1
|
Zhong H, He L, Zhong W, Wang L, Luo J, Chen Q, Li R, Zhang R, Liu Z, Cheng Y. Jinxinkang granule alleviates chronic heart failure by enhancing GPER/AMPK/PCG-1α-mediated fatty acid oxidation. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2025; 14:100556. [DOI: 10.1016/j.prmcm.2024.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Lai Y, Tang Z, Du Z, Zeng Q, Xia Y, Chen S, Li X, Cheng Q, Mei M, He W. Attenuation of Hypertension and protection of vascular inflammation in hyperaldosteronism: GPER1 as potential therapeutic candidate when MR antagonist is less satisfying? Endocrine 2025; 87:1276-1284. [PMID: 39565544 PMCID: PMC11845544 DOI: 10.1007/s12020-024-04106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Hyperaldosteronism is an endocrine disorder leading to persistent and severe hypertension. G protein-coupled estrogen receptor 1(GPER1) is regarded as a potential receptor of aldosterone (ALDO). OBJECTIVE This study aimed to investigate the effects of GPER1 on aldosterone (ALDO)-induced hypertension and inflammation in mice. METHODS GPER1-knockout (KO) and wild-type (WT) C57BL/6j mice were divided into control (CON, normal saline treatment), ALDO (subcutaneous injections of 600 g/kg/d ALDO), and ALDO + eplerenone (EPL) (subcutaneous injections of 600 g/kg/d ALDO and 100 mg/kg/d EPL) groups (n = 5 per group). Fourteen days after drug administration, the heart rate and tail blood pressure of the mice in the different groups were measured. S100A8 and IL-1β protein expression in arterial tissues were detected by western blotting, NLRP3 expression was assessed using immunofluorescence, and CD68 expression was investigated using immunohistochemistry. RESULTS GPER1 deficiency alleviated ALDO-induced diastolic blood pressure (P< 0.05). In addition, the protein expression levels of IL-1β, S100A8, and CD68 showed significant decreases in the arterial tissues of GPER1-KO mice after combination treatment with ALDO and EPL (all P < 0.05). CONCLUSION We discovered attenuation of hypertension and vascular inflammation of GPER1 KO mice only on the basis of mineralocorticoid receptor (MR) blocking. Collectively, our study indicates that GPER1 might become a therapeutic target of hyperaldosteronism in controlling the residual risk of cardiovascular disease when MR antagonist alone is not satisfying.
Collapse
Affiliation(s)
- Yulian Lai
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziwei Tang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhipeng Du
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglian Zeng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Xia
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shangbin Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xun Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingfeng Cheng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei Mei
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwen He
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Kaplan A, El‐Samadi L, Zahreddine R, Amin G, Booz GW, Zouein FA. Canonical or non-canonical, all aspects of G protein-coupled receptor kinase 2 in heart failure. Acta Physiol (Oxf) 2025; 241:e70010. [PMID: 39960030 PMCID: PMC11831727 DOI: 10.1111/apha.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Abstract
G protein-coupled receptor kinase 2 (GRK2) with its multidomain structure performs various crucial cellular functions under both normal and pathological conditions. Overexpression of GRK2 is linked to cardiovascular diseases, and its inhibition or deletion has been shown to be protective. The functions of GRK2 extend beyond G protein-coupled receptor (GPCR) signaling, influencing non-GPCR substrates as well. Increased GRK2 in heart failure (HF) initially may be protective but ultimately leads to maladaptive effects such as GPCR desensitization, insulin resistance, and apoptosis. The multifunctional nature of GRK2, including its action in hypertrophic gene expression, insulin signaling, and cardiac fibrosis, highlights its complex role in HF pathogenesis. Additionally, GRK2 is involved in mitochondrial biogenesis and lipid metabolism. GRK2 also regulates epinephrine secretion from the adrenal gland and its increase in circulating lymphocytes can be used to monitor HF status. Overall, GRK2 is a multifaceted protein with significant implications for HF and the regulation of GRK2 is crucial for understanding and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Abdullah Kaplan
- Department of Pharmacology and ToxicologyAmerican University of Beirut Faculty of MedicineBeirutLebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of ExcellenceAmerican University of Beirut Medical CenterBeirutLebanon
- Cardiology ClinicKemer Public HospitalAntalyaTurkey
| | - Lana El‐Samadi
- Department of Pharmacology and ToxicologyAmerican University of Beirut Faculty of MedicineBeirutLebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of ExcellenceAmerican University of Beirut Medical CenterBeirutLebanon
| | - Rana Zahreddine
- Department of Pharmacology and ToxicologyAmerican University of Beirut Faculty of MedicineBeirutLebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of ExcellenceAmerican University of Beirut Medical CenterBeirutLebanon
| | - Ghadir Amin
- Department of Pharmacology and ToxicologyAmerican University of Beirut Faculty of MedicineBeirutLebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of ExcellenceAmerican University of Beirut Medical CenterBeirutLebanon
- Department of Pharmacology and Toxicology, School of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Fouad A. Zouein
- Department of Pharmacology and ToxicologyAmerican University of Beirut Faculty of MedicineBeirutLebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of ExcellenceAmerican University of Beirut Medical CenterBeirutLebanon
- Department of Pharmacology and Toxicology, School of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| |
Collapse
|
4
|
Wu M, He W, Gong H, Dong L, Ding N, Zhang G, Wang J, Rong W. The spatial and temporal pattern of GPER/GPR30 reporter expression in the developing and mature forebrain of mice. Brain Res Bull 2025; 223:111276. [PMID: 40024397 DOI: 10.1016/j.brainresbull.2025.111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Evidence suggest that estrogens play crucial roles in the regulation of neural development and function and the G protein-coupled estrogen receptor (GPER/GPR30) appears to be the predominant estrogen receptor in the brain. However, the distribution and functions of GPER in the developing and mature brain are not fully understood. The current study aimed to characterize the expression of GPER in the forebrain, using Gper gene reporter mice combined with fluorescent in situ hybridization (FISH/RNAscope) and immunohistochemistry (IHC). Two lines of Gper reporter mice were constructed by crossing the Gper-cre mice with Ai14(RCL-tdT)-D or R26-ZsGreen mice, which showed identical spatial distributions of the reporters in adult brain. In the forebrain, neurons, protoplasmic astrocytes, mural cells and ependymal cells of third ventricle, were found to express Gper reporters. GPER-expressing neurons were particularly enriched in the olfactory system and the salience network, including posteromedial nucleus of the cortical amygdala (PmCo), entorhinal cortex, insula cortex, prefrontal cortex and dentate gyrus of the hippocampus. RNAscope and neural tracing showed GPER-expressing cortical neurons were long-range excitatory pyramidal neurons. GPER-expressing astrocytes represented a minor population (<10 %) of astrocytes and were found to be closely associated with neurovascular units. GPER-expressing mural cells were not labelled by the common pericyte marker PDGFRβ. In the critical period of neural development (P1-P10), GPER expression appeared to be intimately associated with neurogenesis, proliferation and migration in the olfactory system and the salience network. Collectively, the spatial and temporal pattern of GPER/GPR30 expression in the forebrain implied it might play important roles regulating the development and functions of the olfactory system, the salience network and the cerebral vessels.
Collapse
Affiliation(s)
- Meimei Wu
- Department of Gastroenterology, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenxin He
- School of Basic Medical Science and Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Huashan Gong
- Department of Gastroenterology, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Dong
- Department of Gastroenterology, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Na Ding
- School of Basic Medical Science and Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Guohua Zhang
- Department of Gastroenterology, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Wang
- Department of Gastroenterology, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Weifang Rong
- Department of Gastroenterology, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Basic Medical Science and Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
5
|
Gu Y, Zhou Z, Zhao X, Ye X, Qin K, Liu J, Zhang X, Ji Y. Inflammatory burden index (IBI) and body roundness index (BRI) in gallstone risk prediction: insights from NHANES 2017-2020. Lipids Health Dis 2025; 24:63. [PMID: 39985035 PMCID: PMC11844043 DOI: 10.1186/s12944-025-02472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND The Inflammatory Load Index (IBI) and Body Roundness Index (BRI) were employed to evaluate the systemic inflammatory status and body fat. This study aims to elucidate the association between IBI and the prevalence of gallstones, as well as to analyze the mediating role of BRI in this association. METHODS Data from the National Health and Nutrition Examination Survey (NHANES) (2017-2020) were utilized in our cross-sectional study. A total of 2598 participants aged ≥ 20 years were enrolled. The Boruta algorithm, a supervised classification feature selection method, is leveraged to identify the confounding variables most strongly associated with the prevalence of gallstones. Weighted multivariate logistic regression, restricted cubic splines (RCS), and subgroup analyses were employed to investigate the association between IBI and gallstones, assess the presence of a linear association, and evaluate the effect of IBI on gallstone risk across different populations. Finally, the mediating effect of BRI was examined. RESULTS In the fully adjusted model, when IBI was in the highest tertile, each unit increase in IBI (corresponding to an increase of 1 in the natural logarithm of IBI) was linked to a 110.8% higher prevalence of gallstones (OR = 2.108, 95% CI: 1.109-4.005; P = 0.028). The odds ratio for gallstones increased with higher IBI levels across unadjusted, partially adjusted, and fully adjusted models (P for trend < 0.05). This positive association was confirmed to be linear by the RCS curve (P for nonlinear = 0.887). Subgroup analysis indicated that the risk of gallstones was significantly elevated in individuals aged ≥ 60, females, and those with a Poverty-to-Income Ratio (PIR) ≥ 2 (P < 0.05). Mediation analysis revealed that IBI had a significant indirect effect on gallstone prevalence through BRI, with an effect size of 0.0129 (95% CI: 0.0121-0.0136; P < 0.001), and the mediation contributed to 33.24% of the total effect. CONCLUSIONS This study demonstrates a significant linear positive relation of IBI to gallstone prevalence. Furthermore, BRI mediates the effect of IBI on gallstone risk. These findings provide a more precise inflammatory marker for gallstone prevention and treatment. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Yuting Gu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhanyi Zhou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuan Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaolu Ye
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Keyi Qin
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiahui Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao Zhang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yunxi Ji
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
6
|
Masenga SK, Wandira N, Cattivelli-Murdoch G, Saleem M, Beasley H, Hinton A, Ertuglu LA, Mwesigwa N, Kleyman TR, Kirabo A. Salt sensitivity of blood pressure: mechanisms and sex-specific differences. Nat Rev Cardiol 2025:10.1038/s41569-025-01135-0. [PMID: 39984695 DOI: 10.1038/s41569-025-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/23/2025]
Abstract
Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular disease in individuals with or without hypertension. However, the mechanisms and management of SSBP remain unclear, mainly because the diagnosis of this condition relies on salt loading-depletion protocols that are not feasible in the clinic. The prevalence of hypertension is lower in premenopausal women than in men, but this sex-specific difference is reversed after menopause. Whether excessive SSBP in women at any age contributes to this reversal is unknown, but many clinical studies that have rigorously assessed for SSBP using salt loading-depletion protocols have confirmed that SSBP is more prevalent in women than in men, including during premenopausal age. In this Review, we discuss sex-specific mechanisms of SSBP. We describe sex-related differences in renal transporters, hypertensive pregnancy, SSBP in autoimmune disorders and mitogen-activated protein kinase signalling pathways, and highlight limitations and lessons learned from Dahl salt-sensitive rat models.
Collapse
Affiliation(s)
- Sepiso K Masenga
- HAND research Group, Department of Pathology and Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia.
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Nelson Wandira
- Vanderbilt Mater of Public Health Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mohammad Saleem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lale A Ertuglu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naome Mwesigwa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, Department of Cell Biology, and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annet Kirabo
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Miller ZA, Carey RM, Lee RJ. A deadly taste: linking bitter taste receptors and apoptosis. Apoptosis 2025:10.1007/s10495-025-02091-3. [PMID: 39979526 DOI: 10.1007/s10495-025-02091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Humans can perceive five canonical tastes: salty, sour, umami, sweet, and bitter. These tastes are transmitted through the activation of ion channels and receptors. Bitter taste receptors (Taste Family 2 Receptors; T2Rs) are a sub-family of 25 G-protein coupled receptor (GPCR) isoforms that were first identified in type II taste bud cells. T2Rs are activated by a broad array of bitter agonists, which cause an increase in intracellular calcium (Ca2+) and a decrease in cyclic adenosine 3',5'-monophosphate (cAMP). Interestingly, T2Rs are expressed beyond the oral cavity, where they play diverse non-taste roles in cell physiology and disease. Here, we summarize the literature that explores the role of T2Rs in apoptosis. Activation of T2Rs with bitter agonists induces apoptosis in several cancers, the airway epithelia, smooth muscle, and more. In many of these tissues, T2R activation causes mitochondrial Ca2+ overload, a main driver of apoptosis. This response may be a result of T2R cellular localization, nuclear Ca2+ mobilization and/or a remnant of the established immunological roles of T2Rs in other cell types. T2R-induced apoptosis could be pharmacologically leveraged to treat diseases of altered cellular proliferation. Future work must explore additional extra-oral T2R-expressing tissues for apoptotic responses, develop methods for in-vivo studies, and discover high affinity bitter agonists for clinical application.
Collapse
Affiliation(s)
- Zoey A Miller
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Pharmacology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ryan M Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Brong A, Kontrogianni-Konstantopoulos A. Sex Chromosomes and Sex Hormones: Dissecting the Forces That Differentiate Female and Male Hearts. Circulation 2025; 151:474-489. [PMID: 39960989 PMCID: PMC11839176 DOI: 10.1161/circulationaha.124.069493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The heart is a highly sex-biased organ, as sex shapes innumerable aspects of heart health and disease. Sex chromosomes and sex hormones -testosterone, progesterone, and estrogen- establish and perpetuate the division between male and female myocardium. Of these differentiating factors, the insulating effects of estrogen have been rigorously interrogated and reviewed, whereas the influence of sex chromosomes, testosterone, and progesterone remains in dispute or ill-defined. Here, we synthesize growing evidence that sex chromosomes and sex hormones substantially bias heart form, function, and dysfunction in a context-dependent fashion. The discrete protective functions ascribed to each of the 3 estrogen receptors are also enumerated. Subsequently, we overview obstacles that have historically discouraged the inclusion of female subjects in basic science such as the impact of the female estrus cycle and reproductive senescence on data reliability and reproducibility. Furthermore, we weigh the utility of several common strategies to intercept and rescue sex-specific protection. Last, we warn of common compounds in animal chow and cell culture that interfere with estrogen signaling. In sum, we survey the controversies and challenges that stem from sex-inclusive cardiovascular research, comparing the possible causes of cardiac sex bias, elucidating sex chromosome or hormone-dependent processes in the heart, describing common lapses that imperil female and male cell and animal work, and illuminating facets of the female heart yet unexplored or still uncertain.
Collapse
Affiliation(s)
- Annie Brong
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Aikaterini Kontrogianni-Konstantopoulos
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Bushi A, Ma Y, Adu-Amankwaah J, Wang R, Cui F, Xiao R, Zhao J, Yuan J, Tan R. G protein-coupled estrogen receptor biased signaling in health and disease. Pharmacol Ther 2025; 269:108822. [PMID: 39978643 DOI: 10.1016/j.pharmthera.2025.108822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
G protein-coupled estrogen receptor (GPER) is now recognized for its pivotal role in cellular signaling, influencing diverse physiological processes and disease states. Unlike classical estrogen receptors, GPER exhibits biased signaling, wherein ligand binding triggers selective pathways over others, significantly impacting cellular responses. This review explores the nuanced mechanisms of biased signaling mediated by GPER, underscoring its relevance in cardiovascular health, neurological function, immune modulation, and oncogenic processes. Despite its critical implications, biased signaling through GPER remains underexplored compared to traditional signaling paradigms. We explore recent progress in understanding GPER signaling specificity and its potential therapeutic implications across various diseases. Future research directions aim to uncover the molecular basis of biased signaling, develop selective ligands, and translate these insights into personalized therapeutic approaches. Exploiting the therapeutic potential of GPER biased signaling represents a promising frontier in precision medicine, offering innovative strategies to address unmet medical needs.
Collapse
Affiliation(s)
- Aisha Bushi
- School international education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yixuan Ma
- First Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Rong Wang
- The second clinical college, China Medical University, Shenyang, Liaoning 110122, China
| | - Fen Cui
- Research Institution of Behavioral Medicine Education, Jining Medical University, Jining 272067, China
| | - Rui Xiao
- Second Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China; Department of Pathology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Jinxiang Yuan
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong, China.
| | - Rubin Tan
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
10
|
Wang Z, Li X, Liu X, Yang Y, Yan Y, Cui D, Meng C, Ali MI, Zhang J, Yao Z, Long Y, Yang R. Mechanistic insights into the anti-fibrotic effects of estrogen via the PI3K-Akt pathway in frozen shoulder. J Steroid Biochem Mol Biol 2025; 249:106701. [PMID: 39947440 DOI: 10.1016/j.jsbmb.2025.106701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
The development of frozen shoulder (FS) is primarily characterized by pathological fibrosis, yet clinical treatment options remain limited. Recent studies have identified estrogen depletion during perimenopause as a significant contributor to the onset of FS and fibrosis. This study investigates the role of estradiol (E2) and the estrogen-related receptor (GPER) in fibrotic processes associated with FS to elucidate the underlying mechanisms. The functional relationship between E2, GPER, and FS progression was examined using a rat immobilization model and synovial-derived fibroblasts (SFs) from FS patients. E2's effects on GPER expression, fibroblast activation, and tissue fibrosis were evaluated through Western blotting, immunofluorescence staining, collagen contraction assays, wound healing assays, and histological staining. RNA sequencing identified signaling pathways and key regulators involved in E2 treatment. Both E2 and the GPER activator G1 exhibited antifibrotic effects, improving shoulder mobility, reducing extracellular matrix (ECM) deposition in the periarticular capsule, and decreasing the expression of fibrosis-related genes, including fibronectin, α-SMA, and COL3. In contrast, the GPER inhibitor G15 reversed these effects, suggesting that E2 mediates its antifibrotic action through GPER activation. Mechanistically, KEGG pathway analysis revealed that E2 suppresses the PI3K/AKT signaling pathway by inhibiting PI3K and AKT phosphorylation, thereby preventing fibroblast activation and reversing FS-associated fibrosis. These findings provide mechanistic insights into the previously unrecognized role of GPER in FS progression and may open new avenues for research to optimize future clinical therapies.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xinhao Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoshan Liu
- Pediatric Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yitao Yang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yan Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Dedong Cui
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chenyang Meng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Maslah Idiris Ali
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jinming Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zeyu Yao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yi Long
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Rui Yang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
11
|
Qi M, Jin Y, Si L, Fu H, Shi X, Liu Y, Wang Y, Guo R. Estrogen Promotes the Proliferation and Migration of Endometrial Cancer Through the GPER-Mediated NOTCH Pathway. J Biochem Mol Toxicol 2025; 39:e70129. [PMID: 39878097 PMCID: PMC11775877 DOI: 10.1002/jbt.70129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/08/2024] [Accepted: 12/29/2024] [Indexed: 01/31/2025]
Abstract
This study aims to investigate the expression of GPER in EC, assess the impact of estrogen on the proliferation and migration of EC via GPER, and examine the potential role of GPER in mediating the NOTCH pathway to influence EC proliferation and migration. The expression of GPER and its correlation with clinicopathological features were investigated using clinical data. Cell proliferation was assessed through MTT and EdU assays, while cell migration ability was evaluated using wound healing and transwell assays. Western blot analysis was conducted to detect proteins associated with the GPER and NOTCH signaling pathways. Additionally, xenograft tumor models were established to investigate the potential role of estrogen in mediating the NOTCH pathway via GPER. The results demonstrated a significant upregulation of GPER expression in EC, which was associated with clinical stage and metastasis. In vitro experiments provided evidence that estrogen promotes EC cell proliferation and metastasis by enhancing the expression levels of GPER, Notch1, and Hes-1 proteins. Conversely, knocking down or suppressing GPER effectively reverses these effects. Furthermore, treatment with JAG-1, an agonist for the NOTCH pathway, counteracts si-GPER's inhibitory impact on both proliferation and migration abilities of EC cells while increasing Notch1 and Hes-1 protein expression levels; however, it does not alter GPER expression. In vivo experiments have substantiated that estrogen facilitates EC proliferation via the GPER-mediated NOTCH pathway.
Collapse
Affiliation(s)
- Meng Qi
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, The First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yuxi Jin
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, The First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Lulu Si
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, The First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Hanlin Fu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, The First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xiaojing Shi
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Medical Sciences, Zhengzhou UniversityZhengzhouHenanChina
| | - Yana Liu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, The First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yifan Wang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, The First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Ruixia Guo
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, The First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
12
|
Zhu Y, Wei J, Yang X, Zhu W. Molecular mechanism underlying cardioprotective effect of dehydroepiandrosterone on endoplasmic reticulum stress induced apoptosis in human vascular smooth muscle cells and human umbilical vein endothelial cells. Front Pharmacol 2025; 16:1496393. [PMID: 39936092 PMCID: PMC11810946 DOI: 10.3389/fphar.2025.1496393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
Introduction This study aimed to investigate the underlying mechanisms involved in the cardioprotective effects of dehydroepiandrosterone (DHEA) on endoplasmic reticulum stress (ERS) -mediated apoptosis in human vascular smooth muscle cells (HVSMCs) and human umbilical vein endothelial cells (HUVECs). Material and methods Various concentrations of Dithiothreitol (DTT) were used to induce ERS-mediated apoptosis. DHEA was utilized to inhibit the apoptotic effects of DTT, while estrogen receptor (ER) antagonists ICI 182,780 and G15, the androgen receptor (AR) antagonist flutamide and the aromatase inhibitor letrozole were used to identify the receptors activated during DHEA treatment in HVSMCs and HUVECs. Flow cytometry assessed the apoptotic rate, and Western blotting analysis evaluated the expression levels of ERS-related proteins GRP78 and PERK, and the apoptotic protein marker CHOP. Furthermore, the primary receptor signaling pathways were identified using signaling pathway blockers: LY294002 (PI3K blocker), SP600125 (JNK blocker), and U0126 (ERK1/2 blocker). Results In the DTT pretreatment group (0.8 mmol/L, for 8 h), the expressions of GRP78 and CHOP were significantly up regulated, indicating that an optimal ERS model was successfully established. Additionally, 10-4 mmol/L DHEA significantly inhibited the DTT-induced upregulation of GRP78 and CHOP. The results also demonstrated that the apoptotic rate in the DTT group was increased, while DHEA significantly reduced this rate. The addition of ER antagonists ICI 182,780 and G15 to HVSMCs reversed the effects of DHEA; however, the aromatase inhibitor letrozole and the AR antagonist flutamide did not reverse this effect. Notably, the use of the JNK inhibitor SP600125, the PI3K inhibitor LY294002, and the ERK1/2 inhibitor U0126 antagonized the protective effects of DHEA, with SP600125 showing the most significant impact on both HVSMCs and HUVECs. Conclusion Our study has identified a novel mechanism underlying the cardioprotective effects of DHEA. Specifically, DHEA may mitigate ERS-induced cell apoptosis by activating estrogen receptors ERα, ERβ, and GPER via the activated JNK pathway.
Collapse
Affiliation(s)
- Ye Zhu
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - Junxiu Wei
- Department of Reproductive Medicine, Affiliated Hospital of Hebei University, Baoding, China
| | - Xin Yang
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - Wei Zhu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
13
|
Li L, An Z, Lin C, Xu Q, Tang C. An update on regulation and function of G protein-coupled receptors in cancer: A promising strategy for cancer therapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189266. [PMID: 39864470 DOI: 10.1016/j.bbcan.2025.189266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/28/2025]
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a crucial role in signal transduction and cellular communication. GPCR proteins are involved in a wide range of physiological processes, including cell growth, migration, and survival. Dysregulation of GPCR protein expression has been implicated in the pathogenesis of various diseases, including cancer, and GPCR proteins have been shown to modulate these processes in various types of cancer, highlighting their importance as potential therapeutic targets. In this review, we summarize the expression regulation of GPCRs in cancer cells, update the various ways by which the abnormal expression of GPCR protein affects the behavior of tumor cells, and discuss the current research directions and potentially facing problems of strategies on GPCR-targeting therapy.
Collapse
Affiliation(s)
- Lin Li
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; Department of Urology, Third Affiliated Hospital of Naval Medical University, Shanghai 201805, China
| | - Zihao An
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Chao Lin
- Department of Neurosurgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Chao Tang
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
14
|
Fan LL, Wang XW, Zhang XM, Wei ZY, Wu HY, Yang QX, Fu D, de Mello RA, Lin JW, Yu H, Jiang GX. GNGT1 remodels the tumor microenvironment and promotes immune escape through enhancing tumor stemness and modulating the fibrinogen beta chain-neutrophil extracellular trap signaling axis in lung adenocarcinoma. Transl Lung Cancer Res 2025; 14:239-259. [PMID: 39958208 PMCID: PMC11826275 DOI: 10.21037/tlcr-2024-1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/17/2025] [Indexed: 02/18/2025]
Abstract
Background Despite the recent advancements in the treatment of cancer, the 5-year survival of patients with non-small cell lung cancer (NSCLC) remains unsatisfactory. Lung adenocarcinoma (LUAD) is NSCLC's most common subtype, and metastasis is the major cause of death in patients with cancer. Therefore, identifying novel targets associated with metastasis in NSCLC is crucial to improving treatment. This study aimed to characterize the expression of GNGT1 in LUAD and to clarify the mechanism underlying the association between the higher expression level of GNGT1 and worse prognosis in patients. Methods The transcriptome datasets and clinical information of patients with LUAD were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Bioinformatics analyses were performed in 515 patients who were stratified into two groups (high- and low-GNGT1 expression group) according to the GNGT1 level. Overall survival, DNA promotor methylation, immune cell infiltration, gene set enrichment analysis (GSEA), and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to elucidate the functions of GNGT1 and to identify the related hub genes in LUAD. Their expression and functions in LUAD were verified using tissues from patients and transgenic mice overexpressing GNGT1 under the control of a lung-specific promoter (Scgb1a1-Cre). Results GNGT1 was overexpressed in patients with LUAD and was associated with poor prognosis. GNGT1 expression was significantly correlated with gene alteration and hypomethylated promoter status. High GNGT1 expression in patients with LUAD was associated with advanced lymph node metastasis and the degree of immune cell infiltration. Functional enrichment analyses indicated that differentially expressed genes (DEGs) in the high-GNGT1 group participated in DNA replication, DNA replication preinitiation, and M phase, while cell adhesion molecules, apoptosis, and natural killer cell-mediated cytotoxicity were all downregulated. Messenger RNA and protein levels were correspondingly regulated in human LUAD tissues and the Scgb1a1-Cre; LSL-GNGT1 mouse model (GNGT1fl/+ mice). Conclusions GNGT1 was associated with tumor cell proliferation via the enhancement of tumor cell stemness and interaction with driver genes. Elevated GNGT1 expression promoted epithelial-mesenchymal transformation, remodeled the tumor microenvironment, and led to tumor metastasis, ultimately worsening the survival-related prognosis of patients with LUAD.
Collapse
Affiliation(s)
- Lin-Lin Fan
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Dalian Medical University, Taizhou, China
- Department of Pathology, Linyi People’s Hospital, Linyi, China
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, China
| | - Xiao-Wei Wang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, China
| | - Xiu-Mei Zhang
- Department of Pathology, The People’s Hospital of Xinghua City, Xinghua, China
| | - Zhi-Yong Wei
- Department of Pathology, Linyi People’s Hospital, Linyi, China
| | - Hui-Yi Wu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
- Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Qin-Xin Yang
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Dalian Medical University, Taizhou, China
- Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Da Fu
- Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Ramon Andrade de Mello
- Division of Medical Oncology, Nine of July University (UNINOVE), São Paulo, SP, Brazil
- Medical Oncology MSc Programme, University of Buckingham, Buckingham, UK
| | - Jie-Wei Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Dalian Medical University, Taizhou, China
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
- Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Geng-Xi Jiang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, China
| |
Collapse
|
15
|
Molina Calistro L, Arancibia Y, Olivera MA, Domke S, Torres RF. Interaction of GPER-1 with the endocrine signaling axis in breast cancer. Front Endocrinol (Lausanne) 2025; 16:1494411. [PMID: 39936103 PMCID: PMC11811623 DOI: 10.3389/fendo.2025.1494411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
G Protein-Coupled Estrogen Receptor 1 (GPER-1) is a membrane estrogen receptor that has emerged as a key player in breast cancer development and progression. In addition to its direct influence on estrogen signaling, a crucial interaction between GPER-1 and the hypothalamic-pituitary-gonadal (HPG) axis has been evidenced. The novel and complex relationship between GPER-1 and HPG implies a hormonal regulation with important homeostatic effects on general organ development and reproductive tissues, but also on the pathophysiology of cancer, especially breast cancer. Recent research points to a great versatility of GPER-1, interacting with classical estrogen receptors and with signaling pathways related to inflammation. Importantly, through its activation by environmental and synthetic estrogens, GPER-1 is associated with hormone therapy resistance in breast cancer. These findings open new perspectives in the understanding of breast tumor development and raise the possibility of future applications in the design of more personalized and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Yennyfer Arancibia
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | | | - Sigrid Domke
- Facultad de Ciencias para el cuidado de la salud, Universidad San Sebastián, Puerto Montt, Chile
| | | |
Collapse
|
16
|
Yang Z, Ping YQ, Wang MW, Zhang C, Zhou SH, Xi YT, Zhu KK, Ding W, Zhang QY, Song ZC, Zhao RJ, He ZL, Wang MX, Qi L, Ullmann C, Ricken A, Schöneberg T, Gan ZJ, Yu X, Xiao P, Yi F, Liebscher I, Sun JP. Identification, structure, and agonist design of an androgen membrane receptor. Cell 2025:S0092-8674(25)00035-2. [PMID: 39884271 DOI: 10.1016/j.cell.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 10/29/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Androgens, such as 5α-dihydrotestosterone (5α-DHT), regulate numerous functions by binding to nuclear androgen receptors (ARs) and potential unknown membrane receptors. Here, we report that the androgen 5α-DHT activates membrane receptor GPR133 in muscle cells, thereby increasing intracellular cyclic AMP (cAMP) levels and enhancing muscle strength. Further cryoelectron microscopy (cryo-EM) structural analysis of GPR133-Gs in complex with 5α-DHT or its derivative methenolone (MET) reveals the structural basis for androgen recognition. Notably, the presence of the "Φ(F/L)2.64-F3.40-W6.53" and the "F7.42××N/D7.46" motifs, which recognize the hydrophobic steroid core and polar groups, respectively, are common in adhesion GPCRs (aGPCRs), suggesting that many aGPCRs may recognize different steroid hormones. Finally, we exploited in silico screening methods to identify a small molecule, AP503, which activates GPR133 and separates the beneficial muscle-strengthening effects from side effects mediated by AR. Thus, GPR133 represents an androgen membrane receptor that contributes to normal androgen physiology and has important therapeutic potentials.
Collapse
Affiliation(s)
- Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yu-Qi Ping
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Ming-Wei Wang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shu-Hua Zhou
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yue-Tong Xi
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Kong-Kai Zhu
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wei Ding
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Qi-Yue Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhi-Chen Song
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ru-Jia Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zi-Lu He
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Meng-Xin Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Lei Qi
- Biomedical Research Center for Structural Analysis, Shandong University, Jinan 250012, Shandong, China
| | - Christian Ullmann
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Albert Ricken
- Institute of Anatomy, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Zhen-Ji Gan
- Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Xiao Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Fan Yi
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany.
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing 100191, China.
| |
Collapse
|
17
|
Meng X, Sheng L, You Y, Dai H, Yu M, Wang F, Zhou Z, Shan Y, Sheng M. Integrated serum metabolomics and network pharmacology reveal molecular mechanism of Qixue Huazheng formula on peritoneal fibrosis. Front Pharmacol 2025; 16:1515038. [PMID: 39917615 PMCID: PMC11799242 DOI: 10.3389/fphar.2025.1515038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Background Peritoneal fibrosis (PF) causes peritoneal dialysis (PD) withdrawal due to ultrafiltration failure. Qixue Huazheng formula (QXHZF), comprising Astragalus membranaceus, Centella asiatica, and Ligusticum sinense, is applied to treat PD-related peritoneum injury related; however, the active components, core genes, and underlying mechanism involved remain unclear. Methods The anti-PF effects of QXHZF were verified in vivo and in vitro. Targets underlying QXHZF-mediated improvement of PD-induced PF were predicted using network pharmacology analysis. Metabolites associated with QXHZF treatment of PD-related PF were analyzed by serum metabolomics. Integration of network pharmacology and serum metabolomics findings identified potentially important pathways, metabolites, and targets, and molecular docking studies confirmed the interactions of key components and targets. Western blotting (WB), quantitative real-time PCR (qRT-PCR), TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, and flow cytometry were conducted. Results QXHZF had potent therapeutic efficacy against PF according to WB, qRT-PCR, and pathological section examination. Network pharmacological analysis indicated that multiple QXHZF compounds contributed to improving PF by modulating various targets and pathways. Differential metabolites were identified by serum metabolomics analysis. Integrated data analysis indicated that steroid hormone biosynthesis, the Ras signaling pathway, apoptosis, and estrogen signaling contributed to the effects of QXHZF. Metabolite-target network and molecular docking analyses revealed that QXHZF can bind to estrogen receptor 1 (ESR1) and rapidly accelerated fibrosarcoma 1 (RAF1) through its components. WB demonstrated that QXHZF treatment reversed activation of the above-mentioned signaling pathways, thereby inhibiting PD fluid-induced PF. Conclusion QXHZF can significantly ameliorate PD-induced PF and may regulate estrogen signaling, the Ras pathway, and apoptosis in this context.
Collapse
Affiliation(s)
- Xiaohui Meng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Research Center of First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Sheng
- Department of Nephrology, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, China
| | - Yongqing You
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Research Center of First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huibo Dai
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Manshu Yu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Funing Wang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Research Center of First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziren Zhou
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Research Center of First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Meixiao Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Mueller MC, Blomberg R, Tanneberger AE, Davis-Hall D, Neeves KB, Magin CM. Female fibroblast activation is estrogen-mediated in sex-specific 3D-bioprinted pulmonary artery adventitia models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633670. [PMID: 39896610 PMCID: PMC11785021 DOI: 10.1101/2025.01.17.633670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Pulmonary arterial hypertension (PAH) impacts male and female patients in different ways. Female patients exhibit a greater susceptibility to disease (4:1 female-to-male ratio) but live longer after diagnosis than male patients. This complex sexual dimorphism is known as the estrogen paradox. Prior studies suggest that estrogen signaling may be pathologic in the pulmonary vasculature and protective in the heart, yet the mechanisms underlying these sex-differences in PAH remain unclear. PAH is a form of a pulmonary vascular disease that results in scarring of the small blood vessels, leading to impaired blood flow and increased blood pressure. Over time, this increase in blood pressure causes damage to the heart. Many previous studies of PAH relied on male cells or cells of undisclosed origin for in vitro modeling. Here we present a dynamic, 3D-bioprinted model that incorporates cells and circulating sex hormones from female patients to specifically study how female patients respond to changes in microenvironmental stiffness and sex hormone signaling. Poly(ethylene glycol)-alpha methacrylate (PEGαMA)-based hydrogels containing female human pulmonary artery adventitia fibroblasts (hPAAFs) from idiopathic PAH (IPAH) or control donors were 3D bioprinted to mimic pulmonary artery adventitia. These biomaterials were initially soft, like healthy blood vessels, and then stiffened using light to mimic vessel scarring in PAH. These 3D-bioprinted models showed that stiffening the microenvironment around female IPAH hPAAFs led to hPAAF activation. On both the protein and gene-expression levels, cellular activation markers significantly increased in stiffened samples and were highest in IPAH patient-derived cells. Treatment with a selective estrogen receptor modulator reduced expression hPAAF activation markers, demonstrating that hPAAF activation is a one pathologic response mediated by estrogen signaling in the vasculature, validating that drugs currently in clinical trials could be evaluated in sex-specific 3D-bioprinted pulmonary artery adventitia models.
Collapse
|
19
|
Gui Z, Shi W, Zhou F, Yan Y, Li Y, Xu Y. The role of estrogen receptors in intracellular estrogen signaling pathways, an overview. J Steroid Biochem Mol Biol 2025; 245:106632. [PMID: 39551163 DOI: 10.1016/j.jsbmb.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
To date five members of estrogen receptors (ESRs) have been reported. They are grouped into two classes, the nuclear estrogen receptors are members of the nuclear receptor family which found at nuclear, cytoplasm and plasma membrane, and the membrane estrogen receptors, such as G protein-coupled estrogen receptor 1, ESR-X and Gq-coupled membrane estrogen receptor. The structure and function of estrogen receptors, and interaction between ESR and coregulators were reviewed. In canonical pathway ESRs can translocate to the nucleus, bind to the target gene promotor with or without estrogen responsive element and regulate transcription, mediating the genomic effects of estrogen. Coactivators and corepressors are recruited to activate or inhibit transcription by activated ESRs. Many coactivators and corepressors are recruited to activate or inhibit ESR mediated gene transcription via different mechanisms. ESRs also indirectly bind to the promoter via interaction with other transcription factors, tethering the transcription factors. ESRs can be phosphorylated by several kinases such as p38, extracellular-signal-regulated kinase, and activated protein kinase B, and which activates transcription without ligand binding. Non-genomic estrogen action can be manifested by the increases of cytoplasmic NO and Ca2+ through the activation of membrane ESRs. In female, ESRs signaling is crucial for folliculogenesis, oocyte growth, ovulation, oviduct and uterus. In male, ESRs signaling modulates libido, erectile function, leydig cell steroidogenesis, sertoli cell's function, and epididymal fluid homeostatsis, supporting spermatogenesis and sperm maturation. The abnormal ESRs signaling is believed to be closely related to reproductive diseases and cancer.
Collapse
Affiliation(s)
- Zichang Gui
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Wei Shi
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Fangting Zhou
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yongqing Yan
- Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| | - Yuntian Li
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yang Xu
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China; Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| |
Collapse
|
20
|
Zhao R, Lian W, Xu Q. Sex hormones and immune regulation in ovarian cancer. Discov Oncol 2024; 15:849. [PMID: 39738765 DOI: 10.1007/s12672-024-01675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025] Open
Abstract
Ovarian cancer continues to be a major cause of morbidity and mortality in women, with immune regulation playing a critical role in its progression and treatment response. This review explores the interplay between sex hormones, particularly estrogen and progesterone, and immune regulation in ovarian cancer. We delve into the mechanisms by which these hormones influence immune cell function, modulate immune checkpoints, and alter the tumor microenvironment. Key pathways involving estrogen and progesterone receptors are examined, highlighting their impact on tumor growth and immune evasion. The review also discusses the therapeutic implications of these interactions, including the potential for combining hormone-based therapies with immune checkpoint inhibitors. Personalized medicine approaches, leveraging biomarkers for predicting treatment response, are considered essential for optimizing patient outcomes. Finally, we address current research gaps and future directions, emphasizing the need for advanced research technologies and novel therapeutic strategies to improve the treatment of ovarian cancer through a better understanding of hormone-immune interactions.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Tianhe District, Guangzhou, 510623, Guangdong, China
| | - Wenqin Lian
- Department of Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Tianhe District, Guangzhou, 510623, Guangdong, China.
| | - Qiong Xu
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Tianhe District, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
21
|
Liu X, Cheng R, Song Y, Yang X, Niu X, Wang C, Jia G, Ji H. Global burden of subarachnoid hemorrhage among adolescents and young adults aged 15-39 years: A trend analysis study from 1990 to 2021. PLoS One 2024; 19:e0316111. [PMID: 39705242 DOI: 10.1371/journal.pone.0316111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/05/2024] [Indexed: 12/22/2024] Open
Abstract
OBJECTIVE This study aims to analyze the global burden of subarachnoid hemorrhage (SAH) among adolescents and young adults (AYAs) aged 15-39 years from 1990 to 2021, highlighting spatial and temporal trends and providing insights for future public health strategies. METHODS Data were collected from the Global Burden of Disease Study 2021 (GBD 2021), which includes comprehensive evaluations of health conditions and associated risk factors across 204 countries and territories. The focus was on SAH incidence, prevalence, mortality, and disability-adjusted life years (DALYs) among AYAs. The data were segmented by age groups (15-19, 20-24, 25-29, 30-34, 35-39 years) and socio-demographic index (SDI) quintiles. Statistical analyses, including Joinpoint regression and decomposition analysis, were employed to assess temporal trends and the impact of population growth, aging, and epidemiological changes. RESULTS From 1990 to 2021, the global number of SAH incident cases among AYAs increased by 12.6%, from 109,120 cases in 1990 to 122,822 cases in 2021. Prevalent cases rose by 17.1%, from 1,212,170 cases in 1990 to 1,419,127 cases in 2021. Conversely, the number of deaths decreased by approximately 26.6%, from 30,348 cases in 1990 to 22,266 cases in 2021. Similarly, DALYs decreased by 23.7%, from 1,996,041 cases in 1990 to 1,523,328 cases in 2021. Notably, over these thirty years, the age-standardized rates (ASR) of incidence, prevalence, mortality, and DALYs for the AYA population showed an overall decreasing trend, despite fluctuations in specific periods. The age-standardized mortality rate (ASMR) and age-standardized DALYs (ASR for DALYs) decreased continuously with an average annual percentage change (AAPC) of -2.2% (95% CI: -2.36, -2.04) and -2.02% (95% CI: -2.17, -1.88), respectively. The age-standardized incidence rate (ASIR) and age-standardized prevalence rate (ASPR) had an AAPC of -0.8% (95% CI: -0.85, -0.75) and -0.65% (95% CI: -0.66, -0.64), respectively. Particularly, the ASIR showed a continuous decline from 1990 to 2015, followed by a slight increase from 2014 to 2019 (APC: 0.14%, 95% CI: 0.03, 0.25), and accelerated growth from 2019 to 2021 (APC: 1.23%, 95% CI: 0.88, 1.57). The ASPR declined from 1990 to 2019, followed by an increase from 2019 to 2021 (APC: 0.15%, 95% CI: 0.05, 0.25). Regional analysis revealed substantial burdens in the Middle-SDI and Low-Middle-SDI regions, with the Middle-SDI region having the highest incidence, prevalence, mortality, and DALYs. Decomposition analysis indicated that population growth was the primary driver of increased SAH cases, while epidemiological changes contributed significantly to the decline in deaths and DALYs. CONCLUSION The findings underscore the need for targeted public health interventions, particularly in low and low-middle-SDI regions, to reduce the burden of SAH among AYAs. Improved healthcare resources, enhanced health education, and preventive strategies are crucial. This study provides valuable data to inform future public health policies and resource allocation, emphasizing the importance of addressing the unique challenges faced by AYAs.
Collapse
Affiliation(s)
- Xuanchen Liu
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Taiyuan, Shanxi Province, China
| | - Rui Cheng
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Taiyuan, Shanxi Province, China
| | - Yingda Song
- Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Xiaoxiong Yang
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Xiaochen Niu
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Taiyuan, Shanxi Province, China
| | - Chunhong Wang
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Guijun Jia
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Hongming Ji
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Taiyuan, Shanxi Province, China
| |
Collapse
|
22
|
Wang DG, Gao J, Wang J, Li KC, Wu ZB, Liao ZM, Wu YB. TFAP2A drives non-small cell lung cancer (NSCLC) progression and resistance to targeted therapy by facilitating the ESR2-mediated MAPK pathway. Cell Death Discov 2024; 10:491. [PMID: 39695171 DOI: 10.1038/s41420-024-02251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/12/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Cancer is among the leading causes of death related diseases worldwide, and lung cancer has the highest mortality rate in the world. Transcription factors (TFs) constitute a class of structurally and functionally intricate proteins. Aberrant expression or functional deficiencies of transcription factors may give rise to abnormal gene expression, contributing to various diseases, including tumours. In this study, we propose to elucidate the potential role and mechanism of TFAP2A in NSCLC. We found that TFAP2A levels were significantly greater in tumour tissues than para-tumour tissues, and high expression of TFAP2A was associated with poor prognosis in NSCLC patients. Additionally, TFAP2A overexpression promoted NSCLC progression both in vivo and in vitro. Mechanistically, ESR2 is a potential target regulated by TFAP2A and that TFAP2A can bind to the promoter region of ESR2. Furthermore, the overexpression of both TFAP2A and ESR2 in NSCLC cells was associated with the overactivation of MAPK signalling, and the combination of PHTPP and osimertinib had a synergistic effect on suppressing tumour growth.
Collapse
Affiliation(s)
- Ding-Guo Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kun-Chao Li
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhi-Bo Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhong-Min Liao
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yong-Bing Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
23
|
Fukuma N, Tokiwa H, Numata G, Ueda K, Liu PY, Tajima M, Otsu Y, Kariya T, Hiroi Y, Liao JK, Komuro I, Takimoto E. Endothelial oestrogen-myocardial cyclic guanosine monophosphate axis critically determines angiogenesis and cardiac performance during pressure overload. Cardiovasc Res 2024; 120:1884-1897. [PMID: 39259833 PMCID: PMC11630045 DOI: 10.1093/cvr/cvae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 04/11/2024] [Accepted: 06/22/2024] [Indexed: 09/13/2024] Open
Abstract
AIMS Oestrogen exerts beneficial cardiovascular effects by binding to specific receptors on various cells to activate nuclear and non-nuclear actions. Oestrogen receptor α (ERα) non-nuclear signalling confers protection against heart failure remodelling, involving myocardial cyclic guanosine monophosphate (cGMP)-cGMP-dependent protein kinase G (PKG) activation; however, its tissue-specific role remains elusive. Herein, we examine the cell type-specific role of ERα non-nuclear signalling in oestrogen-conferred protection against heart failure. METHODS AND RESULTS We first assessed the tissue-specific impacts of ERα on the cardiac benefits derived from oestrogen, utilizing endothelial ERα deletion (ERαf/f/Tie2Cre+) and myocyte ERα deletion (ERαf/f/αMHCCre+) female mice. Female mice were ovariectomized and the effect of estradiol (E2) was assessed in hearts exposed to 3 weeks of pressure overload [transverse aortic constriction (TAC)]. E2 failed to improve cardiac function in ERαf/f/Tie2Cre+ TAC hearts but provided benefits in ERαf/f/αMHCCre+ TAC hearts, indicating that endothelial ERα is essential. We next assessed the role of non-nuclear signalling in endothelial cells (ECs), employing animals with endothelial-specific inactivation of ERα non-nuclear signalling (ERαKI/KI/Tie2Cre+). Female ovariectomized mice were supplemented with E2 and subjected to 3-week TAC. ERαKI/KI/Tie2Cre+TAC hearts revealed exacerbated cardiac dysfunction and reduced myocardial PKG activity as compared to littermate TAC hearts, which were associated with attenuated myocardial induction of vascular endothelial growth factor (VEGF) and angiogenesis as assessed by CD31-stained capillary density. This phenotype of ERαKI/KI/Tie2Cre+was rescued by myocardial PKG activation from chronic treatment with a soluble guanylate cyclase (sGC) stimulator. We performed co-culture experiments to determine endothelial-cardiomyocyte interactions. VEGF induction by E2 in cardiac myocytes required a co-existence of intact endothelial ERα signalling in a nitric oxide synthase-dependent manner. On the other hand, VEGF was induced in myocytes directly with an sGC stimulator in the absence of ECs. CONCLUSION An endothelial oestrogen-myocardial cGMP axis stimulates angiogenic response and improves cardiac performance during pressure overload.
Collapse
Affiliation(s)
- Nobuaki Fukuma
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Hiroyuki Tokiwa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Genri Numata
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Kazutaka Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Pang-Yen Liu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Miyu Tajima
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Yu Otsu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Taro Kariya
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
- Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Hiroi
- Department of Cardiovascular Medicine, National Center for Global Health and Medicine, Tokyo, Japan
- Vascular Medicine Research, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
| | - James K Liao
- Vascular Medicine Research, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
24
|
Xing Y, Huang B, Cui Z, Zhang Q, Ma H. Dioscin improves fatty liver hemorrhagic syndrome by promoting ERα-AMPK mediated mitophagy in laying hens. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156056. [PMID: 39342780 DOI: 10.1016/j.phymed.2024.156056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Mitochondria play a crucial role in upholding metabolic homeostasis. Mitochondrial damage closely associated with the pathogenesis of fatty liver hemorrhagic syndrome (FLHS), while mitophagy being among the most effective methods for eliminating the damaged mitochondria. Dioscin, a natural extract, can activate autophagy; however, its effects on FLHS regarding mitophagy regulation remain unelucidated. PURPOSE We explored the impact of dioscin on FLHS induced by a high-energy and low-protein (HELP) diet in laying hens, mainly focused the protective effects of dioscin on mitochondrial injury. METHOD To investigate the impact of dioscin on fatty liver syndrome in laying hens, we first induced the condition by feeding them a high-energy and low-protein diet. Then, we assessed lipid metabolism-related markers using oil red staining and a commercial detection kit. In addition, the role of dioscin on fatty liver syndrome in laying hens was confirmed by assessing the activation of hepatocyte fat deposition and hepatocyte apoptosis; and the mechanism of dioscin in FLHS was investigated through LMH cell experiment in vitro. Furthermore, CETSA and molecular docking were conducted for additional confirmation. RESULT The results showed that dioscin alleviated mitochondrial damage, relieved the excessive deposition of hepatic lipid droplets and oxidative stress induced by HELP diet in laying hens. Furthermore, dioscin regulated the mitophagy by activating the estrogen receptor α (ERα)/adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway, thus mitigating mitochondria injury and apoptosis in hepatocytes. In addition, we found that dioscin promoted the translocation of nuclear transcription factor into nucleus by activating ERα-AMPK signaling, facilitating autophagic flux in the liver of laying hens and LMH cells. Furthermore, cells pretreated with the lysosomal acidification inhibitor bafilomycin A1 blocked the inhibitory effect of dioscin on the apoptosis induced by palmitic acid (PA)-stimulation in LMH cells, suggesting that dioscin reduces PA-induced apoptosis by activating mitophagy. Moreover, dioscin-induced lysosomal acidification and mitochondrial biogenesis were reversed in PA-induced LMH cells pretreated with ERα-specific inhibitor methylpiperidino pyrazole. CONCLUSION This study firstly demonstrated that dioscin alleviates fatty liver syndrome induced by HELP diet in laying hens. The findings from this study illustrated that dioscin plays a significant role in reducing mitochondrial damage and apoptosis, and these beneficial effects mainly achieve through promotion of ERα-AMPK signaling, which mediates autophagy within the liver of laying hens fed a HELP-diets. These findings provide a theoretical basis for considering dioscin as a possible treatment option for mitigating FLHS in egg-laying hens.
Collapse
Affiliation(s)
- Yuxiao Xing
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Benzeng Huang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyi Cui
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
25
|
D'Onofrio V, Sékaly RP. The immune-endocrine interplay in sex differential responses to viral infection and COVID-19. Trends Immunol 2024; 45:943-958. [PMID: 39562265 DOI: 10.1016/j.it.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/21/2024]
Abstract
Men are at higher risk for developing severe COVID-19 than women, while women are at higher risk for developing post-acute sequelae of COVID-19 (PASC). This highlights the impact of sex differences on immune responses and clinical outcomes of acute COVID-19 or PASC. A dynamic immune-endocrine interface plays an important role in the development of effective immune responses impacting the control of viral infections. In this opinion article we discuss mechanisms underlying the transcriptional and epigenetic regulation of immune responses by sex hormones during viral infections. We propose that disruption of this delicate immune-endocrine interplay can result in worsened outcomes of viral disease. We also posit that insights into these immune mechanisms can propel the development of novel immunomodulatory interventions that leverage immune-endocrine pathways to treat viral infections.
Collapse
Affiliation(s)
- Valentino D'Onofrio
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Rafick Pierre Sékaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
26
|
Natale CA, Mercado S, Zhuang R, Aguirre-Portolés C, Olayide I, Arnatt CK, Seykora JT, Garyantes TK, Luke W, Ridky TW. LNS8801: An enantiomerically pure agonist of the G protein-coupled estrogen receptor suitable for clinical development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625421. [PMID: 39651267 PMCID: PMC11623565 DOI: 10.1101/2024.11.26.625421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Estrogen effects in tissue are mediated in part through activation of the surface estrogen receptor GPER, a broadly expressed G protein-coupled receptor that impacts a wide range of normal and pathologic processes, including metabolism, vascular health, inflammation, and cancer. A commonly used synthetic and specific GPER agonist, named G-1, antagonizes tumors by promoting cellular differentiation and enhancing tumor immunogenicity. G-1 is a racemic compound, and since its discovery, the question of whether both enantiomers display agonist activity or the agonist activity resides primarily in a single enantiomer has never been fully resolved. Herein, we disclose the isolation of the pure enantiomers of G-1 and determine that the desirable activity resides exclusively in 1 enantiomer, named LNS8801, whose configuration we have unambiguously determined by single crystal x-ray structure analysis. Using preclinical models, we show that LNS8801 suppresses cancer in a GPER-dependent manner and that LNS8801 is efficacious when administered orally. Further, we show that GPER is widely, but not ubiquitously, expressed in both normal and malignant human tissues. In addition, an attenuated response to LNS8801 is observed in a common germline coding variant in human GPER. These findings support ongoing human cancer trials with LNS8801 and suggest that the germline GPER genotype may serve as a predictive biomarker of therapeutic response.
Collapse
|
27
|
Grahovac J, Đurić A, Tanić M, Krivokuća A. Sex-Related Differences in Pancreatic Ductal Adenocarcinoma Progression and Response to Therapy. Int J Mol Sci 2024; 25:12669. [PMID: 39684385 DOI: 10.3390/ijms252312669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly malignancies with an increasing incidence rate and limited therapeutic options. Biological sex has an impact on many aspects of PDAC development and response to therapy, yet it is highly unappreciated in both basic and translational research, and worryingly in PDAC clinical trials. In this review, we summarize how biological sex influences PDAC incidence and mortality, genetic and epigenetic landscapes, anti-tumor immunity, responses to hormones, cachexia, and the efficacy of therapy. We highlight the importance of sex as a variable and discuss how to implement it into preclinical and clinical research. These considerations should be of use to researchers aiming at improving understanding of PDAC biology and developing precision medicine therapeutic strategies.
Collapse
Affiliation(s)
- Jelena Grahovac
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Ana Đurić
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Miljana Tanić
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Ana Krivokuća
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| |
Collapse
|
28
|
Yu X, Zhao QY, Yaman M, Emly SM, Lee JK, Su H, Ferguson AC, Nagaswami C, Chaturantabut S, Goessling W, Weisel JW, Auchus RJ, Shavit JA. Hormone-induced thrombosis is mediated through non-canonical fibrin(ogen) aggregation and a novel estrogen target in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623199. [PMID: 39605542 PMCID: PMC11601434 DOI: 10.1101/2024.11.13.623199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Venous thrombosis is a well-known complication of sex hormone therapy, with onset typically within weeks to months after initiation. Worldwide, more than 100 million pre-menopausal women use combined oral contraceptives, with tens to hundreds of thousands developing thrombosis annually, resulting in significant morbidity and mortality. Although it is known that estrogens can alter expression of coagulation factors, the pathways and mechanisms that connect the two systems, as well as the proteins involved in progression to thrombosis, are poorly understood. Identification of these mediators are central to any comprehensive understanding of hormone-induced pathophysiology, could help ascertain patients at higher risk for thrombosis, and may also pinpoint future therapeutic targets. The zebrafish is a powerful genetic model in which the hemostatic system is almost entirely conserved with humans. Its external development, ability to generate thousands of offspring at low cost, and optical transparency all make it a powerful tool to study the genetics of coagulation disorders. We previously produced a transgenic line (fgb-egfp) that generates GFP-tagged fibrinogen that labels induced and spontaneous fibrin-rich thrombi. Here we show rapid onset of thrombosis after exposure to various estrogens, but not progestins or testosterone. Thrombi are localized to the venous system, develop broadly along the posterior cardinal vein, and show evidence for clot contraction. Thrombosis is only partially impeded by anticoagulants, occurs in the absence of factor X and prothrombin, but is completely blocked in the absence of fibrinogen. Furthermore, although an estrogen receptor antagonist is partially inhibitory, targeted knockout of all known estrogen receptors does not eliminate thrombosis. These data suggest that zebrafish can be used to model human estrogen-induced thrombosis, although the lack of dependence on the canonical coagulation cascade is surprising. The inability to completely inhibit thrombosis through genetic/pharmacologic anticoagulation or estrogen receptor disruption suggests that the mechanisms may be multifactorial. We hypothesize that thrombi are composed of fibrin(ogen) aggregates rather than purely fibrin. Results of further studies could lead to novel therapeutic targets and ascertain patients at higher risk for thrombosis.
Collapse
Affiliation(s)
- Xinge Yu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Queena Y. Zhao
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Murat Yaman
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Sylvia M. Emly
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | | | - Hongyu Su
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | | | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | | | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Division of Health Sciences and Technology, Harvard-MIT, Cambridge, MA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
| | - John W. Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Richard J. Auchus
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jordan A. Shavit
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| |
Collapse
|
29
|
Hsu SH, Chen LR, Chen KH. Primary Osteoporosis Induced by Androgen and Estrogen Deficiency: The Molecular and Cellular Perspective on Pathophysiological Mechanisms and Treatments. Int J Mol Sci 2024; 25:12139. [PMID: 39596206 PMCID: PMC11593909 DOI: 10.3390/ijms252212139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Primary osteoporosis is closely linked to hormone deficiency, which disrupts the balance of bone remodeling. It affects postmenopausal women but also significantly impacts older men. Estrogen can promote the production of osteoprotegerin, a decoy receptor for RANKL, thereby preventing RANKL from activating osteoclasts. Furthermore, estrogen promotes osteoblast survival and function via activation of the Wnt signaling pathway. Likewise, androgens play a critical role in bone metabolism, primarily through their conversion to estrogen in men. Estrogen deficiency accelerates bone resorption through a rise in pro-inflammatory cytokines (IL-1, IL-6, TNF-α) and RANKL, which promote osteoclastogenesis. In the classic genomic pathway, estrogen binds to estrogen receptors in the cytoplasm, forming a complex that migrates to the nucleus and binds to estrogen response elements on DNA, regulating gene transcription. Androgens can be defined as high-affinity ligands for the androgen receptor; their combination can serve as a ligand-inducible transcription factor. Hormone replacement therapy has shown promise but comes with associated risks and side effects. In contrast, the non-genomic pathway involves rapid signaling cascades initiated at the cell membrane, influencing cellular functions without directly altering gene expression. Therefore, the ligand-independent actions and rapid signaling pathways of estrogen and androgen receptors can be harnessed to develop new drugs that provide bone protection without the side effects of traditional hormone therapies. To manage primary osteoporosis, other pharmacological treatments (bisphosphonates, teriparatide, RANKL inhibitors, sclerostin inhibitors, SERMs, and calcitonin salmon) can ameliorate osteoporosis and improve BMD via actions on different pathways. Non-pharmacological treatments include nutritional support and exercise, as well as the dietary intake of antioxidants and natural products. The current study reviews the processes of bone remodeling, hormone actions, hormone receptor status, and therapeutic targets of primary osteoporosis. However, many detailed cellular and molecular mechanisms underlying primary osteoporosis seem complicated and unexplored and warrant further investigation.
Collapse
Affiliation(s)
- Shao-Heng Hsu
- Department of Medical Education, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Li-Ru Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 104, Taiwan;
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Kuo-Hu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, New Taipei City 231, Taiwan
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| |
Collapse
|
30
|
Liu D, Zheng M, Lu C, Miao M, Zhan Y, Ma F, Yin Y, Wei M, Wang W, Wang W, Meng X, Li J, Zhang Y, Liu G, Tang YD. GPR30 Selective Agonist G1 Exhibits Antiobesity Effects and Promotes Insulin Resistance and Gluconeogenesis in Postmenopausal Mice Fed a High-Fat Diet. J Lipids 2024; 2024:5513473. [PMID: 39554996 PMCID: PMC11567725 DOI: 10.1155/2024/5513473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 09/21/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Background: G1, a specific agonist targeting the G protein-coupled receptor 30 (GPR30), has demonstrated significant involvement in combating obesity and regulating glucose homeostasis. Nevertheless, the beneficial effects of G1 treatment have solely been investigated in animal models under normal feeding conditions, leaving its therapeutic potential in high-fat feeding scenarios unexplored. Material and Methods: To address this gap, our study employed an ovariectomized high-fat diet mouse model to assess the therapeutic effects of G1 in combating obesity and metabolic dysfunction. Results: The findings revealed that G1 treatment resulted in weight loss, but concurrently led to increased blood glucose levels and insulin resistance. Treatment with G1 resulted in an amplification of fat mobilization and an enhancement of pyruvate carboxylase activity in mice fed a high-fat diet. Moreover, the combined impact of G1 treatment and a high-fat diet on pyruvate metabolism, as well as the regulation of crucial gluconeogenesis enzymes such as pyruvate dehydrogenase kinase 4 (PDK4), phosphoenolpyruvate carboxykinase (PEPCK), and glucose transporter 2 (GLUT2), expedites the elevation of blood glucose and the progression of insulin resistance. Conclusions: These findings indicate that G1 treatment is influenced by a high-fat diet, potentially disrupting glucolipid metabolism and promoting insulin resistance alongside its antiobesity effects. Consequently, further investigation is imperative to thoroughly explore this potential toxic side effect of G1 therapy.
Collapse
Affiliation(s)
- Da Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
- Graduate School of Hebei Medical University, Shijiazhuang, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Congcong Lu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Mengdan Miao
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Yinge Zhan
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
| | - Fangfang Ma
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
| | - Yajuan Yin
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
| | - Mei Wei
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
| | - Wei Wang
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
| | - Wenyao Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Xiangbin Meng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jing Li
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
| | - Yaohua Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Yi-Da Tang
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
- Graduate School of Hebei Medical University, Shijiazhuang, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
31
|
Wang X, Wang X, Ma J, Zhang S, Fang W, Xu F, Du J, Liang H, Duan W, Li Z, Liu J. GPR30 Agonist G1 Mitigates Sepsis-Induced Cardiac Dysfunction by Inhibiting ACE2/c-FOS-Mediated Necroptosis in Female Mice. ACS Infect Dis 2024; 10:3797-3809. [PMID: 39377746 DOI: 10.1021/acsinfecdis.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Sepsis is a severe inflammatory syndrome with high mortality and morbidity. Sepsis-induced myocardial dysfunction (SIMD) is a common cause of death in sepsis. The female sex is less susceptible to sepsis-related organ dysfunction, although the underlying mechanism of this sex difference remains unclear. This study explored the role of estrogen receptor G protein-coupled estrogen receptor 30 (GPR30) in septic cardiac dysfunction. Results from the present study indicated that GPR30 activation by the G1 agonist protected female mouse hearts against SIMD exposed to lipopolysaccharides. However, this beneficial effect was absent in female ACE2-knockout mice, as demonstrated by poorer cardiac contractility, myocardial injury, and necroptosis. We also demonstrated that the Stat6 transcription factor induced ace2 transcription by enhancing its promoter activity under GPR30 activation in septic hearts. The adenovirus-mediated inhibition of ACE2 targeting c-FOS expression reversed the deterioration, restored cardiac function, and improved survival in female ACE2-knockout mice. These results demonstrate the essential role of GPR30/STAT6/ACE2/c-FOS-mediated necroptosis in G1-mediated protection and provide novel insight into the pathogenesis of sepsis-related organ damage.
Collapse
Affiliation(s)
- Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Shuaishuai Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Weiyi Fang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Fujie Xu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Jun Du
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Hongliang Liang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, United States
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| |
Collapse
|
32
|
Yang Y, Wang Y, Zou H, Li Z, Chen W, Huang Z, Weng Y, Yu X, Xu J, Zheng L. GPER1 signaling restricts macrophage proliferation and accumulation in human hepatocellular carcinoma. Front Immunol 2024; 15:1481972. [PMID: 39582864 PMCID: PMC11582010 DOI: 10.3389/fimmu.2024.1481972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Background Sex hormones and their related receptors have been reported to impact the development and progression of tumors. However, their influence on the composition and function of the tumor microenvironment is not well understood. We aimed to investigate the influence of sex disparities on the proliferation and accumulation of macrophages, one of the major components of the tumor microenvironment, in hepatocellular carcinoma (HCC). Methods Immunohistochemistry was applied to assess the density of immune cells in HCC tissues. The role of sex hormone related signaling in macrophage proliferation was determined by immunofluorescence and flow cytometry. The underlying regulatory mechanisms were examined with both in vitro experiments and murine HCC models. Results We found higher levels of macrophage proliferation and density in tumor tissues from male patients compared to females. The expression of G protein-coupled estrogen receptor 1 (GPER1), a non-classical estrogen receptor, was significantly decreased in proliferating macrophages, and was inversely correlated with macrophage proliferation in HCC tumors. Activation of GPER1 signaling with a selective agonist G-1 suppressed macrophage proliferation by downregulating the MEK/ERK pathway. Additionally, G-1 treatment reduced PD-L1 expression on macrophages and delayed tumor growth in mice. Moreover, patients with a higher percentage of GPER1+ macrophages exhibited longer overall survival and recurrence-free survival compared to those with a lower level. Conclusions These findings reveal a novel role of GPER1 signaling in regulating macrophage proliferation and function in HCC tumors and may offer a potential strategy for designing therapies based on understanding sex-related disparities of patients.
Collapse
Affiliation(s)
- Yanyan Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongchun Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhixiong Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weibai Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhijie Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yulan Weng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xingjuan Yu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
33
|
Zhu BT, Liao QQ, Tian HY, Yu DJ, Xie T, Sun XL, Zhou XM, Han YX, Zhao YJ, El-Kassas M, Liu XX, Sun XD, Zhang YY. Estrogen: the forgotten player in metaflammation. Front Pharmacol 2024; 15:1478819. [PMID: 39575382 PMCID: PMC11578702 DOI: 10.3389/fphar.2024.1478819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Metaflammation is low-grade inflammation triggered by chronic metabolic imbalance and caused by dysregulated metabolites in metabolic inflammatory syndrome (MIS), which includes four diseases: obesity, type 2 diabetes mellitus (T2DM), atherosclerosis (AS), and nonalcoholic fatty liver diseases (NAFLD, recently proposed to be replaced by metabolic dysfunction-associated steatotic liver disease, MASLD). These diseases exhibit apparent sex dimorphism as regards MIS. Estrogen not only plays a crucial role in gender differences in adults but also possesses an anti-inflammatory effect on many metabolic diseases. In this study, we present a prediction of the differential proteins and signal transduction of estrogen in MIS through network pharmacology and review the validated studies on obesity, T2DM, AS, and NAFLD. Subsequently, we compared them to obtain valuable targets, identify current gaps, and provide perspectives for future research on the mechanisms of estrogen in metaflammation.
Collapse
Affiliation(s)
- Bao-Ting Zhu
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qing-Qing Liao
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Hai-Ying Tian
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Dao-Jiang Yu
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Teng Xie
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xi-Lu Sun
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xin-Meng Zhou
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ying-Xuan Han
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yu-Jie Zhao
- Medical College, Tibet University, Lasa, China
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
- Liver Disease Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Steatotic Liver Disease Study Foundation in Middle East and North Africa (SLMENA), Cairo, Egypt
| | - Xiu-Xiu Liu
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiao-Dong Sun
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Medical College, Tibet University, Lasa, China
| | - Yuan-Yuan Zhang
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| |
Collapse
|
34
|
Toporcer T, Grendel T, Špaková I, Blichárová A, Verbóová Ľ, Benetinová Z, Čižmárová B, Rabajdová M, Toporcerová S. An In Vivo Model of Estrogen Supplementation Concerning the Expression of Ca 2+-Dependent Exchangers and Mortality, Vitality and Survival After Myocardial Infarction in Ovariectomized Rats. J Cardiovasc Dev Dis 2024; 11:352. [PMID: 39590195 PMCID: PMC11595027 DOI: 10.3390/jcdd11110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Ischemic-reperfusion damage of cardiomyocytes due to myocardial infarction (MI) often leads to the death of an individual. Premenopausal women have been observed to have a significantly lower risk of cardiovascular disease (CVD) than men of the same age. In menopausal women, this trend is significantly reversed, and the risk of CVD increases up to 10-fold. Estrogens affect the development and function of the heart muscle, and as they decrease, the risk and poor prognosis of CVD increase. This study is focused on the effects of estrogen supplementation on morbidity, vitality, and NCX1 expression after MI on a model system. METHODS In this study, female Sprague Dawley rats (n = 58), which were divided into three experimental groups (NN-control group, non-supplemented; OVX-N-ovariectomized, non-supplemented; OVX-S-ovariectomized, supplemented), received left thoracotomy in the fourth intercostal space. The left anterior descendent coronary artery was ligated 2 mm from its origin with an 8.0 suture. An immunohistological analysis as well as an RT-PCR analysis of NCX1 expression were performed. RESULTS A higher survival rate was recorded in the OVX-N group (86%) in comparison with the OVX-S group (53%) (p < 0.05). In addition, higher NCX1 expression 7 days/14 days after MI in the OVX-S group in comparison with the NN and OVX-N (p < 0.001 and p < 0.05) groups was recorded. Seven days after MI, a significantly higher expression (p < 0.005) of mRNA NCX1 in the OVX-N group was also recorded in comparison with the NN group. CONCLUSIONS This study provides a comprehensive description of the effect of estrogen supplementation on NCX1 expression and overall vitality in ovariectomized rats that survived MI.
Collapse
Affiliation(s)
- Tomáš Toporcer
- Department of Heart Surgery, East Slovak Institute of Cardiovascular Disease and Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia;
| | - Tomáš Grendel
- Department of Anesthesiology and Intensive Medicine, East Slovak Institute of Cardiovascular Disease and Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia (B.Č.); (M.R.)
| | - Alžbeta Blichárová
- Department of Pathology, Louis Pasteur University Hospital and Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (A.B.); (Ľ.V.); (Z.B.)
| | - Ľudmila Verbóová
- Department of Pathology, Louis Pasteur University Hospital and Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (A.B.); (Ľ.V.); (Z.B.)
| | - Zuzana Benetinová
- Department of Pathology, Louis Pasteur University Hospital and Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (A.B.); (Ľ.V.); (Z.B.)
| | - Beata Čižmárová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia (B.Č.); (M.R.)
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia (B.Č.); (M.R.)
| | - Silvia Toporcerová
- Department of Gynecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University and Gyncare, 040 11 Košice, Slovakia
| |
Collapse
|
35
|
Kusewitt DF, Sharma G, Woods CD, Rosas E, Hathaway HJ, Prossnitz ER. GPER expression prevents estrogen-induced urinary retention in obese mice. J Steroid Biochem Mol Biol 2024; 244:106607. [PMID: 39197539 PMCID: PMC11444091 DOI: 10.1016/j.jsbmb.2024.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Long-term administration of exogenous estrogen is known to cause urinary retention and marked, often fatal, bladder distention in both male and female mice. Estrogen-treated mice have increased bladder pressure and decreased urine flow, suggesting that urinary retention in estrogen-treated mice is due to infravesicular obstruction to urine outflow. Thus, the condition is commonly referred to as bladder outlet obstruction (BOO). Obesity can also lead to urinary retention. As the effects of estrogen are mediated by multiple receptors, including estrogen receptors ERα and ERβ and the G protein-coupled estrogen receptor (GPER), we sought to determine whether GPER plays a role in estrogen-induced BOO, particularly in the context of obesity. Wild type and GPER knockout (KO) mice fed a high-fat diet were ovariectomized or left ovary-intact (sham surgery) and supplemented with slow-release estrogen or vehicle-only pellets. Supplementing both GPER KO and wild type obese mice with estrogen for 8 weeks resulted in weight loss, splenic enlargement, and thymic atrophy, as expected. However, estrogen-treated obese GPER KO mice developed abdominal distension, debilitation, and ulceration of the skin surrounding the urogenital opening. At necropsy, these mice had prominently distended bladders and hydronephrosis. In contrast, estrogen-treated obese wild type mice only rarely displayed these signs. Our results suggest that, under conditions of obesity, estrogen induces BOO as a result of ERα-driven pathways and that GPER expression is protective against BOO.
Collapse
Affiliation(s)
- Donna F Kusewitt
- Department of Pathology, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA.
| | - Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Christine D Woods
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Emmanuel Rosas
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Helen J Hathaway
- Department of Cell Biology & Physiology, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA; Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA.
| |
Collapse
|
36
|
Han K, Choi G, Kim TJ. Fluorescence-based techniques for investigating estrogen receptor dynamics. BMB Rep 2024; 57:472-483. [PMID: 39219049 PMCID: PMC11608856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Understanding estrogen receptor (ER) signaling pathways is crucial for uncovering the mechanisms behind estrogen-related diseases, such as breast cancer, and addressing the effects of environmental estrogenic disruptors. Traditionally, ER signaling involves genomic events, including ligand binding, receptor dimerization, and transcriptional modulation within cellular nuclei. However, recent research have revealed ERs also participate in non-genomic signaling pathways, adding complexity to their functions. Researchers use advanced fluorescence-based techniques, leveraging fluorescent probes (FPb) to study ER dynamics in living cells, such as spatial distribution, expression kinetics, and functional activities. This review systematically examines the application of fluorescent probes in ER signaling research, covering the visualization of ER, ligandreceptor interactions, receptor dimerization, estrogen response elements (EREs)-mediated transcriptional activation, and G-proteincoupled estrogen receptor (GPER) signaling. Our aim is to provide researchers with valuable insights for employing FPb in their explorations of ER signaling. [BMB Reports 2024; 57(11): 472-483].
Collapse
Affiliation(s)
- Kiseok Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Gyuho Choi
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| |
Collapse
|
37
|
Gan X, Dai G, Li Y, Xu L, Liu G. Intricate roles of estrogen and estrogen receptors in digestive system cancers: a systematic review. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0224. [PMID: 39475214 PMCID: PMC11523274 DOI: 10.20892/j.issn.2095-3941.2024.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024] Open
Abstract
Gender disparities are evident across different types of digestive system cancers, which are typically characterized by a lower incidence and mortality rate in females compared to males. This finding suggests a potential protective role of female steroid hormones, particularly estrogen, in the development of these cancers. Estrogen is a well-known sex hormone that not only regulates the reproductive system but also exerts diverse effects on non-reproductive organs mediated through interactions with estrogen receptors (ERs), including the classic (ERα and ERβ) and non-traditional ERs [G protein-coupled estrogen receptor (GPER)]. Recent advances have contributed to our comprehension of the mechanisms underlying ERs in digestive system cancers. In this comprehensive review we summarize the current understanding of the intricate roles played by estrogen and ERs in the major types of digestive system cancers, including hepatocellular, pancreatic, esophageal, gastric, and colorectal carcinoma. Furthermore, we discuss the potential molecular mechanisms underlying ERα, ERβ, and GPER effects, and propose perspectives on innovative therapies and preventive measures targeting the pathways regulated by estrogen and ERs. The roles of estrogen and ERs in digestive system cancers are complicated and depend on the cell type and tissue involved. Additionally, deciphering the intricate roles of estrogen, ERs, and the associated signaling pathways may guide the discovery of novel and tailored therapeutic and preventive strategies for digestive system cancers, eventually improving the care and clinical outcomes for the substantial number of individuals worldwide affected by these malignancies.
Collapse
Affiliation(s)
- Xiaoning Gan
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Department of Physiology, Michigan State University, East Lansing 48824, USA
| | - Guanqi Dai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yonghao Li
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Lin Xu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Guolong Liu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
38
|
Redwood-Sawyerr C, Howe G, Evans Theodore A, Nesbeth DN. Genetically Encoded Trensor Circuits Report HeLa Cell Treatment with Polyplexed Plasmid DNA and Small-Molecule Transfection Modulators. ACS Synth Biol 2024; 13:3163-3172. [PMID: 39240234 PMCID: PMC11494703 DOI: 10.1021/acssynbio.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
HeLa cell transfection with plasmid DNA (pDNA) is widely used to materialize biologicals and as a preclinical test of nucleic acid-based vaccine efficacy. We sought to genetically encode mammalian transfection sensor (Trensor) circuits and test their utility in HeLa cells for detecting molecules and methods for their propensity to influence transfection. We intended these Trensor circuits to be triggered if their host cell was treated with polyplexed pDNA or certain small-molecule modulators of transfection. We prioritized three promoters, implicated by others in feedback responses as cells import and process foreign material and stably integrated each into the genomes of three different cell lines, each upstream of a green fluorescent protein (GFP) open reading frame within a transgene. All three Trensor circuits showed an increase in their GFP expression when their host HeLa cells were incubated with pDNA and the degraded polyamidoamine dendrimer reagent, SuperFect. We next experimentally demonstrated the modulation of PEI-mediated HeLa cell transient transfection by four different small molecules, with Trichostatin A (TSA) showing the greatest propensity to boost transgene expression. The Trensor circuit based on the TRA2B promoter (Trensor-T) was triggered by incubation with TSA alone and not the other three small molecules. These data suggest that mammalian reporter circuits could enable low-cost, high-throughput screening to identify novel transfection methods and reagents without the need to perform actual transfections requiring costly plasmids or expensive fluorescent labels.
Collapse
Affiliation(s)
- Chileab Redwood-Sawyerr
- Department of Biochemical
Engineering, University College London, Bernard Katz Building, London WC1E 6BT, U.K.
| | - Geoffrey Howe
- Department of Biochemical
Engineering, University College London, Bernard Katz Building, London WC1E 6BT, U.K.
| | - Andalucia Evans Theodore
- Department of Biochemical
Engineering, University College London, Bernard Katz Building, London WC1E 6BT, U.K.
| | - Darren N. Nesbeth
- Department of Biochemical
Engineering, University College London, Bernard Katz Building, London WC1E 6BT, U.K.
| |
Collapse
|
39
|
Kuş MM, Düzenli ZB, Öztürk P, Kurutas EB. Evaluation of the relationship between serum G protein-coupled estrogen receptors (GPER-1) levels and the severity and duration of the disease in patients with androgenetic alopecia: A case-control study. Arch Dermatol Res 2024; 316:658. [PMID: 39369050 DOI: 10.1007/s00403-024-03380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 10/07/2024]
Abstract
There are studies revealing the effects of estrogen receptors alpha (α) and beta (β) on hair follicles. However, the effects of G protein-coupled estrogen receptors (GPER-1) on hair follicles have not been elucidated. This study aims to evaluate the relationship between serum GPER-1 levels and the severity and duration of the disease in patients with androgenetic alopecia (AGA). The study included 81 patients with AGA aged 18 to 50 years (22 men and 19 women with an onset of AGA more than 5 years, and 20 men and 20 women with an onset of AGA less than 5 years) and 40 healthy controls (20 men, 20 women). The mean age of participants with AGA was 29.12 ± 8.15 (18-50), and the mean age of the control group was 25.21± 4.71 (19-42). Serum GPER-1 levels were measured, and the relationship between GPER-1 levels and duration of the disease, severity of the disease, and sex was statistically evaluated. The serum level of GPER-1 was significantly higher in patients with AGA as compared to the control group (p < 0.001). A negative correlation was found between serum GPER-1 levels and the duration of the disease in both men and women (p < 0.001, r = 0.793; p < 0.001, r = 0.711, respectively). There was a significant relationship between serum GPER-1 levels and the severity of the disease in both men and women (p = 0.003; p = 0.002, respectively). Additionally, a significant difference in GPER-1 levels was noted between male and female patients with AGA (p = 0.001). However, no statistically significant relationship was identified between GPER-1 levels and estrogen levels (p = 0.097). The higher levels of GPER-1 in patients with AGA compared to the control group, and the significant relationship between GPER-1 levels and both the duration and severity of the disease, suggest an estrogen-independent role of GPER-1 in the pathogenesis of AGA. The fact that GPER-1 levels are high in the early stages of AGA when inflammation is prominent suggests that treatments targeting these receptors may be effective at this stage.
Collapse
Affiliation(s)
- Mine Müjde Kuş
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Dermatology, Kahramanmaraş, 46100, Turkey.
| | - Zahide Beril Düzenli
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Dermatology, Kahramanmaraş, 46100, Turkey
| | - Perihan Öztürk
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Dermatology, Kahramanmaraş, 46100, Turkey
| | - Ergul Belge Kurutas
- Kahramanmaraş Sütçü İmam University School of Medicine, Department of Biochemistry, Kahramanmaras, 46100, Turkey
| |
Collapse
|
40
|
Kuralay A, McDonough MC, Resch JM. Control of sodium appetite by hindbrain aldosterone-sensitive neurons. Mol Cell Endocrinol 2024; 592:112323. [PMID: 38936597 PMCID: PMC11381173 DOI: 10.1016/j.mce.2024.112323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Mineralocorticoids play a key role in hydromineral balance by regulating sodium retention and potassium wasting. Through favoring sodium, mineralocorticoids can cause hypertension from fluid overload under conditions of hyperaldosteronism, such as aldosterone-secreting tumors. An often-overlooked mechanism by which aldosterone functions to increase sodium is through stimulation of salt appetite. To drive sodium intake, aldosterone targets neurons in the hindbrain which uniquely express 11β-hydroxysteroid dehydrogenase type 2 (HSD2). This enzyme is a necessary precondition for aldosterone-sensing cells as it metabolizes glucocorticoids - preventing their activation of the mineralocorticoid receptor. In this review, we will consider the role of hindbrain HSD2 neurons in regulating sodium appetite by discussing HSD2 expression in the brain, regulation of hindbrain HSD2 neuron activity, and the circuitry mediating the effects of these aldosterone-sensitive neurons. Reducing the activity of hindbrain HSD2 neurons may be a viable strategy to reduce sodium intake and cardiovascular risk, particularly for conditions of hyperaldosteronism.
Collapse
Affiliation(s)
- Ahmet Kuralay
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA
| | - Miriam C McDonough
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Jon M Resch
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
41
|
Gaxiola-Rubio A, Jave-Suárez LF, Hernández-Silva CD, Ramírez-de-Arellano A, Villegas-Pineda JC, Lizárraga-Ledesma MDJ, Ramos-Solano M, Diaz-Palomera CD, Pereira-Suárez AL. The G-Protein-Coupled Estrogen Receptor Agonist G-1 Mediates Antitumor Effects by Activating Apoptosis Pathways and Regulating Migration and Invasion in Cervical Cancer Cells. Cancers (Basel) 2024; 16:3292. [PMID: 39409923 PMCID: PMC11475807 DOI: 10.3390/cancers16193292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Estrogens and HPV are necessary for cervical cancer (CC) development. The levels of the G protein-coupled estrogen receptor (GPER) increase as CC progresses, and HPV oncoproteins promote GPER expression. The role of this receptor is controversial due to its anti- and pro-tumor effects. This study aimed to determine the effect of GPER activation, using its agonist G-1, on the transcriptome, cell migration, and invasion in SiHa cells and non-tumorigenic keratinocytes transduced with the HPV16 E6 or E7 oncogenes. METHODS Transcriptome analysis was performed to identify G-1-enriched pathways in SiHa cells. We evaluated cell migration, invasion, and the expression of associated proteins in SiHa, HaCaT-16E6, and HaCaT-16E7 cells using various assays. RESULTS Transcriptome analysis revealed pathways associated with proliferation/apoptosis (TNF-α signaling, UV radiation response, mitotic spindle formation, G2/M cell cycle, UPR, and IL-6/JAK/STAT), cellular metabolism (oxidative phosphorylation), and cell migration (angiogenesis, EMT, and TGF-α signaling) in SiHa cells. Key differentially expressed genes included PTGS2 (pro/antitumor), FOSL1, TNFRSF9, IL1B, DIO2, and PHLDA1 (antitumor), along with under-expressed genes with pro-tumor effects that may inhibit proliferation. Additionally, DKK1 overexpression suggested inhibition of cell migration. G-1 increased vimentin expression in SiHa cells and reduced it in HaCaT-16E6 and HaCaT-16E7 cells. However, G-1 did not affect α-SMA expression or cell migration in any of the cell lines but increased invasion in HaCaT-16E7 cells. CONCLUSIONS GPER is a promising prognostic marker due to its ability to activate apoptosis and inhibit proliferation without promoting migration/invasion in CC cells. G-1 could potentially be a tool in the treatment of this neoplasia.
Collapse
Affiliation(s)
- Abigail Gaxiola-Rubio
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.G.-R.); (A.R.-d.-A.)
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Christian David Hernández-Silva
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (C.D.H.-S.); (J.C.V.-P.); (M.d.J.L.-L.); (M.R.-S.)
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.G.-R.); (A.R.-d.-A.)
| | - Julio César Villegas-Pineda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (C.D.H.-S.); (J.C.V.-P.); (M.d.J.L.-L.); (M.R.-S.)
| | - Marisa de Jesús Lizárraga-Ledesma
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (C.D.H.-S.); (J.C.V.-P.); (M.d.J.L.-L.); (M.R.-S.)
| | - Moisés Ramos-Solano
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (C.D.H.-S.); (J.C.V.-P.); (M.d.J.L.-L.); (M.R.-S.)
| | - Carlos Daniel Diaz-Palomera
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.G.-R.); (A.R.-d.-A.)
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.G.-R.); (A.R.-d.-A.)
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (C.D.H.-S.); (J.C.V.-P.); (M.d.J.L.-L.); (M.R.-S.)
| |
Collapse
|
42
|
Zhang H, Yan J, Xie D, Zhu X, Nie G, Zhang H, Li X. Selenium restored mitophagic flux to alleviate cadmium-induced hepatotoxicity by inhibiting excessive GPER1-mediated mitophagy activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134855. [PMID: 38880044 DOI: 10.1016/j.jhazmat.2024.134855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Cadmium (Cd) is a common environmental pollutant, while selenium (Se) can ameliorate heavy metal toxicity. Consequently, this study aimed to investigate the protective effects of Se against Cd-induced hepatocyte injury and its underlying mechanisms. To achieve this, we utilized the Dongdagou-Xinglong cohort, BRL3A cell models, and a rat model exposed to Cd and/or Se. The results showed that Se counteracted liver function injury and the decrease in GPER1 levels caused by environmental Cd exposure, and various methods confirmed that Se could protect against Cd-induced hepatotoxicity both in vivo and in vitro. Mechanistically, Cd caused excessive mitophagy activation, evidenced by the colocalization of LC3B, PINK1, Parkin, P62, and TOMM20. Transfection of BRL3A cells with mt-keima adenovirus indicated that Cd inhibited autophagosome-lysosome fusion, thereby impeding mitophagic flux. Importantly, G1, a specific agonist of GPER1, mitigated Cd-induced mitophagy overactivation and hepatocyte toxicity, whereas G15 exacerbates these effects. Notably, Se supplementation attenuated Cd-induced GPER1 protein reduction and excessive mitophagy activation while facilitating autophagosome-lysosome fusion, thereby restoring mitophagic flux. In conclusion, this study proposed a novel mechanism whereby Se alleviated GPER1-mediated mitophagy and promoted autophagosome-lysosome fusion, thus restoring Cd-induced mitophagic flux damage, and preventing hepatocyte injury.
Collapse
Affiliation(s)
- Honglong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Jun Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; Medical School Cancer Center of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China
| | - Danna Xie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xingwang Zhu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Guole Nie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Haijun Zhang
- Department of Anesthesiology and Operating Theater, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; Medical School Cancer Center of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; General Surgery Clinical Medical Research Center of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China.
| |
Collapse
|
43
|
Sbrini G, Mutti V, Bono F, Tomasoni Z, Fadel D, Missale C, Fiorentini C. 17-β-estradiol potentiates the neurotrophic and neuroprotective effects mediated by the dopamine D3/acetylcholine nicotinic receptor heteromer in dopaminergic neurons. Eur J Pharmacol 2024; 976:176678. [PMID: 38821163 DOI: 10.1016/j.ejphar.2024.176678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Dopaminergic neurons express a heteromer composed of the dopamine D3 receptor and the α4β2 nicotinic acetylcholine receptor, the D3R-nAChR heteromer, activated by both nicotine and dopamine D2 and D3 receptors agonists, such as quinpirole, and crucial for dopaminergic neuron homeostasis. We now report that D3R-nAChR heteromer activity is potentiated by 17-β-estradiol which acts as a positive allosteric modulator by binding a specific domain on the α4 subunit of the nicotinic receptor protomer. In mouse dopaminergic neurons, in fact, 17-β-estradiol significantly increased the ability of nicotine and quinpirole in promoting neuron dendritic remodeling and in protecting neurons against the accumulation of α-synuclein induced by deprivation of glucose, with a mechanism that does not involve the classical estrogen receptors. The potentiation induced by 17-β-estradiol required the D3R-nAChR heteromer since either nicotinic receptor or dopamine D3 receptor antagonists and interfering TAT-peptides, but not the estrogen receptor antagonist fulvestrant, specifically prevented 17-β-estradiol effects. Evidence of estrogens neuroprotection, mainly mediated by genomic mechanisms, have been provided, which is in line with epidemiological data reporting that females are less likely to develop Parkinson's Disease than males. Therefore, potentiation of D3R-nAChR heteromer activity may represent a further mechanism by which 17-β-estradiol reduces dopaminergic neuron vulnerability.
Collapse
Affiliation(s)
- Giulia Sbrini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Veronica Mutti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Federica Bono
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Zaira Tomasoni
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Dounia Fadel
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Cristina Missale
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
44
|
Żabińska M, Wiśniewska K, Węgrzyn G, Pierzynowska K. Exploring the physiological role of the G protein-coupled estrogen receptor (GPER) and its associations with human diseases. Psychoneuroendocrinology 2024; 166:107070. [PMID: 38733757 DOI: 10.1016/j.psyneuen.2024.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Estrogen is a group of hormones that collaborate with the nervous system to impact the overall well-being of all genders. It influences many processes, including those occurring in the central nervous system, affecting learning and memory, and playing roles in neurodegenerative diseases and mental disorders. The hormone's action is mediated by specific receptors. Significant roles of classical estrogen receptors, ERα and ERβ, in various diseases were known since many years, but after identifying a structurally and locationally distinct receptor, the G protein-coupled estrogen receptor (GPER), its role in human physiology and pathophysiology was investigated. This review compiles GPER-related information, highlighting its impact on homeostasis and diseases, while putting special attention on functions and dysfunctions of this receptor in neurobiology and biobehavioral processes. Understanding the receptor modulation possibilities is essential for therapy, as disruptions in receptors can lead to diseases or disorders, irrespective of correct estrogen levels. We conclude that studies on the GPER receptor have the potential to develop therapies that regulate estrogen and positively impact human health.
Collapse
Affiliation(s)
- Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland.
| |
Collapse
|
45
|
Hjelt A, Anttila S, Wiklund A, Rokka A, Al‐Ramahi D, Toivola DM, Polari L, Määttä J. Estrogen deprivation and estrogen receptor α antagonism decrease DSS colitis in female mice. Pharmacol Res Perspect 2024; 12:e1234. [PMID: 38961539 PMCID: PMC11222167 DOI: 10.1002/prp2.1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024] Open
Abstract
The association of hormonal contraception with increased risk of inflammatory bowel disease (IBD) observed in females suggests involvement of ovarian hormones, such as estradiol, and the estrogen receptors in the progression of intestinal inflammation. Here, we investigated the effects of prophylactic SERM2 and estradiol supplementation in dextran sulfate sodium-induced colitis using mice with intact ovaries and ovariectomized (OVX) female mice. We found that graded colitis score was threefold reduced in the OVX mice, compared to mice with intact ovaries. Estradiol supplementation, however, aggravated the colitis in OVX mice, increasing the colitis score to a similar level than what was observed in the intact mice. Further, we observed that immune infiltration and gene expression of inflammatory interleukins Il1b, Il6, and Il17a were up to 200-fold increased in estradiol supplemented OVX colitis mice, while a mild but consistent decrease was observed by SERM2 treatment in intact animals. Additionally, cyclo-oxygenase 2 induction was increased in the colon of colitis mice, in correlation with increased serum estradiol levels. Measured antagonist properties of SERM2, together with the other results presented here, indicates an exaggerating role of ERα signaling in colitis. Our results contribute to the knowledge of ovarian hormone effects in colitis and encourage further research on the potential use of ER antagonists in the colon, in order to alleviate inflammation.
Collapse
Affiliation(s)
- Anja Hjelt
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | | | - Anu Wiklund
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Anne Rokka
- Turku BioscienceUniversity of TurkuTurkuFinland
| | - Darin Al‐Ramahi
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Bioanalytical LaboratoryUniversity of TurkuTurkuFinland
| | - Diana M. Toivola
- Faculty of Science and Engineering, Department of Biosciences, Cell BiologyÅbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Centre for Disease ModelingUniversity of TurkuTurkuFinland
| | - Lauri Polari
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Faculty of Science and Engineering, Department of Biosciences, Cell BiologyÅbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
| | - Jorma Määttä
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Turku Centre for Disease ModelingUniversity of TurkuTurkuFinland
| |
Collapse
|
46
|
Wu Z, Xiao C, Wang J, Zhou M, You F, Li X. 17β-estradiol in colorectal cancer: friend or foe? Cell Commun Signal 2024; 22:367. [PMID: 39030619 PMCID: PMC11264751 DOI: 10.1186/s12964-024-01745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy with higher incidence and mortality rates in men compared to women, potentially due to the effects of estrogen signaling. There is substantial evidence supporting the significant role of 17β-Estradiol (E2) in reducing CRC risk in females, although this perspective remains debated. E2 has been demonstrated to inhibit CRC cell proliferation and migration at the cellular level by enhancing DNA mismatch repair, modulating key gene expression, triggering cell cycle arrest, and reducing activity of migration factors. Furthermore, E2 contributes to promote a tumor microenvironment unfavorable for CRC growth by stimulating ERβ expression, reducing inflammatory responses, reversing immunosuppression, and altering the gut microbiome composition. Conversely, under conditions of high oxidative stress, hypoxia, and nutritional deficiencies, E2 may facilitate CRC development through GPER-mediated non-genomic signaling. E2's influence on CRC involves the genomic and non-genomic signals mediated by ERβ and GPER, respectively, leading to its dual roles in anticancer activity and carcinogenesis. This review aims to summarize the potential mechanisms by which E2 directly or indirectly impacts CRC development, providing insights into the phenomenon of sexual dimorphism in CRC and suggesting potential strategies for prevention and treatment.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiamei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Min Zhou
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, 401147, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- Oncology Teaching and Research Department of Chengdu, University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
47
|
Chen L, Zhang Y, Wang Z, Zhang Z, Wang J, Zhu G, Yang S. Activation of GPER1 by G1 prevents PTSD-like behaviors in mice: Illustrating the mechanisms from BDNF/TrkB to mitochondria and synaptic connection. CNS Neurosci Ther 2024; 30:e14855. [PMID: 38992889 PMCID: PMC11239537 DOI: 10.1111/cns.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND G1 is a specific agonist of G protein-coupled estrogen receptor 1 (GPER1), which binds and activates GPER1 to exert various neurological functions. However, the preventive effect of G1 on post-traumatic stress disorder (PTSD) and its mechanisms are unclear. OBJECTIVE To evaluate the protective effect of G1 against synaptic and mitochondrial impairments and to investigate the mechanism of G1 to improve PTSD from brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling. METHODS This study initially detected GPER1 expression in the hippocampus of single prolonged stress (SPS) mice, utilizing both Western blot and immunofluorescence staining. Subsequently, the effects of G1 on PTSD-like behaviors, synaptic, and mitochondrial functions in SPS mice were investigated. Additionally, the involvement of BDNF/TrkB signaling involved in the protection was further confirmed using GPER1 antagonist and TrkB inhibitor, respectively. RESULTS The expression of GPER1 was reduced in the hippocampus of SPS mice, and G1 treatment given for 14 consecutive days significantly improved PTSD-like behaviors in SPS mice compared with model group. Electrophysiological local field potential (LFP) results showed that G1 administration for 14 consecutive days could reverse the abnormal changes in the gamma oscillation in the CA1 region of SPS mice. Meanwhile, G1 administration for 14 consecutive days could significantly improve the abnormal expression of synaptic proteins, increase the expression of mitochondria-related proteins, increase the number of synapses in the hippocampus, and ameliorate the damage of hippocampal mitochondrial structure in SPS mice. In addition, G15 (GPER1 inhibitor) and ANA-12 (TrkB inhibitor) blocked the ameliorative effects of G1 on PTSD-like behaviors and aberrant expression of hippocampal synaptic and mitochondrial proteins in SPS mice and inhibited the reparative effects of G1 on structural damage to hippocampal mitochondria, respectively. CONCLUSION G1 improved PTSD-like behaviors in SPS mice, possibly by increasing hippocampal GPER1 expression and promoting BDNF/TrkB signaling to repair synaptic and mitochondrial functional impairments. This study would provide critical mechanism for the prevention and treatment of PTSD.
Collapse
Affiliation(s)
- Lixia Chen
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Yang Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Zisheng Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Zhengrong Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Jingji Wang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Shaojie Yang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
48
|
Liu H, Guo S, Dai A, Xu P, Li X, Huang S, He X, Wu K, Zhang X, Yang D, Xie X, Xu HE. Structural and functional evidence that GPR30 is not a direct estrogen receptor. Cell Res 2024; 34:530-533. [PMID: 38744981 PMCID: PMC11217264 DOI: 10.1038/s41422-024-00963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/07/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Heng Liu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shimeng Guo
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Antao Dai
- The State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Peiyu Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Li
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijie Huang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Wu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinyue Zhang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dehua Yang
- The State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xin Xie
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China.
| | - H Eric Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
49
|
Talia M, Cesario E, Cirillo F, Scordamaglia D, Di Dio M, Zicarelli A, Mondino AA, Occhiuzzi MA, De Francesco EM, Belfiore A, Miglietta AM, Di Dio M, Capalbo C, Maggiolini M, Lappano R. Cancer-associated fibroblasts (CAFs) gene signatures predict outcomes in breast and prostate tumor patients. J Transl Med 2024; 22:597. [PMID: 38937754 PMCID: PMC11210052 DOI: 10.1186/s12967-024-05413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Over the last two decades, tumor-derived RNA expression signatures have been developed for the two most commonly diagnosed tumors worldwide, namely prostate and breast tumors, in order to improve both outcome prediction and treatment decision-making. In this context, molecular signatures gained by main components of the tumor microenvironment, such as cancer-associated fibroblasts (CAFs), have been explored as prognostic and therapeutic tools. Nevertheless, a deeper understanding of the significance of CAFs-related gene signatures in breast and prostate cancers still remains to be disclosed. METHODS RNA sequencing technology (RNA-seq) was employed to profile and compare the transcriptome of CAFs isolated from patients affected by breast and prostate tumors. The differentially expressed genes (DEGs) characterizing breast and prostate CAFs were intersected with data from public datasets derived from bulk RNA-seq profiles of breast and prostate tumor patients. Pathway enrichment analyses allowed us to appreciate the biological significance of the DEGs. K-means clustering was applied to construct CAFs-related gene signatures specific for breast and prostate cancer and to stratify independent cohorts of patients into high and low gene expression clusters. Kaplan-Meier survival curves and log-rank tests were employed to predict differences in the outcome parameters of the clusters of patients. Decision-tree analysis was used to validate the clustering results and boosting calculations were then employed to improve the results obtained by the decision-tree algorithm. RESULTS Data obtained in breast CAFs allowed us to assess a signature that includes 8 genes (ITGA11, THBS1, FN1, EMP1, ITGA2, FYN, SPP1, and EMP2) belonging to pro-metastatic signaling routes, such as the focal adhesion pathway. Survival analyses indicated that the cluster of breast cancer patients showing a high expression of the aforementioned genes displays worse clinical outcomes. Next, we identified a prostate CAFs-related signature that includes 11 genes (IL13RA2, GDF7, IL33, CXCL1, TNFRSF19, CXCL6, LIFR, CXCL5, IL7, TSLP, and TNFSF15) associated with immune responses. A low expression of these genes was predictive of poor survival rates in prostate cancer patients. The results obtained were significantly validated through a two-step approach, based on unsupervised (clustering) and supervised (classification) learning techniques, showing a high prediction accuracy (≥ 90%) in independent RNA-seq cohorts. CONCLUSION We identified a huge heterogeneity in the transcriptional profile of CAFs derived from breast and prostate tumors. Of note, the two novel CAFs-related gene signatures might be considered as reliable prognostic indicators and valuable biomarkers for a better management of breast and prostate cancer patients.
Collapse
Affiliation(s)
- Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Eugenio Cesario
- Department of Cultures, Education and Society, University of Calabria, Rende, 87036, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Marika Di Dio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Azzurra Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Adelina Assunta Mondino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | | | | | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, 95122, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Annunziata Hospital Cosenza, Cosenza, 87100, Italy
| | - Michele Di Dio
- Division of Urology, Department of Surgery, Annunziata Hospital, Cosenza, 87100, Italy
| | - Carlo Capalbo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
- Complex Operative Oncology Unit, Annunziata Hospital Cosenza, Cosenza, 87100, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| |
Collapse
|
50
|
He TT, Li X, Ma JZ, Yang Y, Zhu S, Zeng J, Luo L, Yin YL, Cao LY. Triclocarban and triclosan promote breast cancer progression in vitro and in vivo via activating G protein-coupled estrogen receptor signaling pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172782. [PMID: 38679099 DOI: 10.1016/j.scitotenv.2024.172782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Triclocarban (TCC) and triclosan (TCS) have been detected ubiquitously in human body and evoked increasing concerns. This study aimed to reveal the induction risks of TCC and TCS on triple negative breast cancer through non-genomic GPER-mediated signaling pathways. Molecular simulation indicated that TCC exhibited higher GPER binding affinity than TCS theoretically. Calcium mobilization assay displayed that TCC/TCS activated GPER signaling pathway with the lowest observed effective concentrations (LOEC) of 10 nM/100 nM. TCC and TCS also upregulated MMP-2/9, EGFR, MAPK3 but downregulated MAPK8 via GPER-mediated signaling pathway. Proliferation assay showed that TCC/TCS induced 4 T1 breast cancer cells proliferation with the LOEC of 100 nM/1000 nM. Wound-healing and transwell assays showed that TCC/TCS promoted 4 T1 cells migration in a concentration-dependent manner with the LOEC of 10 nM. The effects of TCC on breast cancer cells proliferation and migration were stronger than TCS and both were regulated by GPER. TCC/TCS induced migratory effects were more significantly than proliferative effect. Mechanism study showed that TCC/TCS downregulated the expression of epithelial marker (E-cadherin) but upregulated mesenchymal markers (snail and N-cadherin), which was reversed by GPER inhibitor G15. These biomarkers results indicated that TCC/TCS-induced 4 T1 cells migration was a classic epithelial to mesenchymal transition mechanism regulated by GPER signaling pathway. Orthotopic tumor model verified that TCC promoted breast cancer in-situ tumor growth and distal tissue metastasis via GPER-mediated signaling pathway at human-exposure level of 10 mg/kg/d. TCC-induced tissue metastasis of breast cancer was more significantly than in-situ tumor growth. Overall, we demonstrated for the first time that TCC/TCS could activate the GPER signaling pathways to induce breast cancer progression.
Collapse
Affiliation(s)
- Ting-Ting He
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xin Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Jie-Zhi Ma
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha 410013, China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Shiye Zhu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yu-Long Yin
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Lin-Ying Cao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|