1
|
Gui Z, Shi W, Zhou F, Yan Y, Li Y, Xu Y. The role of estrogen receptors in intracellular estrogen signaling pathways, an overview. J Steroid Biochem Mol Biol 2025; 245:106632. [PMID: 39551163 DOI: 10.1016/j.jsbmb.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
To date five members of estrogen receptors (ESRs) have been reported. They are grouped into two classes, the nuclear estrogen receptors are members of the nuclear receptor family which found at nuclear, cytoplasm and plasma membrane, and the membrane estrogen receptors, such as G protein-coupled estrogen receptor 1, ESR-X and Gq-coupled membrane estrogen receptor. The structure and function of estrogen receptors, and interaction between ESR and coregulators were reviewed. In canonical pathway ESRs can translocate to the nucleus, bind to the target gene promotor with or without estrogen responsive element and regulate transcription, mediating the genomic effects of estrogen. Coactivators and corepressors are recruited to activate or inhibit transcription by activated ESRs. Many coactivators and corepressors are recruited to activate or inhibit ESR mediated gene transcription via different mechanisms. ESRs also indirectly bind to the promoter via interaction with other transcription factors, tethering the transcription factors. ESRs can be phosphorylated by several kinases such as p38, extracellular-signal-regulated kinase, and activated protein kinase B, and which activates transcription without ligand binding. Non-genomic estrogen action can be manifested by the increases of cytoplasmic NO and Ca2+ through the activation of membrane ESRs. In female, ESRs signaling is crucial for folliculogenesis, oocyte growth, ovulation, oviduct and uterus. In male, ESRs signaling modulates libido, erectile function, leydig cell steroidogenesis, sertoli cell's function, and epididymal fluid homeostatsis, supporting spermatogenesis and sperm maturation. The abnormal ESRs signaling is believed to be closely related to reproductive diseases and cancer.
Collapse
Affiliation(s)
- Zichang Gui
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Wei Shi
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Fangting Zhou
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yongqing Yan
- Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| | - Yuntian Li
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yang Xu
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China; Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| |
Collapse
|
2
|
Liu X, Cheng R, Song Y, Yang X, Niu X, Wang C, Jia G, Ji H. Global burden of subarachnoid hemorrhage among adolescents and young adults aged 15-39 years: A trend analysis study from 1990 to 2021. PLoS One 2024; 19:e0316111. [PMID: 39705242 DOI: 10.1371/journal.pone.0316111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/05/2024] [Indexed: 12/22/2024] Open
Abstract
OBJECTIVE This study aims to analyze the global burden of subarachnoid hemorrhage (SAH) among adolescents and young adults (AYAs) aged 15-39 years from 1990 to 2021, highlighting spatial and temporal trends and providing insights for future public health strategies. METHODS Data were collected from the Global Burden of Disease Study 2021 (GBD 2021), which includes comprehensive evaluations of health conditions and associated risk factors across 204 countries and territories. The focus was on SAH incidence, prevalence, mortality, and disability-adjusted life years (DALYs) among AYAs. The data were segmented by age groups (15-19, 20-24, 25-29, 30-34, 35-39 years) and socio-demographic index (SDI) quintiles. Statistical analyses, including Joinpoint regression and decomposition analysis, were employed to assess temporal trends and the impact of population growth, aging, and epidemiological changes. RESULTS From 1990 to 2021, the global number of SAH incident cases among AYAs increased by 12.6%, from 109,120 cases in 1990 to 122,822 cases in 2021. Prevalent cases rose by 17.1%, from 1,212,170 cases in 1990 to 1,419,127 cases in 2021. Conversely, the number of deaths decreased by approximately 26.6%, from 30,348 cases in 1990 to 22,266 cases in 2021. Similarly, DALYs decreased by 23.7%, from 1,996,041 cases in 1990 to 1,523,328 cases in 2021. Notably, over these thirty years, the age-standardized rates (ASR) of incidence, prevalence, mortality, and DALYs for the AYA population showed an overall decreasing trend, despite fluctuations in specific periods. The age-standardized mortality rate (ASMR) and age-standardized DALYs (ASR for DALYs) decreased continuously with an average annual percentage change (AAPC) of -2.2% (95% CI: -2.36, -2.04) and -2.02% (95% CI: -2.17, -1.88), respectively. The age-standardized incidence rate (ASIR) and age-standardized prevalence rate (ASPR) had an AAPC of -0.8% (95% CI: -0.85, -0.75) and -0.65% (95% CI: -0.66, -0.64), respectively. Particularly, the ASIR showed a continuous decline from 1990 to 2015, followed by a slight increase from 2014 to 2019 (APC: 0.14%, 95% CI: 0.03, 0.25), and accelerated growth from 2019 to 2021 (APC: 1.23%, 95% CI: 0.88, 1.57). The ASPR declined from 1990 to 2019, followed by an increase from 2019 to 2021 (APC: 0.15%, 95% CI: 0.05, 0.25). Regional analysis revealed substantial burdens in the Middle-SDI and Low-Middle-SDI regions, with the Middle-SDI region having the highest incidence, prevalence, mortality, and DALYs. Decomposition analysis indicated that population growth was the primary driver of increased SAH cases, while epidemiological changes contributed significantly to the decline in deaths and DALYs. CONCLUSION The findings underscore the need for targeted public health interventions, particularly in low and low-middle-SDI regions, to reduce the burden of SAH among AYAs. Improved healthcare resources, enhanced health education, and preventive strategies are crucial. This study provides valuable data to inform future public health policies and resource allocation, emphasizing the importance of addressing the unique challenges faced by AYAs.
Collapse
Affiliation(s)
- Xuanchen Liu
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Taiyuan, Shanxi Province, China
| | - Rui Cheng
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Taiyuan, Shanxi Province, China
| | - Yingda Song
- Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Xiaoxiong Yang
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Xiaochen Niu
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Taiyuan, Shanxi Province, China
| | - Chunhong Wang
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Guijun Jia
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Hongming Ji
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Taiyuan, Shanxi Province, China
| |
Collapse
|
3
|
Wang DG, Gao J, Wang J, Li KC, Wu ZB, Liao ZM, Wu YB. TFAP2A drives non-small cell lung cancer (NSCLC) progression and resistance to targeted therapy by facilitating the ESR2-mediated MAPK pathway. Cell Death Discov 2024; 10:491. [PMID: 39695171 DOI: 10.1038/s41420-024-02251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/12/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Cancer is among the leading causes of death related diseases worldwide, and lung cancer has the highest mortality rate in the world. Transcription factors (TFs) constitute a class of structurally and functionally intricate proteins. Aberrant expression or functional deficiencies of transcription factors may give rise to abnormal gene expression, contributing to various diseases, including tumours. In this study, we propose to elucidate the potential role and mechanism of TFAP2A in NSCLC. We found that TFAP2A levels were significantly greater in tumour tissues than para-tumour tissues, and high expression of TFAP2A was associated with poor prognosis in NSCLC patients. Additionally, TFAP2A overexpression promoted NSCLC progression both in vivo and in vitro. Mechanistically, ESR2 is a potential target regulated by TFAP2A and that TFAP2A can bind to the promoter region of ESR2. Furthermore, the overexpression of both TFAP2A and ESR2 in NSCLC cells was associated with the overactivation of MAPK signalling, and the combination of PHTPP and osimertinib had a synergistic effect on suppressing tumour growth.
Collapse
Affiliation(s)
- Ding-Guo Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kun-Chao Li
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhi-Bo Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhong-Min Liao
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yong-Bing Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
4
|
Fukuma N, Tokiwa H, Numata G, Ueda K, Liu PY, Tajima M, Otsu Y, Kariya T, Hiroi Y, Liao JK, Komuro I, Takimoto E. Endothelial oestrogen-myocardial cyclic guanosine monophosphate axis critically determines angiogenesis and cardiac performance during pressure overload. Cardiovasc Res 2024; 120:1884-1897. [PMID: 39259833 PMCID: PMC11630045 DOI: 10.1093/cvr/cvae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 04/11/2024] [Accepted: 06/22/2024] [Indexed: 09/13/2024] Open
Abstract
AIMS Oestrogen exerts beneficial cardiovascular effects by binding to specific receptors on various cells to activate nuclear and non-nuclear actions. Oestrogen receptor α (ERα) non-nuclear signalling confers protection against heart failure remodelling, involving myocardial cyclic guanosine monophosphate (cGMP)-cGMP-dependent protein kinase G (PKG) activation; however, its tissue-specific role remains elusive. Herein, we examine the cell type-specific role of ERα non-nuclear signalling in oestrogen-conferred protection against heart failure. METHODS AND RESULTS We first assessed the tissue-specific impacts of ERα on the cardiac benefits derived from oestrogen, utilizing endothelial ERα deletion (ERαf/f/Tie2Cre+) and myocyte ERα deletion (ERαf/f/αMHCCre+) female mice. Female mice were ovariectomized and the effect of estradiol (E2) was assessed in hearts exposed to 3 weeks of pressure overload [transverse aortic constriction (TAC)]. E2 failed to improve cardiac function in ERαf/f/Tie2Cre+ TAC hearts but provided benefits in ERαf/f/αMHCCre+ TAC hearts, indicating that endothelial ERα is essential. We next assessed the role of non-nuclear signalling in endothelial cells (ECs), employing animals with endothelial-specific inactivation of ERα non-nuclear signalling (ERαKI/KI/Tie2Cre+). Female ovariectomized mice were supplemented with E2 and subjected to 3-week TAC. ERαKI/KI/Tie2Cre+TAC hearts revealed exacerbated cardiac dysfunction and reduced myocardial PKG activity as compared to littermate TAC hearts, which were associated with attenuated myocardial induction of vascular endothelial growth factor (VEGF) and angiogenesis as assessed by CD31-stained capillary density. This phenotype of ERαKI/KI/Tie2Cre+was rescued by myocardial PKG activation from chronic treatment with a soluble guanylate cyclase (sGC) stimulator. We performed co-culture experiments to determine endothelial-cardiomyocyte interactions. VEGF induction by E2 in cardiac myocytes required a co-existence of intact endothelial ERα signalling in a nitric oxide synthase-dependent manner. On the other hand, VEGF was induced in myocytes directly with an sGC stimulator in the absence of ECs. CONCLUSION An endothelial oestrogen-myocardial cGMP axis stimulates angiogenic response and improves cardiac performance during pressure overload.
Collapse
Affiliation(s)
- Nobuaki Fukuma
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Hiroyuki Tokiwa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Genri Numata
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Kazutaka Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Pang-Yen Liu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Miyu Tajima
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Yu Otsu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Taro Kariya
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
- Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Hiroi
- Department of Cardiovascular Medicine, National Center for Global Health and Medicine, Tokyo, Japan
- Vascular Medicine Research, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
| | - James K Liao
- Vascular Medicine Research, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Xing Y, Huang B, Cui Z, Zhang Q, Ma H. Dioscin improves fatty liver hemorrhagic syndrome by promoting ERα-AMPK mediated mitophagy in laying hens. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156056. [PMID: 39342780 DOI: 10.1016/j.phymed.2024.156056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Mitochondria play a crucial role in upholding metabolic homeostasis. Mitochondrial damage closely associated with the pathogenesis of fatty liver hemorrhagic syndrome (FLHS), while mitophagy being among the most effective methods for eliminating the damaged mitochondria. Dioscin, a natural extract, can activate autophagy; however, its effects on FLHS regarding mitophagy regulation remain unelucidated. PURPOSE We explored the impact of dioscin on FLHS induced by a high-energy and low-protein (HELP) diet in laying hens, mainly focused the protective effects of dioscin on mitochondrial injury. METHOD To investigate the impact of dioscin on fatty liver syndrome in laying hens, we first induced the condition by feeding them a high-energy and low-protein diet. Then, we assessed lipid metabolism-related markers using oil red staining and a commercial detection kit. In addition, the role of dioscin on fatty liver syndrome in laying hens was confirmed by assessing the activation of hepatocyte fat deposition and hepatocyte apoptosis; and the mechanism of dioscin in FLHS was investigated through LMH cell experiment in vitro. Furthermore, CETSA and molecular docking were conducted for additional confirmation. RESULT The results showed that dioscin alleviated mitochondrial damage, relieved the excessive deposition of hepatic lipid droplets and oxidative stress induced by HELP diet in laying hens. Furthermore, dioscin regulated the mitophagy by activating the estrogen receptor α (ERα)/adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway, thus mitigating mitochondria injury and apoptosis in hepatocytes. In addition, we found that dioscin promoted the translocation of nuclear transcription factor into nucleus by activating ERα-AMPK signaling, facilitating autophagic flux in the liver of laying hens and LMH cells. Furthermore, cells pretreated with the lysosomal acidification inhibitor bafilomycin A1 blocked the inhibitory effect of dioscin on the apoptosis induced by palmitic acid (PA)-stimulation in LMH cells, suggesting that dioscin reduces PA-induced apoptosis by activating mitophagy. Moreover, dioscin-induced lysosomal acidification and mitochondrial biogenesis were reversed in PA-induced LMH cells pretreated with ERα-specific inhibitor methylpiperidino pyrazole. CONCLUSION This study firstly demonstrated that dioscin alleviates fatty liver syndrome induced by HELP diet in laying hens. The findings from this study illustrated that dioscin plays a significant role in reducing mitochondrial damage and apoptosis, and these beneficial effects mainly achieve through promotion of ERα-AMPK signaling, which mediates autophagy within the liver of laying hens fed a HELP-diets. These findings provide a theoretical basis for considering dioscin as a possible treatment option for mitigating FLHS in egg-laying hens.
Collapse
Affiliation(s)
- Yuxiao Xing
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Benzeng Huang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyi Cui
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
D'Onofrio V, Sékaly RP. The immune-endocrine interplay in sex differential responses to viral infection and COVID-19. Trends Immunol 2024; 45:943-958. [PMID: 39562265 DOI: 10.1016/j.it.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/21/2024]
Abstract
Men are at higher risk for developing severe COVID-19 than women, while women are at higher risk for developing post-acute sequelae of COVID-19 (PASC). This highlights the impact of sex differences on immune responses and clinical outcomes of acute COVID-19 or PASC. A dynamic immune-endocrine interface plays an important role in the development of effective immune responses impacting the control of viral infections. In this opinion article we discuss mechanisms underlying the transcriptional and epigenetic regulation of immune responses by sex hormones during viral infections. We propose that disruption of this delicate immune-endocrine interplay can result in worsened outcomes of viral disease. We also posit that insights into these immune mechanisms can propel the development of novel immunomodulatory interventions that leverage immune-endocrine pathways to treat viral infections.
Collapse
Affiliation(s)
- Valentino D'Onofrio
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Rafick Pierre Sékaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
7
|
Natale CA, Mercado S, Zhuang R, Aguirre-Portolés C, Olayide I, Arnatt CK, Seykora JT, Garyantes TK, Luke W, Ridky TW. LNS8801: An enantiomerically pure agonist of the G protein-coupled estrogen receptor suitable for clinical development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625421. [PMID: 39651267 PMCID: PMC11623565 DOI: 10.1101/2024.11.26.625421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Estrogen effects in tissue are mediated in part through activation of the surface estrogen receptor GPER, a broadly expressed G protein-coupled receptor that impacts a wide range of normal and pathologic processes, including metabolism, vascular health, inflammation, and cancer. A commonly used synthetic and specific GPER agonist, named G-1, antagonizes tumors by promoting cellular differentiation and enhancing tumor immunogenicity. G-1 is a racemic compound, and since its discovery, the question of whether both enantiomers display agonist activity or the agonist activity resides primarily in a single enantiomer has never been fully resolved. Herein, we disclose the isolation of the pure enantiomers of G-1 and determine that the desirable activity resides exclusively in 1 enantiomer, named LNS8801, whose configuration we have unambiguously determined by single crystal x-ray structure analysis. Using preclinical models, we show that LNS8801 suppresses cancer in a GPER-dependent manner and that LNS8801 is efficacious when administered orally. Further, we show that GPER is widely, but not ubiquitously, expressed in both normal and malignant human tissues. In addition, an attenuated response to LNS8801 is observed in a common germline coding variant in human GPER. These findings support ongoing human cancer trials with LNS8801 and suggest that the germline GPER genotype may serve as a predictive biomarker of therapeutic response.
Collapse
|
8
|
Grahovac J, Đurić A, Tanić M, Krivokuća A. Sex-Related Differences in Pancreatic Ductal Adenocarcinoma Progression and Response to Therapy. Int J Mol Sci 2024; 25:12669. [PMID: 39684385 DOI: 10.3390/ijms252312669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly malignancies with an increasing incidence rate and limited therapeutic options. Biological sex has an impact on many aspects of PDAC development and response to therapy, yet it is highly unappreciated in both basic and translational research, and worryingly in PDAC clinical trials. In this review, we summarize how biological sex influences PDAC incidence and mortality, genetic and epigenetic landscapes, anti-tumor immunity, responses to hormones, cachexia, and the efficacy of therapy. We highlight the importance of sex as a variable and discuss how to implement it into preclinical and clinical research. These considerations should be of use to researchers aiming at improving understanding of PDAC biology and developing precision medicine therapeutic strategies.
Collapse
Affiliation(s)
- Jelena Grahovac
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Ana Đurić
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Miljana Tanić
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Ana Krivokuća
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Lai Y, Tang Z, Du Z, Zeng Q, Xia Y, Chen S, Li X, Cheng Q, Mei M, He W. Attenuation of Hypertension and protection of vascular inflammation in hyperaldosteronism: GPER1 as potential therapeutic candidate when MR antagonist is less satisfying? Endocrine 2024:10.1007/s12020-024-04106-6. [PMID: 39565544 DOI: 10.1007/s12020-024-04106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Hyperaldosteronism is an endocrine disorder leading to persistent and severe hypertension. G protein-coupled estrogen receptor 1(GPER1) is regarded as a potential receptor of aldosterone (ALDO). OBJECTIVE This study aimed to investigate the effects of GPER1 on aldosterone (ALDO)-induced hypertension and inflammation in mice. METHODS GPER1-knockout (KO) and wild-type (WT) C57BL/6j mice were divided into control (CON, normal saline treatment), ALDO (subcutaneous injections of 600 g/kg/d ALDO), and ALDO + eplerenone (EPL) (subcutaneous injections of 600 g/kg/d ALDO and 100 mg/kg/d EPL) groups (n = 5 per group). Fourteen days after drug administration, the heart rate and tail blood pressure of the mice in the different groups were measured. S100A8 and IL-1β protein expression in arterial tissues were detected by western blotting, NLRP3 expression was assessed using immunofluorescence, and CD68 expression was investigated using immunohistochemistry. RESULTS GPER1 deficiency alleviated ALDO-induced diastolic blood pressure (P< 0.05). In addition, the protein expression levels of IL-1β, S100A8, and CD68 showed significant decreases in the arterial tissues of GPER1-KO mice after combination treatment with ALDO and EPL (all P < 0.05). CONCLUSION We discovered attenuation of hypertension and vascular inflammation of GPER1 KO mice only on the basis of mineralocorticoid receptor (MR) blocking. Collectively, our study indicates that GPER1 might become a therapeutic target of hyperaldosteronism in controlling the residual risk of cardiovascular disease when MR antagonist alone is not satisfying.
Collapse
Affiliation(s)
- Yulian Lai
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziwei Tang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhipeng Du
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglian Zeng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Xia
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shangbin Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xun Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingfeng Cheng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei Mei
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwen He
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Yu X, Zhao QY, Yaman M, Emly SM, Lee JK, Su H, Ferguson AC, Nagaswami C, Chaturantabut S, Goessling W, Weisel JW, Auchus RJ, Shavit JA. Hormone-induced thrombosis is mediated through non-canonical fibrin(ogen) aggregation and a novel estrogen target in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623199. [PMID: 39605542 PMCID: PMC11601434 DOI: 10.1101/2024.11.13.623199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Venous thrombosis is a well-known complication of sex hormone therapy, with onset typically within weeks to months after initiation. Worldwide, more than 100 million pre-menopausal women use combined oral contraceptives, with tens to hundreds of thousands developing thrombosis annually, resulting in significant morbidity and mortality. Although it is known that estrogens can alter expression of coagulation factors, the pathways and mechanisms that connect the two systems, as well as the proteins involved in progression to thrombosis, are poorly understood. Identification of these mediators are central to any comprehensive understanding of hormone-induced pathophysiology, could help ascertain patients at higher risk for thrombosis, and may also pinpoint future therapeutic targets. The zebrafish is a powerful genetic model in which the hemostatic system is almost entirely conserved with humans. Its external development, ability to generate thousands of offspring at low cost, and optical transparency all make it a powerful tool to study the genetics of coagulation disorders. We previously produced a transgenic line (fgb-egfp) that generates GFP-tagged fibrinogen that labels induced and spontaneous fibrin-rich thrombi. Here we show rapid onset of thrombosis after exposure to various estrogens, but not progestins or testosterone. Thrombi are localized to the venous system, develop broadly along the posterior cardinal vein, and show evidence for clot contraction. Thrombosis is only partially impeded by anticoagulants, occurs in the absence of factor X and prothrombin, but is completely blocked in the absence of fibrinogen. Furthermore, although an estrogen receptor antagonist is partially inhibitory, targeted knockout of all known estrogen receptors does not eliminate thrombosis. These data suggest that zebrafish can be used to model human estrogen-induced thrombosis, although the lack of dependence on the canonical coagulation cascade is surprising. The inability to completely inhibit thrombosis through genetic/pharmacologic anticoagulation or estrogen receptor disruption suggests that the mechanisms may be multifactorial. We hypothesize that thrombi are composed of fibrin(ogen) aggregates rather than purely fibrin. Results of further studies could lead to novel therapeutic targets and ascertain patients at higher risk for thrombosis.
Collapse
Affiliation(s)
- Xinge Yu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Queena Y. Zhao
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Murat Yaman
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Sylvia M. Emly
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | | | - Hongyu Su
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | | | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | | | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Division of Health Sciences and Technology, Harvard-MIT, Cambridge, MA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
| | - John W. Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Richard J. Auchus
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jordan A. Shavit
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| |
Collapse
|
11
|
Hsu SH, Chen LR, Chen KH. Primary Osteoporosis Induced by Androgen and Estrogen Deficiency: The Molecular and Cellular Perspective on Pathophysiological Mechanisms and Treatments. Int J Mol Sci 2024; 25:12139. [PMID: 39596206 PMCID: PMC11593909 DOI: 10.3390/ijms252212139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Primary osteoporosis is closely linked to hormone deficiency, which disrupts the balance of bone remodeling. It affects postmenopausal women but also significantly impacts older men. Estrogen can promote the production of osteoprotegerin, a decoy receptor for RANKL, thereby preventing RANKL from activating osteoclasts. Furthermore, estrogen promotes osteoblast survival and function via activation of the Wnt signaling pathway. Likewise, androgens play a critical role in bone metabolism, primarily through their conversion to estrogen in men. Estrogen deficiency accelerates bone resorption through a rise in pro-inflammatory cytokines (IL-1, IL-6, TNF-α) and RANKL, which promote osteoclastogenesis. In the classic genomic pathway, estrogen binds to estrogen receptors in the cytoplasm, forming a complex that migrates to the nucleus and binds to estrogen response elements on DNA, regulating gene transcription. Androgens can be defined as high-affinity ligands for the androgen receptor; their combination can serve as a ligand-inducible transcription factor. Hormone replacement therapy has shown promise but comes with associated risks and side effects. In contrast, the non-genomic pathway involves rapid signaling cascades initiated at the cell membrane, influencing cellular functions without directly altering gene expression. Therefore, the ligand-independent actions and rapid signaling pathways of estrogen and androgen receptors can be harnessed to develop new drugs that provide bone protection without the side effects of traditional hormone therapies. To manage primary osteoporosis, other pharmacological treatments (bisphosphonates, teriparatide, RANKL inhibitors, sclerostin inhibitors, SERMs, and calcitonin salmon) can ameliorate osteoporosis and improve BMD via actions on different pathways. Non-pharmacological treatments include nutritional support and exercise, as well as the dietary intake of antioxidants and natural products. The current study reviews the processes of bone remodeling, hormone actions, hormone receptor status, and therapeutic targets of primary osteoporosis. However, many detailed cellular and molecular mechanisms underlying primary osteoporosis seem complicated and unexplored and warrant further investigation.
Collapse
Affiliation(s)
- Shao-Heng Hsu
- Department of Medical Education, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Li-Ru Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 104, Taiwan;
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Kuo-Hu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, New Taipei City 231, Taiwan
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| |
Collapse
|
12
|
Liu D, Zheng M, Lu C, Miao M, Zhan Y, Ma F, Yin Y, Wei M, Wang W, Wang W, Meng X, Li J, Zhang Y, Liu G, Tang YD. GPR30 Selective Agonist G1 Exhibits Antiobesity Effects and Promotes Insulin Resistance and Gluconeogenesis in Postmenopausal Mice Fed a High-Fat Diet. J Lipids 2024; 2024:5513473. [PMID: 39554996 PMCID: PMC11567725 DOI: 10.1155/2024/5513473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 09/21/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Background: G1, a specific agonist targeting the G protein-coupled receptor 30 (GPR30), has demonstrated significant involvement in combating obesity and regulating glucose homeostasis. Nevertheless, the beneficial effects of G1 treatment have solely been investigated in animal models under normal feeding conditions, leaving its therapeutic potential in high-fat feeding scenarios unexplored. Material and Methods: To address this gap, our study employed an ovariectomized high-fat diet mouse model to assess the therapeutic effects of G1 in combating obesity and metabolic dysfunction. Results: The findings revealed that G1 treatment resulted in weight loss, but concurrently led to increased blood glucose levels and insulin resistance. Treatment with G1 resulted in an amplification of fat mobilization and an enhancement of pyruvate carboxylase activity in mice fed a high-fat diet. Moreover, the combined impact of G1 treatment and a high-fat diet on pyruvate metabolism, as well as the regulation of crucial gluconeogenesis enzymes such as pyruvate dehydrogenase kinase 4 (PDK4), phosphoenolpyruvate carboxykinase (PEPCK), and glucose transporter 2 (GLUT2), expedites the elevation of blood glucose and the progression of insulin resistance. Conclusions: These findings indicate that G1 treatment is influenced by a high-fat diet, potentially disrupting glucolipid metabolism and promoting insulin resistance alongside its antiobesity effects. Consequently, further investigation is imperative to thoroughly explore this potential toxic side effect of G1 therapy.
Collapse
Affiliation(s)
- Da Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
- Graduate School of Hebei Medical University, Shijiazhuang, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Congcong Lu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Mengdan Miao
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Yinge Zhan
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
| | - Fangfang Ma
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
| | - Yajuan Yin
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
| | - Mei Wei
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
| | - Wei Wang
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
| | - Wenyao Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Xiangbin Meng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jing Li
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
| | - Yaohua Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Yi-Da Tang
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism; Hebei Engineering Research Center of Intelligent Medical Clinical Application; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
- Graduate School of Hebei Medical University, Shijiazhuang, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
13
|
Wang X, Wang X, Ma J, Zhang S, Fang W, Xu F, Du J, Liang H, Duan W, Li Z, Liu J. GPR30 Agonist G1 Mitigates Sepsis-Induced Cardiac Dysfunction by Inhibiting ACE2/c-FOS-Mediated Necroptosis in Female Mice. ACS Infect Dis 2024; 10:3797-3809. [PMID: 39377746 DOI: 10.1021/acsinfecdis.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Sepsis is a severe inflammatory syndrome with high mortality and morbidity. Sepsis-induced myocardial dysfunction (SIMD) is a common cause of death in sepsis. The female sex is less susceptible to sepsis-related organ dysfunction, although the underlying mechanism of this sex difference remains unclear. This study explored the role of estrogen receptor G protein-coupled estrogen receptor 30 (GPR30) in septic cardiac dysfunction. Results from the present study indicated that GPR30 activation by the G1 agonist protected female mouse hearts against SIMD exposed to lipopolysaccharides. However, this beneficial effect was absent in female ACE2-knockout mice, as demonstrated by poorer cardiac contractility, myocardial injury, and necroptosis. We also demonstrated that the Stat6 transcription factor induced ace2 transcription by enhancing its promoter activity under GPR30 activation in septic hearts. The adenovirus-mediated inhibition of ACE2 targeting c-FOS expression reversed the deterioration, restored cardiac function, and improved survival in female ACE2-knockout mice. These results demonstrate the essential role of GPR30/STAT6/ACE2/c-FOS-mediated necroptosis in G1-mediated protection and provide novel insight into the pathogenesis of sepsis-related organ damage.
Collapse
Affiliation(s)
- Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Shuaishuai Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Weiyi Fang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Fujie Xu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Jun Du
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Hongliang Liang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, United States
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| |
Collapse
|
14
|
Yang Y, Wang Y, Zou H, Li Z, Chen W, Huang Z, Weng Y, Yu X, Xu J, Zheng L. GPER1 signaling restricts macrophage proliferation and accumulation in human hepatocellular carcinoma. Front Immunol 2024; 15:1481972. [PMID: 39582864 PMCID: PMC11582010 DOI: 10.3389/fimmu.2024.1481972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Background Sex hormones and their related receptors have been reported to impact the development and progression of tumors. However, their influence on the composition and function of the tumor microenvironment is not well understood. We aimed to investigate the influence of sex disparities on the proliferation and accumulation of macrophages, one of the major components of the tumor microenvironment, in hepatocellular carcinoma (HCC). Methods Immunohistochemistry was applied to assess the density of immune cells in HCC tissues. The role of sex hormone related signaling in macrophage proliferation was determined by immunofluorescence and flow cytometry. The underlying regulatory mechanisms were examined with both in vitro experiments and murine HCC models. Results We found higher levels of macrophage proliferation and density in tumor tissues from male patients compared to females. The expression of G protein-coupled estrogen receptor 1 (GPER1), a non-classical estrogen receptor, was significantly decreased in proliferating macrophages, and was inversely correlated with macrophage proliferation in HCC tumors. Activation of GPER1 signaling with a selective agonist G-1 suppressed macrophage proliferation by downregulating the MEK/ERK pathway. Additionally, G-1 treatment reduced PD-L1 expression on macrophages and delayed tumor growth in mice. Moreover, patients with a higher percentage of GPER1+ macrophages exhibited longer overall survival and recurrence-free survival compared to those with a lower level. Conclusions These findings reveal a novel role of GPER1 signaling in regulating macrophage proliferation and function in HCC tumors and may offer a potential strategy for designing therapies based on understanding sex-related disparities of patients.
Collapse
Affiliation(s)
- Yanyan Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongchun Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhixiong Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weibai Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhijie Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yulan Weng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xingjuan Yu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
15
|
Zhu BT, Liao QQ, Tian HY, Yu DJ, Xie T, Sun XL, Zhou XM, Han YX, Zhao YJ, El-Kassas M, Liu XX, Sun XD, Zhang YY. Estrogen: the forgotten player in metaflammation. Front Pharmacol 2024; 15:1478819. [PMID: 39575382 PMCID: PMC11578702 DOI: 10.3389/fphar.2024.1478819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Metaflammation is low-grade inflammation triggered by chronic metabolic imbalance and caused by dysregulated metabolites in metabolic inflammatory syndrome (MIS), which includes four diseases: obesity, type 2 diabetes mellitus (T2DM), atherosclerosis (AS), and nonalcoholic fatty liver diseases (NAFLD, recently proposed to be replaced by metabolic dysfunction-associated steatotic liver disease, MASLD). These diseases exhibit apparent sex dimorphism as regards MIS. Estrogen not only plays a crucial role in gender differences in adults but also possesses an anti-inflammatory effect on many metabolic diseases. In this study, we present a prediction of the differential proteins and signal transduction of estrogen in MIS through network pharmacology and review the validated studies on obesity, T2DM, AS, and NAFLD. Subsequently, we compared them to obtain valuable targets, identify current gaps, and provide perspectives for future research on the mechanisms of estrogen in metaflammation.
Collapse
Affiliation(s)
- Bao-Ting Zhu
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qing-Qing Liao
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Hai-Ying Tian
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Dao-Jiang Yu
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Teng Xie
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xi-Lu Sun
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xin-Meng Zhou
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ying-Xuan Han
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yu-Jie Zhao
- Medical College, Tibet University, Lasa, China
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
- Liver Disease Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Steatotic Liver Disease Study Foundation in Middle East and North Africa (SLMENA), Cairo, Egypt
| | - Xiu-Xiu Liu
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiao-Dong Sun
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Medical College, Tibet University, Lasa, China
| | - Yuan-Yuan Zhang
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| |
Collapse
|
16
|
Toporcer T, Grendel T, Špaková I, Blichárová A, Verbóová Ľ, Benetinová Z, Čižmárová B, Rabajdová M, Toporcerová S. An In Vivo Model of Estrogen Supplementation Concerning the Expression of Ca 2+-Dependent Exchangers and Mortality, Vitality and Survival After Myocardial Infarction in Ovariectomized Rats. J Cardiovasc Dev Dis 2024; 11:352. [PMID: 39590195 PMCID: PMC11595027 DOI: 10.3390/jcdd11110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Ischemic-reperfusion damage of cardiomyocytes due to myocardial infarction (MI) often leads to the death of an individual. Premenopausal women have been observed to have a significantly lower risk of cardiovascular disease (CVD) than men of the same age. In menopausal women, this trend is significantly reversed, and the risk of CVD increases up to 10-fold. Estrogens affect the development and function of the heart muscle, and as they decrease, the risk and poor prognosis of CVD increase. This study is focused on the effects of estrogen supplementation on morbidity, vitality, and NCX1 expression after MI on a model system. METHODS In this study, female Sprague Dawley rats (n = 58), which were divided into three experimental groups (NN-control group, non-supplemented; OVX-N-ovariectomized, non-supplemented; OVX-S-ovariectomized, supplemented), received left thoracotomy in the fourth intercostal space. The left anterior descendent coronary artery was ligated 2 mm from its origin with an 8.0 suture. An immunohistological analysis as well as an RT-PCR analysis of NCX1 expression were performed. RESULTS A higher survival rate was recorded in the OVX-N group (86%) in comparison with the OVX-S group (53%) (p < 0.05). In addition, higher NCX1 expression 7 days/14 days after MI in the OVX-S group in comparison with the NN and OVX-N (p < 0.001 and p < 0.05) groups was recorded. Seven days after MI, a significantly higher expression (p < 0.005) of mRNA NCX1 in the OVX-N group was also recorded in comparison with the NN group. CONCLUSIONS This study provides a comprehensive description of the effect of estrogen supplementation on NCX1 expression and overall vitality in ovariectomized rats that survived MI.
Collapse
Affiliation(s)
- Tomáš Toporcer
- Department of Heart Surgery, East Slovak Institute of Cardiovascular Disease and Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia;
| | - Tomáš Grendel
- Department of Anesthesiology and Intensive Medicine, East Slovak Institute of Cardiovascular Disease and Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia (B.Č.); (M.R.)
| | - Alžbeta Blichárová
- Department of Pathology, Louis Pasteur University Hospital and Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (A.B.); (Ľ.V.); (Z.B.)
| | - Ľudmila Verbóová
- Department of Pathology, Louis Pasteur University Hospital and Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (A.B.); (Ľ.V.); (Z.B.)
| | - Zuzana Benetinová
- Department of Pathology, Louis Pasteur University Hospital and Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (A.B.); (Ľ.V.); (Z.B.)
| | - Beata Čižmárová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia (B.Č.); (M.R.)
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia (B.Č.); (M.R.)
| | - Silvia Toporcerová
- Department of Gynecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University and Gyncare, 040 11 Košice, Slovakia
| |
Collapse
|
17
|
Kusewitt DF, Sharma G, Woods CD, Rosas E, Hathaway HJ, Prossnitz ER. GPER expression prevents estrogen-induced urinary retention in obese mice. J Steroid Biochem Mol Biol 2024; 244:106607. [PMID: 39197539 PMCID: PMC11444091 DOI: 10.1016/j.jsbmb.2024.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Long-term administration of exogenous estrogen is known to cause urinary retention and marked, often fatal, bladder distention in both male and female mice. Estrogen-treated mice have increased bladder pressure and decreased urine flow, suggesting that urinary retention in estrogen-treated mice is due to infravesicular obstruction to urine outflow. Thus, the condition is commonly referred to as bladder outlet obstruction (BOO). Obesity can also lead to urinary retention. As the effects of estrogen are mediated by multiple receptors, including estrogen receptors ERα and ERβ and the G protein-coupled estrogen receptor (GPER), we sought to determine whether GPER plays a role in estrogen-induced BOO, particularly in the context of obesity. Wild type and GPER knockout (KO) mice fed a high-fat diet were ovariectomized or left ovary-intact (sham surgery) and supplemented with slow-release estrogen or vehicle-only pellets. Supplementing both GPER KO and wild type obese mice with estrogen for 8 weeks resulted in weight loss, splenic enlargement, and thymic atrophy, as expected. However, estrogen-treated obese GPER KO mice developed abdominal distension, debilitation, and ulceration of the skin surrounding the urogenital opening. At necropsy, these mice had prominently distended bladders and hydronephrosis. In contrast, estrogen-treated obese wild type mice only rarely displayed these signs. Our results suggest that, under conditions of obesity, estrogen induces BOO as a result of ERα-driven pathways and that GPER expression is protective against BOO.
Collapse
Affiliation(s)
- Donna F Kusewitt
- Department of Pathology, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA.
| | - Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Christine D Woods
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Emmanuel Rosas
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Helen J Hathaway
- Department of Cell Biology & Physiology, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA; Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA.
| |
Collapse
|
18
|
Gan X, Dai G, Li Y, Xu L, Liu G. Intricate roles of estrogen and estrogen receptors in digestive system cancers: a systematic review. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0224. [PMID: 39475214 PMCID: PMC11523274 DOI: 10.20892/j.issn.2095-3941.2024.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024] Open
Abstract
Gender disparities are evident across different types of digestive system cancers, which are typically characterized by a lower incidence and mortality rate in females compared to males. This finding suggests a potential protective role of female steroid hormones, particularly estrogen, in the development of these cancers. Estrogen is a well-known sex hormone that not only regulates the reproductive system but also exerts diverse effects on non-reproductive organs mediated through interactions with estrogen receptors (ERs), including the classic (ERα and ERβ) and non-traditional ERs [G protein-coupled estrogen receptor (GPER)]. Recent advances have contributed to our comprehension of the mechanisms underlying ERs in digestive system cancers. In this comprehensive review we summarize the current understanding of the intricate roles played by estrogen and ERs in the major types of digestive system cancers, including hepatocellular, pancreatic, esophageal, gastric, and colorectal carcinoma. Furthermore, we discuss the potential molecular mechanisms underlying ERα, ERβ, and GPER effects, and propose perspectives on innovative therapies and preventive measures targeting the pathways regulated by estrogen and ERs. The roles of estrogen and ERs in digestive system cancers are complicated and depend on the cell type and tissue involved. Additionally, deciphering the intricate roles of estrogen, ERs, and the associated signaling pathways may guide the discovery of novel and tailored therapeutic and preventive strategies for digestive system cancers, eventually improving the care and clinical outcomes for the substantial number of individuals worldwide affected by these malignancies.
Collapse
Affiliation(s)
- Xiaoning Gan
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Department of Physiology, Michigan State University, East Lansing 48824, USA
| | - Guanqi Dai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yonghao Li
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Lin Xu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Guolong Liu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
19
|
Redwood-Sawyerr C, Howe G, Evans Theodore A, Nesbeth DN. Genetically Encoded Trensor Circuits Report HeLa Cell Treatment with Polyplexed Plasmid DNA and Small-Molecule Transfection Modulators. ACS Synth Biol 2024; 13:3163-3172. [PMID: 39240234 PMCID: PMC11494703 DOI: 10.1021/acssynbio.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
HeLa cell transfection with plasmid DNA (pDNA) is widely used to materialize biologicals and as a preclinical test of nucleic acid-based vaccine efficacy. We sought to genetically encode mammalian transfection sensor (Trensor) circuits and test their utility in HeLa cells for detecting molecules and methods for their propensity to influence transfection. We intended these Trensor circuits to be triggered if their host cell was treated with polyplexed pDNA or certain small-molecule modulators of transfection. We prioritized three promoters, implicated by others in feedback responses as cells import and process foreign material and stably integrated each into the genomes of three different cell lines, each upstream of a green fluorescent protein (GFP) open reading frame within a transgene. All three Trensor circuits showed an increase in their GFP expression when their host HeLa cells were incubated with pDNA and the degraded polyamidoamine dendrimer reagent, SuperFect. We next experimentally demonstrated the modulation of PEI-mediated HeLa cell transient transfection by four different small molecules, with Trichostatin A (TSA) showing the greatest propensity to boost transgene expression. The Trensor circuit based on the TRA2B promoter (Trensor-T) was triggered by incubation with TSA alone and not the other three small molecules. These data suggest that mammalian reporter circuits could enable low-cost, high-throughput screening to identify novel transfection methods and reagents without the need to perform actual transfections requiring costly plasmids or expensive fluorescent labels.
Collapse
Affiliation(s)
- Chileab Redwood-Sawyerr
- Department of Biochemical
Engineering, University College London, Bernard Katz Building, London WC1E 6BT, U.K.
| | - Geoffrey Howe
- Department of Biochemical
Engineering, University College London, Bernard Katz Building, London WC1E 6BT, U.K.
| | - Andalucia Evans Theodore
- Department of Biochemical
Engineering, University College London, Bernard Katz Building, London WC1E 6BT, U.K.
| | - Darren N. Nesbeth
- Department of Biochemical
Engineering, University College London, Bernard Katz Building, London WC1E 6BT, U.K.
| |
Collapse
|
20
|
Kuş MM, Düzenli ZB, Öztürk P, Kurutas EB. Evaluation of the relationship between serum G protein-coupled estrogen receptors (GPER-1) levels and the severity and duration of the disease in patients with androgenetic alopecia: A case-control study. Arch Dermatol Res 2024; 316:658. [PMID: 39369050 DOI: 10.1007/s00403-024-03380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 10/07/2024]
Abstract
There are studies revealing the effects of estrogen receptors alpha (α) and beta (β) on hair follicles. However, the effects of G protein-coupled estrogen receptors (GPER-1) on hair follicles have not been elucidated. This study aims to evaluate the relationship between serum GPER-1 levels and the severity and duration of the disease in patients with androgenetic alopecia (AGA). The study included 81 patients with AGA aged 18 to 50 years (22 men and 19 women with an onset of AGA more than 5 years, and 20 men and 20 women with an onset of AGA less than 5 years) and 40 healthy controls (20 men, 20 women). The mean age of participants with AGA was 29.12 ± 8.15 (18-50), and the mean age of the control group was 25.21± 4.71 (19-42). Serum GPER-1 levels were measured, and the relationship between GPER-1 levels and duration of the disease, severity of the disease, and sex was statistically evaluated. The serum level of GPER-1 was significantly higher in patients with AGA as compared to the control group (p < 0.001). A negative correlation was found between serum GPER-1 levels and the duration of the disease in both men and women (p < 0.001, r = 0.793; p < 0.001, r = 0.711, respectively). There was a significant relationship between serum GPER-1 levels and the severity of the disease in both men and women (p = 0.003; p = 0.002, respectively). Additionally, a significant difference in GPER-1 levels was noted between male and female patients with AGA (p = 0.001). However, no statistically significant relationship was identified between GPER-1 levels and estrogen levels (p = 0.097). The higher levels of GPER-1 in patients with AGA compared to the control group, and the significant relationship between GPER-1 levels and both the duration and severity of the disease, suggest an estrogen-independent role of GPER-1 in the pathogenesis of AGA. The fact that GPER-1 levels are high in the early stages of AGA when inflammation is prominent suggests that treatments targeting these receptors may be effective at this stage.
Collapse
Affiliation(s)
- Mine Müjde Kuş
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Dermatology, Kahramanmaraş, 46100, Turkey.
| | - Zahide Beril Düzenli
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Dermatology, Kahramanmaraş, 46100, Turkey
| | - Perihan Öztürk
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Dermatology, Kahramanmaraş, 46100, Turkey
| | - Ergul Belge Kurutas
- Kahramanmaraş Sütçü İmam University School of Medicine, Department of Biochemistry, Kahramanmaras, 46100, Turkey
| |
Collapse
|
21
|
Kuralay A, McDonough MC, Resch JM. Control of sodium appetite by hindbrain aldosterone-sensitive neurons. Mol Cell Endocrinol 2024; 592:112323. [PMID: 38936597 PMCID: PMC11381173 DOI: 10.1016/j.mce.2024.112323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Mineralocorticoids play a key role in hydromineral balance by regulating sodium retention and potassium wasting. Through favoring sodium, mineralocorticoids can cause hypertension from fluid overload under conditions of hyperaldosteronism, such as aldosterone-secreting tumors. An often-overlooked mechanism by which aldosterone functions to increase sodium is through stimulation of salt appetite. To drive sodium intake, aldosterone targets neurons in the hindbrain which uniquely express 11β-hydroxysteroid dehydrogenase type 2 (HSD2). This enzyme is a necessary precondition for aldosterone-sensing cells as it metabolizes glucocorticoids - preventing their activation of the mineralocorticoid receptor. In this review, we will consider the role of hindbrain HSD2 neurons in regulating sodium appetite by discussing HSD2 expression in the brain, regulation of hindbrain HSD2 neuron activity, and the circuitry mediating the effects of these aldosterone-sensitive neurons. Reducing the activity of hindbrain HSD2 neurons may be a viable strategy to reduce sodium intake and cardiovascular risk, particularly for conditions of hyperaldosteronism.
Collapse
Affiliation(s)
- Ahmet Kuralay
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA
| | - Miriam C McDonough
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Jon M Resch
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
22
|
Gaxiola-Rubio A, Jave-Suárez LF, Hernández-Silva CD, Ramírez-de-Arellano A, Villegas-Pineda JC, Lizárraga-Ledesma MDJ, Ramos-Solano M, Diaz-Palomera CD, Pereira-Suárez AL. The G-Protein-Coupled Estrogen Receptor Agonist G-1 Mediates Antitumor Effects by Activating Apoptosis Pathways and Regulating Migration and Invasion in Cervical Cancer Cells. Cancers (Basel) 2024; 16:3292. [PMID: 39409923 PMCID: PMC11475807 DOI: 10.3390/cancers16193292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Estrogens and HPV are necessary for cervical cancer (CC) development. The levels of the G protein-coupled estrogen receptor (GPER) increase as CC progresses, and HPV oncoproteins promote GPER expression. The role of this receptor is controversial due to its anti- and pro-tumor effects. This study aimed to determine the effect of GPER activation, using its agonist G-1, on the transcriptome, cell migration, and invasion in SiHa cells and non-tumorigenic keratinocytes transduced with the HPV16 E6 or E7 oncogenes. METHODS Transcriptome analysis was performed to identify G-1-enriched pathways in SiHa cells. We evaluated cell migration, invasion, and the expression of associated proteins in SiHa, HaCaT-16E6, and HaCaT-16E7 cells using various assays. RESULTS Transcriptome analysis revealed pathways associated with proliferation/apoptosis (TNF-α signaling, UV radiation response, mitotic spindle formation, G2/M cell cycle, UPR, and IL-6/JAK/STAT), cellular metabolism (oxidative phosphorylation), and cell migration (angiogenesis, EMT, and TGF-α signaling) in SiHa cells. Key differentially expressed genes included PTGS2 (pro/antitumor), FOSL1, TNFRSF9, IL1B, DIO2, and PHLDA1 (antitumor), along with under-expressed genes with pro-tumor effects that may inhibit proliferation. Additionally, DKK1 overexpression suggested inhibition of cell migration. G-1 increased vimentin expression in SiHa cells and reduced it in HaCaT-16E6 and HaCaT-16E7 cells. However, G-1 did not affect α-SMA expression or cell migration in any of the cell lines but increased invasion in HaCaT-16E7 cells. CONCLUSIONS GPER is a promising prognostic marker due to its ability to activate apoptosis and inhibit proliferation without promoting migration/invasion in CC cells. G-1 could potentially be a tool in the treatment of this neoplasia.
Collapse
Affiliation(s)
- Abigail Gaxiola-Rubio
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.G.-R.); (A.R.-d.-A.)
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Christian David Hernández-Silva
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (C.D.H.-S.); (J.C.V.-P.); (M.d.J.L.-L.); (M.R.-S.)
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.G.-R.); (A.R.-d.-A.)
| | - Julio César Villegas-Pineda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (C.D.H.-S.); (J.C.V.-P.); (M.d.J.L.-L.); (M.R.-S.)
| | - Marisa de Jesús Lizárraga-Ledesma
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (C.D.H.-S.); (J.C.V.-P.); (M.d.J.L.-L.); (M.R.-S.)
| | - Moisés Ramos-Solano
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (C.D.H.-S.); (J.C.V.-P.); (M.d.J.L.-L.); (M.R.-S.)
| | - Carlos Daniel Diaz-Palomera
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.G.-R.); (A.R.-d.-A.)
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.G.-R.); (A.R.-d.-A.)
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (C.D.H.-S.); (J.C.V.-P.); (M.d.J.L.-L.); (M.R.-S.)
| |
Collapse
|
23
|
Zhang H, Yan J, Xie D, Zhu X, Nie G, Zhang H, Li X. Selenium restored mitophagic flux to alleviate cadmium-induced hepatotoxicity by inhibiting excessive GPER1-mediated mitophagy activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134855. [PMID: 38880044 DOI: 10.1016/j.jhazmat.2024.134855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Cadmium (Cd) is a common environmental pollutant, while selenium (Se) can ameliorate heavy metal toxicity. Consequently, this study aimed to investigate the protective effects of Se against Cd-induced hepatocyte injury and its underlying mechanisms. To achieve this, we utilized the Dongdagou-Xinglong cohort, BRL3A cell models, and a rat model exposed to Cd and/or Se. The results showed that Se counteracted liver function injury and the decrease in GPER1 levels caused by environmental Cd exposure, and various methods confirmed that Se could protect against Cd-induced hepatotoxicity both in vivo and in vitro. Mechanistically, Cd caused excessive mitophagy activation, evidenced by the colocalization of LC3B, PINK1, Parkin, P62, and TOMM20. Transfection of BRL3A cells with mt-keima adenovirus indicated that Cd inhibited autophagosome-lysosome fusion, thereby impeding mitophagic flux. Importantly, G1, a specific agonist of GPER1, mitigated Cd-induced mitophagy overactivation and hepatocyte toxicity, whereas G15 exacerbates these effects. Notably, Se supplementation attenuated Cd-induced GPER1 protein reduction and excessive mitophagy activation while facilitating autophagosome-lysosome fusion, thereby restoring mitophagic flux. In conclusion, this study proposed a novel mechanism whereby Se alleviated GPER1-mediated mitophagy and promoted autophagosome-lysosome fusion, thus restoring Cd-induced mitophagic flux damage, and preventing hepatocyte injury.
Collapse
Affiliation(s)
- Honglong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Jun Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; Medical School Cancer Center of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China
| | - Danna Xie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xingwang Zhu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Guole Nie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Haijun Zhang
- Department of Anesthesiology and Operating Theater, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; Medical School Cancer Center of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; General Surgery Clinical Medical Research Center of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China.
| |
Collapse
|
24
|
Sbrini G, Mutti V, Bono F, Tomasoni Z, Fadel D, Missale C, Fiorentini C. 17-β-estradiol potentiates the neurotrophic and neuroprotective effects mediated by the dopamine D3/acetylcholine nicotinic receptor heteromer in dopaminergic neurons. Eur J Pharmacol 2024; 976:176678. [PMID: 38821163 DOI: 10.1016/j.ejphar.2024.176678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Dopaminergic neurons express a heteromer composed of the dopamine D3 receptor and the α4β2 nicotinic acetylcholine receptor, the D3R-nAChR heteromer, activated by both nicotine and dopamine D2 and D3 receptors agonists, such as quinpirole, and crucial for dopaminergic neuron homeostasis. We now report that D3R-nAChR heteromer activity is potentiated by 17-β-estradiol which acts as a positive allosteric modulator by binding a specific domain on the α4 subunit of the nicotinic receptor protomer. In mouse dopaminergic neurons, in fact, 17-β-estradiol significantly increased the ability of nicotine and quinpirole in promoting neuron dendritic remodeling and in protecting neurons against the accumulation of α-synuclein induced by deprivation of glucose, with a mechanism that does not involve the classical estrogen receptors. The potentiation induced by 17-β-estradiol required the D3R-nAChR heteromer since either nicotinic receptor or dopamine D3 receptor antagonists and interfering TAT-peptides, but not the estrogen receptor antagonist fulvestrant, specifically prevented 17-β-estradiol effects. Evidence of estrogens neuroprotection, mainly mediated by genomic mechanisms, have been provided, which is in line with epidemiological data reporting that females are less likely to develop Parkinson's Disease than males. Therefore, potentiation of D3R-nAChR heteromer activity may represent a further mechanism by which 17-β-estradiol reduces dopaminergic neuron vulnerability.
Collapse
Affiliation(s)
- Giulia Sbrini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Veronica Mutti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Federica Bono
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Zaira Tomasoni
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Dounia Fadel
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Cristina Missale
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
25
|
Żabińska M, Wiśniewska K, Węgrzyn G, Pierzynowska K. Exploring the physiological role of the G protein-coupled estrogen receptor (GPER) and its associations with human diseases. Psychoneuroendocrinology 2024; 166:107070. [PMID: 38733757 DOI: 10.1016/j.psyneuen.2024.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Estrogen is a group of hormones that collaborate with the nervous system to impact the overall well-being of all genders. It influences many processes, including those occurring in the central nervous system, affecting learning and memory, and playing roles in neurodegenerative diseases and mental disorders. The hormone's action is mediated by specific receptors. Significant roles of classical estrogen receptors, ERα and ERβ, in various diseases were known since many years, but after identifying a structurally and locationally distinct receptor, the G protein-coupled estrogen receptor (GPER), its role in human physiology and pathophysiology was investigated. This review compiles GPER-related information, highlighting its impact on homeostasis and diseases, while putting special attention on functions and dysfunctions of this receptor in neurobiology and biobehavioral processes. Understanding the receptor modulation possibilities is essential for therapy, as disruptions in receptors can lead to diseases or disorders, irrespective of correct estrogen levels. We conclude that studies on the GPER receptor have the potential to develop therapies that regulate estrogen and positively impact human health.
Collapse
Affiliation(s)
- Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland.
| |
Collapse
|
26
|
Hjelt A, Anttila S, Wiklund A, Rokka A, Al‐Ramahi D, Toivola DM, Polari L, Määttä J. Estrogen deprivation and estrogen receptor α antagonism decrease DSS colitis in female mice. Pharmacol Res Perspect 2024; 12:e1234. [PMID: 38961539 PMCID: PMC11222167 DOI: 10.1002/prp2.1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024] Open
Abstract
The association of hormonal contraception with increased risk of inflammatory bowel disease (IBD) observed in females suggests involvement of ovarian hormones, such as estradiol, and the estrogen receptors in the progression of intestinal inflammation. Here, we investigated the effects of prophylactic SERM2 and estradiol supplementation in dextran sulfate sodium-induced colitis using mice with intact ovaries and ovariectomized (OVX) female mice. We found that graded colitis score was threefold reduced in the OVX mice, compared to mice with intact ovaries. Estradiol supplementation, however, aggravated the colitis in OVX mice, increasing the colitis score to a similar level than what was observed in the intact mice. Further, we observed that immune infiltration and gene expression of inflammatory interleukins Il1b, Il6, and Il17a were up to 200-fold increased in estradiol supplemented OVX colitis mice, while a mild but consistent decrease was observed by SERM2 treatment in intact animals. Additionally, cyclo-oxygenase 2 induction was increased in the colon of colitis mice, in correlation with increased serum estradiol levels. Measured antagonist properties of SERM2, together with the other results presented here, indicates an exaggerating role of ERα signaling in colitis. Our results contribute to the knowledge of ovarian hormone effects in colitis and encourage further research on the potential use of ER antagonists in the colon, in order to alleviate inflammation.
Collapse
Affiliation(s)
- Anja Hjelt
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | | | - Anu Wiklund
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Anne Rokka
- Turku BioscienceUniversity of TurkuTurkuFinland
| | - Darin Al‐Ramahi
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Bioanalytical LaboratoryUniversity of TurkuTurkuFinland
| | - Diana M. Toivola
- Faculty of Science and Engineering, Department of Biosciences, Cell BiologyÅbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Centre for Disease ModelingUniversity of TurkuTurkuFinland
| | - Lauri Polari
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Faculty of Science and Engineering, Department of Biosciences, Cell BiologyÅbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
| | - Jorma Määttä
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Turku Centre for Disease ModelingUniversity of TurkuTurkuFinland
| |
Collapse
|
27
|
Wu Z, Xiao C, Wang J, Zhou M, You F, Li X. 17β-estradiol in colorectal cancer: friend or foe? Cell Commun Signal 2024; 22:367. [PMID: 39030619 PMCID: PMC11264751 DOI: 10.1186/s12964-024-01745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy with higher incidence and mortality rates in men compared to women, potentially due to the effects of estrogen signaling. There is substantial evidence supporting the significant role of 17β-Estradiol (E2) in reducing CRC risk in females, although this perspective remains debated. E2 has been demonstrated to inhibit CRC cell proliferation and migration at the cellular level by enhancing DNA mismatch repair, modulating key gene expression, triggering cell cycle arrest, and reducing activity of migration factors. Furthermore, E2 contributes to promote a tumor microenvironment unfavorable for CRC growth by stimulating ERβ expression, reducing inflammatory responses, reversing immunosuppression, and altering the gut microbiome composition. Conversely, under conditions of high oxidative stress, hypoxia, and nutritional deficiencies, E2 may facilitate CRC development through GPER-mediated non-genomic signaling. E2's influence on CRC involves the genomic and non-genomic signals mediated by ERβ and GPER, respectively, leading to its dual roles in anticancer activity and carcinogenesis. This review aims to summarize the potential mechanisms by which E2 directly or indirectly impacts CRC development, providing insights into the phenomenon of sexual dimorphism in CRC and suggesting potential strategies for prevention and treatment.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiamei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Min Zhou
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, 401147, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- Oncology Teaching and Research Department of Chengdu, University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
28
|
Chen L, Zhang Y, Wang Z, Zhang Z, Wang J, Zhu G, Yang S. Activation of GPER1 by G1 prevents PTSD-like behaviors in mice: Illustrating the mechanisms from BDNF/TrkB to mitochondria and synaptic connection. CNS Neurosci Ther 2024; 30:e14855. [PMID: 38992889 PMCID: PMC11239537 DOI: 10.1111/cns.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND G1 is a specific agonist of G protein-coupled estrogen receptor 1 (GPER1), which binds and activates GPER1 to exert various neurological functions. However, the preventive effect of G1 on post-traumatic stress disorder (PTSD) and its mechanisms are unclear. OBJECTIVE To evaluate the protective effect of G1 against synaptic and mitochondrial impairments and to investigate the mechanism of G1 to improve PTSD from brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling. METHODS This study initially detected GPER1 expression in the hippocampus of single prolonged stress (SPS) mice, utilizing both Western blot and immunofluorescence staining. Subsequently, the effects of G1 on PTSD-like behaviors, synaptic, and mitochondrial functions in SPS mice were investigated. Additionally, the involvement of BDNF/TrkB signaling involved in the protection was further confirmed using GPER1 antagonist and TrkB inhibitor, respectively. RESULTS The expression of GPER1 was reduced in the hippocampus of SPS mice, and G1 treatment given for 14 consecutive days significantly improved PTSD-like behaviors in SPS mice compared with model group. Electrophysiological local field potential (LFP) results showed that G1 administration for 14 consecutive days could reverse the abnormal changes in the gamma oscillation in the CA1 region of SPS mice. Meanwhile, G1 administration for 14 consecutive days could significantly improve the abnormal expression of synaptic proteins, increase the expression of mitochondria-related proteins, increase the number of synapses in the hippocampus, and ameliorate the damage of hippocampal mitochondrial structure in SPS mice. In addition, G15 (GPER1 inhibitor) and ANA-12 (TrkB inhibitor) blocked the ameliorative effects of G1 on PTSD-like behaviors and aberrant expression of hippocampal synaptic and mitochondrial proteins in SPS mice and inhibited the reparative effects of G1 on structural damage to hippocampal mitochondria, respectively. CONCLUSION G1 improved PTSD-like behaviors in SPS mice, possibly by increasing hippocampal GPER1 expression and promoting BDNF/TrkB signaling to repair synaptic and mitochondrial functional impairments. This study would provide critical mechanism for the prevention and treatment of PTSD.
Collapse
Affiliation(s)
- Lixia Chen
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Yang Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Zisheng Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Zhengrong Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Jingji Wang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Shaojie Yang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
29
|
Liu H, Guo S, Dai A, Xu P, Li X, Huang S, He X, Wu K, Zhang X, Yang D, Xie X, Xu HE. Structural and functional evidence that GPR30 is not a direct estrogen receptor. Cell Res 2024; 34:530-533. [PMID: 38744981 PMCID: PMC11217264 DOI: 10.1038/s41422-024-00963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/07/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Heng Liu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shimeng Guo
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Antao Dai
- The State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Peiyu Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Li
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijie Huang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Wu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinyue Zhang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dehua Yang
- The State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xin Xie
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China.
| | - H Eric Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
30
|
Talia M, Cesario E, Cirillo F, Scordamaglia D, Di Dio M, Zicarelli A, Mondino AA, Occhiuzzi MA, De Francesco EM, Belfiore A, Miglietta AM, Di Dio M, Capalbo C, Maggiolini M, Lappano R. Cancer-associated fibroblasts (CAFs) gene signatures predict outcomes in breast and prostate tumor patients. J Transl Med 2024; 22:597. [PMID: 38937754 PMCID: PMC11210052 DOI: 10.1186/s12967-024-05413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Over the last two decades, tumor-derived RNA expression signatures have been developed for the two most commonly diagnosed tumors worldwide, namely prostate and breast tumors, in order to improve both outcome prediction and treatment decision-making. In this context, molecular signatures gained by main components of the tumor microenvironment, such as cancer-associated fibroblasts (CAFs), have been explored as prognostic and therapeutic tools. Nevertheless, a deeper understanding of the significance of CAFs-related gene signatures in breast and prostate cancers still remains to be disclosed. METHODS RNA sequencing technology (RNA-seq) was employed to profile and compare the transcriptome of CAFs isolated from patients affected by breast and prostate tumors. The differentially expressed genes (DEGs) characterizing breast and prostate CAFs were intersected with data from public datasets derived from bulk RNA-seq profiles of breast and prostate tumor patients. Pathway enrichment analyses allowed us to appreciate the biological significance of the DEGs. K-means clustering was applied to construct CAFs-related gene signatures specific for breast and prostate cancer and to stratify independent cohorts of patients into high and low gene expression clusters. Kaplan-Meier survival curves and log-rank tests were employed to predict differences in the outcome parameters of the clusters of patients. Decision-tree analysis was used to validate the clustering results and boosting calculations were then employed to improve the results obtained by the decision-tree algorithm. RESULTS Data obtained in breast CAFs allowed us to assess a signature that includes 8 genes (ITGA11, THBS1, FN1, EMP1, ITGA2, FYN, SPP1, and EMP2) belonging to pro-metastatic signaling routes, such as the focal adhesion pathway. Survival analyses indicated that the cluster of breast cancer patients showing a high expression of the aforementioned genes displays worse clinical outcomes. Next, we identified a prostate CAFs-related signature that includes 11 genes (IL13RA2, GDF7, IL33, CXCL1, TNFRSF19, CXCL6, LIFR, CXCL5, IL7, TSLP, and TNFSF15) associated with immune responses. A low expression of these genes was predictive of poor survival rates in prostate cancer patients. The results obtained were significantly validated through a two-step approach, based on unsupervised (clustering) and supervised (classification) learning techniques, showing a high prediction accuracy (≥ 90%) in independent RNA-seq cohorts. CONCLUSION We identified a huge heterogeneity in the transcriptional profile of CAFs derived from breast and prostate tumors. Of note, the two novel CAFs-related gene signatures might be considered as reliable prognostic indicators and valuable biomarkers for a better management of breast and prostate cancer patients.
Collapse
Affiliation(s)
- Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Eugenio Cesario
- Department of Cultures, Education and Society, University of Calabria, Rende, 87036, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Marika Di Dio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Azzurra Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Adelina Assunta Mondino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | | | | | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, 95122, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Annunziata Hospital Cosenza, Cosenza, 87100, Italy
| | - Michele Di Dio
- Division of Urology, Department of Surgery, Annunziata Hospital, Cosenza, 87100, Italy
| | - Carlo Capalbo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
- Complex Operative Oncology Unit, Annunziata Hospital Cosenza, Cosenza, 87100, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| |
Collapse
|
31
|
He TT, Li X, Ma JZ, Yang Y, Zhu S, Zeng J, Luo L, Yin YL, Cao LY. Triclocarban and triclosan promote breast cancer progression in vitro and in vivo via activating G protein-coupled estrogen receptor signaling pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172782. [PMID: 38679099 DOI: 10.1016/j.scitotenv.2024.172782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Triclocarban (TCC) and triclosan (TCS) have been detected ubiquitously in human body and evoked increasing concerns. This study aimed to reveal the induction risks of TCC and TCS on triple negative breast cancer through non-genomic GPER-mediated signaling pathways. Molecular simulation indicated that TCC exhibited higher GPER binding affinity than TCS theoretically. Calcium mobilization assay displayed that TCC/TCS activated GPER signaling pathway with the lowest observed effective concentrations (LOEC) of 10 nM/100 nM. TCC and TCS also upregulated MMP-2/9, EGFR, MAPK3 but downregulated MAPK8 via GPER-mediated signaling pathway. Proliferation assay showed that TCC/TCS induced 4 T1 breast cancer cells proliferation with the LOEC of 100 nM/1000 nM. Wound-healing and transwell assays showed that TCC/TCS promoted 4 T1 cells migration in a concentration-dependent manner with the LOEC of 10 nM. The effects of TCC on breast cancer cells proliferation and migration were stronger than TCS and both were regulated by GPER. TCC/TCS induced migratory effects were more significantly than proliferative effect. Mechanism study showed that TCC/TCS downregulated the expression of epithelial marker (E-cadherin) but upregulated mesenchymal markers (snail and N-cadherin), which was reversed by GPER inhibitor G15. These biomarkers results indicated that TCC/TCS-induced 4 T1 cells migration was a classic epithelial to mesenchymal transition mechanism regulated by GPER signaling pathway. Orthotopic tumor model verified that TCC promoted breast cancer in-situ tumor growth and distal tissue metastasis via GPER-mediated signaling pathway at human-exposure level of 10 mg/kg/d. TCC-induced tissue metastasis of breast cancer was more significantly than in-situ tumor growth. Overall, we demonstrated for the first time that TCC/TCS could activate the GPER signaling pathways to induce breast cancer progression.
Collapse
Affiliation(s)
- Ting-Ting He
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xin Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Jie-Zhi Ma
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha 410013, China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Shiye Zhu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yu-Long Yin
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Lin-Ying Cao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
32
|
Zhang Y, Tan X, Tang C. Estrogen-immuno-neuromodulation disorders in menopausal depression. J Neuroinflammation 2024; 21:159. [PMID: 38898454 PMCID: PMC11188190 DOI: 10.1186/s12974-024-03152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
A significant decrease in estrogen levels puts menopausal women at high risk for major depression, which remains difficult to cure despite its relatively clear etiology. With the discovery of abnormally elevated inflammation in menopausal depressed women, immune imbalance has become a novel focus in the study of menopausal depression. In this paper, we examined the characteristics and possible mechanisms of immune imbalance caused by decreased estrogen levels during menopause and found that estrogen deficiency disrupted immune homeostasis, especially the levels of inflammatory cytokines through the ERα/ERβ/GPER-associated NLRP3/NF-κB signaling pathways. We also analyzed the destruction of the blood-brain barrier, dysfunction of neurotransmitters, blockade of BDNF synthesis, and attenuation of neuroplasticity caused by inflammatory cytokine activity, and investigated estrogen-immuno-neuromodulation disorders in menopausal depression. Current research suggests that drugs targeting inflammatory cytokines and NLRP3/NF-κB signaling molecules are promising for restoring homeostasis of the estrogen-immuno-neuromodulation system and may play a positive role in the intervention and treatment of menopausal depression.
Collapse
Affiliation(s)
- Yuling Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xiying Tan
- Department of Neurology, Xinxiang City First People's Hospital, Xinxiang, 453000, Henan, China
| | - Chaozhi Tang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
33
|
Xu Y, Zhang Z, Wang R, Xue S, Ying Q, Jin L. Roles of estrogen and its receptors in polycystic ovary syndrome. Front Cell Dev Biol 2024; 12:1395331. [PMID: 38961865 PMCID: PMC11219844 DOI: 10.3389/fcell.2024.1395331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder characterized by abnormal steroid hormone levels in peripheral blood and poor-quality oocytes. In the ovary, androgen is produced by theca cells, and estrogen is produced by granulosa cells. Androgen is converted to estrogen in granulosa cells, with cytochrome P450 aromatase as the limiting enzyme during this process. Estrogen receptors (ER) include ER alpha, ER beta, and membrane receptor GPR30. Studies have demonstrated that the abnormal functions of estrogen and its receptors and estradiol synthesis-related enzymes are closely related to PCOS. In recent years, some estrogen-related drugs have made significant progress in clinical application for subfertility with PCOS, such as letrozole and clomiphene. This article will elaborate on the recent advances in PCOS caused by abnormal expression of estrogen and its receptors and the application of related targeted small molecule drugs in clinical research and treatment.
Collapse
Affiliation(s)
- Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziyi Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Rongxiang Wang
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Songguo Xue
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Ying
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liping Jin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Talia M, Cirillo F, Scordamaglia D, Di Dio M, Zicarelli A, De Rosis S, Miglietta AM, Capalbo C, De Francesco EM, Belfiore A, Grande F, Rizzuti B, Occhiuzzi MA, Fortino G, Guzzo A, Greco G, Maggiolini M, Lappano R. The G Protein Estrogen Receptor (GPER) is involved in the resistance to the CDK4/6 inhibitor palbociclib in breast cancer. J Exp Clin Cancer Res 2024; 43:171. [PMID: 38886784 PMCID: PMC11184778 DOI: 10.1186/s13046-024-03096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The cyclin D1-cyclin dependent kinases (CDK)4/6 inhibitor palbociclib in combination with endocrine therapy shows remarkable efficacy in the management of estrogen receptor (ER)-positive and HER2-negative advanced breast cancer (BC). Nevertheless, resistance to palbociclib frequently arises, highlighting the need to identify new targets toward more comprehensive therapeutic strategies in BC patients. METHODS BC cell lines resistant to palbociclib were generated and used as a model system. Gene silencing techniques and overexpression experiments, real-time PCR, immunoblotting and chromatin immunoprecipitation studies as well as cell viability, colony and 3D spheroid formation assays served to evaluate the involvement of the G protein-coupled estrogen receptor (GPER) in the resistance to palbociclib in BC cells. Molecular docking simulations were also performed to investigate the potential interaction of palbociclib with GPER. Furthermore, BC cells co-cultured with cancer-associated fibroblasts (CAFs) isolated from mammary carcinoma, were used to investigate whether GPER signaling may contribute to functional cell interactions within the tumor microenvironment toward palbociclib resistance. Finally, by bioinformatics analyses and k-means clustering on clinical and expression data of large cohorts of BC patients, the clinical significance of novel mediators of palbociclib resistance was explored. RESULTS Dissecting the molecular events that characterize ER-positive BC cells resistant to palbociclib, the down-regulation of ERα along with the up-regulation of GPER were found. To evaluate the molecular events involved in the up-regulation of GPER, we determined that the epidermal growth factor receptor (EGFR) interacts with the promoter region of GPER and stimulates its expression toward BC cells resistance to palbociclib treatment. Adding further cues to these data, we ascertained that palbociclib does induce pro-inflammatory transcriptional events via GPER signaling in CAFs. Of note, by performing co-culture assays we demonstrated that GPER contributes to the reduced sensitivity to palbociclib also facilitating the functional interaction between BC cells and main components of the tumor microenvironment named CAFs. CONCLUSIONS Overall, our results provide novel insights on the molecular events through which GPER may contribute to palbociclib resistance in BC cells. Additional investigations are warranted in order to assess whether targeting the GPER-mediated interactions between BC cells and CAFs may be useful in more comprehensive therapeutic approaches of BC resistant to palbociclib.
Collapse
Affiliation(s)
- Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Marika Di Dio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Azzurra Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Salvatore De Rosis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Regional Hospital Cosenza, Cosenza, 87100, Italy
| | - Carlo Capalbo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
- Complex Operative Oncology Unit, Regional Hospital Cosenza, Cosenza, 87100, Italy
| | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, 95122, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Bruno Rizzuti
- Department of Physics, CNR-NANOTEC, SS Rende (CS), University of Calabria, Rende, CS, 87036, Italy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, Zaragoza, 50018, Spain
| | | | - Giancarlo Fortino
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende, 87036, Italy
| | - Antonella Guzzo
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende, 87036, Italy
| | - Gianluigi Greco
- Department of Mathematics and Computer Science, University of Calabria, Cosenza, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| |
Collapse
|
35
|
Focaccetti C, Nardozi D, Benvenuto M, Lucarini V, Angiolini V, Carrano R, Scimeca M, Servadei F, Mauriello A, Mancini P, Besharat ZM, Milella M, Migliaccio S, Ferretti E, Cifaldi L, Masuelli L, Palumbo C, Bei R. Bisphenol-A in Drinking Water Accelerates Mammary Cancerogenesis and Favors an Immunosuppressive Tumor Microenvironment in BALB- neuT Mice. Int J Mol Sci 2024; 25:6259. [PMID: 38892447 PMCID: PMC11172679 DOI: 10.3390/ijms25116259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Bisphenol-A (BPA), a synthetic compound ubiquitously present in the environment, can act as an endocrine disruptor by binding to both canonical and non-canonical estrogen receptors (ERs). Exposure to BPA has been linked to various cancers, in particular, those arising in hormone-targeted tissues such as the breast. In this study, we evaluated the effect of BPA intake through drinking water on ErbB2/neu-driven cancerogenesis in BALB-neuT mice, transgenic for a mutated ErbB2/neu receptor gene, which reproducibly develop carcinomas in all mammary glands. In this model, BPA accelerated mammary cancerogenesis with an increase in the number of tumors per mouse and a concurrent decrease in tumor-free and overall survival. As assessed by immunohistochemistry, BALB-neuT tumors were ER-negative but expressed high levels of the alternative estrogen receptor GPR30, regardless of BPA exposure. On the other hand, BPA exposure resulted in a marked upregulation of progesterone receptors in preinvasive tumors and of Ki67, CD31, and phosphorylated Akt in invasive tumors. Moreover, based on several infiltration markers of immune cells, BPA favored an immunosuppressive tumor microenvironment. Finally, in vitro cell survival studies performed on a cell line established from a BALB-neuT breast carcinoma confirmed that BPA's impact on cancer progression can be particularly relevant after chronic, low-dose exposure.
Collapse
MESH Headings
- Animals
- Benzhydryl Compounds
- Phenols
- Tumor Microenvironment/drug effects
- Female
- Mice
- Mice, Inbred BALB C
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/genetics
- Drinking Water
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/metabolism
- Mice, Transgenic
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, Progesterone/metabolism
- Receptors, Progesterone/genetics
- Carcinogenesis/chemically induced
- Carcinogenesis/drug effects
- Endocrine Disruptors/toxicity
Collapse
Affiliation(s)
- Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| | - Daniela Nardozi
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| | - Valeria Lucarini
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Valentina Angiolini
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| | - Manuel Scimeca
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (F.S.); (A.M.)
| | - Francesca Servadei
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (F.S.); (A.M.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (F.S.); (A.M.)
| | - Patrizia Mancini
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Zein Mersini Besharat
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Michele Milella
- Department of Oncology, University of Verona, 37134 Verona, Italy;
| | - Silvia Migliaccio
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| |
Collapse
|
36
|
Cignarella A, Bolego C, Barton M. Sex and sex steroids as determinants of cardiovascular risk. Steroids 2024; 206:109423. [PMID: 38631602 DOI: 10.1016/j.steroids.2024.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
There are considerable sex differences regarding the risk of cardiovascular disease (CVD), including arterial hypertension, coronary artery disease (CAD) and stroke, as well as chronic renal disease. Women are largely protected from these conditions prior to menopause, and the risk increases following cessation of endogenous estrogen production or after surgical menopause. Cardiovascular diseases in women generally begin to occur at a later age than in men (on average with a delay of 10 years). Cessation of estrogen production also impacts metabolism, increasing the risk of developing obesity and diabetes. In middle-aged individuals, hypertension develops earlier and faster in women than in men, and smoking increases cardiovascular risk to a greater degree in women than it does in men. It is not only estrogen that affects female cardiovascular health and plays a protective role until menopause: other sex hormones such as progesterone and androgen hormones generate a complex balance that differentiates heart and blood vessel function in women compared to men. Estrogens improve vasodilation of epicardial coronary arteries and the coronary microvasculature by augmenting the release of vasodilating factors such as nitric oxide and prostacyclin, which are mechanisms of coronary vasodilatation that are more pronounced in women compared to men. Estrogens are also powerful inhibitors of inflammation, which in part explains their protective effects on CVD and chronic renal disease. Emerging evidence suggests that sex chromosomes also play a significant role in shaping cardiovascular risk. The cardiovascular protection conferred by endogenous estrogens may be extended by hormone therapy, especially using bioidentical hormones and starting treatment early after menopause.
Collapse
Affiliation(s)
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland; Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
37
|
Nie P, Lan Y, You T, Jia T, Xu H. F-53B mediated ROS affects uterine development in rats during puberty by inducing apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116399. [PMID: 38677070 DOI: 10.1016/j.ecoenv.2024.116399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs), as pollutants, can cause palpable environmental and health impacts around the world, as endocrine disruptors, can disrupt endocrine homeostasis and increase the risk of diseases. Chlorinated polyfluoroalkyl ether sulfonate (F-53B), as a substitute for PFAS, was determined to have potential toxicity. Puberty is the stage when sexual organs develop and hormones change dramatically, and abnormal uterine development can increase the risk of uterine lesions and lead to infertility. This study was designed to explore the impact of F-53B on uterine development during puberty. Four-week-old female SD rats were exposed to 0.125 and 6.25 mg/L F-53B during puberty. The results showed that F-53B interfered with growth and sex hormone levels and bound to oestrogen-related receptors, which affected their function, contributed to the accumulation of reactive oxygen species, promoted cell apoptosis and inhibited cell proliferation, ultimately causing uterine dysplasia.
Collapse
Affiliation(s)
- Penghui Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yuzhi Lan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Tao You
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Tiantian Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, PR China.
| |
Collapse
|
38
|
Zheng H, Triplett KD, Prossnitz ER, Hall PR, Daly SM. G protein-coupled estrogen receptor agonist G-1 decreases ADAM10 levels and NLRP3-inflammasome component activation in response to Staphylococcus aureus alpha-hemolysin. Microbiologyopen 2024; 13:e23. [PMID: 38867416 PMCID: PMC11168966 DOI: 10.1002/mbo3.1423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
The G protein-coupled estrogen receptor, also known as GPER1 or originally GPR30, is found in various tissues, indicating its diverse functions. It is typically present in immune cells, suggesting its role in regulating immune responses to infectious diseases. Our previous studies have shown that G-1, a selective GPER agonist, can limit the pathogenesis mediated by Staphylococcus aureus alpha-hemolysin (Hla). It aids in clearing bacteria in a mouse skin infection model and restricts the surface display of the Hla receptor, ADAM10 (a disintegrin and metalloprotease 10) in HaCaT keratinocytes. In this report, we delve into the modulation of GPER in human immune cells in relation to the NLRP3 inflammasome. We used macrophage-like differentiated THP-1 cells for our study. We found that treating these cells with G-1 reduces ATP release, decreases the activity of the caspase-1 enzyme, and lessens cell death following Hla intoxication. This is likely due to the reduced levels of ADAM10 and NLRP3 proteins, as well as the decreased display of the ADAM10 receptor in the G-1-treated THP-1 cells. Our studies, along with our previous work, suggest the potential therapeutic use of G-1 in reducing Hla susceptibility in humans. This highlights the importance of GPER in immune regulation and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Huayu Zheng
- Department of Pharmaceutical SciencesUniversity of New Mexico Health Sciences Center, College of PharmacyAlbuquerqueNew MexicoUSA
| | - Kathleen D. Triplett
- Department of Pharmaceutical SciencesUniversity of New Mexico Health Sciences Center, College of PharmacyAlbuquerqueNew MexicoUSA
| | - Eric R. Prossnitz
- Department of Internal Medicine, School of Medicine, Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism and University of New Mexico Comprehensive Cancer CenterUniversity of New Mexico Health Sciences CenterAlbuquerqueNew MexicoUSA
| | - Pamela R. Hall
- Department of Pharmaceutical SciencesUniversity of New Mexico Health Sciences Center, College of PharmacyAlbuquerqueNew MexicoUSA
| | - Seth M. Daly
- Department of Pharmaceutical SciencesUniversity of New Mexico Health Sciences Center, College of PharmacyAlbuquerqueNew MexicoUSA
| |
Collapse
|
39
|
Coelingh Bennink HJT, Prowse A, Egberts JFM, Debruyne FMJ, Huhtaniemi IT, Tombal B. The Loss of Estradiol by Androgen Deprivation in Prostate Cancer Patients Shows the Importance of Estrogens in Males. J Endocr Soc 2024; 8:bvae107. [PMID: 38883397 PMCID: PMC11177789 DOI: 10.1210/jendso/bvae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Indexed: 06/18/2024] Open
Abstract
The role of estradiol (E2; an estrogen) in men needs to be more appreciated. In this review, we address the clinical situations that allow the study of the clinical consequences of E2 deficiency in men and discuss the effects of restoration of levels of this reproductive steroid hormone. In men with advanced prostate cancer (PCa) undergoing androgen deprivation therapy (ADT), E2 is suppressed along with testosterone, leading to side effects affecting the quality of life. These include hot flashes, arthralgia, fatigue, mood changes, cognition problems, weight gain, bone loss, and increased risk of cardiovascular disease. Transdermal E2 alone for ADT has shown equivalent testosterone suppression compared to gonadotropin-releasing hormone (GnRH) agonists while also preventing estrogen-deficiency side effects, including hot flashes and bone loss. Co-treatment of ADT with fetal estrogen estetrol (E4) has shown significant improvements of estrogen-deficiency symptoms. These observations emphasize the need to raise awareness of the importance of estrogens in men among clinicians and the lay public.
Collapse
Affiliation(s)
| | - Amanda Prowse
- Terminal 4 Communications, 1217 SK Hilversum, The Netherlands
| | - Jan F M Egberts
- Terminal 4 Communications, 1217 SK Hilversum, The Netherlands
| | | | - Ilpo T Huhtaniemi
- Institute of Reproductive and Developmental Biology, Imperial College London, London SW7 2AZ, UK
| | - Bertrand Tombal
- Division of Urology, University Clinic Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
40
|
Cirillo F, Spinelli A, Talia M, Scordamaglia D, Santolla MF, Grande F, Rizzuti B, Maggiolini M, Gérard C, Lappano R. Estetrol/GPER/SERPINB2 transduction signaling inhibits the motility of triple-negative breast cancer cells. J Transl Med 2024; 22:450. [PMID: 38741146 PMCID: PMC11089683 DOI: 10.1186/s12967-024-05269-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Estetrol (E4) is a natural estrogen produced by the fetal liver during pregnancy. Due to its favorable safety profile, E4 was recently approved as estrogenic component of a new combined oral contraceptive. E4 is a selective ligand of estrogen receptor (ER)α and ERβ, but its binding to the G Protein-Coupled Estrogen Receptor (GPER) has not been described to date. Therefore, we aimed to explore E4 action in GPER-positive Triple-Negative Breast Cancer (TNBC) cells. METHODS The potential interaction between E4 and GPER was investigated by molecular modeling and binding assays. The whole transcriptomic modulation triggered by E4 in TNBC cells via GPER was explored through high-throughput RNA sequencing analyses. Gene and protein expression evaluations as well as migration and invasion assays allowed us to explore the involvement of the GPER-mediated induction of the plasminogen activator inhibitor type 2 (SERPINB2) in the biological responses triggered by E4 in TNBC cells. Furthermore, bioinformatics analysis was aimed at recognizing the biological significance of SERPINB2 in ER-negative breast cancer patients. RESULTS After the molecular characterization of the E4 binding capacity to GPER, RNA-seq analysis revealed that the plasminogen activator inhibitor type 2 (SERPINB2) is one of the most up-regulated genes by E4 in a GPER-dependent manner. Worthy, we demonstrated that the GPER-mediated increase of SERPINB2 is engaged in the anti-migratory and anti-invasive effects elicited by E4 in TNBC cells. In accordance with these findings, a correlation between SERPINB2 levels and a good clinical outcome was found in ER-negative breast cancer patients. CONCLUSIONS Overall, our results provide new insights into the mechanisms through which E4 can halt migratory and invasive features of TNBC cells.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Asia Spinelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Maria Francesca Santolla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Bruno Rizzuti
- Department of Physics, CNR-NANOTEC, SS Rende (CS), University of Calabria, Rende, CS, 87036, Italy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, 50018, Spain
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Céline Gérard
- Mithra Pharmaceutical, Rue Saint-Georges 5, Liège, 4000, Belgium.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| |
Collapse
|
41
|
Hixon JC, Rivas Zarete JI, White J, Hilaire M, Muhammad A, Yusuf AP, Adu-Addai B, Yates CC, Mahavadi S. Epigenetic Modulation of GPER Expression in Gastric and Colonic Smooth Muscle of Male and Female Non-Obese Diabetic (NOD) Mice: Insights into H3K4me3 and H3K27ac Modifications. Int J Mol Sci 2024; 25:5260. [PMID: 38791299 PMCID: PMC11121689 DOI: 10.3390/ijms25105260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Type 1 diabetes (T1D) affects gastrointestinal (GI) motility, favoring gastroparesis, constipation, and fecal incontinence, which are more prevalent in women. The mechanisms are unknown. Given the G-protein-coupled estrogen receptor's (GPER) role in GI motility, we investigated sex-related diabetes-induced epigenetic changes in GPER. We assessed GPER mRNA and protein expression levels using qPCR and Western blot analyses, and quantified the changes in nuclear DNA methyltransferases and histone modifications (H3K4me3, H3Ac, and H3K27Ac) by ELISA kits. Targeted bisulfite and chromatin immunoprecipitation assays were used to evaluate DNA methylation and histone modifications around the GPER promoter by chromatin immunoprecipitation assays in gastric and colonic smooth muscle tissues of male and female control (CTR) and non-obese diabetic (NOD) mice. GPER expression was downregulated in NOD, with sex-dependent variations. In the gastric smooth muscle, not in colonic smooth muscle, downregulation coincided with differences in methylation ratios between regions 1 and 2 of the GPER promoter of NOD. DNA methylation was higher in NOD male colonic smooth muscle than in NOD females. H3K4me3 and H3ac enrichment decreased in NOD gastric smooth muscle. H3K4me3 levels diminished in the colonic smooth muscle of NOD. H3K27ac levels were unaffected, but enrichment decreased in NOD male gastric smooth muscle; however, it increased in the NOD male colonic smooth muscle and decreased in the female NOD colonic smooth muscle. Male NOD colonic smooth muscle exhibited decreased H3K27ac levels, not female, whereas female NOD colonic smooth muscle demonstrated diminished enrichment of H3ac at the GPER promoter, contrary to male NOD. Sex-specific epigenetic mechanisms contribute to T1D-mediated suppression of GPER expression in the GI tract. These insights advance our understanding of T1D complications and suggest promising avenues for targeted therapeutic interventions.
Collapse
MESH Headings
- Animals
- Female
- Male
- Mice
- Colon/metabolism
- Colon/pathology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/genetics
- DNA Methylation
- Epigenesis, Genetic
- Histones/metabolism
- Mice, Inbred NOD
- Muscle, Smooth/metabolism
- Promoter Regions, Genetic
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/genetics
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Stomach/pathology
Collapse
Affiliation(s)
- Juanita C. Hixon
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA; (J.C.H.); (J.W.); (A.M.)
| | - Jatna I. Rivas Zarete
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; (J.I.R.Z.); (B.A.-A.)
| | - Jason White
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA; (J.C.H.); (J.W.); (A.M.)
| | - Mariline Hilaire
- Department of Environment & Nutrition Sciences, College of Agriculture, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Aliyu Muhammad
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA; (J.C.H.); (J.W.); (A.M.)
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria 810211, Kaduna State, Nigeria
| | - Abdurrahman Pharmacy Yusuf
- Department of Biochemistry, Federal University of Technology, P.M.B. 65, Minna 920101, Niger State, Nigeria;
| | - Benjamin Adu-Addai
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; (J.I.R.Z.); (B.A.-A.)
| | - Clayton C. Yates
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Sunila Mahavadi
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA; (J.C.H.); (J.W.); (A.M.)
| |
Collapse
|
42
|
Al-Ghadban S, Isern SU, Herbst KL, Bunnell BA. The Expression of Adipogenic Marker Is Significantly Increased in Estrogen-Treated Lipedema Adipocytes Differentiated from Adipose Stem Cells In Vitro. Biomedicines 2024; 12:1042. [PMID: 38791004 PMCID: PMC11117526 DOI: 10.3390/biomedicines12051042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Lipedema is a chronic, idiopathic, and painful disease characterized by an excess of adipose tissue in the extremities. The goal of this study is to characterize the gene expression of estrogen receptors (ERα and ERβ), G protein-coupled estrogen receptor (GPER), and ER-metabolizing enzymes: hydroxysteroid 17-beta dehydrogenase (HSD17B1, 7, B12), cytochrome P450 (CYP19A1), hormone-sensitive lipase (LIPE), enzyme steroid sulfatase (STS), and estrogen sulfotransferase (SULT1E1), which are markers in Body Mass Index (BMI) and age-matched non-lipedema (healthy) and lipedema ASCs and spheroids. Flow cytometry and cellular proliferation assays, RT-PCR, and Western Blot techniques were used to determine the expression of ERs and estrogen-metabolizing enzymes. In 2D monolayer culture, estrogen increased the proliferation and the expression of the mesenchymal marker, CD73, in hormone-depleted (HD) healthy ASCs compared to lipedema ASCs. The expression of ERβ was significantly increased in HD lipedema ASCs and spheroids compared to corresponding healthy cells. In contrast, ERα and GPER gene expression was significantly decreased in estrogen-treated lipedema spheroids. CYP19A1 and LIPE gene expressions were significantly increased in estrogen-treated healthy ASCs and spheroids, respectively, while estrogen upregulated the expression of PPAR-ϒ2 and ERα in estrogen-treated lipedema-differentiated adipocytes and spheroids. These results indicate that estrogen may play a role in adipose tissue dysregulation in lipedema.
Collapse
Affiliation(s)
- Sara Al-Ghadban
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Spencer U. Isern
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | | | - Bruce A. Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| |
Collapse
|
43
|
Wang Q, Peng F, Yang J, Chen X, Peng Z, Zhang M, Tang D, Liu J, Zhao H. MicroRNAs regulate the vicious cycle of vascular calcification-osteoporosis in postmenopausal women. Mol Biol Rep 2024; 51:622. [PMID: 38709309 DOI: 10.1007/s11033-024-09550-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
Menopause is a normal physiological process accompanied by changes in various physiological states. The incidence of vascular calcification (VC) increases each year after menopause and is closely related to osteoporosis (OP). Although many studies have investigated the links between VC and OP, the interaction mechanism of the two under conditions of estrogen loss remains unclear. MicroRNAs (miRNAs), which are involved in epigenetic modification, play a critical role in estrogen-mediated mineralization. In the past several decades, miRNAs have been identified as biomarkers or therapeutic targets in diseases. Thus, we hypothesize that these small molecules can provide new diagnostic and therapeutic approaches. In this review, we summarize the close interactions between VC and OP and the role of miRNAs in their interplay.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, China
| | - Fei Peng
- Department of Radiology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, China
| | - Jing Yang
- Changsha Central Hospital Affiliated to University of South China, Changsha, Hunan, China
| | - Xiaolong Chen
- Department of Radiology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, China
| | - Zhaojie Peng
- Department of Radiology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, China
| | - Minyi Zhang
- The University of South China, Hengyang, Hunan, China
| | - Deqiu Tang
- Department of Radiology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, China
| | - Jianghua Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, China.
| | - Heng Zhao
- Department of Radiology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, China.
| |
Collapse
|
44
|
Lappano R, Maggiolini M, Mallet C, Jacquot Y. Commentary: harnessing the first peptidic modulator of the estrogen receptor GPER. Front Pharmacol 2024; 15:1413058. [PMID: 38751778 PMCID: PMC11094232 DOI: 10.3389/fphar.2024.1413058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Christophe Mallet
- Institut National de la Santé et de la Recherche Médicale (INSERM), NEURO-DOL Basics and Clinical Pharmacology of Pain, Université Clermont Auvergne, Clermont-Ferrand, France
- Faculty of Medicine, ANALGESIA Institute, Clermont-Ferrand, France
| | - Yves Jacquot
- Faculty of Pharmacy of Paris, Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), Centre National de la Recherche Scientifique (CNRS) UMR 8038, INSERM U1268, Université Paris Cité, Paris, France
| |
Collapse
|
45
|
Machado GDB, Schnitzler AL, Fleischer AW, Beamish SB, Frick KM. G protein-coupled estrogen receptor (GPER) in the dorsal hippocampus regulates memory consolidation in gonadectomized male mice, likely via different signaling mechanisms than in female mice. Horm Behav 2024; 161:105516. [PMID: 38428223 PMCID: PMC11065565 DOI: 10.1016/j.yhbeh.2024.105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Studies in ovariectomized (OVX) female rodents suggest that G protein-coupled estrogen receptor (GPER) is a key regulator of memory, yet little is known about its importance to memory in males or the cellular mechanisms underlying its mnemonic effects in either sex. In OVX mice, bilateral infusion of the GPER agonist G-1 into the dorsal hippocampus (DH) enhances object recognition and spatial memory consolidation in a manner dependent on rapid activation of c-Jun N-terminal kinase (JNK) signaling, cofilin phosphorylation, and actin polymerization in the DH. However, the effects of GPER on memory consolidation and DH cell signaling in males are unknown. Thus, the present study first assessed effects of DH infusion of G-1 or the GPER antagonist G-15 on object recognition and spatial memory consolidation in gonadectomized (GDX) male mice. As in OVX mice, immediate post-training bilateral DH infusion of G-1 enhanced, whereas G-15 impaired, memory consolidation in the object recognition and object placement tasks. However, G-1 did not increase levels of phosphorylated JNK (p46, p54) or cofilin in the DH 5, 15, or 30 min after infusion, nor did it affect phosphorylation of ERK (p42, p44), PI3K, or Akt. Levels of phospho-cAMP-responsive element binding protein (CREB) were elevated in the DH 30 min following G-1 infusion, indicating that GPER in males activates a yet unknown signaling mechanism that triggers CREB-mediated gene transcription. Our findings show for the first time that GPER in the DH regulates memory consolidation in males and suggests sex differences in underlying signaling mechanisms.
Collapse
Affiliation(s)
- Gustavo D B Machado
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America
| | - Alexis L Schnitzler
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America
| | - Aaron W Fleischer
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America
| | - Sarah B Beamish
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America
| | - Karyn M Frick
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America.
| |
Collapse
|
46
|
Wang J, Wang S, Fang Z, Zhao J, Zhang G, Guo Y, Wang Q, Jiang Z, Zhong H, Hou W. Estrogen receptor GPR30 in the anterior cingulate cortex mediates exacerbated neuropathic pain in ovariectomized mice. Brain Res 2024; 1829:148798. [PMID: 38403038 DOI: 10.1016/j.brainres.2024.148798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Menopausal women experience neuropathic pain 63% more frequently than men do, which may attribute to the estrogen withdrawal. However, the underlying mechanisms remain unclear. Here, the role of estrogen receptors (ERs) in ovariectomized (OVX) female mice following chronic constriction injury (CCI) was investigated. With 17β-estradiol (E2) supplemented, aggravated mechanical allodynia in OVX mice could be significantly alleviated, particularly after intra-anterior cingulate cortex (ACC) E2 delivery. Pharmacological interventions further demonstrated that the agonist of G-protein-coupled estrogen receptor 30 (GPR30), rather than ERα or ERβ in the ACC, exhibited the similar analgesic effect as E2, whereas antagonist of GPR30 exacerbated allodynia. Furthermore, OVX surgery reduced GPR30 expression in the ACC, which could be restored with estrogen supplementation. Selective downregulation of GPR30 in the ACC of naïve female mice induces mechanical allodynia, whereas GPR30 overexpression in the ACC remarkedly alleviated OVX-exacerbated allodynia. Collectively, estrogen withdrawal could downregulate the ACC GPR30 expression, resulting in exacerbated neuropathic pain. Our findings highlight the importance of GPR30 in the ACC in aggravated neuropathic pain during menopause, and offer a potential therapeutic candidate for neuropathic pain management in menopausal women.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shiquan Wang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zongping Fang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jianshuai Zhao
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Guoqing Zhang
- Department of Cardiovasology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Yaru Guo
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qun Wang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhenhua Jiang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Nursing, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Haixing Zhong
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Wugang Hou
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
47
|
Gu Y, Hu ZF, Zheng DW, Yang YQ, Dong XL, Chen WF. Baohuoside I suppresses the NLRP3 inflammasome activation via targeting GPER to fight against Parkinson's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155435. [PMID: 38394727 DOI: 10.1016/j.phymed.2024.155435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Accumulating evidence indicates the crucial role of microglia-mediated inflammation and the NLR family pyrin domain containing 3 (NLRP3) inflammasome-mediated pyroptosis in the pathogenesis of Parkinson's disease (PD). Baohuoside I, a natural flavonoid extracted from Herba Epimedii, has been shown to possess anti-inflammatory effects, but its potential neuroprotective effects and mechanism against PD have not been documented. STUDY DESIGN AND METHODS The anti-inflammatory effects of Baohuoside I were evaluated by LPS-induced BV2 cells or primary microglia isolated from wide type or G protein-coupled estrogen receptor (GPER) gene knockout mice. The underlying mechanism related to GPER-mediated NLRP3 inflammasome inhibition was further explored using LPS-induced GPER+/+ or GPER-/- mouse models of PD. The neuroprotective effects of Baohuoside I were detected through western blot analysis, real-time PCR, molecular docking, mouse behavioral tests, immunofluorescence, and immunohistochemistry. RESULTS Baohuoside I significantly alleviated LPS-induced neuroinflammation by inhibiting the activation of NF-κB signal and the increase of pyroptosis levels as evidenced by the downregulated expression of pyroptosis-related proteins (NLRP3, ASC, pro-Caspase-1, IL-1β) in microglia cells. Intragastric administration of Baohuoside I protected against LPS-induced motor dysfunction and loss of dopaminergic neurons, reduced pro-inflammatory cytokines expressions, and inhibited microglial (Iba-1) and astrocyte (GFAP) activation in the nigrostriatal pathway in LPS-induced mouse model of PD. Pretreatment with GPER antagonist G15 in microglia cells or GPER gene deletion in mice significantly blocked the inhibitory effects of Baohuoside I on LPS-induced neuroinflammation and activation of the NLRP3/ASC/Caspase-1 pathway. Molecular docking further indicated that Baohuoside I might bind to GPER directly with a binding energy of -10.4 kcal/mol. CONCLUSION Baohuoside I provides neuroprotective effects against PD by inhibiting the activation of the NF-κB signal and NLRP3/ASC/Caspase-1 pathway. The molecular target for its anti-inflammatory effects is proved to be GPER in the PD mouse model. Baohuoside I may be a valuable anti-neuroinflammatory agent and a drug with well-defined target for the treatment of PD.
Collapse
Affiliation(s)
- Yu Gu
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zi-Fan Hu
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Dan-Wen Zheng
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yan-Qing Yang
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiao-Li Dong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wen-Fang Chen
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
48
|
Hu C, Lu L, Guo C, Zhan T, Zhang X, Zhang H. Bisphenols and brominated bisphenols induced endothelial dysfunction via its disruption of endothelial nitric oxide synthase. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123600. [PMID: 38369087 DOI: 10.1016/j.envpol.2024.123600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Emerging literatures have concentrated on the association between cardiovascular diseases risk of typical endocrine disruptor bisphenols, which also put forward the further studies need respect to the potential mechanism. Herein, we investigated the endothelial dysfunction effects of bisphenols and brominated bisphenols involved in aortic pathological structure, endothelial nitric oxide synthase (eNOS) protein phosphorylation, synthase activity and nitric oxide (NO) production in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mice. Bisphenol A (BPA) and bisphenol S (BPS) increased NO production by 85.7% and 68.8% at 10-6 M level in vitro and 74.3%, 41.5% in vivo, respectively, while tetrabromobisphenol S (TBBPS) significantly inhibited NO by 55.7% at 10-6 M in vitro and 28.9% in vivo at dose of 20 mg/kg BW/d. Aortic transcriptome profiling revealed that the process of 'regulation of NO mediated signal transduction' was commonly induced. The mRNA and protein expression of phosphorylated eNOS at Ser1177 were promoted by BPA and BPS but decreased by TBBPA and TBBPS in HUVECs. Phosphorylation and enzymatic activity of eNOS were significantly increased by 43.4% and 13.8% with the treatment of BPA and BPS at 10-7 M, but decreased by 16.9% after exposure to TBBPS at 10-6 M in vitro. Moreover, only TBBPS was observed to increase aorta thickness significantly in mice and induce endothelial dysfunction. Our work suggests that bisphenols and brominated bisphenols may exert adverse outcome on vascular health differently in vitro and in vivo, and emphasizes areas of public health concern similar endocrine disruptors vulnerable on the vascular endothelial function.
Collapse
Affiliation(s)
- Chao Hu
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Liping Lu
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Hangzhou International Urbanology Research Center and Center for Zhejiang Urban Governance Studies, Hangzhou, 311121, China.
| | - Chunyan Guo
- Radiation Monitoring Technical Center, State Environmental Protection Key Laboratory of Radiation Environmental Monitoring, Ministry of Ecology and Environment, Hangzhou, 310012, China
| | - Tingjie Zhan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, 08854, United States
| | - Xiaofang Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Hangzhou International Urbanology Research Center and Center for Zhejiang Urban Governance Studies, Hangzhou, 311121, China
| |
Collapse
|
49
|
Rymbai E, Sugumar D, Chakkittukandiyil A, Kothandan R, Selvaraj D. Molecular insights into the potential effects of selective estrogen receptor β agonists in Alzheimer's and Parkinson's diseases. Cell Biochem Funct 2024; 42:e4014. [PMID: 38616346 DOI: 10.1002/cbf.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders. Pathologically, AD and PD are characterized by the accumulation of misfolded proteins. Hence, they are also called as proteinopathy diseases. Gender is considered as one of the risk factors in both diseases. Estrogens are widely accepted to be neuroprotective in several neurodegenerative disorders. Estrogens can be produced in the central nervous system, where they are called as neurosteroids. Estrogens mediate their neuroprotective action mainly through their actions on estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). However, ERα is mainly involved in the growth and development of the primary and secondary sexual organs in females. Hence, the activation of ERα is associated with undesired side effects such as gynecomastia and increase in the risk of breast cancer, thromboembolism, and feminization. Therefore, selective activation of ERβ is often considered to be safer. In this review, we explore the role of ERβ in regulating the expression and functions of AD- and PD-associated genes. Additionally, we discuss the association of these genes with the amyloid-beta peptide (Aβ) and α-synuclein mediated toxicity. Ultimately, we established a correlation between the importance of ERβ activation and the process underlying ERβ's neuroprotective mechanisms in AD and PD.
Collapse
Affiliation(s)
- Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Ram Kothandan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| |
Collapse
|
50
|
Piñon-Teal WL, Ogilvie JM. G protein-coupled estrogen receptor expression in postnatal developing mouse retina. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1331298. [PMID: 38984123 PMCID: PMC11182193 DOI: 10.3389/fopht.2024.1331298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 07/11/2024]
Abstract
Introduction Estrogen has emerged as a multifaceted signaling molecule in the retina, playing an important role in neural development and providing neuroprotection in adults. It interacts with two receptor types: classical estrogen receptors (ERs) alpha and beta, and G protein-coupled estrogen receptor (Gper). Gper differs from classical ERs in structure, localization, and signaling. Here we provide the first report of the temporal and spatial properties of Gper transcript and protein expression in the developing and mature mouse retina. Methods We applied qRT-PCR to determine Gper transcript expression in wild type mouse retina from P0-P21. Immunohistochemistry and Western blot were used to determine Gper protein expression and localization at the same time points. Results Gper expression showed a 6-fold increase during postnatal development, peaking at P14. Relative total Gper expression exhibited a significant decrease during retinal development, although variations emerged in the timing of changes among different forms of the protein. Gper immunoreactivity was seen in retinal ganglion cells (RGCs) throughout development and also in somas in the position of horizontal cells at early time points. Immunoreactivity was observed in the cytoplasm and Golgi at all time points, in the nucleus at early time points, and in RGC axons as the retina matured. Discussion In conclusion, our study illuminates the spatial and temporal expression patterns of Gper in the developing mouse retina and provides a vital foundation for further investigations into the role of Gper in retinal development and degeneration.
Collapse
Affiliation(s)
| | - Judith Mosinger Ogilvie
- Department of Biology, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|