z/r/image-tiff In addition to the loss of motor function, ~ 60% of patients develop pain after spinal cord injury. The cellular-molecular mechanisms are not well understood, but the data suggests that plasticity within the rostral, epicenter, and caudal penumbra of the injury site initiates a cellular-molecular interplay that acts as a rewiring mechanism leading to central neuropathic pain. Sprouting can lead to the formation of new connections triggering abnormal sensory transmission. The excitatory glutamate transporters are responsible for the reuptake of extracellular glutamate which makes them a critical target to prevent neuronal hyperexcitability and excitotoxicity. Our previous studies showed a sexually dimorphic therapeutic window for spinal cord injury after treatment with the selective estrogen receptor modulator tamoxifen. In this study, we investigated the anti-allodynic effects of tamoxifen in male and female rats with spinal cord injury. We hypothesized that tamoxifen exerts anti-allodynic effects by increasing the expression of glutamate transporters, leading to reduced hyperexcitability of the secondary neuron or by decreasing aberrant sprouting. Male and female rats received a moderate contusion to the thoracic spinal cord followed by subcutaneous slow-release treatment of tamoxifen or matrix pellets as a control (placebo). We used von Frey monofilaments and the "up-down method" to evaluate mechanical allodynia. Tamoxifen treatment decreased allodynia only in female rats with spinal cord injury revealing a sex-dependent effect. The expression profile of glutamatergic transporters (excitatory amino acid transporter 1/glutamate aspartate transporter and excitatory amino acid transporter 2/glutamate transporter-1) revealed a sexual dimorphism in the rostral, epicenter, and caudal areas of the spinal cord with a pattern of expression primarily on astrocytes. Female rodents showed a significantly higher level of excitatory amino acid transporter-1 expression while male rodents showed increased excitatory amino acid transporter-2 expression compared with female rodents. Analyses of peptidergic (calcitonin gene-related peptide-α) and non-peptidergic (isolectin B4) fibers outgrowth in the dorsal horn after spinal cord injury showed an increased calcitonin gene-related peptide-α/ isolectin B4 ratio in comparison with sham, suggesting increased receptive fields in the dorsal horn. Although the behavioral assay shows decreased allodynia in tamoxifen-treated female rats, this was not associated with overexpression of glutamate transporters or alterations in the dorsal horn laminae fibers at 28 days post-injury. Our findings provide new evidence of the sexually dimorphic expression of glutamate transporters in the spinal cord. The dimorphic expression revealed in this study provides a therapeutic opportunity for treating chronic pain, an area with a critical need for treatment.
Collapse
Affiliation(s)
| | | | - Iris K. Salgado
- Universidad Central del Caribe, School of Medicine, Bayamón, PR, USA
| | | | - Samuel E. Ocasio Rivera
- Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | | | - Luis H. Pagan Rivera
- Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Jorge D. Miranda
- Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| |
Collapse
|
2
|
Tinazzi M, Gandolfi M, Artusi CA, Bannister K, Rukavina K, Brefel-Courbon C, de Andrade DC, Perez-Lloret S, Mylius V. Advances in diagnosis, classification, and management of pain in Parkinson's disease. Lancet Neurol 2025; 24:331-347. [PMID: 40120617 DOI: 10.1016/s1474-4422(25)00033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 03/25/2025]
Abstract
With over 10 million people affected worldwide, Parkinson's disease is the fastest-growing neurological disorder. More than two-thirds of people with Parkinson's disease live with chronic pain, which can manifest in various stages of the disease, substantially affecting daily activities and quality of life. The Parkinson's disease Pain Classification System overcomes the limitations of previous classification systems by distinguishing between pain related to Parkinson's disease and unrelated pain, while also incorporating clinical and pathophysiological (mechanistic) descriptors such as nociceptive, neuropathic, and nociplastic pain. This system provides a framework for accurate diagnosis and mechanism-based therapy. Alongside the appropriate classification of pain, consideration of treatment approaches that include non-invasive (pharmacological and non-pharmacological) and invasive strategies tailored to specific types of pain will refine and inform research trials and clinical practice when it comes to treating pain in Parkinson's disease.
Collapse
Affiliation(s)
- Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marialuisa Gandolfi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Carlo Alberto Artusi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy; SC Neurology 2U, AOU Città della Salute e della Scienza, Turin, Italy
| | - Kirsty Bannister
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Katarina Rukavina
- Movement Disorders Hospital Beelitz, Beelitz, Germany; European Academy of Neurology, Vienna, Austria
| | - Christine Brefel-Courbon
- Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Centre, Centre d'Investigation Clinique CIC1436, University Hospital of Toulouse, Toulouse, France; NeuroToul COEN Centre, NS-PARK/FCRIN Network, Toulouse, France; Toulouse Neuroimaging Centre (TONIC), UMR1214 INSERM/UT3, Toulouse, France
| | - Daniel Ciampi de Andrade
- Department of Health Science and Technology, Center for Neuroplasticity and Pain, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Santiago Perez-Lloret
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Centro de Investigación en Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Veit Mylius
- Center for Neurorehabilitation, Valens, Switzerland; Department of Neurology, Kantonsspital, Graubünden, Switzerland; Department of Neurology, Philipps University, Marburg, Germany
| |
Collapse
|
3
|
Yang S, Tan H. Role of 18F-FDG PET/CT in assessing systemic involvement in ANCA-associated vasculitis. Clin Exp Med 2025; 25:90. [PMID: 40111549 PMCID: PMC11925965 DOI: 10.1007/s10238-024-01549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/23/2024] [Indexed: 03/22/2025]
Abstract
The utilization of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) has become a pivotal tool in diagnosing anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis, especially when the disease presents with neurological symptoms as the initial indicator. This advanced imaging technique was applied in a 68-year-old female patient who presented with recurrent limb weakness and intermittent blindness, symptoms that warranted thorough investigation due to their complexity and severity. The 18F-FDG PET/CT revealed significant radiotracer uptake in the kidneys, spleen, skeletal muscles, and right axillary lymph nodes, indicative of systemic involvement-a hallmark of ANCA-associated vasculitis (AAV) that can lead to multi-organ damage if not promptly managed. Complementary electromyography (EMG) identified multiple instances of peripheral nerve damage, adding further evidence to the diagnosis. This case underscores the intricate interplay between clinical symptoms, imaging findings, and laboratory results, all crucial in accurately diagnosing AAV. The findings highlight that 18F-FDG PET/CT not only facilitates early detection of neurogenic skeletal muscle damage and occult lesions, but also aids in precise disease classification, essential for guiding treatment strategies. The ability of this imaging modality to provide early warnings of major organ involvement offers clinicians a valuable opportunity to intervene before irreversible damage occurs, ultimately improving the accuracy of diagnosis and contributing to more effective management and outcomes for patients with this complex autoimmune disorder.
Collapse
Affiliation(s)
- Song Yang
- Department of Radiology, Shanghai Kaiyuan Orthopedic Hospital, Shanghai, 200129, China.
| | - Haibo Tan
- PET Center, Huashan Hospital, Fudan University, No. 518, Wuzhong East Road, Xuhui District, Shanghai, 200235, China.
| |
Collapse
|
4
|
Zhou J, Yao X, Zhao J, Li J. A neuropathic pain scale is effective in identifying neuropathic pain. Am J Transl Res 2025; 17:2094-2102. [PMID: 40226007 PMCID: PMC11982898 DOI: 10.62347/bxrb6015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/08/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE To explore the application value of a Neuropathic Pain Questionnaire (NPQ) in screening for neuropathic pain (NP). METHODS Using a prospective study approach, patients with chronic pain treated and hospitalized in Quanzhou First Hospital between September 2020 and December 2023 were chosen as study subjects. Participants were screened using NPQ and then divided into a neuropathic pain group (NP group) and a non-neuropathic pain group (NNP group) based on NPQ's results. The baseline demographic data and disease causes were evaluated using Cronbach's alpha coefficient and Guttman split-half coefficient to assess internal consistency. A receiver operating characteristic (ROC) curve was plotted, and the area under curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were assessed. RESULTS A total of of 121 patients were included, with 61 cases in the NP group and 60 cases in NNP group. There were no substantial differences between the NP group and the NNP group in terms of age, gender, education level, payment method of medical treatment, pain duration, average pain duration, or level of pain (all P > 0.05). The NP group had a substantially higher NPQ score (8.67±1.21) than the NNP group (6.31±1.34) (P < 0.05). The primary causes of NP in the NP group were postherpetic neuralgia (26.23%), diabetic neuropathy (21.31%), and central post-stroke pain (18.03%). The NPQ demonstrated strong reliability, with a Cronbach's alpha coefficient of 0.843 and a Guttman split-half coefficient of 0.822. The ROC analysis showed an AUC of 0.907 (95% CI, 0.853-0.961), with a sensitivity of 86.90%, specificity of 78.30%, PPV of 80.30%, and NPV of 85.45%. CONCLUSION NPQ is a reliable and effective tool for identifying neuropathic pain. Its high sensitivity and specificity, coupled with strong diagnostic performance, suggest that it can be used as a screening tool for neuropathic pain.
Collapse
Affiliation(s)
- Jianying Zhou
- Department of Pain, Quanzhou First Hospital, Fujian (Quanzhou First Hospital Affiliated to Fujian Medical University)Quanzhou 362000, Fujian, China
| | - Xihu Yao
- Department of Pathology, Quanzhou First Hospital, Fujian (Quanzhou First Hospital Affiliated to Fujian Medical University)Quanzhou 362000, Fujian, China
| | - Jie Zhao
- Department of Pain, Quanzhou First Hospital, Fujian (Quanzhou First Hospital Affiliated to Fujian Medical University)Quanzhou 362000, Fujian, China
| | - Jinhuang Li
- Department of Pain, Quanzhou First Hospital, Fujian (Quanzhou First Hospital Affiliated to Fujian Medical University)Quanzhou 362000, Fujian, China
| |
Collapse
|
5
|
Asseyer S, Panagoulas E, Maidhof J, Villringer K, Al E, Chen X, Krause T, Hardikar S, Villringer A, Jungehülsing GJ. Prediction of Central Post-Stroke Pain by Quantitative Sensory Testing. Ann Neurol 2025; 97:507-520. [PMID: 39727056 PMCID: PMC11831871 DOI: 10.1002/ana.27138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Among patients with acute stroke, we aimed to identify those who will later develop central post-stroke pain (CPSP) versus those who will not (non-pain sensory stroke [NPSS]) by assessing potential differences in somatosensory profile patterns and evaluating their potential as predictors of CPSP. METHODS In a prospective longitudinal study on 75 acute stroke patients with somatosensory symptoms, we performed quantitative somatosensory testing (QST) in the acute/subacute phase (within 10 days) and on follow-up visits for 12 months. Based on previous QST studies, we hypothesized that QST values of cold detection threshold (CDT) and dynamic mechanical allodynia (DMA) would differ between CPSP and NPSS patients before the onset of pain. Mann-Whitney U-tests and mixed analysis of variances with Bonferroni corrections were performed to compare z-normalized QST scores between both groups. RESULTS In total, 26 patients (34.7%) developed CPSP. In the acute phase, CPSP patients showed contralesional cold hypoesthesia compared to NPSS patients (p = 0.04), but no DMA differences. Additional exploratory analysis showed NPSS patients exhibit cold hyperalgesia on the contralesional side compared to the ipsilesional side, not seen in CPSP patients (p = 0.011). A gradient-boosting approach to predicting CPSP from QST patterns before pain onset had an overall accuracy of 84.6%, with a recall and precision of 75%. Notably, both in the acute and the chronic phase, approximately 80% of CPSP and NPSS patients showed bilateral QST abnormalities. INTERPRETATION Cold perception differences between CPSP and NPSS patients appear early post stroke before pain onset. Prediction of CPSP through QST patterns seems feasible. ANN NEUROL 2025;97:507-520.
Collapse
Affiliation(s)
- Susanna Asseyer
- Experimental and Clinical Research CentreMax Delbrück Center Berlin and Charité‐Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
- Department of NeurologyCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Eleni Panagoulas
- BCAN Berlin Centre for Advanced NeuroimagingCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain FunctionLeipzigGermany
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
| | - Jana Maidhof
- Department of General SurgeryDRK–Clinic Berlin KöpenickBerlinGermany
| | - Kersten Villringer
- Centre for Stroke Research BerlinCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Esra Al
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain FunctionLeipzigGermany
- Department of PsychiatryColumbia UniversityNew YorkNY
- Division of Systems NeuroscienceNew York State Psychiatric InstituteNew YorkNY
| | - Xiuhui Chen
- Department of NeurologyCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain FunctionLeipzigGermany
| | - Thomas Krause
- Department of NeurologyJewish Hospital BerlinBerlinGermany
| | - Samyogita Hardikar
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain FunctionLeipzigGermany
- Department of NeurologyMax Planck School of CognitionLeipzigGermany
| | - Arno Villringer
- BCAN Berlin Centre for Advanced NeuroimagingCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain FunctionLeipzigGermany
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
- Centre for Stroke Research BerlinCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Department of NeurologyMax Planck School of CognitionLeipzigGermany
| | | |
Collapse
|
6
|
Li S, Zhang J, Li J, Hu Y, Zhang M, Wang H. Optogenetics and chemogenetics: key tools for modulating neural circuits in rodent models of depression. Front Neural Circuits 2025; 19:1516839. [PMID: 40070557 PMCID: PMC11893610 DOI: 10.3389/fncir.2025.1516839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Optogenetics and chemogenetics are emerging neuromodulation techniques that have attracted significant attention in recent years. These techniques enable the precise control of specific neuronal types and neural circuits, allowing researchers to investigate the cellular mechanisms underlying depression. The advancement in these techniques has significantly contributed to the understanding of the neural circuits involved in depression; when combined with other emerging technologies, they provide novel therapeutic targets and diagnostic tools for the clinical treatment of depression. Additionally, these techniques have provided theoretical support for the development of novel antidepressants. This review primarily focuses on the application of optogenetics and chemogenetics in several brain regions closely associated with depressive-like behaviors in rodent models, such as the ventral tegmental area, nucleus accumbens, prefrontal cortex, hippocampus, dorsal raphe nucleus, and lateral habenula and discusses the potential and challenges of optogenetics and chemogenetics in future research. Furthermore, this review discusses the potential and challenges these techniques pose for future research and describes the current state of research on sonogenetics and odourgenetics developed based on optogenetics and chemogenetics. Specifically, this study aimed to provide reliable insights and directions for future research on the role of optogenetics and chemogenetics in the neural circuits of depressive rodent models.
Collapse
Affiliation(s)
- Shaowei Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianying Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiehui Li
- Shengli Oilfield Central Hospital, Dongying Rehabilitation Hospital, Dongying, China
| | - Yajie Hu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingkuan Zhang
- College of Medical and Healthcare, Linyi Vocational College, Linyi, China
| | - Haijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Lin CHJ, Hsueh HW, Chiang MC, Hsieh ST, Chao CC. Cortical reorganization in neuropathic pain due to peripheral nerve degeneration: altered cortical surface morphometry and hierarchical topography. Pain 2025:00006396-990000000-00828. [PMID: 39968916 DOI: 10.1097/j.pain.0000000000003557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
ABSTRACT Degeneration of peripheral nerves causes neuropathic pain. Previous studies have documented structural and functional brain alterations in peripheral neuropathy, which may be attributed to maladaptive plasticity following chronic neuropathic pain. Nevertheless, the effects of peripheral neuropathic pain on the macroscale organization of the cerebral cortex have not been explored. This study investigated altered surface morphology and topographic hierarchy of the cerebral cortex in patients with neuropathic pain due to peripheral neuropathy. T1-weighted magnetic resonance imaging data were acquired from 52 patients with peripheral neuropathic pain and 50 age- and sex-matched healthy controls. Cortical morphometric features including thickness and gyrification index were obtained using surface-based morphometry. A topographic gradient encoding interregional similarity in cortical thickness was extracted using a machine-learning technique named diffusion map embedding. Compared with controls, patients with neuropathic pain exhibited cortical thinning in the frontal and sensorimotor cortices, with the severity increasing with greater neuropathic pain. The patients also showed decreased gyrification in the insula, with a greater reduction in gyrification linked to more severe skin nerve degeneration. Moreover, the patients exhibited altered topographic organization of the cerebral cortex, where the direction of the topographic gradient deviated from the occipital-to-frontal axis observed in the controls in this study and reported in the literature. Our findings provided a novel perspective for macroscale cortical structural reorganization after neuropathic pain, showing thinning and gyral flattening in pain-related areas and deviation from the normal topographic axis of the cerebral cortex.
Collapse
Affiliation(s)
- Chien-Ho Janice Lin
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsueh-Wen Hsueh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
- Center of Precision Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Fontaine D, Leplus A, Donnet A, Darmon N, Balossier A, Giordana B, Simonet B, Isan P, Regis J, Lanteri-Minet M. Safety and feasibility of deep brain stimulation of the anterior cingulate and thalamus in chronic refractory neuropathic pain: a pilot and randomized study. J Headache Pain 2025; 26:35. [PMID: 39962366 PMCID: PMC11834684 DOI: 10.1186/s10194-025-01967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Deep Brain Stimulation (DBS) of the anterior cingulum has been recently proposed to treat refractory chronic pain but its safety and its efficacy have not been evaluated in controlled conditions. Our objective was to evaluate the respective feasibility and safety of sensory thalamus (Thal-DBS) combined with anterior cingulate (ACC-DBS) DBS in patients suffering from chronic neuropathic pain. METHODS We conducted a bicentric study (clinicaltrials.gov NCT03399942) in patients suffering from medically-refractory chronic unilateral neuropathic pain surgically implanted with both unilateral Thal-DBS and bilateral ACC-DBS, to evaluate successively: Thal-DBS only; combined Thal-DBS and ACC-DBS; ACC-DBS "on" and "off" stimulation periods in randomized cross-over double-blinded conditions; and a 1-year open phase. Safety and efficacy were evaluated by repeated neurological examination, psychiatric assessment, comprehensive assessment of cognitive and affective functioning. Changes on pain intensity (Visual Analogic Scale) and quality of life (EQ-5D scale) were used to evaluate DBS efficacy. RESULTS All the patients (2 women, 6 men, mean age 52,1) completed the study. Adverse events were: epileptic seizure (2), transient motor or attention (2), persistent gait disturbances (1), sleep disturbances (1). No patient displayed significant cognitive or affective change. Compared to baseline, the quality of life (EQ-5D utility score) was significantly improved during the ACC-DBS "On" stimulation period (p = 0,039) and at the end of the study (p = 0,034). CONCLUSION This pilot study confirmed the safety of anterior cingulate DBS alone or in combination with thalamic stimulation and suggested that it might improve quality of life of patients with chronic refractory neuropathic pain. TRIAL REGISTRATION The study has been registered on 20,180,117 (clinicaltrials.gov NCT03399942).
Collapse
Affiliation(s)
- Denys Fontaine
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France.
- Université Côte d'Azur, UR2CA, Nice, France.
- FHU INOVPAIN, CHU de Nice, Nice, France.
| | - Aurélie Leplus
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France
- Université Côte d'Azur, UR2CA, Nice, France
- FHU INOVPAIN, CHU de Nice, Nice, France
| | - Anne Donnet
- FHU INOVPAIN, CHU de Nice, Nice, France
- Pain Clinic, Hopital La Timone, APHM, Marseille, France
- INSERM U1107 Migraine and Trigeminal Pain, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Nelly Darmon
- Université Côte d'Azur, UR2CA, Nice, France
- Department of Psychiatry, Université Côte d'Azur, CHU de Nice, Nice, France
| | - Anne Balossier
- INSERM (INS) UMR1106, Department of Functional Neurosurgery & Radiosurgery, Aix Marseille University, Marseille, France
| | - Bruno Giordana
- Université Côte d'Azur, UR2CA, Nice, France
- Department of Psychiatry, Université Côte d'Azur, CHU de Nice, Nice, France
| | - Benoit Simonet
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France
- Université Côte d'Azur, UR2CA, Nice, France
- FHU INOVPAIN, CHU de Nice, Nice, France
| | - Petru Isan
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France
- Université Côte d'Azur, UR2CA, Nice, France
- FHU INOVPAIN, CHU de Nice, Nice, France
| | - Jean Regis
- INSERM (INS) UMR1106, Department of Functional Neurosurgery & Radiosurgery, Aix Marseille University, Marseille, France
| | - Michel Lanteri-Minet
- Université Côte d'Azur, UR2CA, Nice, France
- FHU INOVPAIN, CHU de Nice, Nice, France
- INSERM U1107 Migraine and Trigeminal Pain, Université Clermont-Auvergne, Clermont-Ferrand, France
- Université Côte d'Azur, CHU de Nice, Pain Clinic, Nice, France
| |
Collapse
|
9
|
Deolindo CS, Ehmsen JF, Courtin AS, Mitchell AG, Kraenge CE, Nikolova N, Allen MG, Fardo F. Assessing individual sensitivity to the Thermal Grill Illusion: A two-dimensional adaptive psychophysical approach. THE JOURNAL OF PAIN 2025; 27:104732. [PMID: 39542193 DOI: 10.1016/j.jpain.2024.104732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
In the Thermal Grill Illusion (TGI), the spatial alternation of non-noxious warm and cool temperatures elicits burning sensations that resemble the presence of noxious stimuli. Previous research has largely relied on the use of specific temperature values (i.e., 20 °C and 40 °C) to study this phenomenon in both healthy individuals and patient populations. However, this methodology fails to account for inter-individual differences in thermal sensitivity, limiting the precision with which TGI responses can be evaluated across diverse populations. To address this gap, we created a Two-Dimensional Thermal Grill Calibration (2D-TGC) protocol, enabling an efficient and precise estimation of the combinations of warm and cool temperatures needed to elicit burning sensations tailored to each individual. By applying the 2D-TGC protocol in 43 healthy participants, we demonstrated that the TGI can be thresholded using an adaptive psychophysical method, and that multiple combinations of warm and cool temperatures can elicit this phenomenon. More specifically, the protocol facilitated the identification of temperature combinations that elicit TGI with varying levels of probability, intensity, and perceived quality ranging from freezing cold to burning hot. Finally, our results indicate that TGI responsivity can be quantified as a continuous variable, moving beyond the conventional classification of individuals as responders vs. non-responders based on arbitrary temperature values in the innocuous temperature range. The 2D-TGC offers a comprehensive approach to investigate the TGI across populations with altered thermal sensitivity, and can be integrated with other methods (e.g., neuroimaging) to elucidate the mechanisms responsible for perceptual illusions in the thermo-nociceptive system. PERSPECTIVE: This study reveals that the Thermal Grill Illusion can be accurately measured using psychophysical methods. The innovative Two-Dimensional Thermal Grill Calibration protocol allows for personalized temperature assessments, enhancing our understanding of thermal sensitivity variations and perceptual illusions in the thermo-nociceptive system across different populations.
Collapse
Affiliation(s)
- Camila Sardeto Deolindo
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Denmark
| | - Jesper Fischer Ehmsen
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Denmark
| | - Arthur S Courtin
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Denmark
| | - Alexandra G Mitchell
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Denmark
| | - Camilla E Kraenge
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Denmark
| | - Niia Nikolova
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Denmark
| | - Micah G Allen
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Denmark; Cambridge Psychiatry, University of Cambridge, United Kingdom
| | - Francesca Fardo
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Denmark; Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Denmark.
| |
Collapse
|
10
|
Xian H, Guo H, Liu YY, Ma SB, Zhao R, Zhang JL, Zhang H, Xie RG, Guo XC, Ren J, Wu SX, Luo C, Cong R. Nociceptor-localized KCC2 suppresses brachial plexus avulsion-induced neuropathic pain and related central sensitization. Cell Biosci 2025; 15:12. [PMID: 39891150 PMCID: PMC11786554 DOI: 10.1186/s13578-025-01354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
Lack in understanding of the mechanism on brachial plexus avulsion (BPA)-induced neuropathic pain (NP) is the key factor restricting its treatment. In the current investigation, we focused on the nociceptor-localized K+-Cl- cotransporter 2 (KCC2) to investigate its role in BPA-induced NP and related pain sensitization. A novel mice model of BPA on the middle trunk (C7) was established, and BPA mice showed a significant reduction in mechanical withdrawal threshold of the affected fore- and hind- paws without affecting the motor function through CatWalk Gait analysis. Decreased expression of KCC2 in dorsal root ganglion (DRG) was detected through Western blot and FISH technology after BPA. Overexpression of KCC2 in DRG could reverse the hyperexcitability of DRG neurons and alleviate the pain of BPA mice synchronously. Meanwhile, the calcium response signal of the affected SDH could be significantly reduced through above method using spinal cord fiber photometry. The synthesis and release of brain-derived neurotrophic factor (BDNF) was also proved reduction through overexpression of KCC2 in DRG, which indicates BDNF can also act as the downstream role in this pain state. As in human-derived tissues, we found decreased expression of KCC2 and increased expression of BDNF and TrκB in avulsed roots of BPA patients compared with normal human DRGs. Our results indicate that nociceptor-localized KCC2 can suppress BPA-induced NP, and peripheral sensitization can be regulated to reverse central sensitization by targeting KCC2 in DRG at the peripheral level through BDNF signaling. The consistent results in both humanity and rodents endow great potential to future transformation of clinical practice.
Collapse
Affiliation(s)
- Hang Xian
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Huan Guo
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yuan-Ying Liu
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Sui-Bin Ma
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Rui Zhao
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jian-Lei Zhang
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Hang Zhang
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xu-Cheng Guo
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jie Ren
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China.
| | - Rui Cong
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
11
|
He Z, Zhang J, Xu J, Wang Y, Zheng X, Wang W. Differential Neuronal Activation of Nociceptive Pathways in Neuropathic Pain After Spinal Cord Injury. Cell Mol Neurobiol 2025; 45:18. [PMID: 39883258 PMCID: PMC11782389 DOI: 10.1007/s10571-025-01532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/12/2025] [Indexed: 01/31/2025]
Abstract
Neuropathic pain, a prevalent complication following spinal cord injury (SCI), severely impairs the life quality of patients. No ideal treatment exists due to incomplete knowledge on underlying neural processes. To explore the SCI-induced effect on nociceptive circuits, the protein expression of c-Fos was analyzed as an indicator of neuronal activation in a rat contusion model exhibiting below-level pain. Additional stimuli were delivered to mimic the different peripheral sensory inputs in daily life. Following noxious rather than innocuous or no stimulation, a greater number of spinal dorsal horn (DH) neurons were activated after SCI, mainly in the deep DH. SCI facilitated the activation of excitatory but not inhibitory DH neurons. Moreover, excitatory interneurons expressing protein kinase C gamma (PKCγ) in laminae II-III, which are known to play a role in mechanical allodynia after peripheral nerve injury, responded in larger amounts to both innocuous and noxious stimulation following SCI. Accordingly, more spinal projection neurons in lamina I were activated. Within supraspinal nuclei processing pain, differentially enhanced activation in response to noxious stimulation was detected after SCI, with a significant increase in the locus coeruleus and medial thalamus, a slight increase in the periaqueductal gray and dorsal raphe, and no change in the lateral parabrachial nucleus or primary sensory cortex. These findings indicated differential hyperexcitability along the sensory neuroaxis following SCI, with a particular emphasis on the involvement of specific neuron subtypes, such as spinal PKCγ interneurons and locus coeruleus noradrenergic neurons, which may serve as crucial targets for potential therapies.
Collapse
Affiliation(s)
- Ziyu He
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Zhang
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Neurosurgery, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Xu
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Rehabilitation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
- Stem Cell Research Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Wang
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Neurosurgery, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaolong Zheng
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Wang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Shi S, Gong X. The Role of Microglia in Perioperative Pain and Pain Treatment: Recent Advances in Research. J Integr Neurosci 2025; 24:22675. [PMID: 40018770 DOI: 10.31083/jin22675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/29/2024] [Accepted: 08/12/2024] [Indexed: 03/01/2025] Open
Abstract
Microglia play a crucial role in monitoring the microenvironment of the central nervous system. Over the past decade, the role of microglia in the field of pain has gradually been unraveled. Microglia activation not only releases proinflammatory factors that enhance nociceptive signaling, but also participates in the resolving of pain. Opioids induce microglia activation, which enhances phagocytic activity and release of neurotoxic substances. Conversely, microglia activation reduces opioid efficacy and results in opioid tolerance. The application of microglia research to clinical pain management and drug development is a promising but challenging area. Microglia-targeted therapies may provide new avenues for pain management.
Collapse
Affiliation(s)
- Shengnan Shi
- Department of Anesthesiology, Institution of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 441000 Xiangyang, Hubei, China
| | - Xingrui Gong
- Department of Anesthesiology, Institution of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 441000 Xiangyang, Hubei, China
| |
Collapse
|
13
|
Fan S, Wang W, Zheng X. Repetitive Transcranial Magnetic Stimulation for the Treatment of Spinal Cord Injury: Current Status and Perspective. Int J Mol Sci 2025; 26:825. [PMID: 39859537 PMCID: PMC11766194 DOI: 10.3390/ijms26020825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Spinal cord injury (SCI) can lead to devastating dysfunctions and complications, significantly impacting patients' quality of life and aggravating the burden of disease. Since the main pathological mechanism of SCI is the disruption of neuronal circuits, the primary therapeutic strategy for SCI involves reconstructing and activating circuits to restore neural signal transmission. Repetitive transcranial magnetic stimulation (rTMS), a noninvasive brain stimulation technique, can modulate the function or state of the nervous system by pulsed magnetic fields. Here, we discuss the basic principles and potential mechanisms of rTMS for treating SCI, including promoting the reconstruction of damaged circuits in the spinal cord, activating reorganization of the cerebral cortex and circuits, modulating the balance of inputs to motoneurons, improving the microenvironment and intrinsic regeneration ability in SCI. Based on these mechanisms, we provide an overview of the therapeutic effects of rTMS in SCI patients with motor dysfunction, spasticity and neuropathic pain. We also discuss the challenges and prospectives of rTMS, especially the potential of combination therapy of rTMS and neural progenitor cell transplantation, and the synergistic effects on promoting regeneration, relay formation and functional connectivity. This review is expected to offer a relatively comprehensive understanding and new perspectives of rTMS for SCI treatment.
Collapse
Affiliation(s)
- Shu Fan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaolong Zheng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
14
|
Sun J, Ru M, Du M, Wang L, Yan S, Zhang Q. Silk-based biomaterials for promoting spinal cord regeneration: A review. Int J Biol Macromol 2025; 286:138384. [PMID: 39645128 DOI: 10.1016/j.ijbiomac.2024.138384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The management of neurological disorders is profoundly complicated by spinal cord injury (SCI), which leads to the impairment of motor and sensory functions. A major challenge in the treatment of SCI is the formation of a dysfunctional pathological microenvironment characterized by an excessive inflammatory response, deposition of inhibitory molecules, glial scarring, and vascular dysfunction. A thorough understanding of the pathological and physiological changes following SCI is essential to elucidate the mechanisms underlying functional recovery and to develop effective therapeutic interventions. Recent research indicates that the adverse microenvironment associated with SCI can be modified through the implantation of functional biomaterials at the injury site, thereby facilitating axonal regeneration, myelin repair, and functional recovery. Silk fibroin, in particular, has demonstrated remarkable efficacy in SCI reconstruction due to its superior biocompatibility, biodegradability, and tunable mechanical properties. This review provides an overview of the pathological microenvironmental dysfunctions following SCI and explores the potential advantages of silk fibroin in enhancing axonal regeneration and neural circuit formation in SCI repair. The benefits and challenges associated with silk fibroin and its derivatives in facilitating effective SCI repair are examined. This review aims to offer significant insights into the application of silk-based biomaterials for SCI treatment.
Collapse
Affiliation(s)
- Jingjing Sun
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Min Ru
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Mengjie Du
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Shuqin Yan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China..
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China..
| |
Collapse
|
15
|
Pergolizzi JV, LeQuang JA, Coluzzi F, El-Tallawy SN, Magnusson P, Ahmed RS, Varrassi G, Porpora MG. Managing the neuroinflammatory pain of endometriosis in light of chronic pelvic pain. Expert Opin Pharmacother 2024; 25:2267-2282. [PMID: 39540855 DOI: 10.1080/14656566.2024.2425727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Endometriosis affects 5% to 10% of reproductive age women and may be associated with severely painful and debilitating symptoms as well as infertility. Endometriosis involves hormonal fluctuations, angiogenesis, neurogenesis, vascular changes and neuroinflammatory processes. The neuroinflammatory component of endometriosis makes it a systemic disorder, similar to other chronic epithelial inflammatory conditions. AREAS COVERED Inflammatory mediators, mast cells, macrophages, and glial cells play a role in endometriosis which can result in peripheral sensitization and central sensitization. There is overlap between chronic pelvic pain and endometriosis, but the two conditions are distinct. Effective treatment is based on a personalized approach using a variety of pharmacologic and other treatment options. EXPERT OPINION Hormonal therapies are a first-line approach, but endometriosis is a challenging condition to manage. 'Add-back' hormonal therapy has been effective. Painful symptoms are likely caused by the interplay of multiple factors and there may be a neuropathic component. Analgesics and anticonvulsants may be appropriate. A holistic approach and multimodal treatments are likely to be most effective. In addition to pharmacologic treatment, there are surgical and alternative medicine options. Endometriosis may also have a psychological component.
Collapse
Affiliation(s)
| | | | - Flaminia Coluzzi
- Department Medical-Surgical and Translational Medicine, Sapienza University of Rome, Rome, Italy
- Unit of Anesthesia Care and Pain Medicine, University Hospital Sant'Andrea, Rome, Italy
| | - Salah N El-Tallawy
- Anesthesia and pain management department, King Khalid University Hospital, College of Medicine, King Saud University, Riyadh. Saudi Arabia and Minia University, NCI, Cairo University, Cairo, Egypt
| | - Peter Magnusson
- School of Medical Sciences, Orebro University, Orebro, Sweden and Center for Clinical Research Dalarna, Uppsala University, Falun, Sweden
| | - Rania S Ahmed
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Maria Grazia Porpora
- Department of Maternal and Infantile Health and Urology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Quidé Y, Jahanshad N, Andoh J, Antoniou G, Apkarian AV, Ashar YK, Badran BW, Baird CL, Baxter L, Bell TR, Blanco-Hinojo L, Borckardt J, Cheung CL, Ciampi de Andrade D, Couto BA, Cox SR, Cruz-Almeida Y, Dannlowski U, De Martino E, de Tommaso M, Deus J, Domin M, Egorova-Brumley N, Elliott J, Fanton S, Fauchon C, Flor H, Franz CE, Gatt JM, Gerdhem P, Gilman JM, Gollub RL, Govind V, Graven-Nielsen T, Håkansson G, Hales T, Haswell C, Heukamp NJ, Hu L, Huang L, Hussain A, Jensen K, Kircher T, Kremen WS, Leehr EJ, Lindquist M, Loggia ML, Lotze M, Martucci KT, Meeker TJ, Meinert S, Millard SK, Morey RA, Murillo C, Nees F, Nenadic I, Park HR, Peng X, Ploner M, Pujol J, Robayo LE, Salan T, Seminowicz DA, Serian A, Slater R, Stein F, Stevens J, Strauss S, Sun D, Vachon-Presseau E, Valdes-Hernandez PA, Vanneste S, Vernon M, Verriotis M, Wager TD, Widerstrom-Noga E, Woodbury A, Zeidan F, Bhatt RR, Ching CR, Haddad E, Thomopoulos SI, Thompson PM, Gustin SM. ENIGMA-Chronic Pain: a worldwide initiative to identify brain correlates of chronic pain. Pain 2024; 165:2662-2666. [PMID: 39058957 PMCID: PMC11562752 DOI: 10.1097/j.pain.0000000000003317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 07/28/2024]
Affiliation(s)
- Yann Quidé
- School of Psychology, The University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Randwick, NSW, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jamila Andoh
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Georgia Antoniou
- Division of Population Health and Genomics, Medical Research Institute, University of Dundee, Dundee, Scotland, United Kingdom
| | - Apkar Vania Apkarian
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yoni K. Ashar
- Department of General Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Bashar W. Badran
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, United States
| | - C. Lexi Baird
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic MIRECC, Durham VA Medical Center, Durham VA, Durham, NC, United States
| | - Luke Baxter
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Tyler R. Bell
- Department of Psychiatry, University of California, San Diego, CA, United States
- Center for Behavior Genetics of Aging, University of California, San Diego, CA, United States
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- IsGlobal, Barcelona, Spain
| | - Jeffrey Borckardt
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, United States
- Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VAMC, Charleston, SC, United States
| | - Chloe L. Cheung
- Neuroscience Graduate Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Bruno A. Couto
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Simon R. Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Yenisel Cruz-Almeida
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, United States
- Department of Community Dentistry and Behavioral Sciences, College of Dentistry, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Udo Dannlowski
- Institute of Translational Psychiatry, University of Münster, Münster, Germany
| | - Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Marina de Tommaso
- Neurophysiopathology Unit, DiBrain Department, Bari Aldo Moro University, Bari, Italy
| | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Department of Clinical and Health Psychology, Autonomous University of Barcelona, Barcelona, Spain
| | - Martin Domin
- Functional Imaging Unit, Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Natalia Egorova-Brumley
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - James Elliott
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Northern Sydney Local Health District, Sydney, NSW, Australia
- The Kolling Institute, St Leonards, NSW, Australia
| | - Silvia Fanton
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Camille Fauchon
- Neuro-Dol, Inserm, University Hospital of Clermont-Ferrand, University of Clermont-Auvergne, Clermont-Ferrand, France
- NEUROPAIN Team, CRNL, CNRS, Inserm, University of Saint-Etienne, Saint-Etienne, France
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Carol E. Franz
- Department of Psychiatry, University of California, San Diego, CA, United States
- Center for Behavior Genetics of Aging, University of California, San Diego, CA, United States
| | - Justine M. Gatt
- School of Psychology, The University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Centre for Wellbeing, Resilience and Recovery, Neuroscience Research Australia, Randwick, NSW, Australia
- Black Dog Institute, Randwick, NSW, Australia
| | - Paul Gerdhem
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Orthopaedics and Hand Surgery, Uppsala University Hospital, Uppsala, Sweden
| | - Jodi M. Gilman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Addiction Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Randy L. Gollub
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Varan Govind
- Department of Radiology, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Gustaf Håkansson
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Tim Hales
- Consortium Against Pain Inequality, University of Dundee, Dundee, Scotland, United Kingdom
| | - Courtney Haswell
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic MIRECC, Durham VA Medical Center, Durham VA, Durham, NC, United States
| | - Nils Jannik Heukamp
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lejian Huang
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ahmed Hussain
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic MIRECC, Durham VA Medical Center, Durham VA, Durham, NC, United States
| | - Karin Jensen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - William S. Kremen
- Department of Psychiatry, University of California, San Diego, CA, United States
- Center for Behavior Genetics of Aging, University of California, San Diego, CA, United States
| | - Elisabeth J. Leehr
- Institute of Translational Psychiatry, University of Münster, Münster, Germany
| | - Martin Lindquist
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, United States
| | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Anesthesia, Clinical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Martin Lotze
- Functional Imaging Unit, Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Katherine T. Martucci
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Timothy J. Meeker
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Susanne Meinert
- Institute of Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Samantha K. Millard
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Rajendra A. Morey
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic MIRECC, Durham VA Medical Center, Durham VA, Durham, NC, United States
| | - Carlos Murillo
- Department of General Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Haeme R.P. Park
- School of Psychology, The University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Centre for Wellbeing, Resilience and Recovery, Neuroscience Research Australia, Randwick, NSW, Australia
| | - Xiaolong Peng
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, United States
| | - Markus Ploner
- Department of Neurology, Center for Interdisciplinary Pain Medicine and TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
| | - Linda E. Robayo
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Teddy Salan
- Department of Radiology, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - David A. Seminowicz
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Angela Serian
- Department of Neurology, University Hospital Greifswald, Greifswald, Germany
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Jennifer Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Atlanta Veterans Affairs Healthcare System, Atlanta, GA, United States
| | - Sebastian Strauss
- Department of Neurology, University Hospital Greifswald, Greifswald, Germany
| | - Delin Sun
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic MIRECC, Durham VA Medical Center, Durham VA, Durham, NC, United States
- Department of Psychiatry, School of Medicine, Duke University, Durham, NC, United States
| | - Etienne Vachon-Presseau
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Department of Anesthesia, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, QC, Canada
| | - Pedro A. Valdes-Hernandez
- Department of Community Dentistry and Behavioral Sciences, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Sven Vanneste
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Trinity Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Mark Vernon
- Atlanta Veterans Affairs Healthcare System, Atlanta, GA, United States
| | - Madeleine Verriotis
- Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | | | - Eva Widerstrom-Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anna Woodbury
- Atlanta Veterans Affairs Healthcare System, Atlanta, GA, United States
- Division of Pain Medicine, Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Fadel Zeidan
- Center for Pain Medicine, Department of Anesthesiology, University of California San Diego, La Jolla, CA, United States
| | - Ravi R. Bhatt
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Christopher R.K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Elizabeth Haddad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sylvia M. Gustin
- School of Psychology, The University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Randwick, NSW, Australia
| |
Collapse
|
17
|
Rosner J, Attal N, Finnerup NB. Clinical pharmacology of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:403-430. [PMID: 39580218 DOI: 10.1016/bs.irn.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
This chapter aims to review the current pharmacological options for neuropathic pain treatment, their mechanisms of action, and future directions for clinical practice. Achieving pain relief in neuropathic pain conditions remains a challenge in clinical practice. The field of pharmacotherapy for neuropathic pain has encountered significant difficulties in translating substantial advances in our understanding of the underlying pathophysiological mechanisms into clinically effective therapies. This chapter presents the drugs recommended for the pharmacotherapy of neuropathic pain, based on the widely accepted treatment guidelines formulated by the Neuropathic Pain Special Interest Group of the International Association for the Study of Pain. In addition to discussing how the evidence base is created as part of international consortia, the drugs are also examined in terms of their putative molecular mechanisms as well as pharmacological pleiotropy, i.e., their potential unspecific and multi-target effects resulting in modulation of neuronal hyperexcitability. The chapter closes with a discussion of potential future developments in the field.
Collapse
Affiliation(s)
- Jan Rosner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| | - Nadine Attal
- Inserm U987, APHP, CHU Ambroise Pare, UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
18
|
Jan Rosner, Shirvalkar P, de Andrade DC. Neuropathic pain - A clinical primer. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:41-65. [PMID: 39580219 DOI: 10.1016/bs.irn.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Neuropathic pain is used both as a mechanistic descriptor and a classification category of pain caused by a lesion or disease of the somatosensory nervous system and encompasses a vast array of possible diagnoses. The identification of neuropathic pain and diagnosis of specific syndromes relies on a detailed patient history. Standardized pain questionnaires can capture the patient`s symptoms, while the anatomical distribution of pain is often documented using pain drawings. Following this, a thorough clinical neurological examination is conducted to identify distinct sensory abnormalities, specifically sensory deficits and signs of increased sensitivity such as allodynia and hyperalgesia, within the pain-affected areas. Regardless of whether the lesion or disease is in the peripheral or central somatosensory nervous system, the presence of clinically overt sensory abnormalities is a key feature, distinguishing neuropathic pain from other types of pain, such as nociceptive pain, which likely coexist in neurological disorders. Extensive sensory deficits, as seen in certain stroke syndromes or following spinal cord injuries, may increase the likelihood of concomitant non-neuropathic pain within the same area of sensory loss. For this reason, differential diagnosis is essential when assessing patients with suspected neuropathic pain. Further diagnostic tests, including imaging or specific neurophysiological methods that assess nociceptive pathways, can provide objective evidence of a lesion or disease within the somatosensory nervous system. However, the causality between the lesion and the presence of neuropathic pain cannot be established definitively and always requires clinical judgment and interpretation within the broader context of the neurological disorder.
Collapse
Affiliation(s)
- Jan Rosner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| | - Prasad Shirvalkar
- University of California, San Francisco Departments of Neurological Surgery, Anesthesiology and Neurology, UCSF, San Francisco, CA, United States
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
19
|
Motzkin JC, Basbaum AI, Crowther AJ. Neuroanatomy of the nociceptive system: From nociceptors to brain networks. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:1-39. [PMID: 39580210 DOI: 10.1016/bs.irn.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
This chapter reviews the neuroanatomy of the nociceptive system and its functional organization. We describe three main compartments of the nervous system that underlie normal nociception and the resulting pain percept: Peripheral, Spinal Cord, and Brain. We focus on how ascending nociceptive processing streams traverse these anatomical compartments, culminating in the multidimensional experience of pain. We also describe neuropathic pain conditions, in which nociceptive processing is abnormal, not only because of the primary effects of a lesion or disease affecting peripheral nerves or the central nervous system (CNS), but also due to secondary effects on ascending pathways and brain networks. We discuss how the anatomical components (circuits/networks) reorganize under various etiologies of neuropathic pain and how these changes can give rise to pathological pain states.
Collapse
Affiliation(s)
- Julian C Motzkin
- Department of Neurology and Department Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States.
| | - Allan I Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| | - Andrew J Crowther
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
20
|
El-Sayed R, Davis KD. Regional and interregional functional and structural brain abnormalities in neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:91-123. [PMID: 39580223 DOI: 10.1016/bs.irn.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Neuropathic pain is a severe form of chronic pain due to a lesion or disease of the somatosensory nervous system. Here we provide an overview of the neuroimaging approaches that can be used to assess brain abnormalities in a chronic pain condition, with particular focus on people with neuropathic pain and then summarize the findings of studies that applied these methodologies to study neuropathic pain. First, we review the most commonly used approaches to examine grey and white matter abnormalities using magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) and then review functional neuroimaging techniques to measure regional activity and inter-regional communication using functional MRI, electroencephalography (EEG) and magnetoencephalography (MEG). In neuropathic pain the most prominent structural abnormalities have been found to be in the primary somatosensory cortex, insula, anterior cingulate cortex and thalamus, with differences in volume directionality linked to neuropathic pain symptomology. Functional connectivity findings related to treatment outcome point to a potential clinical utility. Some prominent abnormalities in neuropathic pain identified with EEG and MEG throughout the dynamic pain connectome are slowing of alpha activity and higher regional oscillatory activity in the theta and alpha band, lower low beta and higher high beta band power. Finally, connectivity and coupling findings placed into context how regional abnormalities impact the networks and pathways of the dynamic pain connectome. Overall, functional and structural neuroimaging have the potential to identify predictive biomarkers that can be used to guide development of personalized pain management of neuropathic pain.
Collapse
Affiliation(s)
- Rima El-Sayed
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Karen Deborah Davis
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
21
|
Masuda T, Egawa K, Takeshita Y, Tanaka K. Early-Phase Intervention With Traditional Japanese Acupuncture and Moxibustion for Fibromyalgia: A Case Report. Cureus 2024; 16:e74385. [PMID: 39723277 PMCID: PMC11669051 DOI: 10.7759/cureus.74385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Fibromyalgia (FM) is a common chronic pain with no established treatment. Acupuncture is an expected treatment for FM though a diagnosis of FM tends to be delayed, and the advantage is still unclear in early-phase intervention with acupuncture treatment for FM. A 51-year-old woman with panic disorder presented with a four-month history of whole-body pain and was diagnosed with FM. She was unable to do housework or control her pain with medication. And she took 10 mg of paroxetine, a selective serotonin reuptake inhibitor (SSRI), to treat her depressive mood or panic disorder. A traditional Japanese acupuncture and moxibustion treatment, Hokushin-kai, was started. According to the Oriental medical diagnosis, she was categorized with "hyperactivity of liver yang," "dampness encumbering spleen," and "kidney yin deficiency" patterns. The treatment was administered once a week, and only one or two sterilized disposable needles were inserted into each acupoint (such as BL19, LR8, or KI3) for 10 minutes and with no manipulations. At the first presentation, the numerical rating scale (NRS) value was 6. After six weeks, her whole-body pain level remained around NRS 0-2 for 4-5 days after each treatment session. She was then able to resume housework after 12 weeks. Since ancient times, acupuncturists have recognized how acupuncture becomes less effective over time, especially for chronic pain. Moreover, the concept of a treatment-sensitive period for chronic pain prevention has recently been proposed. Further research, including early-phase interventions for acupuncture treatment, is required to evaluate the clinical effects of various treatments on FM.
Collapse
Affiliation(s)
- Takuya Masuda
- Division of General Internal Medicine & Rheumatology, Mitsui Memorial Hospital, Tokyo, JPN
- Department of Traditional Medicine, Toho University, Tokyo, JPN
- Department of Western Medicine, Hokushin-kai, Academic Society of Traditional Japanese Acupuncture and Moxibustion, Osaka, JPN
| | - Kenichiro Egawa
- Division of Palliative Care, Mitsui Memorial Hospital, Tokyo, JPN
| | - Yu Takeshita
- Department of Integrative/Complementary Medicine, Acupuncture Clinic, Seimei-in, Tokyo, JPN
| | - Koichiro Tanaka
- Department of Traditional Medicine, Toho University, Tokyo, JPN
| |
Collapse
|
22
|
Hesam-Shariati N, Alexander L, Chen KY, Craig A, Glare PA, Jensen MP, Lin CT, McAuley JH, Middleton JW, Moseley GL, Newton-John T, Restrepo S, Skinner IW, Zahara P, Gustin SM. A home-based self-directed EEG neurofeedback intervention for people with chronic neuropathic pain following spinal cord injury (the StoPain Trial): description of the intervention. Spinal Cord 2024; 62:658-666. [PMID: 39266672 PMCID: PMC11549037 DOI: 10.1038/s41393-024-01031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
STUDY DESIGN Randomised controlled trial. OBJECTIVES The objective is to describe an electroencephalography (EEG) neurofeedback intervention that will be provided in a randomised controlled trial for people with neuropathic pain following spinal cord injury (SCI): the StoPain Trial. In this trial, participants in the treatment group will implement an EEG neurofeedback system as an analgesic intervention at home, while participants in the control group will continue with the treatments available to them in the community. SETTING University-based study in Sydney, Australia. METHODS/RESULTS This manuscript describes the rationale and components of the EEG neurofeedback intervention designed for individuals with SCI neuropathic pain and intended for home-based implementation. Our report is based on the criteria of the Template for Intervention Description and Replication (TIDieR) checklist, and includes why the efficacy of EEG neurofeedback will be investigated, what will be provided, who will administer it, and how, where, when, and how much the EEG neurofeedback intervention will be administered. CONCLUSIONS This manuscript provides a detailed description of a complex intervention used in a randomised controlled trial. This description will facilitate the subsequent interpretation of the trial results and allow for the replication of the intervention in clinical practice and future trials. SPONSORSHIP Australian Government Medical Research Future Fund (2020 Rare Cancers Rare Diseases and Unmet Needs Scheme: 2006020).
Collapse
Affiliation(s)
- Negin Hesam-Shariati
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW, Australia.
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia.
| | - Lara Alexander
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Kevin Yi Chen
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Ashley Craig
- The Kolling Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Paul A Glare
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mark P Jensen
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Chin-Teng Lin
- CIBCI Lab, Human-centric Artificial Intelligence Centre, Australian AI Institute, FEIT, University of Technology Sydney, Sydney, NSW, Australia
| | - James H McAuley
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Health Sciences, University of New South Wales, Sydney, NSW, Australia
| | - James W Middleton
- The Kolling Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - G Lorimer Moseley
- IIMPACT in Health, University of South Australia, Kuarna Country, Adelaide, SA, Australia
| | - Toby Newton-John
- Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Sebastian Restrepo
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Ian W Skinner
- Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
- School of Allied Health Exercise and Sports Sciences, Charles Sturt University, Port Macquarie, NSW, Australia
| | - Pauline Zahara
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Sylvia M Gustin
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia
| |
Collapse
|
23
|
Liu L, Liang Z, Zhang L, Feng Z, Cao F, Zhang Y, Yang X, Zhang L, Wang J, Zhu Q. Corticothalamic input derived from corticospinal neurons contributes to chronic neuropathic pain after spinal cord injury. Exp Neurol 2024; 381:114923. [PMID: 39142366 DOI: 10.1016/j.expneurol.2024.114923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
Neuropathic pain is a significant and persistent issue for individuals with spinal cord injuries (SCI), severely impacting their quality of life. While changes at the peripheral and spinal levels are known to contribute to SCI-related pain, whether and how supraspinal centers contribute to post SCI chronic neuropathic pain is poorly understood. Here, we first validated delayed development of chronic neuropathic pain in mice with moderate contusion SCI. To identify supraspinal regions involved in the pathology of neuropathic pain after SCI, we next performed an activity dependent genetic screening and identified multiple cortical and subcortical regions that were activated by innocuous tactile stimuli at a late stage following contusion SCI. Notably, chemogenetic inactivation of pain trapped neurons in the lateral thalamus alleviated neuropathic pain and reduced tactile stimuli evoked cortical overactivation. Retrograde tracing showed that contusion SCI led to enhanced corticothalamic axonal sprouting and over-activation of corticospinal neurons. Mechanistically, ablation or silencing of corticospinal neurons prevented the establishment or maintenance of chronic neuropathic pain following contusion SCI. These results highlighted a corticospinal-lateral thalamic feed-forward loop whose activation is required for the development and maintenance of chronic neuropathic pain after SCI. Our data thus shed lights into the central mechanisms underlying chronic neuropathic pain associated with SCI and the development of novel therapeutic avenues to treat refractory pain caused by traumatic brain or spinal cord injuries.
Collapse
Affiliation(s)
- Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihou Liang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Feng
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fei Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunjian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijie Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qing Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
24
|
Xin H, Yang B, Jia Y, Qi Q, Wang Y, Wang L, Chen X, Li F, Lu J, Chen N. Graph Metrics Reveal Brain Network Topological Property in Neuropathic Pain Patients: A Systematic Review. J Pain Res 2024; 17:3277-3286. [PMID: 39411193 PMCID: PMC11474538 DOI: 10.2147/jpr.s483466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Neuropathic pain (NP) is a common and persistent disease that leads to immense suffering and serious social burden. Incomplete understanding of the underlying neural basis makes it difficult to achieve significant breakthroughs in the treatment of NP. We aimed to review the functional and structural brain topological properties in patients with NP and consider how graph measures reveal potential mechanisms and are applied to clinical practice. Related studies were searched in PubMed and Web of Science databases. Topological property changes in patients with NP, including small-worldness, functional separation, integration, and centrality metrics, were reviewed. The findings suggest that NP was characterized by retained but declined small-worldness, indicating an insidious imbalance between network integration and segregation. The global-level measures revealed decreased global and local efficiency in the NP, implying decreased information transfer efficiency for both long- and short-range connections. Altered nodal centrality measures involve various brain regions, mostly those associated with pain, cognition, and emotion. Graph theory is a powerful tool for identifying topological properties of patients with NP. These specific brain changes in patients with NP are very helpful in revealing the potential mechanisms of NP, developing new treatment strategies, and evaluating the efficacy and prognosis of NP.
Collapse
Affiliation(s)
- Haotian Xin
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Beining Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Yulong Jia
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Qunya Qi
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Yu Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Ling Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Xin Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Fang Li
- Department of Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| |
Collapse
|
25
|
Argoff CE. Central Neuropathic Pain. Continuum (Minneap Minn) 2024; 30:1381-1396. [PMID: 39445926 DOI: 10.1212/con.0000000000001490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This article provides an approach to the assessment, diagnosis, and treatment of central neuropathic pain. LATEST DEVELOPMENTS Recent studies of the pathophysiology of central neuropathic pain, including evidence of changes in the expression of voltage-gated sodium channels and N-methyl-d-aspartate (NMDA) receptors, may provide the basis for new therapies. Other areas of current research include the role of cannabinoid-receptor activity and microglial cell activation in various animal models of central neuropathic pain. New observations regarding changes in primary afferent neuronal activity in central neuropathic pain and the preliminary observation that peripheral nerve blocks may relieve pain due to central neuropathic etiologies provide new insights into both the mechanism and treatment of central neuropathic pain. ESSENTIAL POINTS In the patient populations treated by neurologists, central neuropathic pain develops most frequently following spinal cord injury, multiple sclerosis, or stroke. A multimodal, individualized approach to the management of central neuropathic pain is necessary to optimize pain relief and may require multiple treatment trials to achieve the best outcome.
Collapse
|
26
|
Li Y, Luo W, Meng C, Shi K, Gu R, Cui S. Exosomes as promising bioactive materials in the treatment of spinal cord injury. Stem Cell Res Ther 2024; 15:335. [PMID: 39334506 PMCID: PMC11438208 DOI: 10.1186/s13287-024-03952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Patients with spinal cord injury (SCI) have permanent devastating motor and sensory disabilities. Secondary SCI is known for its complex progression and presents with sophisticated aberrant inflammation, vascular changes, and secondary cellular dysfunction, which aggravate the primary damage. Since their initial discovery, the potent neuroprotective effects and powerful delivery abilities of exosomes (Exos) have been reported in different research fields, including SCI. In this study, we summarize therapeutic advances related to the application of Exos in preclinical animal studies. Subsequently, we discuss the mechanisms of action of Exos derived from diverse cell types, including neurogenesis, angiogenesis, blood-spinal cord barrier preservation, anti-apoptosis, and anti-inflammatory potential. We also evaluate the relationship between the Exo delivery cargo and signaling pathways. Finally, we discuss the challenges and advantages of using Exos to offer innovative insights regarding the development of efficient clinical strategies for SCI.
Collapse
Affiliation(s)
- Yueying Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Wenqi Luo
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Chuikai Meng
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Kaiyuan Shi
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Rui Gu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
| |
Collapse
|
27
|
Gao N, Li M, Wang W, Liu Z, Guo Y. The dual role of TRPV1 in peripheral neuropathic pain: pain switches caused by its sensitization or desensitization. Front Mol Neurosci 2024; 17:1400118. [PMID: 39315294 PMCID: PMC11417043 DOI: 10.3389/fnmol.2024.1400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel plays a dual role in peripheral neuropathic pain (NeuP) by acting as a "pain switch" through its sensitization and desensitization. Hyperalgesia, commonly resulting from tissue injury or inflammation, involves the sensitization of TRPV1 channels, which modulates sensory transmission from primary afferent nociceptors to spinal dorsal horn neurons. In chemotherapy-induced peripheral neuropathy (CIPN), TRPV1 is implicated in neuropathic pain mechanisms due to its interaction with ion channels, neurotransmitter signaling, and oxidative stress. Sensitization of TRPV1 in dorsal root ganglion neurons contributes to CIPN development, and inhibition of TRPV1 channels can reduce chemotherapy-induced mechanical hypersensitivity. In diabetic peripheral neuropathy (DPN), TRPV1 is involved in pain modulation through pathways including reactive oxygen species and cytokine production. TRPV1's interaction with TRPA1 channels further influences chronic pain onset and progression. Therapeutically, capsaicin, a TRPV1 agonist, can induce analgesia through receptor desensitization, while TRPV1 antagonists and siRNA targeting TRPV1 show promise in preclinical studies. Cannabinoid modulation of TRPV1 provides another potential pathway for alleviating neuropathic pain. This review summarizes recent preclinical research on TRPV1 in association with peripheral NeuP.
Collapse
Affiliation(s)
- Ning Gao
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Li
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiming Wang
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Liu
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yufeng Guo
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Ciampi de Andrade D, Mylius V, Perez Lloret S. What Is In A Name? Mov Disord 2024; 39:1651-1652. [PMID: 39441130 DOI: 10.1002/mds.29943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Veit Mylius
- Department of Neurology, Centre for Neurorehabilitation, Valens, Switzerland
- Department of Neurology, Philipps University, Marburg, Germany
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Santiago Perez Lloret
- Observatorio de Salud, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
29
|
Nascimento GC, Escobar-Espinal D, Bálico GG, Silva NR, Del-Bel E. Cannabidiol and pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:29-63. [PMID: 39029988 DOI: 10.1016/bs.irn.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Chronic pain presents significant personal, psychological, and socioeconomic hurdles, impacting over 30% of adults worldwide and substantially contributing to disability. Unfortunately, current pharmacotherapy often proves inadequate, leaving fewer than 70% of patients with relief. This shortfall has sparked a drive to seek alternative treatments offering superior safety and efficacy profiles. Cannabinoid-based pharmaceuticals, notably cannabidiol (CBD), hold promise in pain management, driven by their natural origins, versatility, and reduced risk of addiction. As we navigate the opioid crisis, ongoing research plunges into CBD's therapeutic potential, buoyed by animal studies revealing its pain-relieving prowess through various system tweaks. However, the efficacy of cannabis in chronic pain management remains a contentious and stigmatized issue. The International Association for the Study of Pain (IASP) presently refrains from endorsing cannabinoid use for pain relief. Nevertheless, evidence indicates their potential in alleviating cancer-related, neuropathic, arthritis, and musculoskeletal pain, necessitating further investigation. Crucially, our comprehension of CBD's role in pain management is a journey still unfolding, with animal studies illustrating its analgesic effects through interactions with the endocannabinoid, inflammatory, and nociceptive systems. As the plot thickens, it's clear: the saga of chronic pain and CBD's potential offers a compelling narrative ripe for further exploration and understanding.
Collapse
Affiliation(s)
- Glauce Crivelaro Nascimento
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| | - Daniela Escobar-Espinal
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Gabriela Gonçalves Bálico
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | - Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; National Institute for Science and Technology, Translational Medicine, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Center for Cannabinoid Research, Mental Health Building, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
30
|
McBenedict B, Goh KS, Yau RCC, Elamin S, Yusuf WH, Verly G, Thomas A, Alphonse B, Ouabicha K, Valentim G, Hauwanga WN, Lima Pessôa B. Neuropathic Pain Secondary to Multiple Sclerosis: A Narrative Review. Cureus 2024; 16:e61587. [PMID: 38962595 PMCID: PMC11221503 DOI: 10.7759/cureus.61587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). Neuropathic pain in MS is a debilitating symptom that significantly impairs the quality of life for a substantial proportion of MS patients. Neuropathic pain in MS stems primarily from demyelination, axonal loss, CNS inflammation, and direct damage to the myelin sheath, leading to pain manifestations such as ongoing extremity pain, Lhermitte's phenomenon, and trigeminal neuralgia (TN). The pathophysiological mechanisms behind MS-related neuropathic pain are explored in this review, highlighting central sensitization, neural dysfunction, spinal thalamic tract dysfunction, and inflammatory processes that exacerbate neuronal damage. Neuropathic pain in MS necessitates comprehensive assessment tools and neurophysiological tests to differentiate neuropathic pain from other MS symptoms accurately. Treatment strategies for MS-related neuropathic pain encompass pharmacological interventions, including anticonvulsants and antidepressants, and emerging therapies targeting specific inflammatory processes. The review advocates for a holistic approach to management, incorporating innovative treatments and multidisciplinary strategies to address both the physical symptoms and psychosocial aspects of this disorder. This comprehensive overview underscores the importance of ongoing research into targeted therapies to improve patient outcomes and enhance the quality of life for those affected by MS.
Collapse
Affiliation(s)
| | - Kang Suen Goh
- Internal Medicine, Monash University Malaysia, Johor Bahru, MYS
| | | | - Sara Elamin
- Medicine, University of Medical Sciences and Technology, Khartoum, SDN
| | | | - Gabriel Verly
- Neurology, Federal University of Rio de Janeiro, Rio de Janeiro, BRA
| | - Anusha Thomas
- Neurology, Christian Medical College & Hospital, Ludhiana, IND
| | - Berley Alphonse
- Internal Medicine, University Notre Dame of Haiti, Port-au-Prince, HTI
| | | | | | | | | |
Collapse
|
31
|
Humes C, Sic A, Knezevic NN. Substance P's Impact on Chronic Pain and Psychiatric Conditions-A Narrative Review. Int J Mol Sci 2024; 25:5905. [PMID: 38892091 PMCID: PMC11172719 DOI: 10.3390/ijms25115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Substance P (SP) plays a crucial role in pain modulation, with significant implications for major depressive disorder (MDD), anxiety disorders, and post-traumatic stress disorder (PTSD). Elevated SP levels are linked to heightened pain sensitivity and various psychiatric conditions, spurring interest in potential therapeutic interventions. In chronic pain, commonly associated with MDD and anxiety disorders, SP emerges as a key mediator in pain and emotional regulation. This review examines SP's impact on pain perception and its contributions to MDD, anxiety disorders, and PTSD. The association of SP with increased pain sensitivity and chronic pain conditions underscores its importance in pain modulation. Additionally, SP influences the pathophysiology of MDD, anxiety disorders, and PTSD, highlighting its potential as a therapeutic target. Understanding SP's diverse effects provides valuable insights into the mechanisms underlying these psychiatric disorders and their treatment. Further research is essential to explore SP modulation in psychiatric disorders and develop more effective treatment strategies.
Collapse
Affiliation(s)
- Charles Humes
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (C.H.); (A.S.)
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Aleksandar Sic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (C.H.); (A.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (C.H.); (A.S.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
32
|
Liang Z, Li L, Bai L, Gao Y, Qiao Y, Wang X, Yv L, Xu JT. Spinal nerve transection-induced upregulation of SAP97 via promoting membrane trafficking of GluA1-containing AMPA receptors in the dorsal horn contributes to the pathogenesis of neuropathic pain. Neurobiol Dis 2024; 194:106471. [PMID: 38461868 DOI: 10.1016/j.nbd.2024.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Emerging evidence has implicated an important role of synapse-associated protein-97 (SAP97)-regulated GluA1-containing AMPARs membrane trafficking in cocaine restate and in contextual episodic memory of schizophrenia. Herein, we investigated the role of SAP97 in neuropathic pain following lumbar 5 spinal nerve transection (SNT) in rats. Our results showed that SNT led to upregulation of SAP97, enhanced the interaction between SAP97 and GluA1, and increased GluA1-containing AMPARs membrane trafficking in the dorsal horn. Microinjection of AAV-EGFP-SAP97 shRNA in lumbar 5 spinal dorsal horn inhibited SAP97 production, decreased SAP97-GluA1 interaction, reduced the membrane trafficking of GluA1-containing AMPARs, and partially attenuated neuropathic pain following SNT. Intrathecal injections of SAP97 siRNA or NASPM, an antagonist of GluA1-containing AMPARs, also partially reversed neuropathic pain on day 7, but not on day 14, after SNT. Spinal overexpression of SAP97 by AAV-EGFP-SAP97 enhanced SAP97-GluA1 interaction, increased the membrane insertion of GluA1-containing AMPARs, and induced abnormal pain in naïve rats. In addition, treatment with SAP97 siRNA or NASPM i.t. injection alleviated SNT-induced allodynia and hyperalgesia and exhibited a longer effect in female rats. Together, our results indicate that the SNT-induced upregulation of SAP97 via promoting GluA1-containing AMPARs membrane trafficking in the dorsal horn contributes to the pathogenesis of neuropathic pain. Targeting spinal SAP97 might be a promising therapeutic strategy to treatment of chronic pain.
Collapse
Affiliation(s)
- Zongyi Liang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liying Bai
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yiming Qiao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xueli Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Lili Yv
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
33
|
Howe EI, Andelic N, Brunborg C, Zeldovich M, Helseth E, Skandsen T, Olsen A, Fure SCR, Theadom A, Rauen K, Madsen BÅ, Jacobs B, van der Naalt J, Tartaglia MC, Einarsen CE, Storvig G, Tronvik E, Tverdal C, von Steinbüchel N, Røe C, Hellstrøm T. Frequency and predictors of headache in the first 12 months after traumatic brain injury: results from CENTER-TBI. J Headache Pain 2024; 25:44. [PMID: 38528477 DOI: 10.1186/s10194-024-01751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Headache is a prevalent and debilitating symptom following traumatic brain injury (TBI). Large-scale, prospective cohort studies are needed to establish long-term headache prevalence and associated factors after TBI. This study aimed to assess the frequency and severity of headache after TBI and determine whether sociodemographic factors, injury severity characteristics, and pre- and post-injury comorbidities predicted changes in headache frequency and severity during the first 12 months after injury. METHODS A large patient sample from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) prospective observational cohort study was used. Patients were stratified based on their clinical care pathway: admitted to an emergency room (ER), a ward (ADM) or an intensive care unit (ICU) in the acute phase. Headache was assessed using a single item from the Rivermead Post-Concussion Symptoms Questionnaire measured at baseline, 3, 6 and 12 months after injury. Mixed-effect logistic regression analyses were applied to investigate changes in headache frequency and associated predictors. RESULTS A total of 2,291 patients responded to the headache item at baseline. At study enrolment, 59.3% of patients reported acute headache, with similar frequencies across all strata. Female patients and those aged up to 40 years reported a higher frequency of headache at baseline compared to males and older adults. The frequency of severe headache was highest in patients admitted to the ICU. The frequency of headache in the ER stratum decreased substantially from baseline to 3 months and remained from 3 to 6 months. Similar trajectory trends were observed in the ICU and ADM strata across 12 months. Younger age, more severe TBI, fatigue, neck pain and vision problems were among the predictors of more severe headache over time. More than 25% of patients experienced headache at 12 months after injury. CONCLUSIONS Headache is a common symptom after TBI, especially in female and younger patients. It typically decreases in the first 3 months before stabilising. However, more than a quarter of patients still experienced headache at 12 months after injury. Translational research is needed to advance the clinical decision-making process and improve targeted medical treatment for headache. TRIAL REGISTRATION ClinicalTrials.gov NCT02210221.
Collapse
Affiliation(s)
- Emilie Isager Howe
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway.
- Center for Habilitation and Rehabilitation Models and Services (CHARM), Institute of Health and Society, University of Oslo, Oslo, Norway.
| | - Nada Andelic
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
- Center for Habilitation and Rehabilitation Models and Services (CHARM), Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Cathrine Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Marina Zeldovich
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Eirik Helseth
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Division of Emergencies and Critical Care, Department of Research and Development, Oslo University Hospital, Oslo, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- NorHEAD - Norwegian Centre for Headache Research, Trondheim, Norway
| | - Alexander Olsen
- Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- NorHEAD - Norwegian Centre for Headache Research, Trondheim, Norway
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Silje C R Fure
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Alice Theadom
- TBI Network, Department of Psychology, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Katrin Rauen
- Neurological Rehabilitation Center Godeshöhe, Bonn, Germany
- Department of Traumatology & Department of Psychiatry, Psychotherapy, and Psychosomatics, Neuroscience Center Zurich, University of Zurich, University Hospital Zurich, Zürich, Switzerland
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Benedikte Å Madsen
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bram Jacobs
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Canadian Concussion Centre, Krembil Brain Institute, Toronto, ON, Canada
- Memory Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Cathrine Elisabeth Einarsen
- Department of Neuromedicine and Movement Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Gøril Storvig
- Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- NorHEAD - Norwegian Centre for Headache Research, Trondheim, Norway
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Erling Tronvik
- NorHEAD - Norwegian Centre for Headache Research, Trondheim, Norway
- Department of Neurology, St. Olav University Hospital, Trondheim, Norway
| | - Cathrine Tverdal
- Department of Neurosurgery, Division of Emergencies and Critical Care, Department of Research and Development, Oslo University Hospital, Oslo, Norway
| | | | - Cecilie Røe
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
- Center for Habilitation and Rehabilitation Models and Services (CHARM), Institute of Health and Society, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Torgeir Hellstrøm
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
34
|
Ge H, Zhou H, Song L, Tao Y, Hu L. Mitochondrial dysfunction and disulfidptosis co-regulate neuronal cell in neuropathic pain based on bioinformatics analysis. Mol Pain 2024; 20:17448069241290114. [PMID: 39323309 PMCID: PMC11468000 DOI: 10.1177/17448069241290114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/08/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024] Open
Abstract
Neuropathic pain (NP) affects approximately 6.9-10% of the world's population and necessitates the development of novel treatments. Mitochondria are essential in the regulation of cell death. Neuroimmune mechanisms are implicated in various forms of cell death associated with NP. However, the specific involvement of mitochondrial dysfunction and disulfidptosis in NP remains uncertain. Further research is required to gain a better understanding of their combined contribution. Our comprehensive study employs a variety of bioinformatic analysis methods, including differential gene analysis, weighted gene co-expression network analysis, machine learning, functional enrichment analysis, immune infiltration, sub-cluster analysis, single-cell dimensionality reduction and cell-cell communication to gain insight into the molecular mechanisms behind these processes. Our study rationally defines a list of key gene sets for mitochondrial dysfunction and disulfidptosis. 6 hub mitochondrial genes and 3 disulfidptosis-related genes (DRGs) were found to be associated with NP. The key genes were predominantly expressed in neurons and were lowly expressed in the NP group compared to SHAM. In addition, our macrophages used the APP (Amyloid precursor protein)-CD74 (MHC class II invariant chain) pathway to interact with neurons. These results suggest that NP is interconnected with the mechanistic processes of mitochondrial dysfunction and disulfidptosis, which may contribute to clinically targeted therapies.
Collapse
Affiliation(s)
- Hejia Ge
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongmei Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| | - Liuyi Song
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| | - Yuqing Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| | - Li Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| |
Collapse
|
35
|
Mayor RS, Ferreira NR, Lanzaro C, Castelo-Branco M, Valentim A, Donato H, Lapa T. Noninvasive transcranial brain stimulation in central post-stroke pain: A systematic review. Scand J Pain 2024; 24:sjpain-2023-0130. [PMID: 38956966 DOI: 10.1515/sjpain-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND The aim of this systematic review is to analyze the efficacy of noninvasive brain stimulation (NBS) in the treatment of central post-stroke pain (CPSP). METHODS We included randomized controlled trials testing the efficacy of transcranial magnetic stimulation (TMS) or transcranial direct current stimulation versus placebo or other usual therapy in patients with CPSP. Articles in English, Portuguese, Spanish, Italian, and French were included. A bibliographic search was independently conducted on June 1, 2022, by two authors, using the databases MEDLINE (PubMed), Embase (Elsevier), Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, and Web of Science Core Collection. The risk of bias was assessed using the second version of the Cochrane risk of bias (RoB 2) tool and the certainty of the evidence was evaluated through Grading of Recommendations Assessment, Development and Evaluation. RESULTS A total of 2,674 records were identified after removing duplicates, of which 5 eligible studies were included, involving a total of 119 patients. All five studies evaluated repetitive TMS, four of which stimulated the primary motor cortex (M1) and one stimulated the premotor/dorsolateral prefrontal cortex. Only the former one reported a significant pain reduction in the short term, while the latter one was interrupted due to a consistent lack of analgesic effect. CONCLUSION NBS in the M1 area seems to be effective in reducing short-term pain; however, more high-quality homogeneous studies, with long-term follow-up, are required to determine the efficacy of this treatment in CSPS.
Collapse
Affiliation(s)
- Rita Sotto Mayor
- Anesthesiology Department, Hospitais da Universidade de Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - Natália R Ferreira
- Institute of Occlusion and Orofacial Pain, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Camile Lanzaro
- Anesthesiology Department, Local Unit of Health in Alto Minho, Viana do Castelo, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
| | - Ana Valentim
- Anesthesiology Department, Hospitais da Universidade de Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - Helena Donato
- Hospitais da Universidade de Coimbra, Coimbra, Portugal
| | - Teresa Lapa
- Anesthesiology Department, Hospitais da Universidade de Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|