1
|
Xu K, Zhang H, Dai H, Mao W. Machine learning and multi-omics characterization of SLC2A1 as a prognostic factor in hepatocellular carcinoma: SLC2A1 is a prognostic factor in HCC. Gene 2025; 938:149178. [PMID: 39681148 DOI: 10.1016/j.gene.2024.149178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Hepatocellular carcinoma (HCC) is characterized by high incidence, significant mortality, and marked heterogeneity, making accurate molecular subtyping essential for effective treatment. Using multi-omics data from HCC patients, we applied diverse clustering algorithms to identify three HCC subtypes (HSs) with distinct prognostic characteristics. Among these, HS1 emerged as an immune-compromised subtype associated with the poorest prognosis. Additionally, we developed a novel, robust, and highly accurate machine learning-guided prognostic signature (MLPS) by integrating multiple machine learning algorithms and their combinations. Our study also identified SLC2A1, the core gene of MLPS, as being highly expressed during advanced stages of tumor progression. Knockdown experiments demonstrated that reducing SLC2A1 expression significantly suppressed the malignant behavior of HCC cells. Furthermore, SLC2A1 expression was linked to responsiveness to dasatinib and vincristine, suggesting potential therapeutic relevance. MLPS and SLC2A1 offer promising tools for individualized prognosis prediction and targeted therapy in HCC, providing new opportunities to improve patient outcomes.
Collapse
Affiliation(s)
- Kangjie Xu
- Zhongda Hospital, Southeast University, Jiangsu Province, Nanjing 210009, PR China; Binhai County People's Hospital, Jiangsu Province, Yancheng 224000, PR China
| | - Houliang Zhang
- Zhongda Hospital, Southeast University, Jiangsu Province, Nanjing 210009, PR China
| | - Hua Dai
- Yangzhou University Clinical Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Jiangsu Province, Yangzhou 225009, PR China.
| | - Weipu Mao
- Zhongda Hospital, Southeast University, Jiangsu Province, Nanjing 210009, PR China; Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Wang H, Qian D, Wang J, Liu Y, Luo W, Zhang H, Cheng J, Li H, Wu Y, Li W, Wang J, Yang X, Zhang T, Han D, Wang Q, Zhang CZ, Liu L. HnRNPR-mediated UPF3B mRNA splicing drives hepatocellular carcinoma metastasis. J Adv Res 2025; 68:257-270. [PMID: 38402949 PMCID: PMC11785583 DOI: 10.1016/j.jare.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Abnormal alternative splicing (AS) contributes to aggressive intrahepatic invasion and metastatic spread, leading to the high lethality of hepatocellular carcinoma (HCC). OBJECTIVES This study aims to investigate the functional implications of UPF3B-S (a truncated oncogenic splice variant) in HCC metastasis. METHODS Basescope assay was performed to analyze the expression of UPF3B-S mRNA in tissues and cells. RNA immunoprecipitation, and in vitro and in vivo models were used to explore the role of UPF3B-S and the underlying mechanisms. RESULTS We show that splicing factor HnRNPR binds to the pre-mRNA of UPF3B via its RRM2 domain to generate an exon 8 exclusion truncated splice variant UPF3B-S. High expression of UPF3B-S is correlated with tumor metastasis and unfavorable overall survival in patients with HCC. The knockdown of UPF3B-S markedly suppresses the invasive and migratory capacities of HCC cells in vitro and in vivo. Mechanistically, UPF3B-S protein targets the 3'-UTR of CDH1 mRNA to enhance the degradation of CDH1 mRNA, which results in the downregulation of E-cadherin and the activation of epithelial-mesenchymal transition. Overexpression of UPF3B-S enhances the dephosphorylation of LATS1 and the nuclear accumulation of YAP1 to trigger the Hippo signaling pathway. CONCLUSION Our findings suggest that HnRNPR-induced UPF3B-S promotes HCC invasion and metastasis by exhausting CDH1 mRNA and modulating YAP1-Hippo signaling. UPF3B-S could potentially serve as a promising biomarker for the clinical management of invasive HCC.
Collapse
MESH Headings
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Animals
- Gene Expression Regulation, Neoplastic
- Mice
- Neoplasm Metastasis
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Alternative Splicing/genetics
- Epithelial-Mesenchymal Transition/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Cell Movement/genetics
- Cadherins/metabolism
- Cadherins/genetics
- YAP-Signaling Proteins/genetics
- YAP-Signaling Proteins/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- RNA Splicing/genetics
- Male
- Mice, Nude
- Signal Transduction
- Female
- Antigens, CD
Collapse
Affiliation(s)
- Hong Wang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dong Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiabei Wang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yao Liu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenguang Luo
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongyan Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingjing Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Heng Li
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC) West District/Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Yang Wu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of General Surgery, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Wuhan Li
- Department of Emergency Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tianzhi Zhang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Dong Han
- Tianjin Medical University Cancer Institute and Hospital, Department of Radiation Oncology, Tianjin, China
| | - Qinyao Wang
- Anhui Chest Hospital, Department of Radiation Oncology, Hefei, Anhui, China
| | - Chris Zhiyi Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Lianxin Liu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
3
|
Cai H, Chen S, Tang S, Xiao Y, Shi F, Wu Z, Ma P, Chen H, Zhuang W, Guo W. Lenvatinib and tislelizumab versus atezolizumab and bevacizumab in combination with TAE-HAIC for unresectable hepatocellular carcinoma with high tumor burden: a multicenter retrospective cohort study. Cancer Immunol Immunother 2025; 74:88. [PMID: 39891746 PMCID: PMC11787109 DOI: 10.1007/s00262-025-03942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/02/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Systemic and locoregional combination therapy has demonstrated promising outcomes for unresectable hepatocellular carcinoma (HCC); However, the best combination option remains unknown. This study compared the efficacy and safety of lenvatinib and tislelizumab versus atezolizumab and bevacizumab in combination with transarterial embolization (TAE) plus hepatic artery infusion chemotherapy (HAIC) for unresectable HCC with high tumor burden. METHODS This multicenter retrospective cohort study enrolled treatment-naive patients with unresectable HCC treated with TAE-HAIC plus lenvatinib and tislelizumab (THLP group) or TAE-HAIC plus atezolizumab and bevacizumab (THTA group). The primary endpoint was overall survival (OS). Secondary endpoints included progression-free survival (PFS), tumor response, and adverse events (AEs). Propensity score matching (PSM) was performed to reduce bias. RESULTS Of the 240 patients enrolled, 153 and 51 patients were assigned to the THLP and THTA groups, respectively after PSM (3:1). The THLP group showed a longer median OS (22 months vs. 18.2 months; P = 0.412), whereas the median PFS was longer in the THTA group (8.1 months vs. 7 months; P = 0.723), with statistically insignificant intergroup differences. No statistical differences were observed in objective response rate (RECIST 1.1: 33.9 vs. 31.4%; mRECIST: 77.1% vs. 74.5%; P = 0.635), disease control rate (RECIST 1.1: 88.9% vs. 92.2; mRECIST: 92.2% vs. 94.1%; P = 0.716), and in grade 3/4 AEs. Gastrointestinal hemorrhage rate was significantly higher in the THTA group (9.1% vs. 1.6%; P = 0.007). All AEs were controllable and no treatment-related grade 5 AEs occurred. CONCLUSIONS TAE-HAIC plus lenvatinib and tislelizumab or TAE-HAIC plus atezolizumab and bevacizumab showed similar outcomes for unresectable HCC with high tumor burden, and manageable safety. The results need further validation.
Collapse
Affiliation(s)
- Hongjie Cai
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510062, China
| | - Song Chen
- Department of Minimally Invasive Interventional Therapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Shuangyan Tang
- Department of Radiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yi Xiao
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Feng Shi
- Department of Interventional Radiology, Guangdong Provincial People's Hospital, Guangzhou, 519041, China
| | - Zhiqiang Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510062, China
| | - Ping Ma
- Department of Oncology, The Twelfth People's Hospital of Guangzhou, Guangzhou, 510620, China
| | - Huanwei Chen
- Department of Hepatopancreatic Surgery, The First People's Hospital of Foshan, Foshan, 528010, China
| | - Wenquan Zhuang
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510062, China
| | - Wenbo Guo
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510062, China.
| |
Collapse
|
4
|
Li J, Bai L, Xin Z, Song J, Chen H, Song X, Zhou J. TERT-TP53 mutations: a novel biomarker pair for hepatocellular carcinoma recurrence and prognosis. Sci Rep 2025; 15:3620. [PMID: 39880909 PMCID: PMC11779956 DOI: 10.1038/s41598-025-87545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, and ranks among the most lethal malignancies globally, primarily due to its high rates of recurrence and metastasis. Despite the urgency, no reliable biomarkers currently exist for predicting tumor recurrence in HCC. Telomerase reverse transcriptase (TERT) promoter mutations (TERTpm) and cellular tumor antigen p53 mutations (TP53m) have been frequently documented in HCC, but their combined clinical significance remains undefined. In this study, we investigated the clinical implications of TERTpm, TP53m, and their co-occurrence in 50 HCC tissue samples using the next-generation sequencing (NGS) technology. We identified TERTpm (C228T) and TP53m in 16 (32%) and 24 (48%) samples, respectively. Our findings indicate that these mutations are more prevalent in male patients (100% for TERTpm, 83.33% for TP53m), in those with solitary tumors (87.5% for both), in individuals with G2-G3 hepatitis (100% / 83.3%), and in cases of moderately differentiated tumors (75.0% / 83.3%). Furthermore, patients with both TERTpm and TP53m exhibited a significantly higher risk of tumor relapse (P < 0.05) and shorter progression-free survival (P < 0.05). Collectively, our results suggest that presence of both TERTpm and TP53m may serve as a robust predictor of tumor recurrence and a marker of poor prognosis in HCC.
Collapse
Affiliation(s)
- Jin Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Ling Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Zhaodan Xin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Hao Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Xingbo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China.
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China.
| |
Collapse
|
5
|
Xing Y, Jia D, Zhu X, Yang J, Gao Z, Meng N, Xu H, Wang M, Chang S, Zhao M, Zhang S, Mu Z, Tang Q, Zhao W. Inotodiol induces hepatocellular carcinoma apoptosis by activation of MAPK/ERK pathway. PLoS One 2025; 20:e0318450. [PMID: 39879230 PMCID: PMC11778785 DOI: 10.1371/journal.pone.0318450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Hepatocellular carcinoma(HCC) has a high mortality and morbidity rate and seriously jeopardizes human life. Chemicals and chemotherapeutic agents have been experiencing problems such as side effects and drug resistance in the treatment of HCC, which cannot meet the needs of clinical treatment. Therefore, finding novel low-toxicity and high-efficiency anti-hepatocellular carcinoma drugs and exploring their mechanisms of action have become the current problems to be solved in the treatment of HCC. Several studies have reported anticancer effects of inotodiol. This study focuses on the anticancer effect of inotodiol in HCC cells and its molecular mechanism, aiming to explore its anticancer effect in depth. The CCK8 assay was utilized to assess cell viability, the scratch assay was utilized to detect migration ability, the clone formation assay was utilized to detect clonogenic ability, and flow cytometry was utilized to analyze apoptosis and cell cycle. Animal experiments was utilized to verify the inhibitory effect of inotodiol on HCC. Meanwhile, western blotting was utilized to detect proteins associated with apoptosis, cell cycle and MAPK/ERK pathway. These results showed that inotodiol has the ability to promote apoptosis, as well as inhibit the ability of cell proliferation, migration, and clonogenic ability. The cell cycle was arrested in G1 phase, when the expression of CDK2, CDK4, CDK6 and Cyclin D were inhibited. In addition, inotodiol showed to induce apoptosis, characterized by an increase in Bax expression, a decrease in Bcl-2, Bcl-XL and MCL1 expression, the initiation of cleaved PARP1 and cleaved caspase 3, and inhibition of the MAPK/ERK pathway. Animal studies demonstrated that inotodiol possessed the ability to suppress tumor growth in nude mice models, at the same time, there was no significant impact on the body weight and organs of the mice. In conclusion, the findings presented herein compellingly suggest that inotodiol may serve as a promising candidate for the treatment of hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Yushuang Xing
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
- Graduate Department, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Di Jia
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xinping Zhu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Jialu Yang
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zhipeng Gao
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Nana Meng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Haohao Xu
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Mengxiao Wang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Shijun Chang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Mingqian Zhao
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Shanbo Zhang
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zichen Mu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Weiming Zhao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Yin L, Liu R, Li W, Li S, Hou X. Deep learning-based CT radiomics predicts prognosis of unresectable hepatocellular carcinoma treated with TACE-HAIC combined with PD-1 inhibitors and tyrosine kinase inhibitors. BMC Gastroenterol 2025; 25:24. [PMID: 39838292 PMCID: PMC11748841 DOI: 10.1186/s12876-024-03555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVE To develop and validate a computed tomography (CT)-based deep learning radiomics model to predict treatment response and progression-free survival (PFS) in patients with unresectable hepatocellular carcinoma (uHCC) treated with transarterial chemoembolization (TACE)-hepatic arterial infusion chemotherapy (HAIC) combined with PD-1 inhibitors and tyrosine kinase inhibitors (TKIs). METHODS This retrospective study included 172 patients with uHCC who underwent combination therapy of TACE-HAIC with TKIs and PD-1 inhibitors. Among them, 122 were from the Interventional Department of the Harbin Medical University Cancer Hospital, with 92 randomly assigned to the training cohort and 30 cases randomly assigned to the testing cohort. The remaining 50 cases were from the Interventional Department of the Affiliated Fourth Hospital of Harbin Medical University and were used for external validation. All patients underwent liver enhanced CT examination before treatment. Residual convolutional neural network (ResNet) technology was used to extract image features. A predictive model for treatment response of combination therapy and PFS was established based on image features and clinical features. Model effectiveness was evaluated using metrics such as the area under the receiver operating characteristic (ROC) curve (AUC), concordance index (C-index), accuracy, precision, and F1-score. RESULTS All patients had a median follow-up of 25.2 months (95% CI 24.4-26.0), with a median PFS of 14.0 months (95% CI 8.5-19.4) and a median overall survival (OS) of 26.2 months (95% CI 15.9-36.4) achieved. Objective response rate (ORR) and disease control rate (DCR) was 41.0% and 55.7%, respectively. In the treatment response prediction model, the AUC for the training cohort reached 0.96, with an accuracy of 89.5%, precision of 85.6%, and F1-score of 0.896; the AUC for the testing cohort was 0.87, with an accuracy of 80.4%, precision of 74.5%, and F1-score of 0.802. The AUC of the external validation cohort was 0.85, with accuracy of 79.1%, precision of 73.6%, and f1-score of 0.784. In the PFS prediction model, the predicted AUC for 12 months, 18 months, and 24 months-PFS in the training cohort were 0.874, 0.809, 0.801, respectively. The AUC of testing cohort were 0.762, 0.804, 0.792. The AUC of external validation cohort were 0.764, 0.796, 0.773. The C-index of the combination model, radiomics model, and clinical model were 0.75, 0.591, and 0.655, respectively. The calibration curve demonstrated that the combination model was significantly superior to both the radiomics and clinical models. CONCLUSIONS The study provides a CT-based radiomics model that can predict PFS for patients with uHCC treated with TACE-HAIC combined with PD-1 and TKIs.
Collapse
Affiliation(s)
- Linan Yin
- Department of Interventional Radiology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Ruibao Liu
- Department of Interventional Radiology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, China.
| | - Wei Li
- Department of Interventional Radiology, Affiliated Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, Heilongjiang Province, 150001, China
| | - Shijie Li
- Department of Interventional Radiology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Xunbo Hou
- Department of Interventional Radiology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| |
Collapse
|
7
|
Bie L, Chen G, Lei X, Xiao F, Xu Z, Xiang Z, Lu Z, Jiang X. B4GALNT1 Regulates Hepatocellular Carcinoma Cell Proliferation and Apoptosis via the PI3K-AKT-mTOR Pathway. J Clin Lab Anal 2025:e25155. [PMID: 39829207 DOI: 10.1002/jcla.25155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a ubiquitous malignancy linked to significant mortality. The abnormal expression of β-1,4-N-acetyl-galactosaminyltransferase 1 (B4GALNT1) seemed to be implicated in tumorigenesis. Nonetheless, this enzyme's roles in HCC are unclear. METHODS By analyzing the TCGA_LIHC, GSE77509, and GSE135631 datasets, the levels of B4GALNT1 expression in HCC and surrounding non-cancerous tissues were compared. The prognostic implications of B4GALNT1 were assessed using the Cox regression analysis (CRA). The relationship of B4GALNT1 mutations with CpG island methylation levels and prognosis was examined by analyzing the cBioPortal and MethSurv databases. We sifted the evidence of B4GALNT1 expression correlating with 28 immune cell types' infiltration by harnessing the "GSVA" R package. To delve into the influences of genes associated with B4GALNT1 on HCC, we implemented gene set enrichment analysis (GSEA). We constructed a lentiviral vector expressing B4GALNT1 and knocked down B4GALNT1 in HepG2 cells. The resulting effects on HCC cell proliferation and apoptosis were analyzed via cell proliferation assays and flow cytometry. RESULTS HCC tissues presented significant B4GALNT1 overexpression relative to surrounding non-cancerous tissues, marking it as a standalone risk factor for HCC progression. Methylation levels of two CpG islands were high, suggesting poor prognosis. It was detectable that B4GALNT1 expression interrelated with the infiltration extent of natural killer T cells in HCC tissues. B4GALNT1-fueled cell proliferation and enhanced resistance to apoptosis in HCC cells. CONCLUSION B4GALNT1 is a strong regulator of HCC progression and holds promise as a marker for prognosis and a hallmark for therapy in HCC.
Collapse
Affiliation(s)
- Lihan Bie
- Department of Laboratory Medicine, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangquan Chen
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lei
- Department of Laboratory Medicine, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Xiao
- Department of Pathology, The Seventh People's Hospital Affiliated to the Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xu
- Department of Laboratory Medicine, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhouhong Xiang
- Department of Laboratory Medicine, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhicheng Lu
- Department of Laboratory Medicine, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiudi Jiang
- Department of Laboratory Medicine, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Chen L, Elizalde M, Alvarez-Sola G. The Role of Sulfatides in Liver Health and Disease. FRONT BIOSCI-LANDMRK 2025; 30:25077. [PMID: 39862071 DOI: 10.31083/fbl25077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 01/27/2025]
Abstract
Sulfatides or 3-O-sulfogalactosylceramide are negatively charged sulfated glycosphingolipids abundant in the brain and kidneys and play crucial roles in nerve impulse conduction and urinary pH regulation. Sulfatides are present in the liver, specifically in the biliary tract. Sulfatides are self-lipid antigens presented by cholangiocytes to activate cluster of differentiation 1d (CD1d)-restricted type II natural killer T (NKT) cells. These cells are involved in alcohol-related liver disease (ArLD) and ischemic liver injury and exert anti-inflammatory effects by regulating the activity of pro-inflammatory type I NKT cells. Loss of sulfatides has been implicated in the chronic inflammatory disorder of the liver known as primary sclerosing cholangitis (PSC); bile ducts deficient in sulfatides increase their permeability, resulting in the spread of bile into the liver parenchyma. Previous studies have shown elevated levels of sulfatides in hepatocellular carcinoma (HCC), where sulfatides could act as adhesive molecules that contribute to cancer metastasis. We have recently demonstrated how loss of function of GAL3ST1, a limiting enzyme involved in sulfatide synthesis, reduces tumorigenic capacity in cholangiocarcinoma (CCA) cells. The biological function of sulfatides in the liver is still unclear; however, this review aims to summarize the existing findings on the topic.
Collapse
Affiliation(s)
- Lin Chen
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Montserrat Elizalde
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Gloria Alvarez-Sola
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
9
|
Yang WL, Yang C, Pang N, Yu RH, Tong KY, Jiang F. The distinct characteristic of two peritoneal macrophage subsets in a mouse model of hepatocellular carcinoma presents a novel therapeutic strategy. Cell Immunol 2025; 409-410:104917. [PMID: 39824005 DOI: 10.1016/j.cellimm.2025.104917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
The peritoneal cavity (PerC) is a discrete anatomical compartment housing diverse peritoneal macrophage subpopulations. Nonetheless, there exists a paucity of knowledge concerning the distinct functions of these subpopulations in the context of hepatocellular carcinoma (HCC) and their evolution throughout tumor advancement. This investigation seeks to analyze the characteristics of two principal peritoneal macrophage subpopulations, specifically large peritoneal macrophage (LPM) and small peritoneal macrophage (SPM), in the context of HCC. The results of our research indicate a significant decrease in the proportion of LPM during the progression of HCC, accompanied by an increase in the quantity of SPM. Furthermore, SPM found in ascites exhibited a macrophage phenotype that supports tumor growth in HCC. Importantly, the dynamic decrease of LPM in murine models following lipopolysaccharide (LPS) stimulation led to a decrease in survival rate, highlighting the critical role of the altered LPM to SPM ratio in HCC survival. By employing clodronate liposomes (CL) to deplete peritoneal macrophage in murine models, followed by the adoptive transfer of LPM, we effectively prolonged the survival of HCC and attenuated tumor progression. Our results suggest that a decrease in the LPM to SPM ratio correlates with increased mortality in the HCC model. On the contrary, the maintenance of a high ratio of LPM to SPM has shown a positive effect on HCC survival. These findings have enhanced our understanding of the complex interaction between different subpopulations of peritoneal macrophage in the development of HCC. Furthermore, these results have important implications for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Wan-Li Yang
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China
| | - Chao Yang
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China
| | - Nan Pang
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China
| | - Rui-Hua Yu
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China
| | - Kui-Yuan Tong
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, Jiangsu, China
| | - Feng Jiang
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China.
| |
Collapse
|
10
|
Li B, Zeng T, Chen C, Wu Y, Huang S, Deng J, Pang J, Cai X, Lin Y, Sun Y, Chong Y, Li X, Gong J, Tang G. Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data. Funct Integr Genomics 2025; 25:11. [PMID: 39798003 DOI: 10.1007/s10142-024-01521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/25/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming. This study aimed to construct a model based on PPP-related Genes for risk assessment and prognosis prediction in HCC patients. We integrated RNA-seq and microarray data from TCGA, GEO, and ICGC databases, along with single-cell RNA sequencing (scRNA-seq) data obtained from HCC patients via GEO. Based on the "Seurat" R package, we identified distinct gene clusters related to the PPP within the scRNA-seq data. Using a penalized Cox regression model with least absolute shrinkage and selection operator (LASSO) penalties, we constructed a risk prognosis model. The validity of our risk prognosis model was further confirmed in external cohorts. Additionally, we developed a nomogram capable of accurately predicting overall survival in HCC patients. Furthermore, we explored the predictive potential of our risk model within the immune microenvironment and assessed its relevance to biological function, particularly in the context of immunotherapy. Subsequently, we performed in vitro functional validation of the key genes (ATAD2 and SPP1) in our model. A ten-gene signature associated with the PPP was formulated to enhance the prediction of HCC prognosis and anti-tumor treatment response. Following this, the ROC curve, nomogram, and calibration curve outcomes corroborated the model's robust clinical predictive capability. Functional enrichment analysis unveiled the engagement of the immune system and notable variances in the immune infiltration landscape across the high and low-risk groups. Additionally, tumor mutation frequencies were observed to be elevated in the high-risk group. Based on our analyses, the IC50 values of most identified anticancer agents demonstrated a correlation with the RiskScore. Additionally, the high-risk and low-risk groups exhibited differential sensitivity to various drugs. Cytological experiments revealed that silencing ATAD2 or SPP1 suppresses malignant phenotypes, including viability and migration, in liver cancer cells. In this study, a novel gene signature related to the PPP was developed, demonstrating favorable predictive performance. This signature holds significant guiding value for assessing the prognosis of HCC patients and directing individualized treatment strategies.
Collapse
Affiliation(s)
- Bin Li
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tao Zeng
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Cui Chen
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yuankai Wu
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Shuying Huang
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jing Deng
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiahui Pang
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiang Cai
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yuxi Lin
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yina Sun
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yutian Chong
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xinhua Li
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Jiao Gong
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Guofang Tang
- Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
| |
Collapse
|
11
|
Momeny M, AghaAmiri S, Hernandez Vargas S, Acidi B, Ghosh SC, Bateman TM, Adams JT, Khalaj V, Kaseb AO, Tran Cao HS, Azhdarinia A. SSTR2-Targeted Theranostics in Hepatocellular Carcinoma. Cancers (Basel) 2025; 17:162. [PMID: 39857944 PMCID: PMC11763341 DOI: 10.3390/cancers17020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND While the clinical use of radiolabeled somatostatin analogs is well established in neuroendocrine tumors, there is growing interest in expanding their application to other somatostatin receptor 2 (SSTR2)-expressing cancers. This study investigates the potential utility of SSTR2-targeted theranostics in hepatocellular carcinoma (HCC). METHODS SSTR2 expression in HCC cell lines and clinical samples was evaluated using qRT-PCR, Western blot analysis, and a public dataset. 67Ga-DOTATATE uptake was measured, 177Lu-DOTATATE cytotoxicity was assessed, and 68Ga-DOTATATE tumor targeting was evaluated in HCC animal models and a patient via PET/CT imaging. RESULTS SSTR2 expression was confirmed in HCC cell lines and clinical samples. Radioligand uptake studies demonstrated SSTR2-mediated 67Ga-DOTATATE uptake. 177Lu-DOTATATE treatment reduced cell proliferation and enhanced the anti-tumor efficacy of the multikinase inhibitor sorafenib. 68Ga-DOTATATE PET/CT scans successfully identified tumors in HCC animal models and spinal metastases in a patient with HCC. CONCLUSION These findings provide evidence that SSTR2-based theranostics could have significant implications for the detection and treatment of HCC.
Collapse
Affiliation(s)
- Majid Momeny
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77054, USA; (S.A.); (S.H.V.); (S.C.G.); (T.M.B.); (J.T.A.); (V.K.)
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77054, USA; (S.A.); (S.H.V.); (S.C.G.); (T.M.B.); (J.T.A.); (V.K.)
| | - Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77054, USA; (S.A.); (S.H.V.); (S.C.G.); (T.M.B.); (J.T.A.); (V.K.)
| | - Belkacem Acidi
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (H.S.T.C.)
| | - Sukhen C. Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77054, USA; (S.A.); (S.H.V.); (S.C.G.); (T.M.B.); (J.T.A.); (V.K.)
| | - Tyler M. Bateman
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77054, USA; (S.A.); (S.H.V.); (S.C.G.); (T.M.B.); (J.T.A.); (V.K.)
| | - Jack T. Adams
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77054, USA; (S.A.); (S.H.V.); (S.C.G.); (T.M.B.); (J.T.A.); (V.K.)
| | - Vahid Khalaj
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77054, USA; (S.A.); (S.H.V.); (S.C.G.); (T.M.B.); (J.T.A.); (V.K.)
| | - Ahmed O. Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Hop S. Tran Cao
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (H.S.T.C.)
| | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77054, USA; (S.A.); (S.H.V.); (S.C.G.); (T.M.B.); (J.T.A.); (V.K.)
| |
Collapse
|
12
|
Fan Q, Wei P, Ma D, Cheng Q, Gao J, Zhu J, Li Z. Therapeutic efficacy and prognostic indicators in re-resection for recurrent hepatocellular carcinoma: Insights from a retrospective study. Surg Open Sci 2025; 23:16-23. [PMID: 39816698 PMCID: PMC11733202 DOI: 10.1016/j.sopen.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Aims To evaluate the efficacy of re-resection in recurrent hepatocellular carcinoma (rHCC), identify prognostic factors, and provide clinical guidance. Methods A retrospective analysis was conducted on 130 rHCC patients undergoing re-resection and 60 primary HCC patients undergoing initial hepatectomy at Peking University People's Hospital (2014-2022). Disease-free survival (DFS) and overall survival (OS) were compared. Prognostic factors were identified using univariate and multivariate COX regression analyses. Results Baseline characteristics were comparable between groups (P > 0.05). DFS was similar between groups (30.8 vs. 32.2 months, P = 0.612). The 1-year, 2-year, and 3-year DFS rates for the re-resection group were 88.5 %, 64.9 %, and 56.7 %, respectively, versus 88.3 %, 65.0 %, and 53.3 % for the primary resection group. OS was lower in the re-resection group (36.1 vs. 47.2 months, P = 0.041) with 1-year, 2-year, and 3-year OS rates of 90.8 %, 73.1 %, and 60.0 %, compared to 95.0 %, 80.0 %, and 68.3 % for the primary resection group. Significant factors affecting DFS were Child-Pugh classification (P = 0.044), time to recurrence (P = 0.002), tumor differentiation (P = 0.044), and satellite nodules (P = 0.019). Factors influencing OS included Child-Pugh classification (P = 0.040), time to recurrence (P = 0.002), and tumor differentiation (P = 0.032). Conclusions Re-resection is an effective treatment option for rHCC, with favorable outcomes as measured by DFS and OS, though OS is lower compared to initial hepatectomy. Key prognostic factors include Child-Pugh classification, time to recurrence, tumor differentiation, and satellite nodules.
Collapse
Affiliation(s)
- Qi Fan
- Department of General Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Pengcheng Wei
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
| | - Delin Ma
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
| | - Qian Cheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
- Peking University Institute of Organ Transplantation, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
- Peking University Institute of Organ Transplantation, Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
- Peking University Institute of Organ Transplantation, Beijing, China
| |
Collapse
|
13
|
Roy N, Lodh R, Mandal S, Kumar Jolly M, Sarma A, Bhattacharyya DK, Barah P. Comparative transcriptomic analysis uncovers molecular heterogeneity in hepatobiliary cancers. Transl Oncol 2025; 51:102192. [PMID: 39546955 PMCID: PMC11613176 DOI: 10.1016/j.tranon.2024.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/25/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Hepatobiliary cancers (HBCs) pose a major global health challenge, with a lack of effective targeted biomarkers. Due to their complex anatomical locations, shared risk factors, and the limitations of targeted therapies, generalized treatment strategies are often used for gallbladder cancer (GBC), hepatocellular carcinoma (HCC), and intrahepatic cholangiocarcinoma (ICC). This study aimed to identify specific transcriptomic signatures in GBC, HCC, and ICC. The transcriptomic data analysis revealed distinct expression profiles, highlighting complex molecular heterogeneity within these cancers, even within the same organ system. Functional annotation revealed distinct biological pathways associated with each type of HBCs. GBC was linked to cell cycle regulation, HCC was associated with immune system modulation, and ICC was involved in metabolic dysregulation, particularly lipid metabolism. Gene co-expression network (GCN) and protein-protein interaction (PPI) network analyses identified potential key genes, such as MAPK3 and ERBB2 in GBC, AC069287.1 and ACTN2 in HCC, and TRPC1 and BACE1 in ICC. The FOX family of transcription factors (TFs) was conserved across all three cancer types. To further explore the relationship between Epithelial-Mesenchymal Transition (EMT) and the identified hub genes and TFs, an EMT score analysis was conducted. This analysis revealed distinct phenotypic characteristics in each cancer type, with TFs identified in GBC and ICC showing a stronger correlation with EMT compared to those in HCC. External validation using The Cancer Genome Atlas (TCGA) databases confirmed the expression of candidate genes, underscoring their potential as therapeutic targets. These findings provide valuable insights into the molecular heterogeneity and complexity of HBCs, opening new avenues for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Nabanita Roy
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam, 784028, India
| | - Ria Lodh
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam, 784028, India
| | - Susmita Mandal
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Anupam Sarma
- Department of Onco-pathology, Dr. Bhubaneswar Borooah Cancer Institute, Guwahati, Assam, 781016, India
| | - Dhruba Kumar Bhattacharyya
- Department of Computer Science and Engineering, Tezpur University, Napaam, Sonitpur, Assam, 784028, India
| | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam, 784028, India.
| |
Collapse
|
14
|
Yin CQ, Song CQ. Tumor Intrinsic Immunogenicity Suppressor SETDB1 Worsens the Prognosis of Patients with Hepatocellular Carcinoma. Cells 2024; 13:2102. [PMID: 39768193 PMCID: PMC11675013 DOI: 10.3390/cells13242102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is clinically distinguished by its covert onset, rapid progression, high recurrence rate, and poor prognosis. Studies have revealed that SETDB1 (SET Domain Bifurcated 1) is a histone H3 methyltransferase located on chromosome 1 and plays a crucial role in carcinogenesis. Therefore, we aimed to evaluate the clinical significance of SETDB1 expression in HCC. In patients with HCC, elevated levels of SETDB1 correlated with a poorer overall survival (OS) rate, marking it as an independent prognostic factor for HCC, as revealed by both univariate and multivariate Cox analyses. Furthermore, we utilized the SangerBox and TISIDB databases to profile the tumor immune microenvironment in HCC, including scoring the tumor microenvironment and assessing immune cell infiltration. The TIDE algorithm was employed to examine the association between SETDB1 expression and immune responses. Our findings indicated that SETDB1 expression negatively correlated with the majority of immune cells, a wide range of immune cell marker genes, and numerous immune pathways, thereby leading to the reduced effectiveness of immune checkpoint inhibitors. Lastly, both in vivo and ex vivo experiments were conducted to substantiate the role of SETDB1 in HCC tumorigenesis. In conclusion, the upregulation of SETDB1 is associated with a poorer prognosis in HCC patients and inversely correlates with immune cell infiltration, potentially serving as a predictive marker for immunotherapy response.
Collapse
Affiliation(s)
- Chang-Qing Yin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Gene Therapeutic Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Chun-Qing Song
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Gene Therapeutic Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
15
|
Hao YY, Xiao WQ, Zhang HN, Yu NN, Park G, Han YH, Kwon T, Sun HN. Peroxiredoxin 1 modulates oxidative stress resistance and cell apoptosis through stemness in liver cancer under non-thermal plasma treatment. Biochem Biophys Res Commun 2024; 738:150522. [PMID: 39154551 DOI: 10.1016/j.bbrc.2024.150522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The role of peroxiredoxin 1 (PRDX1), a crucial enzyme that reduces reactive oxygen and nitrogen species levels in HepG2 human hepatocellular carcinoma (HCC) cells, in the regulation of HCC cell stemness under oxidative stress and the underlying mechanisms remain largely unexplored. Here, we investigated the therapeutic potential of non-thermal plasma in targeting cancer stem cells (CSCs) in HCC, focusing on the mechanisms of resistance to oxidative stress and the role of PRDX1. By simulating oxidative stress conditions using the plasma-activated medium, we found that a reduction in PRDX1 levels resulted in a considerable increase in HepG2 cell apoptosis, suggesting that PRDX1 plays a key role in oxidative stress defense mechanisms in CSCs. Furthermore, we found that HepG2 cells had higher spheroid formation capability and increased levels of stem cell markers (CD133, c-Myc, and OCT-4), indicating strong stemness. Interestingly, PRDX1 expression was notably higher in HepG2 cells than in other HCC cell types such as Hep3B and Huh7 cells, whereas the expression levels of other PRDX family proteins (PRDX 2-6) were relatively consistent. The inhibition of PRDX1 expression and peroxidase activity by conoidin A resulted in markedly reduced stemness traits and increased cell death rate. Furthermore, in a xenograft mouse model, PRDX1 downregulation considerably inhibited the formation of solid tumors after plasma-activated medium (PAM) treatment. These findings underscore the critical role of PRDX 1 in regulating stemness and apoptosis in HCC cells under oxidative stress, highlighting PRDX1 as a promising therapeutic target for NTP-based treatment in HCC.
Collapse
Affiliation(s)
- Ying-Ying Hao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Wan-Qiu Xiao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Hui-Na Zhang
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Nan-Nan Yu
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Ying-Hao Han
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, 56216, Republic of Korea; Department of Applied Biological Engineering, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Hu-Nan Sun
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China.
| |
Collapse
|
16
|
Barcena-Varela M, Monga SP, Lujambio A. Precision models in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-01024-w. [PMID: 39663463 DOI: 10.1038/s41575-024-01024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a global health challenge, and ranks among one of the most prevalent and deadliest cancers worldwide. Therapeutic advances have expanded the treatment armamentarium for patients with advanced HCC, but obstacles remain. Precision oncology, which aims to match specific therapies to patients who have tumours with particular features, holds great promise. However, its implementation has been hindered by the existence of numerous 'HCC influencers' that contribute to the high inter-patient heterogeneity. HCC influencers include tumour-related characteristics, such as genetic alterations, immune infiltration, stromal composition and aetiology, and patient-specific factors, such as sex, age, germline variants and the microbiome. This Review delves into the intricate world of HCC, describing the most innovative model systems that can be harnessed to identify precision and/or personalized therapies. We provide examples of how different models have been used to nominate candidate biomarkers, their limitations and strategies to optimize such models. We also highlight the importance of reproducing distinct HCC influencers in a flexible and modular way, with the aim of dissecting their relative contribution to therapy response. Next-generation HCC models will pave the way for faster discovery of precision therapies for patients with advanced HCC.
Collapse
Affiliation(s)
- Marina Barcena-Varela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Satdarshan P Monga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Jia Q, Sun X, Li H, Guo J, Niu K, Chan KM, Bernards R, Qin W, Jin H. Perturbation of mRNA splicing in liver cancer: insights, opportunities and challenges. Gut 2024:gutjnl-2024-333127. [PMID: 39658264 DOI: 10.1136/gutjnl-2024-333127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Perturbation of mRNA splicing is commonly observed in human cancers and plays a role in various aspects of cancer hallmarks. Understanding the mechanisms and functions of alternative splicing (AS) not only enables us to explore the complex regulatory network involved in tumour initiation and progression but also reveals potential for RNA-based cancer treatment strategies. This review provides a comprehensive summary of the significance of AS in liver cancer, covering the regulatory mechanisms, cancer-related AS events, abnormal splicing regulators, as well as the interplay between AS and post-transcriptional and post-translational regulations. We present the current bioinformatic approaches and databases to detect and analyse AS in cancer, and discuss the implications and perspectives of AS in the treatment of liver cancer.
Collapse
Affiliation(s)
- Qi Jia
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianglong Guo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kongyan Niu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Noord-Holland, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Fu T, Zhou B, Li Y, Liu W, Xie Y, Mo Z, Yin F, Wang Y, Fang K, Fang Y, Xiong Z, Yu K, Le A. Innovative Dual mRNA-Lipid Nanoparticle Therapy Targeting CRHBP and CFHR3 for Enhanced Treatment of Hepatocellular Carcinoma. Int J Nanomedicine 2024; 19:13183-13199. [PMID: 39664759 PMCID: PMC11633302 DOI: 10.2147/ijn.s498065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is a deadly disease requiring the identification of new therapeutic targets and strategies. Methods This study identified genes linked to HCC progression via differential analysis. Key genes were identified through univariate and multivariate Cox regression analysis. The biological effects of co-expressed CRHBP and CFHR3 were evaluated in vitro. mRNAs encoding CRHBP and CFHR3 were encapsulated in lipid nanoparticles (LNPs), with the addition of SP94 peptide on the LNPs surface to enhance targeting. The therapeutic efficacy of dual-mRNA LNPs was evaluated in HCC cells and mouse models. Results CRHBP and CFHR3 were closely associated with HCC progression. Low expression of CRHBP (P < 0.01, HR = 1.931 [1.174-3.175]) and CFHR3 (P < 0.05, HR = 1.755 [1.066-2.890]) was identified as a poor prognostic factor for HCC. The risk score model combining CRHBP and CFHR3 demonstrated superior predictive power (P < 0.001, HR = 2.935 [1.768-4.872]). Co-expression of CRHBP and CFHR3 significantly inhibited the malignant biological functions of HCC cells. Treatment with SP94 peptide-modified dual-mRNA LNPs markedly suppressed HCC tumor growth and exhibited excellent biocompatibility and safety. Conclusion Our study proposes a dual-targeted therapeutic strategy for HCC, which may represent a promising treatment approach.
Collapse
Affiliation(s)
- Tianmei Fu
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Boxuan Zhou
- Department of Breast Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Yingliang Li
- Department of Breast Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Wei Liu
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Yuankang Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
| | - Zhaohong Mo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanchang, People’s Republic of China
| | - Fang Yin
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Yu Wang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Kang Fang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Yangyang Fang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Ziqing Xiong
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Kuai Yu
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Aiping Le
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
19
|
Rab SO, Roopashree R, Altalbawy FMA, Kumar MR, Chahar M, Singh M, Kubaev A, Alamir HTA, Mohammed F, Kadhim AJ, Alhadrawi M. Phytochemicals and Their Nanoformulations for Targeting Hepatocellular Carcinoma: Exploring Potential and Targeting Strategies. Cell Biochem Funct 2024; 42:e70013. [PMID: 39521962 DOI: 10.1002/cbf.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Hepatocellular carcinoma (HCC) continues to pose a global health concern, necessitating the exploration of innovative therapeutic approaches. In the recent decade, targeting tumor stroma consisting of extracellular matrix (ECM), immune cells, vascular system, hypoxia, and also suppressive mechanisms in HCC has attracted interest in repressing tumor growth and metastasis. Phytochemicals have attained considerable attention because of their manifold biological effects and high capacity for anticancer activities. These chemical agents have shown the capability to modulate different cells and secretions within the stroma of malignancies. In recent years, the development of nanoformulations has further enhanced the therapeutic potential of phytochemicals by improving their solubility, bioavailability, and targeted delivery to tumor tissues. This review aims to provide an encyclopedic overview of the potential of phytochemicals and their nanoformulations as promising therapeutic strategies for targeting HCC. The review initially highlights the broad array of phytochemicals exhibiting potent anticancer properties, including flavonoids, alkaloids, terpenoids, and phenolic compounds, among others. Then, the nanoformulations and modification of these agents will be reviewed. Finally, we will review the latest experiments that have examined the modulation of HCC using adjuvant phytochemicals and their nanoformulations.
Collapse
Affiliation(s)
- Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | - Faraj Mohammed
- Department of Pharmacy, Al-Manara College for Medical Sciences, Amarah, Maysan, Iraq
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Merwa Alhadrawi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
20
|
Ye J, Lin Y, Liao Z, Gao X, Lu C, Lu L, Huang J, Huang X, Huang S, Yu H, Bai T, Chen J, Wang X, Xie M, Luo M, Zhang J, Wu F, Wu G, Ma L, Xiang B, Li L, Li Y, Luo X, Liang R. Single cell-spatial transcriptomics and bulk multi-omics analysis of heterogeneity and ecosystems in hepatocellular carcinoma. NPJ Precis Oncol 2024; 8:262. [PMID: 39548284 PMCID: PMC11568154 DOI: 10.1038/s41698-024-00752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
This study profiled global single cell-spatial-bulk transcriptome landscapes of hepatocellular carcinoma (HCC) ecosystem from six HCC cases and a non-carcinoma liver control donor. We discovered that intratumoral heterogeneity mainly derived from HCC cells diversity and pervaded the genome-transcriptome-proteome-metabolome network. HCC cells are the core driving force of taming tumor-associated macrophages (TAMs) with pro-tumorigenic phenotypes for favor its dominant growth. Remarkably, M1-types TAMs had been characterized by disturbance of metabolism, poor antigen-presentation and immune-killing abilities. Besides, we found simultaneous cirrhotic and HCC lesions in an individual patient shared common origin and displayed parallel clone evolution via driving disparate immune reprograms for better environmental adaptation. Moreover, endothelial cells exhibited phenotypically conserved but executed differential functions in a space-dependent manner. Further, the spatiotemporal traits of rapid recurrence niche genes were identified and validated by immunohistochemistry. Our data unravels the great significance of HCC cells in shaping vibrant tumor ecosystems corresponding to clinical scenarios.
Collapse
Affiliation(s)
- Jiazhou Ye
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Lin
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhiling Liao
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xing Gao
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Cheng Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lu Lu
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Julu Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xi Huang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shilin Huang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hongping Yu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tao Bai
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mingzhi Xie
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Min Luo
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinyan Zhang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Feixiang Wu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guobin Wu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liang Ma
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongqiang Li
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoling Luo
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China.
| | - Rong Liang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China.
| |
Collapse
|
21
|
Yin Z, Song Y, Wang L. Single-cell RNA sequencing reveals the landscape of the cellular ecosystem of primary hepatocellular carcinoma. Cancer Cell Int 2024; 24:379. [PMID: 39543644 PMCID: PMC11566594 DOI: 10.1186/s12935-024-03574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC) cells, along with multiple nonmalignant stromal cells, such as fibroblasts, endothelial cells and immune cells, comprise an intricate cellular ecosystem, undergo dynamic phenotypic changes and present complicated cellular interactions, thus synergistically facilitating HCC initiation and progression and leading to treatment resistance. Clarifying the heterogeneity, cell plasticity and complexity of the cellular ecosystem of HCC will be highly beneficial for understanding HCC development and identifying novel therapeutic targets. Single-cell RNA sequencing (scRNA-seq) refers to profiling the transcriptome at single-cell resolution, and the development of scRNA-seq technology and analysis algorithms has greatly promoted the analysis of cell composition, cell subpopulation heterogeneity, development trajectory and cell-to-cell interactions in cell populations. In this review, we systematically summarized and discussed scRNA-seq in treatment-naive primary HCC and revealed the global cell composition of HCC; the widespread molecular heterogeneity of HCC cells; the molecular subtypes of fibroblasts; the cell composition, functional states and development trajectory of immune cells; and the frequent interactions between different cell types to systematically draw the landscape of the cellular ecosystem of primary HCC.
Collapse
Affiliation(s)
- Zeli Yin
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, Liaoning, China.
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China.
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, China.
| | - Yilin Song
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Liming Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, Liaoning, China.
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China.
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, China.
| |
Collapse
|
22
|
Xing H, Gu X, Liu Y, Xu L, He Y, Xue C. NSUN2 regulates Wnt signaling pathway depending on the m5C RNA modification to promote the progression of hepatocellular carcinoma. Oncogene 2024; 43:3469-3482. [PMID: 39375506 DOI: 10.1038/s41388-024-03184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
5-Methylcytosine (m5C) RNA modification is a highly abundant and important epigenetic modification in mammals. As an important RNA m5C methyltransferase, NOP2/Sun-domain family member 2 (NSUN2)-mediated m5C RNA modification plays an important role in the regulation of the biological functions in many cancers. However, little is known about the biological role of NSUN2 in hepatocellular carcinoma (HCC). In this study, we found that the expression of NSUN2 was significantly upregulated in HCC, and the HCC patients with higher expression of NSUN2 had a poorer prognosis than those with lower expression of NSUN2. NSUN2 could affect the tumor immune regulation of HCC in several ways. In vitro and in vivo experiments confirmed that NSUN2 knockdown significantly decreased the abilities of proliferation, colony formation, migration and invasion of HCC cells. The methylated RNA immunoprecipitation-sequencing (MeRIP-seq) showed NSUN2 knockdown significantly affected the abundance, distribution, and composition of m5C RNA modification in HCC cells. Functional enrichment analyses and in vitro experiments suggested that NSUN2 could promote the HCC cells to proliferate, migrate and invade by regulating Wnt signaling pathway. SARS2 were identified via the RNA immunoprecipitation-sequencing (RIP-Seq) and MeRIP-seq as downstream target of NSUN2, which may play an important role in tumor-promoting effect of NSUN2-mediated m5C RNA modification in HCC. In conclusion, NSUN2 promotes HCC progression by regulating Wnt signaling pathway and SARS2 in an m5C-dependent manner.
Collapse
Affiliation(s)
- Huiwu Xing
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yingru Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
23
|
Xiao M, Deng Y, Zheng W, Huang L, Wang W, Yang H, Gao D, Guo Z, Wang J, Li C, Li F, Han F. Machine learning model based on dynamic contrast-enhanced ultrasound assisting LI-RADS diagnosis of HCC: A multicenter diagnostic study. Heliyon 2024; 10:e38850. [PMID: 39492894 PMCID: PMC11531631 DOI: 10.1016/j.heliyon.2024.e38850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Background To enhance the accuracy of hepatocellular carcinoma (HCC) diagnosis using contrast-enhanced (CE) US, the American College of Radiology developed the CEUS Liver Imaging Reporting and Data System (LI-RADS). However, the system still exhibits limitations in distinguishing between HCC and non-HCC lesions. Purpose To investigate the viability of employing machine learning methods based on quantitative parameters of contrast-enhanced ultrasound for distinguishing HCC within LR-M nodules. Materials and methods This retrospective analysis was conducted on pre-treatment CEUS data from liver nodule patients across multiple centers between January 2013 and June 2022. Quantitative analysis was performed using CEUS images, and the machine learning diagnostic models based on quantitative parameters were utilized for the classification diagnosis of LR-M nodules. The performance of the model was assessed using the area under the receiver operating characteristic curve (AUC) and compared with the performance of four radiologists. Results The training and internal testing datasets comprised 168 patients (median age, 53 years [IQR, 18 years]), while the external testing datasets from two other centers included 110 patients (median age, 54 years [IQR, 16 years]). In the internal independent test set, the top-performing Random Forest model achieved an AUC of 0.796 (95%CI: 0.729-0.853) for diagnosing HCC. This model exhibited a sensitivity of 0.752 (95%CI: 0.750-0.755) and a specificity of 0.761 (95%CI: 0.758-0.764), outperforming junior radiologists who achieved an AUC of 0.619 (95%CI: 0.543-0.691, p < .01) with sensitivity and specificity of 0.716 (95%CI: 0.713-0.718) and 0.522 (95%CI: 0.519-0.526), respectively. Conclusion Significant differences in contrast-enhanced ultrasound quantitative parameters are observed between HCC and non-HCC lesions. Machine learning models leveraging these parameters effectively distinguish HCC categorized as LR-M, offering a valuable adjunct for the accurate classification of liver nodules within the CEUS LI-RADS framework.
Collapse
Affiliation(s)
- Meiqin Xiao
- Department of Ultrasound, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yishu Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
- Department of Information, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Zheng
- Department of Ultrasound, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lishu Huang
- Department of Ultrasound, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| | - Wei Wang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Yang
- Department of Ultrasound, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Danyan Gao
- Department of Ultrasound, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhixing Guo
- Department of Ultrasound, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianwei Wang
- Department of Ultrasound, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chaofeng Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Information, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fang Li
- Department of Ultrasound, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| | - Feng Han
- Department of Ultrasound, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
24
|
Zhang J, Yin Y, Tang J, Ma M, Shen H, Zhang Y, Sun F. Expression of interleukin-8 and integrin β3 predicts prognosis of patients with hepatocellular carcinoma after hepatectomy. Medicine (Baltimore) 2024; 103:e39458. [PMID: 39465852 PMCID: PMC11479500 DOI: 10.1097/md.0000000000039458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/02/2024] [Indexed: 10/29/2024] Open
Abstract
As important components in the tumor microenvironment, interleukin-8 (IL-8) and integrin β3 play a key role in the progression and metastasis of hepatocellular carcinoma (HCC). This study aimed to determine the expression of IL-8 and integrin β3 and their prognostic value in patients with HCC after hepatectomy. We investigated the expression of IL-8 and integrin β3, their clinical significance, as well as their correlation in the cancer tissue of 130 patients with HCC using immunohistochemistry. The prognostic value of IL-8 and integrin β3 was investigated through the follow-up of patients with HCC after hepatectomy. In HCC, IL-8 expression had a positive correlation with integrin β3 expression. Increased expressions of IL-8 and integrin β3 were indicators of tumor progression and poor prognosis in patients with HCC after hepatectomy. IL-8 positive specimens exhibited a higher proportion of macrovascular invasion, larger tumor size, poor differentiation, and advanced tumor-node-metastasis (TNM) stage (P < .05, respectively). Integrin β3 positive group exhibited a higher proportion of TNM III-staged tumors (P < .05). The results indicated that macrovascular invasion, advanced TNM stage, and integrin β3 expression were independent unfavorable prognostic factors in HCC after hepatectomy. Integrin β3 expression was proved to be an independent unfavorable prognostic factor in HCC after hepatectomy. Targeting integrin β3 might be a potential therapeutic approach in preventing tumor progression in HCC.
Collapse
Affiliation(s)
- Jiao Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Yin
- Department of Paediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Paediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiliang Tang
- Emergency Department, Rizhao Central Hospital, Rizhao, China
| | - Mingze Ma
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Infectious Diseases, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huimin Shen
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingrong Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengkai Sun
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Postdoctoral Research Station, College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
25
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
26
|
Yang B, Wen F, Cui Y. Integrative transcriptome analysis identifies a crotonylation gene signature for predicting prognosis and drug sensitivity in hepatocellular carcinoma. J Cell Mol Med 2024; 28:e70083. [PMID: 39428564 PMCID: PMC11491312 DOI: 10.1111/jcmm.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as the most prevalent and treatment-resistant malignant tumour, characterized by a dismal prognosis. Croton acylation (CA) has recently gained attention as a critical factor in cancer pathogenesis. This study sought to rapidly identify prognostic features of HCC linked to CA. Differential analysis was conducted between tumour tissues and adjacent non-tumour tissues in the TCGA-LIHC and GSE76427 datasets to uncover differentially expressed genes (DEG1 and DEG2). The intersection of DEG1 and DEG2 highlighted DEGs with consistent expression patterns. Single-sample gene set enrichment analysis scores were calculated for 18 lysine crotonylation-related genes (LCRGs) identified in prior research, showing significant differences between tumour and normal groups. Subsequently, weighted gene co-expression network analysis was employed to identify key module genes correlated with the LCRG score. Candidate genes were identified by overlapping consistently expressed DEGs with key module genes. Prognostic features were identified, and risk scores were determined via regression analysis. Patients were categorized into risk groups based on the optimal cutoff value. Gene set enrichment analysis (GSEA) and immunoassays were also performed. The prognostic features were further validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 88 candidate genes were identified from 1179 consistently expressed DEGs and 4200 key module genes. Seven prognostic features were subsequently identified: TMCO3, RAP2A, ITGAV, ZFYVE26, CHST9, HMGN4, and KLHL21. GSEA revealed that DEGs between risk groups were primarily associated with chylomicron metabolism, among other pathways. Additionally, activated CD4+ T cells demonstrated the strongest positive correlation with risk scores, and most immune checkpoints showed significant differences between risk groups, with ASXL1 exhibiting the strongest correlation with risk scores. The Tumour Immune Dysfunction and Exclusion score was notably higher in the high-risk group. Moreover, in both the TCGA-LIHC and ICGC-LIRI-JP datasets, the expression of other prognostic features was elevated in tumour tissues, with the exception of CHST9. RT-qPCR confirmed the increased expression of TMCO3, RAP2A, ITGAV, ZFYVE26, and HMGN4. This study establishes a risk model for HCC based on seven crotonylation-associated prognostic features, offering a theoretical framework for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Bailu Yang
- Department of Hepatic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic Surgery, Ministry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Fukai Wen
- Department of Hepatic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic Surgery, Ministry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yifeng Cui
- Department of Hepatic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
27
|
Wang K, Chen XY, Zhang RWY, Yue Y, Wen XL, Yang YS, Han CY, Ma Y, Liu HJ, Zhu HL. Multifunctional fluorescence/photoacoustic bimodal imaging of γ-glutamyltranspeptidase in liver disorders under different triggering conditions. Biomaterials 2024; 310:122635. [PMID: 38810386 DOI: 10.1016/j.biomaterials.2024.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Hepatocellular carcinoma (HCC) seriously threatens the human health. Previous investigations revealed that γ-glutamyltranspeptidase (GGT) was tightly associated with the chronic injury, hepatic fibrosis, and the development of HCC, therefore might act as a potential indicator for monitoring the HCC-related processes. Herein, with the contribution of a structurally optimized probe ETYZE-GGT, the bimodal imaging in both far red fluorescence (FL) and photoacoustic (PA) modes has been achieved in multiple HCC-related models. To our knowledge, this work covered the most comprehensive models including the fibrosis and developed HCC processes as well as the premonitory induction stages (autoimmune hepatitis, drug-induced liver injury, non-alcoholic fatty liver disease). ETYZE-GGT exhibited steady and practical monitoring performances on reporting the HCC stages via visualizing the GGT dynamics. The two modes exhibited working consistency and complementarity with high spatial resolution, precise apparatus and desirable biocompatibility. In cooperation with the existing techniques including testing serum indexes and conducting pathological staining, ETYZE-GGT basically realized the universal application for the accurate pre-clinical diagnosis of as many HCC stages as possible. By deeply exploring the mechanically correlation between GGT and the HCC process, especially during the premonitory induction stages, we may further raise the efficacy for the early diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Kai Wang
- Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xu-Yang Chen
- Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ren-Wei-Yang Zhang
- Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, China
| | - Ying Yue
- Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, China
| | - Xiao-Lin Wen
- Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Chen-Yang Han
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Yuan Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Hong-Ji Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
28
|
Kale SR, Karande G, Gudur A, Garud A, Patil MS, Patil S. Recent Trends in Liver Cancer: Epidemiology, Risk Factors, and Diagnostic Techniques. Cureus 2024; 16:e72239. [PMID: 39583507 PMCID: PMC11584332 DOI: 10.7759/cureus.72239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Liver cancer, particularly hepatocellular carcinoma (HCC), poses a significant global health challenge due to its high mortality rate. Hepatocellular carcinoma and intrahepatic cholangiocarcinoma (ICC) are the two main types of primary liver cancer (PLC), each with its own set of complexities. Secondary or metastatic liver cancer is more common than PLC. It is frequently observed in malignancies such as colorectal, pancreatic, melanoma, lung, and breast cancer. Liver cancer is often diagnosed at an advanced stage, making it difficult to treat. This highlights the need for focused research on early detection and effective treatment strategies. This review explores the epidemiology, risk factors, and diagnostic techniques for HCC. The development of HCC involves various risk factors, including chronic liver diseases, hepatitis B and C infections, alcohol consumption, obesity, smoking, and genetic predispositions. Various invasive and non-invasive diagnostic techniques, such as biopsy, liquid biopsy, and imaging modalities like ultrasonography, computed tomography scans (CT scans), magnetic resonance imaging (MRI), and positron emission tomography (PET) scans, are utilized for HCC detection and monitoring. Advances in imaging technology and biomarker research have led to more accurate and sensitive methods for early HCC detection. We also reviewed advanced research on emerging techniques, including next-generation sequencing, metabolomics, epigenetic biomarkers, and microbiome analysis, which show great potential for advancing early diagnosis and personalized treatment strategies. This literature review provides insights into the current state of liver cancer diagnosis and promising future advancements. Ongoing research and innovation in these areas are essential for improving early diagnosis and reducing the global burden of liver cancer.
Collapse
Affiliation(s)
- Shivani R Kale
- Molecular Biology and Genetics, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Geeta Karande
- Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Anand Gudur
- Oncology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Aishwarya Garud
- Molecular Biology and Genetics, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Monika S Patil
- Molecular Biology and Genetics, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Satish Patil
- Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
29
|
Kim D, Sung M, Park M, Sun E, Yoon S, Yoo KH, Radhakrishnan K, Jung SY, Bae W, Cho S, Chung I. Galectin 3-binding protein (LGALS3BP) depletion attenuates hepatic fibrosis by reducing transforming growth factor-β1 (TGF-β1) availability and inhibits hepatocarcinogenesis. Cancer Commun (Lond) 2024; 44:1106-1129. [PMID: 39073023 PMCID: PMC11483554 DOI: 10.1002/cac2.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/04/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Increased Galectin 3-binding protein (LGALS3BP) serum levels have been used to assess hepatic fibrosis stages and the severity of hepatocellular carcinoma (HCC). Considering the crucial role of transforming growth factor-β1 (TGF-β1) in the emergence of these diseases, the present study tested the hypothesis that LGALS3BP regulates the TGF-β1 signaling pathway. METHODS The expression levels of LGALS3BP and TGFB1 were analyzed in patients with metabolic dysfunction-associated steatohepatitis (MASH) and HCC. Multiple omics techniques, such as RNA-sequencing, transposase-accessible chromatin-sequencing assay, and liquid chromatography-tandem mass spectrometry proteomics, were used to identify the regulatory mechanisms for the LGALS3BP-TGF-β1 axis. The effects of altered TGF-β1 signaling by LGALS3BP were investigated in conditional LGALS3BP-knockin and LGALS3BP-knockout mice. RESULTS In patients with MASH and HCC, the levels of LGALS3BP and TGFB1 exhibited positive correlations. Stimulation of LGALS3BP by the inflammatory cytokine interferon α in HCC cells or ectopic overexpression of LGALS3BP in hepatocytes promoted the expression levels of TGFB1. Aggravated fibrosis was observed in the livers of hepatocyte-specific LGALS3BP-knockin mice, with increased TGFB1 levels. LGALS3BP directly bound to and assembled integrin αV, an integral mediator required for releasing active TGF-β1 from extracellular latent complex with the rearranged F-actin cytoskeleton. The released TGF-β1 activated JunB transcription factor, which in turn promoted the TGF-β1 positive feedback loop. LGALS3BP deletion in the hepatocytes downregulated TGF-β1 signaling and CCl4 induced fibrosis. Moreover, LGALS3BP depletion hindered hepatocarcinogenesis by limiting the availability of fibrogenic TGF-β1. CONCLUSION LGALS3BP plays a crucial role in hepatic fibrosis and carcinogenesis by controlling the TGF-β1 signaling pathway, making it a promising therapeutic target in TGF-β1-related diseases.
Collapse
Affiliation(s)
- Dae‐Hwan Kim
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| | - Minjeong Sung
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
- BioMedical Sciences Graduate ProgramChonnam National UniversityHwasunSouth Korea
| | - Myong‐Suk Park
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| | - Eun‐Gene Sun
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| | - Sumin Yoon
- Department of Biological ScienceSookmyung Women's UniversitySeoulSouth Korea
| | - Kyung Hyun Yoo
- Department of Biological ScienceSookmyung Women's UniversitySeoulSouth Korea
| | | | - Sung Yun Jung
- Department of Biochemistry and Molecular PharmacologyBaylor College of MedicineHoustonTexasUSA
| | - Woo‐Kyun Bae
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
- BioMedical Sciences Graduate ProgramChonnam National UniversityHwasunSouth Korea
| | - Sang‐Hee Cho
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| | - Ik‐Joo Chung
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| |
Collapse
|
30
|
Zajanckauskaite A, Lingelbach M, Juozapaitė D, Utkus A, Rukšnaitytė G, Jonuškienė G, Gulla A. Utilization of Microfluidic Droplet-Based Methods in Diagnosis and Treatment Methods of Hepatocellular Carcinoma: A Review. Genes (Basel) 2024; 15:1242. [PMID: 39457366 PMCID: PMC11508129 DOI: 10.3390/genes15101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and is associated with high morbidity and mortality. One of the main challenges in the management of HCC is late clinical presentation and thus diagnosis of the disease, which results in poor survival. The pathogenesis of HCC is complex and involves chronic liver injury and genetic alterations. Diagnosis of HCC can be made either by biopsy or imaging; however, conventional tissue-based biopsy methods and serological biomarkers such as AFP have limited clinical applications. While hepatocellular carcinoma is associated with a range of molecular alterations, including the activation of oncogenic signaling pathways, such as Wnt-TGFβ, PI3K-AKT-mTOR, RAS-MAPK, MET, IGF, and Wnt-β-catenin and TP53 and TERT promoter mutations, microfluidic applications have been limited. Early diagnosis is crucial for advancing treatments that would address the heterogeneity of HCC. In this context, microfluidic droplet-based methods are crucial, as they enable comprehensive analysis of the genome and transcriptome of individual cells. Single-cell RNA sequencing (scRNA-seq) allows the examination of individual cell transcriptomes, identifying their heterogeneity and cellular evolutionary relationships. Other microfluidic methods, such as Drop-seq, InDrop, and ATAC-seq, are also employed for single-cell analysis. Here, we examine and compare these microfluidic droplet-based methods, exploring their advantages and limitations in liver cancer research. These technologies provide new opportunities to understand liver cancer biology, diagnosis, treatment, and prognosis, contributing to scientific efforts in combating this challenging disease.
Collapse
Affiliation(s)
- Akvilė Zajanckauskaite
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
| | - Miah Lingelbach
- School of Osteopathic Medicine, A.T. Still University, Mesa, AZ 85206, USA;
| | - Dovilė Juozapaitė
- Vilnius Santaros Klinikos Biobank, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
| | | | - Goda Jonuškienė
- Clinic of Hematology and Oncology, Institute of Clinical Medicine, Faculty of Medicine, 01513 Vilnius, Lithuania
| | - Aistė Gulla
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
- Department of Surgery, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
31
|
Ren T, Huang Y. Recent advancements in improving the efficacy and safety of chimeric antigen receptor (CAR)-T cell therapy for hepatocellular carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03443-7. [PMID: 39316087 DOI: 10.1007/s00210-024-03443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
The liver is one of the most frequent sites of primary malignancies in humans. Hepatocellular carcinoma (HCC) is one of the most prevalent solid tumors with poor prognosis. Current treatments showed limited efficacy in some patients, and, therefore, alternative strategies, such as immunotherapy, cancer vaccines, adoptive cell therapy (ACT), and recently chimeric antigen receptors (CAR)-T cells, are developed to offer better efficacy and safety profile in patients with HCC. Unlike other ACTs like tumor-infiltrating lymphocytes (TILs), CAR-T cells are equipped with engineered CAR receptors that effectively identify tumor antigens and eliminate cancer cells without major histocompatibility complex (MHC) restriction. This process induces intracellular signaling, leading to T lymphocyte recruitment and subsequent activation of other effector cells in the tumor microenvironment (TME). Until today, novel approaches have been used to develop more potent CAR-T cells with robust persistence, specificity, trafficking, and safety. However, the clinical application of CAR-T cells in solid tumors is still challenging. Therefore, this study aims to review the advancement, prospects, and possible avenues of CAR-T cell application in HCC following an outline of the CAR structure and function.
Collapse
Affiliation(s)
- Tuo Ren
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Yonghui Huang
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
32
|
Hidalgo F, Ferretti AC, Etichetti CB, Baffo E, Pariani AP, Maknis TR, Bussi J, Girardini JE, Larocca MC, Favre C. Alpha lipoic acid diminishes migration and invasion in hepatocellular carcinoma cells through an AMPK-p53 axis. Sci Rep 2024; 14:21275. [PMID: 39261583 PMCID: PMC11390941 DOI: 10.1038/s41598-024-72309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC) associated with viral or metabolic liver diseases is a growing cancer without effective therapy. AMPK is downregulated in HCC and its activation diminishes tumor growth. Alpha lipoic acid (ALA), an indirect AMPK activator that inhibits hepatic steatosis, shows antitumor effects in different cancers. We aimed to study its putative action in liver-cancer derived cell lines through AMPK signaling. We performed cytometric studies for apoptosis and cell cycle, and 2D and 3D migration analysis in HepG2/C3A and Hep3B cells. ALA led to significant inhibition of cell migration/invasion only in HepG2/C3A cells. We showed that these effects depended on AMPK, and ALA also increased the levels and nuclear compartmentalization of the AMPK target p53. The anti-invasive effect of ALA was abrogated in stable-silenced (shTP53) versus isogenic-TP53 HepG2/C3A cells. Furthermore, ALA inhibited epithelial-mesenchymal transition (EMT) in control HepG2/C3A but not in shTP53 nor in Hep3B cells. Besides, we spotted that in patients from the HCC-TCGA dataset some EMT genes showed different expression patterns or survival depending on TP53. ALA emerges as a potent activator of AMPK-p53 axis in HCC cells, and it decreases migration/invasion by reducing EMT which could mitigate the disease in wild-type TP53 patients.
Collapse
Affiliation(s)
- Florencia Hidalgo
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Anabela C Ferretti
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Carla Borini Etichetti
- Institute of Clinical and Experimental Immunology of Rosario (IDICER), CONICET-University of Rosario, Rosario, Argentina
| | - Emilia Baffo
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Alejandro P Pariani
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Tomás Rivabella Maknis
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Javier Bussi
- School of Statistics, University of Rosario, Rosario, Argentina
| | - Javier E Girardini
- Institute of Clinical and Experimental Immunology of Rosario (IDICER), CONICET-University of Rosario, Rosario, Argentina
| | - María C Larocca
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Cristián Favre
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina.
| |
Collapse
|
33
|
Sun Z, Liu H, Zhao Q, Li JH, Peng SF, Zhang Z, Yang JH, Fu Y. Immune-related cell death index and its application for hepatocellular carcinoma. NPJ Precis Oncol 2024; 8:194. [PMID: 39245753 PMCID: PMC11381516 DOI: 10.1038/s41698-024-00693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Regulated cell death (RCD) plays a crucial role in the immune microenvironment, development, and progression of hepatocellular carcinoma (HCC). However, reliable immune-related cell death signatures have not been explored. In this study, we collected 12 RCD modes (e.g., apoptosis, ferroptosis, and cuproptosis), including 1078 regulators, to identify immune-related cell death genes based on HCC immune subgroups. Using a developed competitive machine learning framework, nine genes were screened to construct the immune-related cell death index (IRCDI), which is available for online application. Multi-omics data, along with clinical features, were analyzed to explore the HCC malignant heterogeneity. To validate the efficacy of this model, more than 18 independent cohorts, including survival and diverse treatment cohorts and datasets, were utilized. These findings were further validated using in-house samples and molecular biological experiments. Overall, the IRCDI may have a wide application in individual therapeutic decision-making and improving outcomes for HCC patients.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hao Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Zhao
- Clinical Systems Biology Key Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jie-Han Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - San-Fei Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing-Hua Yang
- Clinical Systems Biology Key Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
34
|
Dong Y, Chen X, Yang S, Fu Y, Wang L, Gao X, Chen D, Xu L. Comprehensive analysis of POLH-AS1 as a prognostic biomarker in hepatocellular carcinoma. BMC Cancer 2024; 24:1112. [PMID: 39242532 PMCID: PMC11378586 DOI: 10.1186/s12885-024-12857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), a prevalent primary malignant tumor, is notorious for its high mortality rate. Despite advancements in HCC treatment, patient outcomes remain suboptimal. This study endeavors to assess the potential prognostic significance of POLH-AS1 in HCC. METHODS In this research, we gathered RNA-Seq information from individuals with HCC in The Cancer Genome Atlas (TCGA). We analyzed the levels of POLH-AS1 expression in both HCC cells and tissues using statistical tests. Additionally, we examined various prognostic factors in HCC using advanced methodologies. Furthermore, we employed Spearman's rank correlation analysis to examine the association between POLH-AS1 expression and the tumor's immune microenvironment. Finally, the functional roles of POLH-AS1 in HCC were validated in two HCC cell lines (HEP3B and HEPG2). RESULTS Our analysis revealed elevated POLH-AS1 expression across various cancers, including HCC, with heightened expression correlating with HCC progression. Notably, POLH-AS1 expression emerged as a potential biomarker for HCC patient survival and prognosis. Mechanistically, we identified the involvement of POLH-AS1 in tumorigenesis pathways such as herpes simplex virus 1 infection, interactions with neuroactive receptors, and the cAMP signaling pathway. Lastly, inhibition of POLH-AS1 was discovered to hinder the proliferation, invasion and migration of HEP3B and HEPG2 HCC cells. CONCLUSIONS POLH-AS1 emerges as a promising prognostic biomarker and therapeutic target for HCC, offering potential avenues for enhanced patient management and treatment strategies.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Prognosis
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Gene Expression Regulation, Neoplastic
- Tumor Microenvironment
- Cell Proliferation
- Cell Line, Tumor
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Cell Movement
- Hep G2 Cells
Collapse
Affiliation(s)
- Yan Dong
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinyi Chen
- Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shen Yang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yilong Fu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liangyu Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xueping Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Di Chen
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Lixia Xu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
35
|
Liu Y, Yang H, Li T, Zhang N. Immunotherapy in liver cancer: overcoming the tolerogenic liver microenvironment. Front Immunol 2024; 15:1460282. [PMID: 39295859 PMCID: PMC11409253 DOI: 10.3389/fimmu.2024.1460282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Liver cancer is a major global health concern, ranking among the top causes of cancer-related deaths worldwide. Despite advances in medical research, the prognosis for liver cancer remains poor, largely due to the inherent limitations of current therapies. Traditional treatments like surgery, radiation, and chemotherapy often fail to provide long-term remission and are associated with significant side effects. Immunotherapy has emerged as a promising avenue for cancer treatment, leveraging the body's immune system to target and destroy cancer cells. However, its application in liver cancer has been limited. One of the primary challenges is the liver's unique immune microenvironment, which can inhibit the effectiveness of immunotherapeutic agents. This immune microenvironment creates a barrier, leading to drug resistance and reducing the overall efficacy of treatment. Recent studies have focused on understanding the immunological landscape of liver cancer to develop strategies that can overcome these obstacles. By identifying the specific factors within the liver that contribute to immune suppression and drug resistance, researchers aim to enhance the effectiveness of immunotherapy. Prospective strategies include combining immunotherapy with other treatments, using targeted therapies to modulate the immune microenvironment, and developing new agents that can bypass or counteract the inhibitory mechanisms in the liver. These advancements hold promise for improving outcomes in liver cancer treatment.
Collapse
Affiliation(s)
- Yanju Liu
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong, China
| | - Hongyuan Yang
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Na Zhang
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
36
|
Wang G, Ding F, Chen K, Liang Z, Han P, Wang L, Cui F, Zhu Q, Cheng Z, Chen X, Huang C, Cheng H, Wang X, Zhao X. CT-based radiomics nomogram to predict proliferative hepatocellular carcinoma and explore the tumor microenvironment. J Transl Med 2024; 22:683. [PMID: 39218938 PMCID: PMC11367757 DOI: 10.1186/s12967-024-05393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Proliferative hepatocellular carcinomas (HCCs) is a class of aggressive tumors with poor prognosis. We aimed to construct a computed tomography (CT)-based radiomics nomogram to predict proliferative HCC, stratify clinical outcomes and explore the tumor microenvironment. METHODS Patients with pathologically diagnosed HCC following a hepatectomy were retrospectively collected from two medical centers. A CT-based radiomics nomogram incorporating radiomics model and clinicoradiological features to predict proliferative HCC was constructed using the training cohort (n = 184), and validated using an internal test cohort (n = 80) and an external test cohort (n = 89). The predictive performance of the nomogram for clinical outcomes was evaluated for HCC patients who underwent surgery (n = 201) or received transarterial chemoembolization (TACE, n = 104). RNA sequencing data and histological tissue slides from The Cancer Imaging Archive database were used to perform transcriptomics and pathomics analysis. RESULTS The areas under the receiver operating characteristic curve of the radiomics nomogram to predict proliferative HCC were 0.84, 0.87, and 0.85 in the training, internal test, and external test cohorts, respectively. The radiomics nomogram could stratify early recurrence-free survivals in the surgery outcome cohort (hazard ratio [HR] = 2.25; P < 0.001) and progression-free survivals in the TACE outcome cohort (HR = 2.21; P = 0.03). Transcriptomics and pathomics analysis indicated that the radiomics nomogram was associated with carbon metabolism, immune cells infiltration, TP53 mutation, and heterogeneity of tumor cells. CONCLUSION The CT-based radiomics nomogram could predict proliferative HCC, stratify clinical outcomes, and measure a pro-tumor microenvironment.
Collapse
Affiliation(s)
- Gongzheng Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Feier Ding
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Kaige Chen
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhuoshuai Liang
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China
| | - Pengxi Han
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Linxiang Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Fengyun Cui
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Qiang Zhu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhaoping Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Xingzhi Chen
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, 100080, People's Republic of China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, 100080, People's Republic of China
| | - Hongxia Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China.
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China.
| | - Xinya Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
37
|
Zhang G, Xiao Y, Liu H, Wu Y, Xue M, Li J. Integrated machine learning screened glutamine metabolism-associated biomarker SLC1A5 to predict immunotherapy response in hepatocellular carcinoma. Immunobiology 2024; 229:152841. [PMID: 39096658 DOI: 10.1016/j.imbio.2024.152841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as one of the most prevalent malignancies. While PD-1 immune checkpoint inhibitors have demonstrated promising therapeutic efficacy in HCC, not all patients exhibit a favorable response to these treatments. Glutamine is a crucial immune cell regulatory factor, and tumor cells exhibit glutamine dependence. In this study, HCC patients were divided into two subtypes (C1 and C2) based on glutamine metabolism-related genes via consensus clustering. The C1 pattern, in contrast to C2, was associated with a lower survival probability among HCC patients. Additionally, the C1 pattern exhibited higher proportions of patients with advanced tumor stages. The activity of C1 in glutamine metabolism and transport is significantly enhanced, while its oxidative phosphorylation activity is reduced. And, C1 was mainly involved in the progression-related pathway of HCC. Furthermore, C1 exhibited high levels of immunosuppressive cells, cytokine-receptor interactions and immune checkpoint genes, suggesting C1 as an immunosuppressive subtype. After stepwise selection based on integrated four machine learning methods, SLC1A5 was finally identified as the pivotal gene that distinguishes the subtypes. The expression of SLC1A5 was significantly positively correlated with immunosuppressive status. SLC1A5 showed the most significant correlation with macrophage infiltration, and this correlation was confirmed through the RNA-seq data of CLCA project and our cohort. Low-SLC1A5-expression samples had better immunogenicity and responsiveness to immunotherapy. As expected, SubMap and survival analysis indicated that individuals with low SLC1A5 expression were more responsive to anti-PD1 therapy. Collectively, this study categorized HCC patients based on glutamine metabolism-related genes and proposed two subclasses with different clinical traits, biological behavior, and immune status. Machine learning was utilized to identify the hub gene SLC1A5 for HCC classification, which also could predict immunotherapy response.
Collapse
Affiliation(s)
- Guixiong Zhang
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, PR China
| | - Yitai Xiao
- Department of Endoscopy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province 510060, PR China
| | - Hang Liu
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, PR China
| | - Yanqin Wu
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, PR China
| | - Miao Xue
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, PR China
| | - Jiaping Li
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, PR China.
| |
Collapse
|
38
|
Cai S, Gou Y, Chen Y, Hou X, Zhang J, Bi C, Gu P, Yang M, Zhang H, Zhong W, Yuan H. Luteolin exerts anti-tumour immunity in hepatocellular carcinoma by accelerating CD8 + T lymphocyte infiltration. J Cell Mol Med 2024; 28:e18535. [PMID: 39267250 PMCID: PMC11392827 DOI: 10.1111/jcmm.18535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 09/17/2024] Open
Abstract
Luteolin, a commonly used traditional Chinese medicine, has been utilized for several decades in the treatment of hepatocellular carcinoma (HCC). Previous research has demonstrated its anti-tumour efficacy, but its underlying mechanism remains unclear. This study aimed to assess the therapeutic effects of luteolin in H22 tumour-bearing mice. luteolin effectively inhibited the growth of solid tumours in a well-established mouse model of HCC. High-throughput sequencing revealed that luteolin treatment could enhance T-cell activation, cell chemotaxis and cytokine production. In addition, luteolin helped sustain a high ratio of CD8+ T lymphocytes in the spleen, peripheral blood and tumour tissues. The effects of luteolin on the phenotypic and functional changes in tumour-infiltrating CD8+ T lymphocytes were also investigated. Luteolin restored the cytotoxicity of tumour-infiltrating CD8+ T lymphocytes in H22 tumour-bearing mice. The CD8+ T lymphocytes exhibited intensified phenotype activation and increased production of granzyme B, IFN-γ and TNF-α in serum. The combined administration of luteolin and the PD-1 inhibitor enhanced the anti-tumour effects in H22 tumour-bearing mice. Luteolin could exert an anti-tumour immune response by inducing CD8+ T lymphocyte infiltration and enhance the anti-tumour effects of the PD-1 inhibitor on H22 tumour-bearing mice.
Collapse
Affiliation(s)
- Shijiao Cai
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Yidan Gou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanyan Chen
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoran Hou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Chongwen Bi
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Gu
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Miao Yang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Hanxu Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Weilong Zhong
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Hengjie Yuan
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
39
|
Chen S, Yao C, Tian N, Zhang C, Chen Y, Wang X, Jiang Y, Zhang T, Zeng T, Song Y. The interplay between persistent pathogen infections with tumor microenvironment and immunotherapy in cancer. Cancer Med 2024; 13:e70154. [PMID: 39240588 PMCID: PMC11378724 DOI: 10.1002/cam4.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Chronic infections by pathogenic microorganisms play a significant role in cancer development, disrupting the body's immune system and microenvironment. This interference impairs the body's ability to eliminate these microorganisms promptly, allowing them to persist by evading immune defenses. AIMS This study aimed to explore how chronic pathogenic infections influence the immune microenvironment, impacting tumorigenesis, cancer progression, and treatment strategies. Additionally, it seeks to investigate the effects of these infections on specific immune checkpoints and identify potential targets for immunotherapy. METHODS We conducted searches, readings, and detailed analyses of key terms in databases like PubMed and Web of Science to evaluate the impact of chronic infections by pathogenic microorganisms on the immune microenvironment. RESULTS Our analysis demonstrates a significant association between persistent chronic infections by pathogenic microorganisms and tumorigenesis. Notable impacts on the immune microenvironment include changes in immune cell function and the regulation of immune checkpoints, offering insights into potential targets for cancer immunotherapy. DISCUSSION This study highlights the complex relationship between chronic infections and cancer development, presenting new opportunities for cancer immunotherapy by understanding their effects on the immune microenvironment. The influence of these infections on immune checkpoints emphasizes the crucial role of the immune system in cancer treatment. CONCLUSION Chronic infections by pathogenic microorganisms greatly affect the immune microenvironment, tumorigenesis, and cancer treatment. Unraveling the underlying mechanisms can unveil potential targets for immunotherapy, improving our comprehension of the immune response to cancer and potentially leading to more effective cancer treatments in the future.
Collapse
Affiliation(s)
- Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Caihong Yao
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Na Tian
- Anesthesiology Department, Qingdao Eighth People's Hospital, Qingdao, People's Republic of China
| | - Chunying Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yuemei Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Xuting Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yue Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Tonghao Zhang
- Department of Statistics, University of Virginia, Charlottesville, Virginia, USA
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| |
Collapse
|
40
|
Jin Q, Jiao W, Lian Y, Chitrakar B, Sang Y, Wang X. Study on antihepatocellular carcinoma effect of 6-shogaol and curcumin through network-based pharmacological and cellular assay. Front Pharmacol 2024; 15:1367417. [PMID: 39224778 PMCID: PMC11368042 DOI: 10.3389/fphar.2024.1367417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Background Hepatocellular carcinoma currently has the third highest mortality rate in the world. Patients with hepatocellular carcinoma are on the rise and at a younger age, but research into the pharmacological effects of cancer is mostly single-component, and natural plant products can have additive or synergistic effects that can better amplify the effects of intervention in cancer. Aim To evaluate the synergistic therapeutic effects of 6-shogaol and curcumin against hepatocellular carcinoma line HepG2 cells. Methods In this study, a network pharmacology approach was used to predict and validate the mol ecular targets and pathways of the hepatocellular carcinoma (HCC) of 6-shogaol and curcumin in combination and to investigate their mechanism of action. The results were also validated by cellular assays. HepG2 cells were treated with 6-shogaol and curcumin as well as the combination of the two. The combination index of 6-shogaol and curcumin in HepG2 cells was calculated using Compusyn software according to the Chou-Talalay equation. The synergistic anti-cancer effect was next investigated by MTT assay, apoptosis assay and cell cycle assay. The combined anti-hepatocellular carcinoma effect of the Ras-mediated PI3K/AKT and MAPK signalling pathways was analysed using protein blotting assays. Results A network pharmacology-based screening identified 72 core targets of 6-curcumin and curcumin in hepatocellular carcinoma, and predicted that the main signalling pathway is the Ras signalling pathway. The anti-cancer effects of 6-shogaol and curcumin were validated in cell-based assays and the optimal synergistic concentrations of 5 μmoL/L for 6-shogaol and 30 μmoL/L for curcumin were determined. 6-shogaol and curcumin synergistically blocked the cell cycle in the G2/M phase and promoted apoptosis. Immunoblot analysis confirmed for the first time the combined action of both in down-regulating the Ras-mediated PI3K/AKT and MAPK signaling pathways. In addition, 6-shogaol and curcumin acting together downregulated Cyclin-B, CDK-1, Bcl-2, and upregulated BAX. Conclusion 6-shogaol and curcumin act synergistically to alter the morphology of hepatocellular carcinoma cells, block the cell cycle in the G2/M phase, inhibit proliferation and division, and effectively promote late apoptosis. The combined action of these two components provides a theoretical basis for the further development of novel anti-liver cancer products.
Collapse
Affiliation(s)
- Qiuxia Jin
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Wenya Jiao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yunhe Lian
- Chenguang Biotechnology Group Co., Ltd., Handan, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
41
|
Qin L, Song CZ, Yuan FY, Wang XF, Yang Y, Ma YF, Chen ZL. ELOVL1 is upregulated and promotes tumor growth in hepatocellular carcinoma through regulating PI3K-AKT-mTOR signaling. Heliyon 2024; 10:e34961. [PMID: 39144963 PMCID: PMC11320299 DOI: 10.1016/j.heliyon.2024.e34961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background The functions of the ELOVLs are mainly involved in the elongation of saturated and polyunsaturated fatty acids, thus influencing the metabolism of fatty acids. Abnormal lipid metabolism may result in NAFLD and NASH, which may lead to cirrhosis and liver cancer. These results suggest that ELOVLs-mediated metabolism might be involved in the development of HCC. The purpose of this study was to study the expression and function of ELOVL1 in human liver cancer. Method Using TCGA, GEPIA and other databases, we analyzed the relationship between the expression of ELOVL1 and liver cancer. The expression of ELOVL1 was detected by immunohistochemical method and Western blot method in hepatic carcinoma and hepatic carcinoma cells. Then, the effects of ELOVL1 on proliferation, apoptosis and invasion in vitro and in vivo were investigated by means of different methods. Result Our results indicate that ELOVL1 is more highly expressed in liver cancer than in normal tissues. Survival analysis showed that OS and DSS were shorter in patients with high ELOVL1 expression than in those with low expression. Multivariate Cox analysis further demonstrated that over-expression of ELOVL1 was an independent risk factor for overall survival in HCC. The results of ROC also confirmed the value of ELOVL1 in the diagnosis of liver cancer. The results of KEGG enrichment and GSEA indicate that ELOVL1 is associated with lipid metabolism and NAFLD, as well as PPAR, PI3K-AKT-mTOR. Compared with the control group, it was found that silencing ELOVL1 in Huh7 and HepG2 cells could inhibit the growth of cells, promote the apoptosis and decrease the metastasis and invasion. Changes in ELOVL1 induced cell proliferation and metastasis may be related to PI3K/AKT/mTOR. Low expression of ELOVL1 inhibited the growth of xenograft tumors in hepatocellular carcinoma xenograft model. Conclusion Our data indicate that the activation of PI3K/AKT/mTOR pathway in HCC may contribute to the promotion of cancer. Thus, ELOVL1 may be a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Liang Qin
- Clinical Medicine School of Surgery, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, 550000, China
| | - Cheng-ze Song
- Clinical Medicine School of Surgery, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, 550000, China
| | - Fa-yang Yuan
- Clinical Medicine School of Surgery, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, 550000, China
| | - Xue-fa Wang
- Clinical Medicine School of Surgery, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, 550000, China
| | - Yang Yang
- Clinical Medicine School of Surgery, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, 550000, China
| | - Yi-fei Ma
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, NO.28 Gui Yi Street, Guiyang, 550000, China
| | - Zi-li Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, NO.28 Gui Yi Street, Guiyang, 550000, China
| |
Collapse
|
42
|
Wang J, Liang S, Zhu D, Ma X, Peng Q, Wang G, Wang Y, Chen T, Wu M, Hu TY, Zhang Y. Valence-Change MnO 2-Coated Arsenene Nanosheets as a Pin1 Inhibitor for Hepatocellular Carcinoma Treatment. J Am Chem Soc 2024; 146:21568-21582. [PMID: 39051165 PMCID: PMC11311233 DOI: 10.1021/jacs.4c05162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The heterogeneity of hepatocellular carcinoma (HCC) can prevent effective treatment, emphasizing the need for more effective therapies. Herein, we employed arsenene nanosheets coated with manganese dioxide and polyethylene glycol (AMPNs) for the degradation of Pin1, which is universally overexpressed in HCC. By employing an "AND gate", AMPNs exhibited responsiveness toward excessive glutathione and hydrogen peroxide within the tumor microenvironment, thereby selectively releasing AsxOy to mitigate potential side effects of As2O3. Notably, AMPNs induced the suppressing Pin1 expression while simultaneously upregulation PD-L1, thereby eliciting a robust antitumor immune response and enhancing the efficacy of anti-PD-1/anti-PD-L1 therapy. The combination of AMPNs and anti-PD-1 synergistically enhanced tumor suppression and effectively induced long-lasting immune memory. This approach did not reveal As2O3-associated toxicity, indicating that arsenene-based nanotherapeutic could be employed to amplify the response rate of anti-PD-1/anti-PD-L1 therapy to improve the clinical outcomes of HCC patients and potentially other solid tumors (e.g., breast cancer) that are refractory to anti-PD-1/anti-PD-L1 therapy.
Collapse
Affiliation(s)
- Jingguo Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Siping Liang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Dongdong Zhu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Xiaocao Ma
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Qin Peng
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Guanzhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong 510006, China
| | - Yuting Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Tiantian Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Tony Y Hu
- Center of Cellular and Molecular Diagnosis, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Yuanqing Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong 510006, China
| |
Collapse
|
43
|
Sakhawat A, Awan SJ, Khan MU, Shahid S, Maqbool T, Zubair HM, Manzoor H, Khan S. In silico and in vitro analyses to investigate the effects of vitamin C on VEGF protein. J Taibah Univ Med Sci 2024; 19:775-789. [PMID: 39149519 PMCID: PMC11325796 DOI: 10.1016/j.jtumed.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/10/2024] [Accepted: 06/28/2024] [Indexed: 08/17/2024] Open
Abstract
Objectives This study was conducted to evaluate the effects of vitamin C on apoptotic and proliferative genes in injured HepG2 cells. Methods In silico analysis was performed using molecular docking of chemical compounds with vascular endothelial growth factor (VEGF). The different computational tools used were AutoDock Vina, BIOVIA DISCOVERY studio, and PyMOL. Drug likeness and toxicity were analyzed by SWISS ADMET. Cells that were 60-70% confluent were treated with different concentrations of hydrogen peroxide (H2O2) (100-2000 μM) and ascorbic acid (30, 60, 90 μg/mL). The MTT cell proliferation assay was performed to compare the proliferative potential of HepG2 cells treated with H2O2 or ascorbic acid with untreated HepG2 cells using 96-well plates. Results The lowest binding energy of VEGF with vitamin C -5.2 kcal/mol and L-ascorbic acid-2 glycoside -4.7 kcal/mol was observed by in silico analysis. Vitamin C was selected because it exhibited a high interaction with VEGF and fulfilled Lipinski's rule, and had better oral viability and pharmacokinetics compared to L-ascorbic acid-2 glycoside. Cell viability assays showed that vitamin C had significant apoptotic effects (P < 0.0001). After treating HepG2 cells with ascorbic acid, reduced VEGF (angiogenesis) was observed as determined by apoptotic and proliferative gene expression. Ascorbic acid treatment of HepG2 cells led to downregulation of the proliferation markers, proliferating cell nuclear antigen, Ki67, and DNA topoisomerase II alpha. Increased apoptosis after treatment with vitamin C was observed due to upregulation of p53 and annexin V. Conclusion The results of this study showed that vitamin C inhibited the growth of cancer cells, thus protecting HepG2 cells from oxidative stress. Vitamin C exhibited antiproliferative activity as observed in silico and in vitro, as well as by the inhibited expression of genes involved in protein synthesis.
Collapse
Affiliation(s)
- Azra Sakhawat
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sana Javaid Awan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Department of Biotechnology, Kinnaird College for Women University, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Samiah Shahid
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Tahir Maqbool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Hafiz Muhammad Zubair
- Postgraduate Medical College, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Hina Manzoor
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Samiullah Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Faculty of Biotechnology and Life Sciences, INTI International University Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
44
|
Chen P, Dong Z, Zhu W, Chen J, Zhou Y, Ye Q, Liao X, Tan Y, Li C, Wang Y, Pang H, Wen C, Jiang Y, Li X, Li B, Aimaier A, Lin L, Sun J, Hou J, Tang L, Hou J, Li Y. Noncanonical regulation of HOIL-1 on cancer stemness and sorafenib resistance identifies pixantrone as a novel therapeutic agent for HCC. Hepatology 2024; 80:330-345. [PMID: 37820061 DOI: 10.1097/hep.0000000000000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/16/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND AIMS Cancer stem cells (CSCs) contribute to therapy resistance in HCC. Linear ubiquitin chain assembly complex (LUBAC) has been reported to accelerate the progression of cancers, yet its role in the sorafenib response of HCC is poorly defined. Herein, we investigated the impact of LUBAC on sorafenib resistance and the CSC properties of HCC, and explored the potential targeted drugs. APPROACH AND RESULTS We found that HOIL-1, but not the other components of LUBAC, played a contributing role in LUBAC-mediated HCC sorafenib resistance, independent of its ubiquitin ligase activity. Both in vitro and in vivo assays revealed that the upregulated HOIL-1 expression enhanced the CSC properties of HCC. Mechanistically, HOIL-1 promoted sorafenib resistance and the CSC properties of HCC through Notch1 signaling. Mass spectrometry, co-immunoprecipitation, western blot, and immunofluorescence were used to determine that the A64/Q65 residues of HOIL-1 bound with the K78 residue of Numb, resulting in impaired Numb-mediated Notch1 lysosomal degradation. Notably, pixantrone was screened out by Autodock Vina, which was validated to disrupt HOIL-1/Numb interaction to inhibit Notch1 signaling and CSC properties by targeting the Q65 residue of HOIL-1. Moreover, pixantrone exerted synergistic effects with sorafenib for the treatment of HCC in different HCC mouse models. CONCLUSIONS HOIL-1 is critical in promoting sorafenib resistance and CSC properties of HCC through Notch1 signaling. Pixantrone targeting HOIL-1 restrains the sorafenib resistance and provides a potential therapeutic intervention for HCC.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zheyu Dong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junling Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuyue Ye
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinxin Liao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongfa Tan
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanjiang Li
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhao Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huajin Pang
- Department of General Surgery, Division of Vascular and Interventional Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuchuan Jiang
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaoqing Li
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bo Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Aihetaimu Aimaier
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiajie Hou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Chen K, Shuen TWH, Chow PKH. The association between tumour heterogeneity and immune evasion mechanisms in hepatocellular carcinoma and its clinical implications. Br J Cancer 2024; 131:420-429. [PMID: 38760445 PMCID: PMC11300599 DOI: 10.1038/s41416-024-02684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. The emergence of combination therapy, atezolizumab (anti-PDL1, immune checkpoint inhibitor) and bevacizumab (anti-VEGF) has revolutionised the management of HCC. Despite this breakthrough, the best overall response rate with first-line systemic therapy is only about 30%, owing to intra-tumoural heterogeneity, complex tumour microenvironment and the lack of predictive biomarkers. Many groups have attempted to classify HCC based on the immune microenvironment and have consistently observed better outcomes in immunologically "hot" HCC. We summarised possible mechanisms of tumour immune evasion based on the latest literature and the rationale for combination/sequential therapy to improve treatment response. Lastly, we proposed future strategies and therapies to overcome HCC immune evasion to further improve treatment outcomes of HCC.
Collapse
Affiliation(s)
- Kaina Chen
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Timothy W H Shuen
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Pierce K H Chow
- Duke-NUS Medical School, Singapore, Singapore.
- Department of Hepato-pancreato-biliary and Transplant Surgery, National Cancer Centre Singapore and Singapore General Hospital, Singapore, Singapore.
- Program in Translational and Clinical Liver Cancer Research, National Cancer Centre Singapore, Singapore, Singapore.
| |
Collapse
|
46
|
Tan S, Zaman QU, Fahad S, Deng G. Cannabidiol reverts the malignant phenotype of hepatocellular carcinoma cells via the GPR55/TP53/MAPK axis. Biochim Biophys Acta Gen Subj 2024; 1868:130651. [PMID: 38825256 DOI: 10.1016/j.bbagen.2024.130651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Cannabidiol (CBD) has antioxidant and anti-inflammatory activities. However, the anti-tumor effect of CBD on hepatocellular carcinoma (HCC) remains unclear. Here, we investigated whether CBD displays anti-tumorigenic effects in HCC cells and whether it could reduce tumorigenesis and metastases in vivo. First, this study treated HCC cells with different concentrations of CBD, followed by analyzing the changes in the proliferative, apoptotic, migratory and invasive abilities. The effects of CBD on the growth and metastasis of HCC cells in vivo were verified by tumorigenesis and metastasis assays. Subsequently, the target genes of CBD were predicted through the SwissTarget website and the genes differentially expressed in cells after CBD treatment were analyzed by microarray for intersection. The enrichment of the pathways after CBD treatment was analyzed by KEGG enrichment analysis, followed by western blot validation. Finally, rescue assays were used to validate the functions of genes as well as pathways in the growth and metastasis of HCC cells. A significant weakening of the ability of HCC cells to grow and metastasize in vitro and in vivo was observed upon CBD treatment. Mechanistically, CBD reduced GRP55 expression in HCC cells, along with increased TP53 expression and blocked MAPK signaling activation. In CBD-treated cells, the anti-tumor of HCC cells was restored after overexpression of GRP55 or deletion of TP53. CBD inhibits the MAPK signaling activation and increases the TP53 expression by downregulating GRP55 in HCC cells, thereby suppressing the growth and metastasis of HCC cells.
Collapse
Affiliation(s)
- Shirui Tan
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, Yunnan 650504, China; School of Agriculture, Yunnan University, Kunming, Yunnan 650504, China.
| | - Qamar Uz Zaman
- School of Agriculture, Yunnan University, Kunming, Yunnan 650504, China; Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan.
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakh-tunkhwa 23200, Pakistan; Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Gang Deng
- School of Agriculture, Yunnan University, Kunming, Yunnan 650504, China.
| |
Collapse
|
47
|
Zheng J, Wang Y, Zhou Y, Li Z, Yang L, Gao J, Zhu J. Augmentation of hepatocellular carcinoma malignancy by annexin A5 through modulation of invasion and angiogenesis. Scand J Gastroenterol 2024; 59:939-953. [PMID: 38742797 DOI: 10.1080/00365521.2024.2353103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/13/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) continues to play a substantial role in cancer-related morbidity and mortality, largely owing to its pronounced tumor heterogeneity and propensity for recurrence. This underscores the pressing need for in-depth examination of its highly malignant mechanisms. Annexin A5 (ANXA5), recognized as a hallmark tumor protein, has emerged as a focal point of interest because of its ambiguous function and mechanism in HCC prognosis. This study aimed to provide a comprehensive understanding of the role of ANXA5 in the malignant progression of human HCC cells by employing an integrative approach that combines conventional experimental methods with RNA sequencing. METHODS Differences in ANXA5 expression between HCC tissues and corresponding nontumor tissues were evaluated using immunofluorescence (n = 25). Correlation analysis was subsequently performed to assess the association between ANXA5 expression and clinicopathological features (n = 65). The role of ANXA5 in human HCC cell lines with ANXA5 gene knockout and overexpression was explored in vitro using migration and invasion assays and Ki-67 indices and in vivo based on node mice xenograft model. A tube formation assay using human umbilical vein endothelial cells (HUVECs) was conducted to demonstrate the angiogenic effects of ANXA5 in HCC. Single-cell and bulk RNA sequencing was used to further investigate the underlying mechanisms involved. RESULTS This study revealed that ANXA5 is highly expressed in patients with HCC and correlates with poor prognosis. Assays for migration, invasion, and proliferation based on ANXA5 gene knockout and overexpression systems in human HCC cell lines have demonstrated that ANXA5 enhances HCC malignancy in vitro and in vivo. Tube formation assays of HUVECs indicated that ANXA5 facilitates angiogenesis and recruits endothelial cells to HCC cells. Single-cell and bulk RNA sequencing data analysis further confirmed that ANXA5 expression in HCC is associated with hepatocyte metabolism, immune response activation, and various oncogenic signaling pathways. CONCLUSIONS This study revealed a meaningful association between elevated ANXA5 expression in tumor tissues and an unfavorable prognosis in patients with HCC. In addition, ANXA5 promotes HCC malignancy by promoting invasion and angiogenesis. Thus, ANXA5 has emerged as a promising therapeutic target for HCC and has the potential to improve patient outcomes.
Collapse
Affiliation(s)
- Jiaxi Zheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Yang Wang
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Yuheng Zhou
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Li Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| |
Collapse
|
48
|
Amadeo E, Foti S, Camera S, Rossari F, Persano M, Lo Prinzi F, Vitiello F, Casadei-Gardini A, Rimini M. Developing targeted therapeutics for hepatocellular carcinoma: a critical assessment of promising phase II agents. Expert Opin Investig Drugs 2024; 33:839-849. [PMID: 39039690 DOI: 10.1080/13543784.2024.2377321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the first for primary liver tumors. In recent years greater therapeutic advancement was represented by employment of tyrosine kinase inhibitors (TKIs) either in monotherapy or in combination with immune checkpoint inhibitors (ICIs). AREAS COVERED Major attention was given to target therapies in the last couple of years, especially in those currently under phase II trials. Priority was given either to combinations of novel ICI and TKIs or those targeting alternative mutations of major carcinogenic pathways. EXPERT OPINION As TKIs are playing a more crucial role in HCC therapeutic strategies, it is fundamental to further expand molecular testing and monitoring of acquired resistances. Despite the recent advancement in both laboratory and clinical studies, further research is necessary to face the discrepancy in clinical practice.
Collapse
Affiliation(s)
- Elisabeth Amadeo
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Foti
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Camera
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Federica Lo Prinzi
- Operative Research Unit of Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Vitiello
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|
49
|
Ye Z, Du Y, Yu W, Lin Y, Zhang L, Chen X. Construction of a circadian rhythm-relevant gene signature for hepatocellular carcinoma prognosis, immunotherapy and chemosensitivity prediction. Heliyon 2024; 10:e33682. [PMID: 39040257 PMCID: PMC11261054 DOI: 10.1016/j.heliyon.2024.e33682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Aims This study explored the molecular and biologic mechanisms underlying the association between circadian rhythm disorders (CRD) and increased risk for hepatocellular carcinoma (HCC). Background CRD are linked to increased risk for HCC, but the molecular and biologic mechanisms underlying this association are limited.ObjectiveThe study constructed and validated a CRD related gene model as an independent prognostic factor for HCC, providing insight into the molecular mechanisms linking CRD to increased HCC risk and identifying potential indicators for the efficacy of immunotherapy and anticancer drugs. This helps provide important clues for personalized treatment strategies for HCC patients. Methods Gene sets correlated with circadian rhythm were obtained from the Molecular Signatures Database (MSigDB) to intersect with differentially expressed genes (DEGs) between tumor samples and control samples in The Cancer Genome Atlas (TCGA) and HCCDB18 from Hepatocellular Carcinoma Cell DataBase (HCCDB). The CRD related gene model was developed by univariate Cox and stepwise multivariate analysis. Immune checkpoint blockade (ICB) therapy and anticancer drugs were analyzed using the tumor immune dysfunction and exclusion (TIDE) and pRRophetic, respectively. Seurat determined the cell type of HCC by analyzing single-cell data, and malignant cells were identified using Copykat. To detect the mRNA levels of genes in the CRD related gene model, quantitative real-time polymerase chain reaction (qRT-PCR) was carried out. Results The activity of circadian rhythm in HCC tissue was significantly lower than that in control tissue. Subsequently, EZH2, IMPDH2, TYMS and SERPINE1 were selected to construct the CRD related gene model, which was an independent factor for HCC prognosis. Notably, low-risk patients had lower levels of immune cell infiltration and lower TIDE scores compared to high-risk patients with HCC, indicating that patients with a low risk may derive more benefit from immunotherapy. IMPDH2, TYMS and SERPINE1 expressed significantly higher in malignant cells than in benign epithelial cells. Conclusions This study presents a CRD related gene model to reveal the molecular perspective of the dependent mechanism of the association between CRD and cancer, which provides a potential indicator for understanding the preclinical efficacy of ICB and anticancer drugs.
Collapse
Affiliation(s)
- Zhiyu Ye
- Department of Hernia and Hepatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Ying Du
- Department of Hernia and Hepatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Wenguan Yu
- Department of Hernia and Hepatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Yunshou Lin
- Department of Hernia and Hepatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Li Zhang
- Department of Hernia and Hepatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Xiaoyu Chen
- Department of General Medicine, The Affiliation People's Hospital of Ningbo University, Ningbo, 315000, China
| |
Collapse
|
50
|
Chen Z, Ding C, Chen K, Gu Y, Qiu X, Li Q. Investigating the causal association between obesity and risk of hepatocellular carcinoma and underlying mechanisms. Sci Rep 2024; 14:15717. [PMID: 38977823 PMCID: PMC11231137 DOI: 10.1038/s41598-024-66414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Obesity is a global health concern and independent risk factor for cancers including hepatocellular carcinoma (HCC). However, evidence on the causal links between obesity and HCC is limited and inconclusive. This study aimed to investigate the causal relationship between obesity-related traits and HCC risk and explore underlying mechanisms using bioinformatics approaches. Two-sample Mendelian randomization analysis was conducted leveraging publicly available genome-wide association study summary data on obesity traits (body mass index, body fat percentage, waist circumference, waist-to-hip ratio, visceral adipose tissue volume) and HCC. Associations of obesity with primary mechanisms (insulin resistance, adipokines, inflammation) and their effects on HCC were examined. Differentially expressed genes in obesity and HCC were identified and functional enrichment analyses were performed. Correlations with tumor microenvironment (TME) and immunotherapy markers were analyzed. Genetically predicted higher body mass index and body fat percentage showed significant causal relationships with increased HCC risk. Overall obesity also demonstrated causal links with insulin resistance, circulating leptin levels, C-reactive protein levels and risk of severe insulin resistant type 2 diabetes. Four differentially expressed genes (ESR1, GCDH, FAHD2A, DCXR) were common in obesity and HCC. Enrichment analyses indicated their roles in processes like RNA capping, viral transcription, IL-17 signaling and endocrine resistance. They exhibited negative correlations with immune cell infiltration and immunotherapy markers in HCC. Overall obesity likely has a causal effect on HCC risk in Europeans, possibly via influencing primary mechanisms. The identified differentially expressed genes may be implicated in obesity-induced hepatocarcinogenesis through regulating cell cycle, inflammation and immune evasion. Further research on precise mechanisms is warranted.
Collapse
Affiliation(s)
- Zhitao Chen
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, 848# Dongxin Road, Hangzhou, 310003, Zhejiang Province, China
| | - Chenchen Ding
- Child and Adolescent Psychology, Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, Zhejiang, China
| | - Kailei Chen
- School of Medicine, Zhejiang Shuren University, Hangzhou, 310003, China
| | - Yangjun Gu
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, 848# Dongxin Road, Hangzhou, 310003, Zhejiang Province, China
| | - Xiaoxia Qiu
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, 848# Dongxin Road, Hangzhou, 310003, Zhejiang Province, China
| | - Qiyong Li
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, 848# Dongxin Road, Hangzhou, 310003, Zhejiang Province, China.
| |
Collapse
|