1
|
Li HS, Zhang XF, Fu J, Yuan B. Efficacy of microwave ablation vs laparoscopic hepatectomy for primary small liver cancer: A comparative study. World J Gastrointest Surg 2025; 17:101786. [PMID: 40162382 PMCID: PMC11948124 DOI: 10.4240/wjgs.v17.i3.101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND In-depth comparative investigations in terms of clinical efficacies of liver tumor microwave ablation (MWA) and laparoscopic hepatectomy (LH), which are both important treatment modalities for liver neoplasms, have been limited in patients diagnosed with primary small liver cancer (PSLC). AIM To compare and analyze the clinical efficacy of liver tumor MWA and LH for PSLC. METHODS This study retrospectively analyzed the medical records of 123 patients with PSLC admitted to Xuzhou Central Hospital from January 2015 to November 2022 and categorized them based on treatment modalities into the LH and MWA groups. The LH group, consisting of 61 cases, received LH, and the MWA group, which included 62 cases, underwent liver tumor MWA. Basic data and various perioperative indicators were compared between the two groups, including changes in liver function indicators [alanine aminotransferase (ALT), glutamic aminotransferase (AST), and total bilirubin (TBIL)] pre- and post-treatment, and efficacy and postoperative complications were analyzed. RESULTS No statistically significant difference was observed between the two groups in terms of age, gender, tumor diameter, liver function Child-Pugh classification and number of tumors, body mass index, and educational status (P > 0.05). The overall effective rate was higher in the MWA group than in the LH group (98.39% vs 88.52%) (χ 2 = 4.918, P = 0.027). The MWA group exhibited less operation time, intraoperative bleeding, defecation time, and hospital stay than the LH group (P < 0.05). No difference was found in liver function indicators between the two groups pre-treatment (P > 0.05), and ALT, AST, and TBIL levels decreased in both groups post-treatment, with the MWA group demonstrating lower levels (P < 0.05). The MWA and LH groups exhibited postoperative complication rates of 4.84% and 19.67%, respectively, with statistically significant differences between the two groups (P = 0.012, χ 2 = 6.318). CONCLUSION MWA is more effective in treating PSLC, and it promotes faster postoperative recovery for patients, and more security improves liver function and reduces postoperative complications compared to LH.
Collapse
Affiliation(s)
- Huan-Song Li
- Department of Hepatobiliary Pancreatic Center, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu Province, China
| | - Xuan-Feng Zhang
- Department of Hepatobiliary Pancreatic Center, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu Province, China
| | - Jun Fu
- Department of Hepatobiliary Pancreatic Center, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu Province, China
| | - Bo Yuan
- Department of Hepatobiliary Pancreatic Center, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu Province, China
| |
Collapse
|
2
|
Hao B, Liu Y, Wang B, Wu H, Chen Y, Zhang L. Hepatitis B surface antigen: carcinogenesis mechanisms and clinical implications in hepatocellular carcinoma. Exp Hematol Oncol 2025; 14:44. [PMID: 40141002 PMCID: PMC11938626 DOI: 10.1186/s40164-025-00642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Liver cancer is the third leading cause of death globally, with hepatitis B virus (HBV) infection being identified as the primary risk factor for its development. The occurrence of HBV-related hepatocellular carcinoma (HCC) is attributed to various mechanisms, such as chronic inflammation and liver cell regeneration induced by the cytotoxic immune response triggered by the virus, abnormal activation of oncogenes arising from HBV DNA insertion mutations, and epigenetic alterations mediated by viral oncoproteins. The envelope protein of the HBV virus, known as hepatitis B surface antigen (HBsAg), is a key indicator of increased risk for developing HCC in HBsAg-positive individuals. The HBsAg seroclearance status is found to be associated with recurrence in HCC patients undergoing hepatectomy. Additional evidence indicates that HBsAg is essential to the entire process of tumor development, from initiation to advancement, and acts as an oncoprotein involved in accelerating tumor progression. This review comprehensively analyzes the extensive effects and internal mechanisms of HBsAg during the various stages of the initiation and progression of HCC. Furthermore, it highlights the importance and potential applications of HBsAg in the realms of HCC early diagnosis and personalized therapeutic interventions. An in-depth understanding of the molecular mechanism of HBsAg in the occurrence and development of HCC is provided, which is expected to develop more precise and efficient strategies for the prevention and management of HCC in the future.
Collapse
Affiliation(s)
- Bingyan Hao
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bohan Wang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haofeng Wu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Chen
- Department of Paediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Tongji Hospital, Tongji Medical College, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Alaei E, Farahani N, Orouei S, Alimohammadi M, Daneshi S, Mousavi T, Mahmoodieh B, Taheriazam A, Rahimzadeh P, Hashemi M. The clinicopathologic and prognostic value of CD44 expression in patients with non-small cell lung cancer: A systematic review and meta-analysis. Mol Cell Probes 2025; 81:102028. [PMID: 40139282 DOI: 10.1016/j.mcp.2025.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/13/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND CD44 is a promising target in the prognosis and treatment of non-small cell lung cancer (NSCLC). The study deals with systematic review and meta-analysis to determine the association between CD44 overexpression and survival and clinicopathological characteristics in NSCLC patients. METHODS We used the databases Google Scholar, Web of Science, PubMed, Scopus, EMBASE, and Cochrane to conduct a systematic search of English-language literature published up to September 2023. The eligible studies were retrieved on CD44 expression, clinicopathological characteristics in NSCLC patients, and reported survival rates. The Cochran's and Higgins I2 tests were used to measure heterogeneity across the included studies. P < 0.05 was considered statistically significant in all cases. The sources of heterogeneity across the included studies were identified using subgroup analysis on histology (SCC, ADC, and LCC), tumor differentiation (well, moderate, and poor), TMN stage (I/II/III/IV), OS, and lymph node metastasis (negative and positive). All statistical analyses were carried out using meta-analysis (CMA) software. RESULTS The final analysis for prognostic significance and clinicopathological features on 3681 participants from 25 eligible studies. The pooled event rate of overexpression CD44 for overall survival in NSCLC was 38 % and was related to SCC with 76.6 %. Furthermore, subgroup analysis revealed a link between CD44 overexpression and moderate tumor differentiation (41.8 %). There was a substantial difference in CD44 overexpression in males, with 69.3 % (95 % CI: 64.3-73.9 %, I2 = 88.25 %) versus 31.5 % (95 % CI: 26.7-36.8 %, I2 = 92.15 %) in females. However, no significant relationship was observed between CD44 overexpression and TMN stages/lymph node metastasis. CONCLUSION The meta-analysis demonstrated that CD44 is an effective prognostic factor for NSCLC. Overexpression of CD44 has been linked to moderate tumor differentiation, SCC tumor histology, and a worse survival rate. However, no substantial relationship was found between CD44 and metastasis or TMN stages. Large-scale prospective research is required to validate CD44's clinical value as an unbiased prognostic indicator.
Collapse
Affiliation(s)
- Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Tahoora Mousavi
- Molecular and Cell Biology Research Center, Hemoglobinopathy Institute, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Osman TE, Guo Y, Li S. Exploring the combined roles of GALNT1 and GALNT2 in hepatocellular carcinoma malignancy and EGFR modulation. Discov Oncol 2025; 16:337. [PMID: 40095226 PMCID: PMC11914428 DOI: 10.1007/s12672-025-02069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), the most formidable subtype of primary liver cancers, is becoming increasingly concerning due to its rising incidence worldwide. HCC ranks as the sixth most diagnosed cancer globally and is the third leading cause of cancer-related deaths. Glycosylation, a common post-translational modification of proteins, is frequently altered in tumors and is associated with the progression of malignancies. GALNT1 and GALNT2 are GalNAc-transferases that initiate protein O-glycosylation and are closely linked to cancer development. Investigating the relationship between GALNT1 and GALNT2 in HCC could provide new insights into the disease's pathogenesis. Thus, this study aimed to explore the combined effects of GALNT1 and GALNT2 transfection on HCC, compared to the effects of modifying each gene individually. MATERIALS AND METHODS GALNT1 and GALNT2 were assessed by bioinformatics, qPCR, and Western blot analyses to detect their expression in HCC tissues and cell lines. The effects of GALNT1/GALNT2 overexpression and knockdown on cell viability, proliferation, migration, invasion, and apoptosis were evaluated in HCC cells using CCK8, colony formation, transwell migration and invasion, wound healing, TUNEL, and flow cytometry assays. EGFR protein levels were also analyzed by Western blotting. RESULTS Co-transfection of GALNT1 knockdown with GALNT2 overexpression significantly suppressed proliferation, migration, and invasion, while promoting apoptosis in HCC cells. Conversely, co-transfection of GALNT1 overexpression with GALNT2 knockdown enhanced these malignant characteristics compared to the modified single gene. Notably, we observed that GALNT1 and GALNT2 modulated EGFR protein expression. Overall, our findings suggest that the combined activity of GALNT1 and GALNT2 is critical in regulating HCC malignant behaviors.
Collapse
Affiliation(s)
- Tagwa E Osman
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
- Clinical Laboratory Department, Dalian Medical University First Affiliated Hospital, Dalian, 116011, Liaoning Province, China
| | - Yanru Guo
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
- Clinical Laboratory Department, Dalian Medical University First Affiliated Hospital, Dalian, 116011, Liaoning Province, China
| | - Shijun Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China.
- Clinical Laboratory Department, Dalian Medical University First Affiliated Hospital, Dalian, 116011, Liaoning Province, China.
| |
Collapse
|
5
|
Li S, Wang X, Xiao J, Yi J. SLC7A11, a disulfidptosis-related gene, correlates with multi-omics prognostic analysis in hepatocellular carcinoma. Eur J Med Res 2025; 30:161. [PMID: 40069889 PMCID: PMC11900568 DOI: 10.1186/s40001-025-02411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND This study sought to establish a risk score signature based on disulfidptosis-related genes (DRGs) to predict the prognosis of hepatocellular carcinoma (HCC) patients. METHODS The expression data of DRGs from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) was analyzed to develop and validate a DRG prognostic signature (DRGPS). In vitro, experiments were conducted to explore DRG expressions and roles in HCC tissues and cell lines. HCC tissue microarrays were employed to analyze SLC7A11 expression and its association with clinicopathological characteristics. RESULTS The DRGPS consisted of 5 DRGs (SLC7A11, MATN3, CLEC3B, CCNJL, and PON1). The survival rate of HCC patients in high-risk group was significantly lower than that in low-risk group. The DRGPS was also associated with the modulation of tumor microenvironment (TME), tumor mutation burden (TMB), stemness and chemosensitivity. Furthermore, pan-cancer analysis suggested that the DRGPS risk score was associated with immune infiltration and stemness in multiple cancers. Moreover, our DRGPS had potential for predicting treatment efficacy in HCC patients. Finally, we confirmed that downregulation of SLC7A11, a DRG, inhibited the proliferation and migration of HCC cells, while its high expression correlated with advanced TNM clinical stage and larger tumor size. CONCLUSIONS This study systematically describes a novel DRGPS constructed for predicting HCC prognosis, providing a new approach to risk stratification and treatment options. It also investigates the expression and function of SLC7A11, contributing to further exploration of the molecular mechanism underlying disulfidptosis in HCC, as well as its prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Shizhe Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China
| | - Xiaotong Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China
| | - Junbo Xiao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China.
| | - Jun Yi
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Wang S, Peng R, Chen C, Tu D, Cao J, Su B, Fan S, Miao Y, Zhang C, Jiang G, Jin S, Bai D. FBXO32 ubiquitination of SUFU promotes progression and lenvatinib resistance in hepatocellular carcinoma via hedgehog signaling. Med Oncol 2025; 42:98. [PMID: 40067532 DOI: 10.1007/s12032-025-02644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Lenvatinib is a prevalent treatment for hepatocellular carcinoma (HCC), yet resistance to the drug significantly limits its effectiveness. This study investigates the role of FBXO32 (F-Box Protein 32) in HCC progression and lenvatinib resistance. Methods: We utilized the GSE211850 and GSE46408 datasets to identify an E3 ubiquitin ligase that is highly expressed in both lenvatinib-resistant HCC cells and HCC tissues. The expression and clinical relevance of this E3 ubiquitin ligase were further validated using lenvatinib-resistant HCC cells, online databases, and HCC clinical tissue samples. The phenotype was verified by cell and animal experiments. Techniques such as RNA sequencing, western blotting, immunofluorescence, Co-immunoprecipitation (Co‑IP), Ubiquitination, and cycloheximide (CHX) chase assay reveal the mechanism. FBXO32 is highly expressed in both lenvatinib-resistant HCC cells and HCC tissues. High FBXO32 expression correlated with increased ALT, AFP levels, larger tumors, and advanced TNM stages, serving as an independent risk factor for overall survival (OS) and recurrence-free survival (RFS). Functional assays demonstrated that FBXO32 overexpression enhanced cell proliferation, stemness, apoptosis resistance, and lenvatinib resistance, while knockdown had opposing effects. KEGG enrichment analysis indicated a link between FBXO32 and the Hedgehog signaling pathway. FBXO32-mediated degradation of SUFU, a Hedgehog pathway inhibitor, activated this pathway. Inhibiting Hedgehog signaling counteracted FBXO32's impact on HCC growth and resistance. Conclusion: FBXO32 is a critical marker for lenvatinib efficacy and HCC prognosis, suggesting that targeting FBXO32 or the Hedgehog pathway could provide innovative strategies for overcoming lenvatinib resistance in HCC.
Collapse
Affiliation(s)
- Shunyi Wang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Chen Chen
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Daoyuan Tu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Jun Cao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- General Surgery Institute of Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou, 225000, China
| | - Bingbing Su
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Songsong Fan
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yangyang Miao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- General Surgery Institute of Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou, 225000, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- General Surgery Institute of Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou, 225000, China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- General Surgery Institute of Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou, 225000, China
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- General Surgery Institute of Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou, 225000, China.
| |
Collapse
|
7
|
Wei JR, Lu MY, Wei TH, Fleishman JS, Yu H, Chen XL, Kong XT, Sun SL, Li NG, Yang Y, Ni HW. Overcoming cancer therapy resistance: From drug innovation to therapeutics. Drug Resist Updat 2025; 81:101229. [PMID: 40081221 DOI: 10.1016/j.drup.2025.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
One of the major limitations of cancer therapy is the emergence of drug resistance. This review amis to provide a focused analysis of the multifactorial mechanisms underlying therapy resistance,with an emphasis on actionable insights for developing novel therapeutic strategies. It concisely outlines key factors contributing to therapy resistance, including drug delivery barriers, cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer heterogeneity, tumor microenvironment (TME), genetic mutations, and alterlations in gene expression. Additionally, we explore how tumors evade targeted therapies through pathway-specific mechanisms that restore disrupted signaling pathways. The review critically evaluates innovative strategies designed to sensitize resistant tumor cells, such as targeted protein dedgradation, antibody-drug conjugates, structure-based drug design, allosteric drugs, multitarget drugs, nanomedicine and others We also highlight the importance of understanding the pharmacological actions of these agents and their integration into treatment regimens. By synthesizing current knowledge and identifying gaps in our understanding, this review aims to guide future research and improve patient outcomes in cancer therapy.
Collapse
Affiliation(s)
- Jin-Rui Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China; The First Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng-Yi Lu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hui Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiao-Li Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiang-Tu Kong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hai-Wen Ni
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
8
|
Qi C, Cao B, Gong Z, Zhang W, Yang P, Qin H, Zhao Y, Chen Y. SLC35C2 promotes stemness and progression in hepatocellular carcinoma by activating lipogenesis. Cell Signal 2025; 127:111589. [PMID: 39765278 DOI: 10.1016/j.cellsig.2025.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Metabolic reprogramming plays a critical role in tumorigenesis and progression, including hepatocellular carcinoma (HCC). The Solute Carriers (SLCs) family is responsible for the transport of a range of nutrients and has been linked to various cancers. Cancer stem cells (CSC) are a contributing factor to the recurrence and metastasis of HCC. However, the regulatory genes that govern this process remain unclear. The present study identified SLC35C2 as a crucial factor in maintaining the stem-cell characteristics of HCC cells through CRISPR-dCas9 screening. Further investigation demonstrated that SLC35C2 was significantly elevated in HCC tissues and correlated with a poor prognosis in HCC patients. It is an independent prognostic factor for HCC patients. The knockdown and overexpression of SLC35C2 inhibited or promoted stemness in HCC cell. Both in vitro and in vivo studies demonstrated that SLC35C2 promoted the proliferation, migration, invasion and metastasis in HCC cells. Through RNA-seq and lipidomics analysis, it was found that SLC35C2 regulated lipid reprogramming, particularly triglyceride synthesis. Mechanistically, SLC35C2 stimulated lipogenesis through the up-regulation of SREBP1, ACC, FAS, and SCD-1, thereby increasing lipid accumulation in HCC cells. SLC35C2 interacted with ACSL4, which plays a critical role in lipogenesis, and to protect it from degradation. Inhibition of ACSL4 with PRGL493 can reverse the lipogenesis, stemness and proliferation induced by SLC35C2 overexpression. In conclusion, our study demonstrates the pivotal role of SLC35C2 in stemness and malignant progression in HCC by promoting lipogenesis. These findings suggest that SLC35C2 is a prognostic marker and promising therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Chunhui Qi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Bin Cao
- Department of Cardiology, The 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province 450016, China
| | - Zhiwen Gong
- Department of Thoracic Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Weiyu Zhang
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Pengfei Yang
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Haorui Qin
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yan Zhao
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China.
| | - Yingchun Chen
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| |
Collapse
|
9
|
Xu Z, Liu R, Ke H, Xu F, Yang P, Zhang W, Zhan Y, Zhao Z, Xiao F. ATP6V1D drives hepatocellular carcinoma stemness and progression via both lysosome acidification-dependent and -independent mechanisms. Autophagy 2025; 21:513-529. [PMID: 39316516 PMCID: PMC11849949 DOI: 10.1080/15548627.2024.2406186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
Metabolic reprogramming is pivotal in cancer stem cell (CSC) self-renewal. However, the intricate regulatory mechanisms governing the crosstalk between metabolic reprogramming and liver CSCs remain elusive. Here, using a metabolic CRISPR-Cas9 knockout screen, we identify ATP6V1D, a subunit of the vacuolar-type H+-translocating ATPase (V-ATPase), as a key metabolic regulator of hepatocellular carcinoma (HCC) stemness. Elevated ATP6V1D expression correlates with poor clinical outcomes in HCC patients. ATP6V1D knockdown inhibits HCC stemness and malignant progression both in vitro and in vivo. Mechanistically, ATP6V1D enhances HCC stemness and progression by maintaining macroautophagic/autophagic flux. Specifically, ATP6V1D not only promotes lysosomal acidification, but also enhances the interaction between CHMP4B and IST1 to foster ESCRT-III complex assembly, thereby facilitating autophagosome-lysosome fusion to maintain autophagic flux. Moreover, silencing CHMP4B or IST1 attenuates HCC stemness and progression. Notably, low-dose bafilomycin A1 targeting the V-ATPase complex shows promise as a potential therapeutic strategy for HCC. In conclusion, our study highlights the critical role of ATP6V1D in driving HCC stemness and progression via the autophagy-lysosomal pathway, providing novel therapeutic targets and approaches for HCC treatment.Abbreviations: 3-MA: 3-methyladenine; ANT: adjacent normal liver tissues; ATP6V1D: ATPase H+ transporting V1 subunit D; BafA1: bafilomycin A1; CHMP: charged multivesicular body protein; co-IP: co-immunoprecipitation; CSC: cancer stem cell; ESCRT: endosomal sorting complex required for transport; HCC: hepatocellular carcinoma; IF: immunofluorescence; IHC: immunohistochemical; LCSCs: liver cancer stem cells; qRT-PCR: quantitative real time PCR; V-ATPase: vacuolar-type H+- translocating ATPase; WB: western blot.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Ruiyang Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
| | - Haoying Ke
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
| | - Fuyuan Xu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
| | - Pengfei Yang
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Weiyu Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Yi Zhan
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
| | - Zhiju Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fei Xiao
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
- State Key Laboratory of Anti-Infective Drug Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Kashi Guangdong Institute of Science and Technology, The First People’s Hospital of Kashi, Kashi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
10
|
Chen B, Liu J. Advancements in Hydrogel-Based Therapies for Ovarian Cancer: A Review. Cell Biochem Biophys 2025; 83:87-108. [PMID: 39190214 DOI: 10.1007/s12013-024-01483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Ovarian cancer, the most deadly gynecologic malignancy, is often resistant to conventional antitumor therapy due to various factors such as severe side effects, unexpected recurrence, and significant tissue damage. The limitations of current treatments and the resistance of invasive tumor cells contribute to these challenges. Hydrogel therapy has recently emerged as a potential treatment option for ovarian cancer, offering advantages such as controllability, biocompatibility, high drug loading capacity, prolonged drug release, and responsiveness to specific stimuli. Hence, the utilization of biodegradable hydrogels as carriers for chemotherapeutic agents has emerged as a significant concern in the field. Injectable hydrogel-based drug delivery systems, in particular, have demonstrated superior efficacy compared to traditional systemic chemotherapy for cancer treatment. The pliability of hydrogel therapy allows for access to anatomical regions that may be challenging for surgical intervention. This review article examines recent advancements in the application of hydrogels for diagnosing and treating ovarian cancer, while also proposing a novel direction for the use of hydrogel technology in this context. The objective of this article is to offer a novel point of reference and serve as a source of inspiration for the advancement of more precise and individualized cancer therapies.
Collapse
Affiliation(s)
- Biqing Chen
- Harbin Medical University, Harbin, Heilongjiang, China.
| | - Jiaqi Liu
- Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Wu J, Zhao X, Ren B, Duan X, Sun J. Radioresistance in Hepatocellular Carcinoma: Biological Bases and Therapeutic Implications. Int J Mol Sci 2025; 26:1839. [PMID: 40076465 PMCID: PMC11899467 DOI: 10.3390/ijms26051839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality. Radiotherapy technology is a common treatment modality that can be used in all stages of HCC. However, in some cases, radiotherapy fails in clinical practice mainly because of the patient's resistance to radiotherapy, creating a bottleneck for future breakthroughs. HCC radiosensitivity is primarily related to DNA double-strand break repair, cellular autophagy, cell cycle, cellular metabolism, and hypoxic environmental regulators. Therefore, a comprehensive understanding of its molecular mechanisms will be of immense importance in reversing HCC radioresistance. In this review, we provide a comprehensive overview of the mechanism of action of radiotherapy on HCC, the cellular and molecular basis of radiation resistance in HCC, related treatment modalities, and future prospects.
Collapse
Affiliation(s)
- Jianhui Wu
- Department of Radiation Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; (J.W.); (X.Z.)
- Medical School, Chinese PLA General Hospital, Beijing 100853, China;
| | - Xiaofang Zhao
- Department of Radiation Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; (J.W.); (X.Z.)
- Medical School, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bowen Ren
- Medical School, Chinese PLA General Hospital, Beijing 100853, China;
| | - Xuezhang Duan
- Department of Radiation Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; (J.W.); (X.Z.)
| | - Jing Sun
- Department of Radiation Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; (J.W.); (X.Z.)
- Medical School, Chinese PLA General Hospital, Beijing 100853, China;
| |
Collapse
|
12
|
He Q, Xiong Y, Yang X, Yu Y, Chen Z. Molecular subtyping combined with multiomics analysis to study correlation between TACE refractoriness and tumor stemness in hepatocellular carcinoma. Discov Oncol 2025; 16:197. [PMID: 39961903 PMCID: PMC11832877 DOI: 10.1007/s12672-025-01955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Transarterial chemoembolization (TACE) refractoriness is a significant challenge in treating intermediate to advanced-stage hepatocellular carcinoma (HCC). A few studies suggest that liver cancer stem cells (LCSCs) may be associated with TACE refractoriness. This study aims to explore the potential correlation between TACE refractoriness and HCC stemness, highlighting its clinical significance. METHODS This research encompassed the analysis of diverse HCC datasets, including RNA-sequencing, microarray, single-cell RNA-sequencing, and clinical cohorts. We identified common genes between TACE refractoriness and tumor stemness (TSGs). Unsupervised clustering was employed to classify HCC patients into different clusters based on TSGs (TRS clusters). The study explored the differences in clinical prognosis, biological characteristics, genomic variations, immune landscapes, and treatment responses among the TRS clusters. RESULTS Patients with TACE-refractoriness demonstrated significantly higher tumor stemness. Our study identified 33 TSGs and established two TRS clusters, including C1 and C2. C1 was associated with TACE refractoriness, elevated tumor stemness, and poorer prognosis. Genomic alterations were found to be significantly different between the TRS clusters. The C1 exhibited signs of immunosuppression and lower activity of immune effector cells, while the C2 had a more robust immune response and higher level of immune cell presence. Single-cell RNA-seq revealed distinct cell type characteristics in each subtypes, with the C1 showing a higher proportion of stem cells and malignant cells. CONCLUSION Our findings establish a connection between TACE refractoriness and tumor stemness in HCC, proposing a novel subtype classification to guide personalized treatment. Insights gained may facilitate overcoming TACE refractoriness and the development of innovative therapies.
Collapse
Affiliation(s)
- Qifan He
- Department of Radiology, Haining People's Hospital, No.2 Qianjiang West Road, Haining, 314400, China
| | - Yue Xiong
- Department of Radiology, Haining People's Hospital, No.2 Qianjiang West Road, Haining, 314400, China
| | - Xiaoyu Yang
- Department of Radiology, Haining People's Hospital, No.2 Qianjiang West Road, Haining, 314400, China
| | - Yihui Yu
- Department of Radiology, Haining People's Hospital, No.2 Qianjiang West Road, Haining, 314400, China
| | - Zhonghua Chen
- Department of Radiology, Haining People's Hospital, No.2 Qianjiang West Road, Haining, 314400, China.
| |
Collapse
|
13
|
Xu Y, Mishra H, Furutani Y, Yanaka K, Nishimura H, Furuhata E, Takahashi M, Gailhouste L, Suenaga Y, Hippo Y, Yu W, Matsuura T, Suzuki H, Qin XY. A high-throughput screening platform to identify MYCN expression inhibitors for liver cancer therapy. Front Oncol 2025; 15:1486671. [PMID: 40027135 PMCID: PMC11868045 DOI: 10.3389/fonc.2025.1486671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
MYCN, an oncogene implicated in hepatocellular carcinoma (HCC), is predominantly expressed in cancer stem-like HCC cells. It drives tumorigenicity, metastasis, and therapeutic resistance. In this study, we hypothesized that the pharmacological inhibition of MYCN could represent a novel therapeutic strategy for HCC. To identify inhibitors of MYCN expression, we developed an unbiased, high-throughput screening platform. With this platform, we identified MI202 as a potent inhibitor of MYCN expression. MI202 significantly reduced MYCN promoter activity and mRNA levels in HCC cells, inhibiting cell proliferation, spheroid formation, and colony growth and promoting apoptosis. Notably, MI202 selectively inhibited the proliferation of HCC cells but not of normal hepatic cells, highlighting its potential for HCC-specific therapy. Genome-wide CRISPR knockout screening has identified acyl-CoA thioesterase 2 (ACOT2), a key regulator of lipid metabolism, as a molecular target of MI202. ACOT2 downregulation by MI202 was associated with reduced MYCN expression, suggesting that ACOT2 may mediate MYCN-driven tumorigenesis through lipid desaturation. Overall, this study presents a robust high-throughput screening platform to identify MYCN inhibitors and highlights the potential of pharmacological downregulation of MYCN as a therapeutic strategy for targeting HCC.
Collapse
Affiliation(s)
- Yali Xu
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
- Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hricha Mishra
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Yutaka Furutani
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kaori Yanaka
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hajime Nishimura
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Erina Furuhata
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Masataka Takahashi
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Luc Gailhouste
- Laboratory for Brain Development and Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Yusuke Suenaga
- Laboratory of Evolutionary Oncology, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yoshitaka Hippo
- Laboratory of Evolutionary Oncology, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Wenkui Yu
- Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Xian-Yang Qin
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| |
Collapse
|
14
|
Zou R, Jiang S, Mei J, Chen C, Yu J, Fu Y, Chen S. High-ammonia microenvironment promotes stemness and metastatic potential in hepatocellular carcinoma through metabolic reprogramming. Discov Oncol 2025; 16:182. [PMID: 39953190 PMCID: PMC11828779 DOI: 10.1007/s12672-025-01922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevalent and aggressive form of liver cancer, characterized by frequent recurrence and metastasis, which remain significant obstacles to effective treatment. Ammonia accumulates in the tumor microenvironment of HCC due to dysfunction in the urea cycle, but the detailed impact of ammonia on HCC cells remains insufficiently understood. METHODS We exposed HCC cell lines to high concentrations of ammonium chloride to evaluate alterations in proliferation, stemness, and migratory potential. After ammonia removal, changes in cellular behavior were assessed using colony formation, and spheroid assays. Transcriptomic and metabolomic analyses were conducted to investigate ammonia-induced metabolic reprogramming and alterations in gene expression. Additionally, animal models were employed to validate the impact of ammonia on tumor growth and metastasis. RESULTS Exposure to high-ammonia conditions transiently suppressed HCC cell proliferation without inducing apoptosis. However, following ammonia removal, cells demonstrated increased proliferation, enhanced spheroid formation, and elevated migratory capacity. Transcriptomic analysis revealed the upregulation of genes associated with cell adhesion, migration, and glycolysis. Concurrently, metabolomic profiling indicated increased lactate production, facilitating the aggressive behavior of HCC cells after ammonia withdrawal. Animal experiments confirmed that high-ammonia exposure accelerated tumor growth and metastasis. CONCLUSION Ammonia exerts a dual effect on HCC progression: it initially suppresses cell growth but later promotes stemness, proliferation, and metastasis through metabolic reprogramming. Targeting ammonia metabolism or glycolysis in the tumor microenvironment may represent a promising therapeutic strategy for mitigating HCC recurrence and metastasis. Future studies utilizing clinical samples are required to validate these findings and identify potential therapeutic strategies targeting ammonia metabolism.
Collapse
Affiliation(s)
- Renchao Zou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Sicong Jiang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiaqi Mei
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chen Chen
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqiu Fu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyu Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
15
|
Ye W, Zhao Y, Wang Y, Wang Y, Zhang H, Wang F, Chen W. Farnesoid X Receptor Attenuates the Tumorigenicity of Liver Cancer Stem Cells by Inhibiting STAT3 Phosphorylation. Int J Mol Sci 2025; 26:1122. [PMID: 39940889 PMCID: PMC11817294 DOI: 10.3390/ijms26031122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The Farnesoid X receptor (FXR) has recently been identified as being closely associated with the progression of primary hepatocellular carcinoma. Cancer stem cells (CSCs) play a crucial role in tumor initiation, progression, invasion, metastasis, recurrence, and drug resistance. The elucidation of the role and regulatory mechanism of FXR in CSCs is therefore deemed significant. Here, bioinformatics analysis has revealed a downregulation of FXR in hepatocellular carcinoma (HCC), which showed a negative correlation with HCC malignancy. This result was further confirmed through clinical sample analysis. Subsequently, CSCs were isolated from HCC cell lines and exhibited a significant decrease in the expression of FXR. The activation of FXR resulted in a remarkable inhibition of the proliferation, invasion, and tumorigenicity of CSCs. Furthermore, activated FXR prominently upregulated the expression of SOCS3 while suppressing STAT3 phosphorylation in CSCs. To further investigate this discovery, we established a DEN-induced HCC model in mice and observed that FXR-deficient mice exhibited heightened susceptibility to HCC. This was accompanied by decreased expression levels of SOCS3 and elevated expression and phosphorylation levels of STAT3, as well as significantly enhanced HCC CSCs markers and stemness-related genes expression in DEN-induced HCC tissues of FXR-deficient mice. Additionally, we also found a significant upregulation of CSCs markers and stemness-related genes within HCC clinical samples. Based on these findings, we postulated that targeted regulation of SOCS3 by FXR inhibits STAT3 phosphorylation, thereby exerting an inhibitory effect on CSCs.
Collapse
Affiliation(s)
- Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Yang Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Yibo Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Yahan Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Huan Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Fengling Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Weidong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| |
Collapse
|
16
|
Tang BF, Xu WT, Fang SJ, Zhu JY, Qiu RF, Shen L, Yang Y, Weng QY, Wang YJ, Ding JY, Zhang XJ, Chen WQ, Zheng LY, Song JJ, Chen B, Zhao ZW, Chen MJ, Ji JS. MELK prevents radiofrequency ablation-induced immunogenic cell death and antitumor immune response by stabilizing FABP5 in hepatocellular malignancies. Mil Med Res 2025; 12:5. [PMID: 39871325 PMCID: PMC11773770 DOI: 10.1186/s40779-024-00588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Radiofrequency ablation (RFA) is an efficient treatment with unlimited potential for liver cancer that can effectively reduce patient mortality. Understanding the biological process related with RFA treatment is important for improving treatment strategy. This study aimed to identify the critical targets for regulating the efficacy of RFA. METHODS The RFA treatment in hepatocellular carcinoma (HCC) tumor models in vivo, was analyzed by RNA sequencing technology. The heat treatment in vitro for HCC tumor cells was also constructed to explore the mechanism after RFA treatment in tumor cells. Nanoparticles with high affinity to tumor cells were applied as a new therapy to interfere with the expression of maternal embryonic leucine zipper kinase (MELK). RESULTS It was found that RFA treatment upregulated MELK expression, and MELK inhibition promoted RFA efficacy by immunogenic cell death and the antitumor response, including anti-tumoral macrophage polarization and increased CD8+ T cell cytotoxicity in HCC. Mechanically, MELK binds to fatty acid-binding protein 5 (FABP5), and affects its ubiquitination through the K48R pathway to increase its stability, thereby activating protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling axis to weaken the RFA-mediated antitumor effect. In addition, the synthesis of arginylglycylaspartic acid (RGD)-lipid nanoparticles (LNPs) targeting tumor cell-intrinsic MELK enhanced RFA efficacy in HCC. CONCLUSION MELK is a therapeutic target by regulating RFA efficacy in HCC, and targeting MELK via RGD-LNPs provides new insight into improving RFA efficacy in HCC clinical treatment and combating the malignant progression of liver cancer.
Collapse
Affiliation(s)
- Bu-Fu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Wang-Ting Xu
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Shi-Ji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Jin-Yu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Rong-Fang Qiu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Qiao-You Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Ya-Jie Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Jia-Yi Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Xiao-Jie Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Wei-Qian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Li-Yun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Jing-Jing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Biao Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Zhong-Wei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China.
| | - Min-Jiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China.
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
17
|
Gong D, Mo J, Zhai M, Zhou F, Wang G, Ma S, Dai X, Deng X. Advances, challenges and future applications of liver organoids in experimental regenerative medicine. Front Med (Lausanne) 2025; 11:1521851. [PMID: 39927267 PMCID: PMC11804114 DOI: 10.3389/fmed.2024.1521851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/20/2024] [Indexed: 02/11/2025] Open
Abstract
The liver is a vital organ responsible for numerous metabolic processes in the human body, including the metabolism of drugs and nutrients. After liver damage, the organ can rapidly return to its original size if the causative factor is promptly eliminated. However, when the harmful stimulus persists, the liver's regenerative capacity becomes compromised. Substantial theoretical feasibility has been demonstrated at the levels of gene expression, molecular interactions, and intercellular dynamics, complemented by numerous successful animal studies. However, a robust model and carrier that closely resemble human physiology are still lacking for translating these theories into practice. The potential for liver regeneration has been a central focus of ongoing research. Over the past decade, the advent of organoid technology has provided improved models and materials for advancing research efforts. Liver organoid technology represents a novel in vitro culture system. After several years of refinement, human liver organoids can now accurately replicate the liver's morphological structure, nutrient and drug metabolism, gene expression, and secretory functions, providing a robust model for liver disease research. Regenerative medicine aims to replicate human organ or tissue functions to repair or replace damaged tissues, restore their structure or function, or stimulate the regeneration of tissues or organs within the body. Liver organoids possess the same structure and function as liver tissue, offering the potential to serve as a viable replacement for the liver, aligning with the goals of regenerative medicine. This review examines the role of liver organoids in regenerative medicine.
Collapse
Affiliation(s)
- Da Gong
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiaye Mo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
- Guangxi University of Chinese Medicine, Nanning, China
| | - Mei Zhai
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Fulin Zhou
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Guocai Wang
- Department of Physiology, School of Medicine and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University Shenzhen International Graduate School, Guangdong, China
| | - Xiaoyong Dai
- Department of Physiology, School of Medicine and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University Shenzhen International Graduate School, Guangdong, China
| | - Xuesong Deng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
18
|
Suzuki H, Fujiwara N, Singal AG, Baumert TF, Chung RT, Kawaguchi T, Hoshida Y. Prevention of liver cancer in the era of next-generation antivirals and obesity epidemic. Hepatology 2025:01515467-990000000-01139. [PMID: 39808821 DOI: 10.1097/hep.0000000000001227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 01/16/2025]
Abstract
Preventive interventions are expected to substantially improve the prognosis of patients with primary liver cancer, predominantly HCC and cholangiocarcinoma. HCC prevention is challenging in the face of the evolving etiological landscape, particularly the sharp increase in obesity-associated metabolic disorders, including metabolic dysfunction-associated steatotic liver disease. Next-generation anti-HCV and HBV drugs have substantially reduced, but not eliminated, the risk of HCC and have given way to new challenges in identifying at-risk patients. The recent development of new therapeutic agents and modalities has opened unprecedented opportunities to refine primary, secondary, and tertiary HCC prevention strategies. For primary prevention (before exposure to risk factors), public health policies, such as universal HBV vaccination, have had a substantial prognostic impact. Secondary prevention (after or during active exposure to risk factors) includes regular HCC screening and chemoprevention. Emerging biomarkers and imaging modalities for HCC risk stratification and detection may enable individual risk-based personalized and cost-effective HCC screening. Clinical studies have suggested the potential utility of lipid-lowering, antidiabetic/obesity, and anti-inflammatory agents for secondary prevention, and some of them are being evaluated in prospective clinical trials. Computational and experimental studies have identified potential chemopreventive strategies directed at diverse molecular, cellular, and systemic targets for etiology-specific and/or agnostic interventions. Tertiary prevention (in conjunction with curative-intent therapies for HCC) is an area of active research with the development of new immune-based neoadjuvant/adjuvant therapies. Cholangiocarcinoma prevention may advance with recent efforts to elucidate risk factors. These advances will collectively lead to substantial improvements in liver cancer mortality rates.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Internal Medicine, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Medicine, Division of Gastroenterology, Kurume University School of Medicine, Kurume, Japan
| | - Naoto Fujiwara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Amit G Singal
- Department of Internal Medicine, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas F Baumert
- Inserm, Institute for Translational Medicine and Liver Diseases, University of Strasbourg, France
- IHU Strasbourg, Strasbourg, France
- Gastroenterology and Hepatology Service, Strasbourg University Hospitals, Strasbourg, France
| | - Raymond T Chung
- Department of Medicine, GI Division, Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takumi Kawaguchi
- Department of Medicine, Division of Gastroenterology, Kurume University School of Medicine, Kurume, Japan
| | - Yujin Hoshida
- Department of Internal Medicine, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
19
|
Chen S, Huang C, Li K, Cheng M, Zhang C, Xiong J, Tian G, Zhou R, Ling R, Wang X, Xiong G, Zhang Z, Ma J, Zhu Y, Zhou B, Peng L, Peng Z, Li H, Chen D. Tumor-initiating cells escape tumor immunity via CCL8 from tumor-associated macrophages in mice. J Clin Invest 2025; 135:e180893. [PMID: 39774471 PMCID: PMC11870738 DOI: 10.1172/jci180893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Tumor-initiating cells (TICs) play a key role in cancer progression and immune escape. However, how TICs evade immune elimination remains poorly characterized. Combining single-cell RNA-Seq (scRNA-Seq), dual-recombinase-based lineage tracing, and other approaches, we identified a WNT-activated subpopulation of malignant cells that act as TICs in vivo. We found intensive reciprocal interactions between TICs and immune-regulatory tumor-associated macrophages (Reg-TAMs) via growth arrest-specific 6/AXL receptor tyrosine kinase/MER proto-oncogene, tyrosine kinase (GAS6/AXL/MERTK) signaling pathways, which facilitated the immune escape of TICs. In this study, we used chemical inhibitors and Axl/Mertk conditional double-KO (cDKO) mice to demonstrate that inhibiting the interaction between TIC-derived GAS6 and AXL/MERTK in Reg-TAMs reactivated antitumor immune responses. We identified CCL8 as a critical mediator of the GAS6/AXL/MERTK pathway, primarily by inhibiting Treg infiltration into the tumor. Furthermore, the AXL/MERTK signaling blockade sensitized tumor cells to anti-programmed cell death 1 (anti-PD-1) treatment. Thus, we elucidated a detailed mechanism by which TICs evade tumor immunity, providing insights into strategies to eradicate TICs that escape conventional immunotherapy.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Chensong Huang
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Kang Li
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Maosheng Cheng
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Caihua Zhang
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Jianqi Xiong
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Guoli Tian
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ruoxing Zhou
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Rongsong Ling
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Xiaochen Wang
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Gan Xiong
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Zhang
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Jieyi Ma
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Yan Zhu
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liang Peng
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhenwei Peng
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Heping Li
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Demeng Chen
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
20
|
Xu C, Liang L, Liu G, Feng Y, Xu B, Zhu D, Jia W, Wang J, Zhao W, Ling X, Zhou Y, Ding W, Kong L. Predicting hepatocellular carcinoma outcomes and immune therapy response with ATP-dependent chromatin remodeling-related genes, highlighting MORF4L1 as a promising target. Cancer Cell Int 2025; 25:4. [PMID: 39757177 DOI: 10.1186/s12935-024-03629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) continues to be a major cause of cancer-related death worldwide, primarily due to delays in diagnosis and resistance to existing treatments. Recent research has identified ATP-dependent chromatin remodeling-related genes (ACRRGs) as promising targets for therapeutic intervention across various types of cancer. This development offers potential new avenues for addressing the challenges in HCC management. METHODS This study integrated bioinformatics analyses and experimental approaches to explore the role of ACRRGs in HCC. We utilized data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO), applying machine learning algorithms to develop a prognostic model based on ACRRGs' expression. Experimental validation was conducted using quantitative real-time Polymerase Chain Reaction (qRT-PCR), Western blotting, and functional assays in HCC cell lines and xenograft models. RESULTS Our bioinformatics analysis identified four key ACRRGs-MORF4L1, HDAC1, VPS72, and RUVBL2-that serve as prognostic markers for HCC. The developed risk prediction model effectively distinguished between high-risk and low-risk patients, showing significant differences in survival outcomes and predicting responses to immunotherapy in HCC patients. Experimentally, MORF4L1 was demonstrated to enhance cancer stemness by activating the Hedgehog signaling pathway, as supported by both in vitro and in vivo assays. CONCLUSION ACRRGs, particularly MORF4L1, play crucial roles in modulating HCC progression, offering new insights into the molecular mechanisms driving HCC and potential therapeutic targets. Our findings advocate for the inclusion of chromatin remodeling dynamics in the strategic development of precision therapies for HCC.
Collapse
Affiliation(s)
- Chao Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Litao Liang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Guoqing Liu
- Children's Hospital of Nanjing Medical University, No. 72, Guangzhou Road, Nanjing, 210008, Jiangsu, China
| | - Yanzhi Feng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Bin Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Deming Zhu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Wenbo Jia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Wenhu Zhao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Xiangyu Ling
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yongping Zhou
- Department of Hepatobiliary Surgery, Wuxi No.2 People's Hospital, No. 68 Zhongshan Road, Wuxi, China.
| | - Wenzhou Ding
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Lianbao Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| |
Collapse
|
21
|
Li YT, Zeng XZ. Establishment and Validation of the Novel Necroptosis-related Genes for Predicting Stemness and Immunity of Hepatocellular Carcinoma via Machine-learning Algorithm. Comb Chem High Throughput Screen 2025; 28:146-165. [PMID: 39641162 DOI: 10.2174/0113862073271292231108113547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 12/07/2024]
Abstract
BACKGROUND Necroptosis, a recently identified mechanism of programmed cell death, exerts significant influence on various aspects of cancer biology, including tumor cell proliferation, stemness, metastasis, and immunosuppression. However, the role of necroptosis-related genes (NRGs) in Hepatocellular Carcinoma (HCC) remains elusive. METHODS In this study, we assessed the mutation signature, copy number variation, and expression of 37 NRGs in HCC using the TCGA-LIHC dataset. We further validated our results using the ICGC-LIRI-JP dataset. To construct our prognostic model, we utilized the least absolute shrinkage and selection operator (LASSO), and evaluated the predictive efficacy of the NRGs-score using various machine learning algorithms, including K-M curves, time-ROC curves, univariate and multivariate Cox regression, and nomogram. In addition, we analyzed immune infiltration using the CIBERSOFT and ssGSEA algorithms, calculated the stemness index through the one-class logistic regression (OCLR) algorithm, and performed anti-cancer stem cells (CSCs) drug sensitivity analysis using oncoPredict. Finally, we validated the expression of the prognostic NRGs through qPCR both in vitro and in vivo. RESULTS About 18 out of 37 NRGs were found to be differentially expressed in HCC and correlated with clinical outcomes. To construct a prognostic model, six signature genes (ALDH2, EZH2, PGAM5, PLK1, SQSTM1, and TARDBP) were selected using LASSO analysis. These genes were then employed to categorize HCC patients into two subgroups based on NRGs-score (low vs. high). A high NRGs score was associated with a worse prognosis. Furthermore, univariate and multivariate Cox regression analyses were performed to confirm the NRGs-score as an independent risk factor. These analyses revealed strong associations between NRGs-score and critical factors, such as AFP, disease stage, and tumor grade in the HCC cohort. NRGs-score effectively predicted the 1-, 3-, and 5-year survival of HCC patients. Immune infiltration analysis further revealed that the expression of immune checkpoint molecules was significantly enhanced in the high NRGs-score group. Stemness analysis in the HCC cohort showed that NRGs-score was positively correlated with mRNA stemness index, and patients with high NRGs-score were sensitive to CSCs inhibitors. The findings from the external validation cohort provided confirmation that the NRGs-score presented a trait with universal applicability in accurately predicting the survival of HCC. Additionally, the six prognostic genes were consistently differentially expressed in both the HCC cell line and the mouse HCC model. CONCLUSION Our study demonstrated the pivotal role of NRGs in promoting stemness and immune suppression in HCC and established a robust model which could successfully predict HCC prognosis.
Collapse
Affiliation(s)
- Yao-Ting Li
- Department of Forensic Science, Guangdong Police College, 500 Binjiang East Road, Guangzhou 510230, Guangdong, China
| | - Xue-Zhen Zeng
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
22
|
Sirera R, Beltrán-Visiedo M, Galluzzi L. Targeting immune evasion in hepatocellular carcinoma-initiating cells. Trends Immunol 2025; 46:4-6. [PMID: 39721855 DOI: 10.1016/j.it.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Tumor-initiating cells (TICs) are particularly efficient at evading detection and elimination by the human immune system. Recent data from Yang and collaborators demonstrate that - at least in preclinical hepatocellular carcinoma models - the immunological privilege of CD49f+ TICs can be limited by targeting CD155, resulting in restored sensitivity to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Rafael Sirera
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain; Unidad Mixta TRIAL, Centro Investigación Príncipe Felipe-Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain
| | - Manuel Beltrán-Visiedo
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Dai Q, Zhu J, Yang J, Zhang CY, Yang WJ, Pan BS, Yang XR, Guo W, Wang BL. Construction of a Cancer Stem Cell related Histone Acetylation Regulatory Genes Prognostic Model for Hepatocellular Carcinoma via Bioinformatics Analysis: Implications for Tumor Chemotherapy and Immunity. Curr Stem Cell Res Ther 2025; 20:103-122. [PMID: 38561604 DOI: 10.2174/011574888x305642240327041753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Cancer stem cells (CSC) play an important role in the development of Liver Hepatocellular Carcinoma (LIHC). However, the regulatory mechanisms between acetylation- associated genes (HAGs) and liver cancer stem cells remain unclear. OBJECTIVE To identify a set of histone acetylation genes (HAGs) with close associations to liver cancer stem cells (LCSCs), and to construct a prognostic model that facilitates more accurate prognosis assessments for LIHC patients. METHODS LIHC expression data were downloaded from the public databases. Using mRNA expression- based stemness indices (mRNAsi) inferred by One-Class Logistic Regression (OCLR), Differentially Expressed Genes (DEGs) (mRNAsi-High VS. mRNAsi-Low groups) were intersected with DEGs (LIHC VS. normal samples), as well as histone acetylation-associated genes (HAGs), to obtain mRNAsi-HAGs. A risk model was constructed employing the prognostic genes, which were acquired through univariate Cox and Least Shrinkage and Selection Operator (LASSO) regression analyses. Subsequently, independent prognostic factors were identified via univariate and multivariate Cox regression analyses and then a nomogram for prediction of LIHC survival was developed. Additionally, immune infiltration and drug sensitivity analysis were performed to explore the relationships between prognostic genes and immune cells. Finally, the expressions of selected mRNAsi-HAGs were validated in the LIHC tumor sphere by quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) assay and western blot analysis. RESULTS Among 13 identified mRNAsi-HAGs, 3 prognostic genes (HDAC1, HDAC11, and HAT1) were selected to construct a risk model (mRNAsi-HAGs risk score = 0.02 * HDAC1 + 0.09 * HAT1 + 0.05 * HDAC11). T-stage, mRNAsi, and mRNAsi-HAGs risk scores were identified as independent prognostic factors to construct the nomogram, which was proved to predict the survival probability of LIHC patients effectively. We subsequently observed strongly positive correlations between mRNAsi-HAGs risk score and tumor-infiltrating T cells, B cells and macrophages/monocytes. Moreover, we found 8 drugs (Mitomycin C, IPA 3, FTI 277, Bleomycin, Tipifarnib, GSK 650394, AICAR and EHT 1864) had significant correlations with mRNAsi-HAGs risk scores. The expression of HDAC1 and HDAC11 was higher in CSC-like cells in the tumor sphere. CONCLUSION This study constructed a mRNAsi and HAGs-related prognostic model, which has implications for potential immunotherapy and drug treatment of LIHC.
Collapse
Grants
- 81772263, 81972000, 81872355, 82072715, 82172348 National Natural Science Foundation of China
- 82202608, 81902139 National Natural Science Foundation of China Youth Fund
- 2018ZSLC05, 2020ZSLC54, 2020ZSLC31 Specialized Fund for the clinical research of Zhongshan Hospital affiliated Fudan University
- 2021ZSCX28 Science Foundation of Zhongshan Hospital, Fudan University
- 2021ZSGG08 Excellent backbone of Zhongshan Hospital, Fudan University
- shslczdzk03302 construction project of clinical key disciplines in Shanghai
- YDZX20193502000002 Key medical and health projects of Xiamen
- BSZK-2023-A18 Shanghai Baoshan Medical Key Specialty
- 2019YFC1315800, 2019YFC1315802 National Key R&D Program of China
- 81830102 State Key Program of National Natural Science of China
- 2019CXJQ02 Shanghai Municipal Health Commission Collaborative Innovation Cluster Project
- 19441905000, 21140900300 Shanghai Science and Technology Commission
Collapse
Affiliation(s)
- Qian Dai
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun-Yan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
| | - Wen-Jing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bai-Shen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bei-Li Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Elhinnawi MA, Boushra MI, Hussien DM, Hussein FH, Abdelmawgood IA. Mitochondria's Role in the Maintenance of Cancer Stem Cells in Hepatocellular Carcinoma. Stem Cell Rev Rep 2025; 21:198-210. [PMID: 39422808 DOI: 10.1007/s12015-024-10797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and is recognized as a major contributor to cancer-related mortality worldwide. Cancer stem cells (CSCs) are a tiny group of cancer cells that possess a significant ability to regenerate themselves, form tumors, and undergo differentiation. CSCs have a pivotal role in the initiation, spread, recurrence, and resistance to treatment of cancer. As a result, they are very susceptible to being targeted for therapeutic intervention. The potential to cure HCC may be achieved by efficiently targeting drugs that eradicate cancer stem cells. Mitochondria have a crucial function in granting drug resistance to cancer stem cells by means of mitochondrial metabolism, biogenesis, and dynamics. Dysfunction in mitochondrial metabolic processes, such as mitochondrial oxidative phosphorylation (OXPHOS), calcium signaling, and reactive oxygen species (ROS) generation, contributes to the initiation and progression of human malignancies, including HCC. ROS have both beneficial and detrimental effects depending on their concentration. Consequently, ROS have become a prominent subject in the study of the fundamental mechanisms of HCC. Furthermore, an imbalance in the process of creating new mitochondria is a characteristic feature of CSCs, and an increase in mitochondrial biogenesis is associated with the heightened resistance observed in CSCs. This article provides a detailed examination of the involvement of mitochondria in the preservation of CSCs, as well as the spread of HCC. A deeper understanding of how mitochondria participate in tumorigenesis and drug resistance could result in the discovery of novel cancer treatments.
Collapse
Affiliation(s)
- Manar A Elhinnawi
- Experimental Pathology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | | | | | | | | |
Collapse
|
25
|
Bae SDW, Nguyen R, Yuen L, Lam V, George J, Qiao L. Constitutive androstane receptor (CAR) functions as a tumor suppressor via regulating stemness in liver cancer. Sci Rep 2024; 14:30926. [PMID: 39730609 DOI: 10.1038/s41598-024-81571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024] Open
Abstract
Constitutive androstane receptor (CAR) is a xenosensor that is almost exclusively expressed in the liver. Studies in rodents suggest an oncogenic role for CAR in liver cancer, but its role in human liver cancer is unclear. We aimed to investigate the functional roles of CAR in human liver cancer with a focus on the liver cancer stem cells. We used bioinformatics to increase our understanding of CAR in human liver cancer and associated stem cell markers. We studied the functional roles of CAR in human liver cancer with a focus on the liver cancer stem cell using siRNA, modulation of CAR activity, and tumorsphere formation assays. We have revealed significant associations between CAR and a wide variety of signalling pathways including stemness signalling. Further in vitro studies have shown that activation of CAR significantly reduces cancer cell stemness and represses proliferation, migration, invasion, and the tumorsphere-forming abilities of liver cancer cells (p < 0.05). Our data demonstrates the unequivocal tumor-suppressive role of CAR in liver cancer. While more detailed mechanistic studies are warranted, the efficacy of CAR xeno-activators in the treatment of advanced hepatocellular carcinoma (HCC) may potentially open a new avenue for liver cancer therapy.
Collapse
Affiliation(s)
- Sarah Da Won Bae
- Storr Liver Centre, Westmead Institute for Medical Research, Department of Medicine, the University of Sydney at Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Romario Nguyen
- Storr Liver Centre, Westmead Institute for Medical Research, Department of Medicine, the University of Sydney at Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Lawrence Yuen
- Department of Surgery, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Vincent Lam
- Department of Surgery, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Department of Medicine, the University of Sydney at Westmead Hospital, Westmead, NSW, 2145, Australia.
- School of Medicine, University of Sydney, Sydney, Australia.
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, Department of Medicine, the University of Sydney at Westmead Hospital, Westmead, NSW, 2145, Australia.
| |
Collapse
|
26
|
Wang C, Feng X, Li W, Chen L, Wang X, Lan Y, Tang R, Jiang T, Zheng L, Liu G. Apigenin as an emerging hepatoprotective agent: current status and future perspectives. Front Pharmacol 2024; 15:1508060. [PMID: 39749193 PMCID: PMC11693974 DOI: 10.3389/fphar.2024.1508060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Apigenin (C15H10O5, API) is a natural flavonoid widely found in vegetables, fruits, and plants such as celery, oranges, and chamomile. In recent years, API has attracted considerable attention as a dietary supplement due to its low toxicity, non-mutagenic properties and remarkable therapeutic efficacy in various diseases. In particular, evidence from a large number of preclinical studies suggests that API has promising effects in the prevention and treatment of a variety of liver diseases, including multifactorial liver injury, non-alcoholic fatty liver disease/non-alcoholic steatohepatitis, liver fibrosis and liver cancer. This paper provides a comprehensive review of the progress of research into the therapeutic applications of API in liver diseases as of August 2024, based on literature retrieved from databases such as Web of Science, PubMed, CNKI, Google Scholar and ScienceDirect. The hepatoprotective effects of API involve multiple molecular mechanisms, including inhibition of inflammation, alleviation of hepatic oxidative stress, amelioration of insulin resistance, promotion of fatty acid oxidation, inhibition of liver cancer cell proliferation and differentiation, and induction of tumour cell apoptosis. More importantly, signaling pathways such as Nrf2, NF-κB, PI3K/Akt/mTOR, NLRP3, Wnt/β-catenin, TGF-β1/Smad3, AMPK/SREBP, PPARα/γ, MAPKs, and Caspases are identified as key targets through which API exerts its beneficial effects in various liver diseases. Studies on its toxicity and pharmacokinetics indicate that API has low toxicity, is slowly metabolized and excreted in vivo, and has low oral bioavailability. In addition, the paper summarises and discusses the sources, physicochemical properties, new dosage forms, and current challenges and opportunities of API, with the aim of providing direction and rationale for the further development and clinical application of API in the food, pharmaceutical and nutraceutical fields.
Collapse
Affiliation(s)
- Cheng Wang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoli Feng
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wen Li
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Li Chen
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xinming Wang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yimiao Lan
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Rong Tang
- College of Foreign Languages and Cultures, Sichuan University, Chengdu, China
| | - Ting Jiang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lingli Zheng
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Gang Liu
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
27
|
Zhu XY, Liu WT, Hou XJ, Zong C, Yu W, Shen ZM, Qu SP, Tao M, Xue MM, Zhou DY, Bai HR, Gao L, Jiang JH, Zhao QD, Wei LX, Yang X, Han ZP, Zhang L. CD34 +CLDN5 + tumor associated senescent endothelial cells through IGF2-IGF2R signaling increased cholangiocellular phenotype in hepatocellular carcinoma. J Adv Res 2024:S2090-1232(24)00564-2. [PMID: 39674501 DOI: 10.1016/j.jare.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/02/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024] Open
Abstract
INTRODUCTION The heterogeneity of hepatocellular carcinoma (HCC) is linked to tumor malignancy and poor prognosis. Nevertheless, the precise mechanisms underlying the development of the cholangiocellular phenotype (CCA) within HCC remain unclear. Emerging studies support that the cross-talk among the host cells within tumor microenvironment (TME) sustains the cancer cell plasticity. OBJECTIVES This study sought to identify the specific cell types involved in the formation of CCA and to elucidate their functional roles in the progression of HCC. METHODS Single-cell RNA sequencing was employed to identify the specific cell types involved in the formation of CCA. Both in vitro and vivo analyses were used to identify the tumor-associated senescent ECs and investigate the function in TME. The diethylnitrosamine-induced model was utilized to investigate the interaction between senescent ECs and MSCs, aiming to elucidate their synergistic contributions to the progression of CCA. RESULTS Using single-cell RNA sequencing, we identified a distinct senescent-associated subset of endothelial cells (ECs), namely CD34+CLDN5+ ECs, which mainly enriched in tumor tissue. Further, the senescent ECs were observed to secrete IGF2, which recruited mesenchymal stem cells (MSCs) into the TME through IGF2R/MAPK signaling. In primary liver cancer model, MSCs exhibited a strong tumor-promoting effect, increasing the CCA and tumor malignancy after HCC formation. Interestingly, knockdown of IGF2R expression in MSCs inhibited the increase of CCA caused by MSCs in HCC. Meanwhile, it was revealed that MSCs released multiple inflammatory and trophic-related cytokines to enhance the cancer stem cell-like characteristics in HCC cells. Finally, we demonstrated that CEBPβ up-regulated IGF2 expression in tumor senescent ECs by combining with Igf2-promtor-sequence. CONCLUSIONS Together, our findings illustrated that tumor associated senescent ECs in HCC recruited the MSCs into TME, enhancing cancer stem cell (CSC)-like features of HCC cells and contributing to the CCA formation.
Collapse
Affiliation(s)
- Xin-Yu Zhu
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Wen-Ting Liu
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiao-Juan Hou
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Chen Zong
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Wei Yu
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Zhe-Min Shen
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Shu-Ping Qu
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Min Tao
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Meng-Meng Xue
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Dao-Yu Zhou
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Hao-Ran Bai
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Gao
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Jing-Hua Jiang
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Qiu-Dong Zhao
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Li-Xin Wei
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Xue Yang
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China.
| | - Zhi-Peng Han
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China; Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li Zhang
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China.
| |
Collapse
|
28
|
Marco A, Kasparkova J, Bautista D, Kostrhunova H, Cutillas N, Markova L, Novohradsky V, Ruiz J, Brabec V. A Novel Substituted Benzo[ g]quinoxaline-Based Cyclometalated Ru(II) Complex as a Biocompatible Membrane-Targeted PDT Colon Cancer Stem Cell Agent. J Med Chem 2024; 67:21470-21485. [PMID: 39620973 DOI: 10.1021/acs.jmedchem.4c02357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Herein, we describe and investigate biological activity of three octahedral ruthenium(II) complexes of the type [Ru(C∧N)(phen)2]+, RuL1-RuL3, containing a π-expansive cyclometalating substituted benzo[g]quinoxaline ligand (C∧N ligand) (phen = 1,10-phenanthroline). Compounds RuL1-RuL3 in cervical, melanoma, and colon human cancer cells exhibit high phototoxicity after irradiation with light (particularly blue), with the phototoxicity index reaching 100 for the complex RuL2 in most sensitive HCT116 cells. RuL2 accumulates in the cellular membranes. If irradiated, it induces lipid peroxidation, likely connected with photoinduced ROS generation. Oxidative damage to the fatty acids leads to the attenuation of the membranes, the activation of caspase 3, and the triggering of the apoptotic pathway, thus implementing membrane-localized photodynamic therapy. RuL2 is the first photoactive ruthenium-based complex capable of killing the hardly treatable colon cancer stem cells, a highly resilient subpopulation within a heterogeneous tumor mass, responsible for tumor recurrence and the metastatic progression of cancer.
Collapse
Affiliation(s)
- Alicia Marco
- Departamento de Química Inorgánica, Universidad de Murcia and Murcia BioHealth Research Institute (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ-783 71 Olomouc, Czech Republic
| | | | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
| | - Natalia Cutillas
- Departamento de Química Inorgánica, Universidad de Murcia and Murcia BioHealth Research Institute (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia and Murcia BioHealth Research Institute (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
29
|
Tsui YM, Ho DWH, Ng IOL. Unraveling the tumor-initiating cells in hepatocellular carcinoma. Cancer Cell 2024; 42:1990-1993. [PMID: 39577423 DOI: 10.1016/j.ccell.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/24/2024]
Abstract
Aggressive features of hepatocellular carcinoma (HCC) are highly related to liver tumor-initiating cells (TICs), which are heterogeneous and plastic. In this issue of Cancer Cell, Yang et al. reveal the ability of CD49f-high TICs in shaping the tumor immunosuppressive microenvironment in HCC.
Collapse
Affiliation(s)
- Yu Man Tsui
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
30
|
Yang C, Geng H, Yang X, Ji S, Liu Z, Feng H, Li Q, Zhang T, Zhang S, Ma X, Zhu C, Xu N, Xia Y, Li Y, Wang H, Yu C, Du S, Miao B, Xu L, Wang H, Cao Y, Li B, Zhu L, Tang X, Zhang H, Zhu C, Huang Z, Leng C, Hu H, Chen X, Yuan S, Jin G, Bernards R, Sun C, Zheng Q, Qin W, Gao Q, Wang C. Targeting the immune privilege of tumor-initiating cells to enhance cancer immunotherapy. Cancer Cell 2024; 42:2064-2081.e19. [PMID: 39515328 DOI: 10.1016/j.ccell.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/09/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Tumor-initiating cells (TICs) possess the ability to evade anti-tumor immunity, potentially explaining many failures of cancer immunotherapy. Here, we identify CD49f as a prominent marker for discerning TICs in hepatocellular carcinoma (HCC), outperforming other commonly used TIC markers. CD49f-high TICs specifically recruit tumor-promoting neutrophils via the CXCL2-CXCR2 axis and create an immunosuppressive milieu in the tumor microenvironment (TME). Reciprocally, the neutrophils reprogram nearby tumor cells toward a TIC phenotype via secreting CCL4. These cells can evade CD8+ T cell-mediated killing through CCL4/STAT3-induced and CD49f-stabilized CD155 expression. Notably, while aberrant CD155 expression contributes to immune suppression, it also represents a TIC-specific vulnerability. We demonstrate that either CD155 deletion or antibody blockade significantly enhances sensitivity to anti-PD-1 therapy in preclinical HCC models. Our findings reveal a new mechanism of tumor immune evasion and provide a rationale for combining CD155 blockade with anti-PD-1/PD-L1 therapy in HCC.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Haigang Geng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xupeng Yang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuyi Ji
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China; Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhicheng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Feng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- Department of Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tangansu Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuhui Ma
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuchen Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nuo Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Xia
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongye Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chune Yu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shangce Du
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Beiping Miao
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lei Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Cao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Botai Li
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyu Tang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Leng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Hu
- Department of Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Guangzhi Jin
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Chong Sun
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China.
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
Zhan H, Xiao J, Shi S, Zou F, Wang S, Mo F, Liu X, Zhang B, Dai M, Zeng J, Liu H. Pluripotent stem cell-derived CTLs targeting FGFR3-TACC3 fusion gene in osteosarcoma. Int Immunopharmacol 2024; 142:112862. [PMID: 39306889 DOI: 10.1016/j.intimp.2024.112862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 10/12/2024]
Abstract
Osteosarcoma, a highly aggressive bone cancer, poses significant treatment challenges. This study investigates a novel approach utilizing induced pluripotent stem cells (iPSCs) engineered with the FGFR3-TACC3 fusion gene to generate cytotoxic T lymphocytes (CTLs) targeting osteosarcoma. The aim was to assess the efficacy of iPSC-derived CTLs in combating osteosarcoma progression. Abnormal expression of the FGFR3-TACC3 fusion gene was confirmed in osteosarcoma samples. iPSCs were successfully modified to express the fusion gene and were then differentiated into CTLs. In vitro experiments demonstrated that these modified CTLs effectively killed osteosarcoma cells, induced apoptosis, and inhibited migration and invasion. Findings were validated in in vivo experiments. This study suggests that iPSC-derived CTLs targeting FGFR3-TACC3 hold promise for personalized immunotherapy against osteosarcoma.
Collapse
Affiliation(s)
- Haibo Zhan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Jun Xiao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Shoujie Shi
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Fan Zou
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Departerment of orthopedic, Gaoxin Branch Of The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 7889, Changdong Ave., Gaoxin District, Nanchang, Jiangxi Province 330046, China
| | - Song Wang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Fengbo Mo
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Xuqiang Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Bin Zhang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Min Dai
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China.
| | - Jin Zeng
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China.
| | - Hucheng Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China.
| |
Collapse
|
32
|
Tu J, Wang B, Wang X, Huo K, Hu W, Zhang R, Li J, Zhu S, Liang Q, Han S. Current status and new directions for hepatocellular carcinoma diagnosis. LIVER RESEARCH 2024; 8:218-236. [PMID: 39958920 PMCID: PMC11771281 DOI: 10.1016/j.livres.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 12/01/2024] [Indexed: 02/18/2025]
Abstract
Liver cancer ranks as the sixth most common cancer globally, with hepatocellular carcinoma (HCC) accounting for approximately 75%-85% of cases. Most patients present with moderately advanced disease, while those with advanced HCC face limited and ineffective treatment options. Despite diagnostic efforts, no ideal tumor marker exists to date, highlighting the urgent clinical need for improved early detection of HCC. A key research objective is the development of assays that target specific pathways involved in HCC progression. This review explores the pathological origin and development of HCC, providing insights into the mechanistic rationale, clinical statistics, and the advantages and limitations of commonly used diagnostic tumor markers. Additionally, it discusses the potential of emerging biomarkers for early diagnosis and offers a brief overview of relevant assay methodologies. This review aims to summarize existing markers and investigate new ones, providing a basis for subsequent research.
Collapse
Affiliation(s)
- Jinqi Tu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Bo Wang
- Animal Experimental Center, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Kugeng Huo
- Cyagen Biosciences (Guangzhou) Inc., Guangzhou, Guangdong, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Rongli Zhang
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Shuxin Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
33
|
Wang Z, Li R, Yang G, Wang Y. Cancer stem cell biomarkers and related signalling pathways. J Drug Target 2024; 32:33-44. [PMID: 38095181 DOI: 10.1080/1061186x.2023.2295222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/10/2023] [Indexed: 12/20/2023]
Abstract
Cancer stem cells (CSCs) represent a distinct subset of neoplastic cells characterised by their heightened capacity for tumorigenesis. These cells are implicated in the facilitation of cancer metastasis, recurrence, and resistance to conventional therapeutic interventions. Extensive scientific research has been devoted to the identification of biomarkers and the elucidation of molecular mechanisms in order to improve targeted therapeutic approaches. Accurate identification of cancer stem cells based on biomarkers can provide a theoretical basis for drug combinations of malignant tumours. Targeted biomarker-based therapies also offer a silver lining for patients with advanced malignancies. This review aims comprehensively to consolidate the latest findings on CSCs biomarkers, targeted agents as well as biomarkers associated signalling pathways in well-established cancer types, thereby contributing to improved prognostic outcomes.
Collapse
Affiliation(s)
- Zhe Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Infectious Disease, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Rui Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guilin Yang
- Department of Infectious Disease, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yijin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
34
|
Velázquez-Enríquez JM, Cerna R, Beltrán-Ramírez O, Piña-Vázquez C, Villa-Treviño S, Vásquez-Garzón VR. DCLK1 is Overexpressed and Associated with Immune Cell Infiltration in Hepatocellular Carcinoma. Biochem Genet 2024; 62:4280-4302. [PMID: 38294590 DOI: 10.1007/s10528-024-10667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Recent research has shown that Doublecortin-like kinase 1 (DCLK1) is overexpressed in different types of cancer. It has recently been described as a cancer stem cells (CSCs) marker, is associated with carcinogenesis, and positively correlates with infiltration of multiple immune cell types in some cancers. However, studies focused on assessing DCLK1 expression in HCC are limited, and the role of DCLK1 in HCC tumor immunity remains to be determined. In this study, we used a modified model of the resistant hepatocyte (MRHM) to evaluate DCLK1 expression in HCC. Furthermore, DCLK1 expression in HCC was analyzed using TIMER 2.0, UALCAN, GEPIA, GEO, and HPA web-based tools. Correlations between DCLK1 expression and clinicopathological factors in patients were analyzed using the UALCAN web-based tool. Finally, correlations between DCLK1 and immune infiltrates were investigated using the TIMER 2.0 and TISIDB web-based tools. The results showed that DCLK1 is significantly overexpressed during progression of the HCC carcinogenic process in the MRHM. DCLK1 is overexpressed in HCC according to multiple publics web-based tools, and its overexpression is associated with cancer stage. Furthermore, DCLK1 expression was correlated with infiltration levels of multiple immune cells, immunomodulatory factors, immunoinhibitors, MHC molecules, chemokines, receptors, and immune cell-specific markers. These results suggest that DCLK1 is a potential prognostic biomarker that determines cancer progression and correlates with immune cell infiltration in HCC.
Collapse
Affiliation(s)
- Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, C.P. 68020, Oaxaca, México
| | - Renata Cerna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360, Ciudad de México, México
| | - Olga Beltrán-Ramírez
- Universidad Estatal de Sonora, Unidad Académica Navojoa, Boulevard Manlio Fabio Beltrones 810, Colonia Bugambilias, C.P. 85875, Navojoa, Sonora, México
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360, Ciudad de México, México
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360, Ciudad de México, México
| | - Verónica Rocío Vásquez-Garzón
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, C.P. 68020, Oaxaca, México.
| |
Collapse
|
35
|
Jasim SA, Salahdin OD, Malathi H, Sharma N, Rab SO, Aminov Z, Pramanik A, Mohammed IH, Jawad MA, Gabel BC. Targeting Hepatic Cancer Stem Cells (CSCs) and Related Drug Resistance by Small Interfering RNA (siRNA). Cell Biochem Biophys 2024; 82:3031-3051. [PMID: 39060914 DOI: 10.1007/s12013-024-01423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Tumor recurrence after curative therapy and hepatocellular carcinoma (HCC) cells' resistance to conventional therapies is the reasons for the worse clinical results of HCC patients. A tiny population of cancer cells with a strong potential for self-renewal, differentiation, and tumorigenesis has been identified as cancer stem cells (CSCs). The discovery of CSC surface markers and the separation of CSC subpopulations from HCC cells have been made possible by recent developments in the study of hepatic (liver) CSCs. Hepatic CSC surface markers include epithelial cell adhesion molecules (EpCAM), CD133, CD90, CD13, CD44, OV-6, ALDH, and K19. CSCs have a significant influence on the development of cancer, invasiveness, self-renewal, metastasis, and drug resistance in HCC, and thus provide a therapeutic chance to treat HCC and avoid its recurrence. Therefore, it is essential to develop treatment approaches that specifically and effectively target hepatic stem cells. Given this, one potential treatment approach is to use particular small interfering RNA (siRNA) to target CSC, disrupting their behavior and microenvironment as well as changing their epigenetic state. The characteristics of CSCs in HCC are outlined in this study, along with new treatment approaches based on siRNA that may be used to target hepatic CSCs and overcome HCC resistance to traditional therapies.
Collapse
Affiliation(s)
| | | | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University, Bangalore, Karnataka, India
| | - Neha Sharma
- Chandigarh Pharmacy College, Chandigarh group of Colleges, Jhanjeri, 140307, Mohali, Punjab, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Israa Hussein Mohammed
- College of nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Benien C Gabel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
36
|
Li X, Kong D, Hu W, Zheng K, You H, Tang R, Kong F. Insight into the mechanisms regulating liver cancer stem cells by hepatitis B virus X protein. Infect Agent Cancer 2024; 19:56. [PMID: 39529119 PMCID: PMC11555838 DOI: 10.1186/s13027-024-00618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous disease with high recurrence and mortality. It is well known that a large proportion of HCCs are caused by hepatitis B virus (HBV) infection. In particular, the HBV X protein (HBX), a multifunctional molecule produced by the virus, plays a leading role in hepatocarcinogenesis. However, the molecular mechanisms underlying HBX-mediated HCC remain not fully elucidated. Recently, liver cancer stem cells (LCSCs), a unique heterogeneous subpopulation of the malignancy, have received particular attention owing to their close association with tumorigenesis. Especially, the modulation of LCSCs by HBX by upregulating CD133, CD44, EpCAM, and CD90 plays a significant role in HBV-related HCC development. More importantly, not only multiple signaling pathways, including Wnt/β-catenin signaling, transforming growth factor-β (TGF-β) signaling, phosphatidylinositol-3-kinase (PI-3 K)/AKT signaling, and STAT3 signaling pathways, but also epigenetic regulation, such as DNA and histone methylation, and noncoding RNAs, including lncRNA and microRNA, are discovered to participate in regulating LCSCs mediated by HBX. Here, we summarized the mechanisms underlying different signaling pathways and epigenetic alterations that contribute to the modulation of HBX-induced LCSCs to facilitate hepatocarcinogenesis. Because LCSCs are important in hepatic carcinogenesis, understanding the regulatory factors controlled by HBX might open new avenues for HBV-associated liver cancer treatment.
Collapse
Affiliation(s)
- Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Experimental Animal Center, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Hu
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
37
|
Elaimy AL, El-Derany MO, James J, Wang Z, Pearson AN, Holcomb EA, Huber AK, Gijón M, Bell HN, Sanghvi VR, Frankel TL, Su GL, Tapper EB, Tai AW, Ramnath N, Centonze CP, Dobrosotskaya I, Moeller JA, Bryant AK, Elliott DA, Choi E, Evans JR, Cuneo KC, Fitzgerald TJ, Wahl DR, Morgan MA, Chang DT, Wicha MS, Lawrence TS, Shah YM, Green MD. SLC4A11 mediates ammonia import and promotes cancer stemness in hepatocellular carcinoma. JCI Insight 2024; 9:e184826. [PMID: 39287988 PMCID: PMC11601557 DOI: 10.1172/jci.insight.184826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
End-stage liver disease is marked by portal hypertension, systemic elevations in ammonia, and development of hepatocellular carcinoma (HCC). While these clinical consequences of cirrhosis are well described, it remains poorly understood whether hepatic insufficiency and the accompanying elevations in ammonia contribute to HCC carcinogenesis. Using preclinical models, we discovered that ammonia entered the cell through the transporter SLC4A11 and served as a nitrogen source for amino acid and nucleotide biosynthesis. Elevated ammonia promoted cancer stem cell properties in vitro and tumor initiation in vivo. Enhancing ammonia clearance reduced HCC stemness and tumor growth. In patients, elevations in serum ammonia were associated with an increased incidence of HCC. Taken together, this study forms the foundation for clinical investigations using ammonia-lowering agents as potential therapies to mitigate HCC incidence and aggressiveness.
Collapse
Affiliation(s)
| | - Marwa O. El-Derany
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | | | - Ashley N. Pearson
- Department of Radiation Oncology and
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Erin A. Holcomb
- Department of Radiation Oncology and
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Miguel Gijón
- Cayman Chemical Company, Ann Arbor, Michigan, USA
| | - Hannah N. Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Viraj R. Sanghvi
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, New York, USA
| | | | - Grace L. Su
- Department of Surgery and
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Gastroenterology Section, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Elliot B. Tapper
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Gastroenterology Section, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Andrew W. Tai
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Gastroenterology Section, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology
| | - Nithya Ramnath
- Division of Hematology and Oncology, Department of Internal Medicine, and
| | | | | | | | - Alex K. Bryant
- Department of Radiation Oncology and
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - David A. Elliott
- Department of Radiation Oncology and
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Enid Choi
- Department of Radiation Oncology and
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | | | | | - Thomas J. Fitzgerald
- Department of Radiation Oncology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | | | | | | | - Max S. Wicha
- Division of Hematology and Oncology, Department of Internal Medicine, and
| | | | - Yatrik M. Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael D. Green
- Department of Radiation Oncology and
- Department of Microbiology and Immunology
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
38
|
Huang LH, Wu SC, Liu YW, Liu HT, Chien PC, Lin HP, Wu CJ, Hsieh TM, Hsieh CH. Identification of Crucial Cancer Stem Cell Genes Linked to Immune Cell Infiltration and Survival in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:11969. [PMID: 39596041 PMCID: PMC11593742 DOI: 10.3390/ijms252211969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Hepatocellular carcinoma is characterized by high recurrence rates and poor prognosis. Cancer stem cells contribute to tumor heterogeneity, treatment resistance, and recurrence. This study aims to identify key genes associated with stemness and immune cell infiltration in HCC. We analyzed RNA sequencing data from The Cancer Genome Atlas to calculate mRNA expression-based stemness index in HCC. A weighted gene co-expression network analysis was performed to identify stemness-related gene modules. A single-sample gene set enrichment analysis was used to evaluate immune cell infiltration. Key genes were validated using RT-qPCR. The mRNAsi was significantly higher in HCC tissues compared to adjacent normal tissues and correlated with poor overall survival. WGCNA and subsequent analyses identified 10 key genes, including minichromosome maintenance complex component 2, cell division cycle 6, forkhead box M1, NIMA-related kinase 2, Holliday junction recognition protein, DNA topoisomerase II alpha, denticleless E3 ubiquitin protein ligase homolog, maternal embryonic leucine zipper kinase, protein regulator of cytokinesis 1, and kinesin family member C1, associated with stemness and low immune cell infiltration. These genes were significantly upregulated in HCC tissues. A functional enrichment analysis revealed their involvement in cell cycle regulation. This study identified 10 key genes related to stemness and immune cell infiltration in HCC. These genes, primarily involved in cell cycle regulation, may serve as potential targets for developing more effective treatments to reduce HCC recurrence and improve patient outcomes.
Collapse
Affiliation(s)
- Lien-Hung Huang
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (L.-H.H.); (P.-C.C.); (H.-P.L.); (C.-J.W.)
| | - Shao-Chun Wu
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Yueh-Wei Liu
- Department of General Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Hang-Tsung Liu
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Peng-Chen Chien
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (L.-H.H.); (P.-C.C.); (H.-P.L.); (C.-J.W.)
| | - Hui-Ping Lin
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (L.-H.H.); (P.-C.C.); (H.-P.L.); (C.-J.W.)
| | - Chia-Jung Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (L.-H.H.); (P.-C.C.); (H.-P.L.); (C.-J.W.)
| | - Ting-Min Hsieh
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Ching-Hua Hsieh
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (L.-H.H.); (P.-C.C.); (H.-P.L.); (C.-J.W.)
| |
Collapse
|
39
|
Ramoni D, Montecucco F. MicroRNA-206 as a promising epigenetic approach to modulate tumor-associated macrophages in hepatocellular carcinoma. World J Gastroenterol 2024; 30:4503-4508. [PMID: 39534416 PMCID: PMC11551670 DOI: 10.3748/wjg.v30.i41.4503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
This letter comments on the recently published manuscript by Huang et al in the World Journal of Gastroenterology, which focused on the immunomodulatory effect of Calculus bovis on hepatocellular carcinoma (HCC) tumor microenvironments (TME) by inhibiting M2-tumor-associated macrophage (M2-TAM) polarization via Wnt/β-catenin pathway modulation. Recent research highlights the crucial role of TAMs and their polarization towards the M2 phenotype in promoting HCC progression. Epigenetic regulation, particularly through microRNAs (miR), has emerged as a key factor in modulating immune responses and TAM polarization in the TME, influencing treatment responses and tumor progression. This editorial focuses on miR-206, which has been found to inhibit HCC cell proliferation and migration and promote apoptosis. Moreover, miR-206 enhances anti-tumor immune responses by promoting M1-polarization of Kupffer cells, facilitating CD8+ T cell recruitment and suppressing liver cancer stem cell expansion. However, challenges remain in understanding the precise mechanisms regulating miR-206 and its potential as a therapeutic agent. Targeting epigenetic mechanisms and improving strategies, whether through pharmacological or genetic approaches, offer promising avenues to sensitize tumor cells to chemotherapy. Understanding the intricate interactions between cancer and non-coding RNA regulation opens new avenues for developing targeted therapies, potentially improving HCC prognosis.
Collapse
Affiliation(s)
- Davide Ramoni
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa 16132, Italy
| |
Collapse
|
40
|
Wang Y, Wang Q, Tao S, Li H, Zhang X, Xia Y, Wang Y, Yang C, Sui C. Identification of SPP1 + macrophages in promoting cancer stemness via vitronectin and CCL15 signals crosstalk in liver cancer. Cancer Lett 2024; 604:217199. [PMID: 39216547 DOI: 10.1016/j.canlet.2024.217199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Macrophages play a multifaceted role in cancer biology, with both pro-tumorigenic and anti-tumorigenic functions. Understanding the mechanisms underlying macrophage involvement in cancer progression is essential for the development of therapeutic strategies. Our study analyzed single-cell RNA sequencing data from 12 patients with liver cancer and identified a subpopulation of macrophages characterized by elevated expression of SPP1, which correlates with poor prognosis in liver cancer patients. These SPP1+ macrophages induce upregulation of tumor stemness through a vitronectin (VTN)-dependent paracrine mechanism. Mechanistically, VTN derived from SPP1+ macrophages promote integrin αvβ5/adenosine 5'-monophosphate-activated protein kinase (AMPK)/Yes-associated protein 1 (YAP1)/SYR-box transcription factor 4 (SOX4) signaling, mediating liver tumor stemness and progression. Conversely, CCL15 produced by liver cancer cells drives polarization of M0 macrophages toward an SPP1+ macrophage phenotype, establishing a positive feedback loop of macrophage-tumor stemness. Furthermore, the presence of SPP1+ macrophages confers chemoresistance in liver cancer, and inhibition of the macrophage-tumor feedback loop through targeting integrin αvβ5/YAP1 signaling sensitizes liver cancer cells to chemotherapy. Our study highlights the crucial role of SPP1+ macrophages in liver cancer progression, providing novel insights for clinical liver cancer therapy.
Collapse
Affiliation(s)
- Yizhou Wang
- Department of Hepatic Surgery IV, The Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, PR China; Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Navy Medical University, Shanghai, 200438, PR China.
| | - Qing Wang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Shuangfen Tao
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Haoyu Li
- Department of Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, PR China.
| | - Xiaofeng Zhang
- Department of Hepatic Surgery IV, The Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, PR China; Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Navy Medical University, Shanghai, 200438, PR China.
| | - Yong Xia
- Department of Hepatic Surgery IV, The Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, PR China; Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Navy Medical University, Shanghai, 200438, PR China.
| | - Yue Wang
- Department of Stem Cell and Regeneration Medicine, Translational Medicine Research Center, Naval Medical University, Shanghai, 200433, PR China; Department of Histology and Embryology, Basic Medicine Collage, Naval Medical University, Shanghai, 200433, PR China; Shanghai Key Laboratory of Cell Engineering, Shanghai, 200062, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200092, PR China.
| | - Cheng Yang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; Shanghai GoBroad Cancer Hospital, China Pharmaceutical University, Shanghai, 200131, PR China.
| | - Chengjun Sui
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, PR China.
| |
Collapse
|
41
|
Tong W, Zhong J, Yang Q, Lin H, Chen B, Lu T, Chen J, Luo N. Single-cell and bulk transcriptomic datasets enable the development of prognostic models based on dynamic changes in the tumor immune microenvironment in patients with hepatocellular carcinoma and portal vein tumor thrombus. Front Immunol 2024; 15:1414121. [PMID: 39530087 PMCID: PMC11550977 DOI: 10.3389/fimmu.2024.1414121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) patients exhibiting portal vein tumor thrombosis (PVTT) face a high risk of rapid malignant progression and poor outcomes, with this issue being compounded by a lack of effective treatment options. The integration of bulk RNA-sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq) datasets focused on samples from HCC patients with PVTT has the potential to yield unprecedented insight into the dynamic changes in the tumor microenvironment (TME) and associated immunological characteristics in these patients, providing an invaluable tool for the reliable prediction of disease progression and treatment responses. Methods scRNA-seq data from both primary tumor (PT) and PVTT cells were downloaded from the Gene Expression Omnibus (GEO) database, while the International Cancer Genome Consortium (ICGC) and Cancer Genome Atlas (TCGA) databases were used to access bulk RNA-seq datasets. scRNA-seq, clustering, GSVA enrichment, mutational profiling, and predictive immunotherapeutic treatment analyses were conducted using these data with the goal of systematically assessing the heterogeneity of PT and PVTT cells and establishing a model capable of predicting immunotherapeutic and prognostic outcomes in patients with HCC. Results These analyses revealed that PVTT cells exhibited patterns of tumor proliferation, stromal activation, and low levels of immune cell infiltration, presenting with immune desert and immune rejection-like phenotypes. PT cells, in contrast, were found to exhibit a pattern of immunoinflammatory activity. Core PVTT-associated genes were clustered into three patterns consistent with the tumor immune rejection and immune desert phenotypes. An established clustering model was capable of predicting tumor inflammatory stage, subtype, TME stromal activity, and patient outcomes. PVTT signature genes were further used to establish a risk model, with the risk scores derived from this model providing a tool to evaluate patient clinicopathological features including clinical stage, tumor differentiation, histological subtype, microsatellite instability status, and tumor mutational burden. These risk scores were also able to serve as an independent predictor of patient survival outcomes, responses to adjuvant chemotherapy, and responses to immunotherapy. In vitro experiments were used to partially validate the biological prediction results. Conclusion These results offer new insight into the biological and immunological landscape of PVTT in HCC patients, By utilizing individual patient risk scores, providing an opportunity to guide more effective immunotherapeutic interventional efforts.
Collapse
Affiliation(s)
- Wangxia Tong
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jieyue Zhong
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Qiuyan Yang
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Han Lin
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Bolun Chen
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Tao Lu
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jibing Chen
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ning Luo
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
42
|
Wang S, Bai Y, Ma J, Qiao L, Zhang M. Long non-coding RNAs: regulators of autophagy and potential biomarkers in therapy resistance and urological cancers. Front Pharmacol 2024; 15:1442227. [PMID: 39512820 PMCID: PMC11540796 DOI: 10.3389/fphar.2024.1442227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
The non-coding RNAs (ncRNAs) comprise a large part of human genome that mainly do not code for proteins. Although ncRNAs were first believed to be non-functional, the more investigations highlighted tthe possibility of ncRNAs in controlling vital biological processes. The length of long non-coding RNAs (lncRNAs) exceeds 200 nucleotidesand can be present in nucleus and cytoplasm. LncRNAs do not translate to proteins and they have been implicated in the regulation of tumorigenesis. On the other hand, One way cells die is by a process called autophagy, which breaks down proteins and other components in the cytoplasm., while the aberrant activation of autophagy allegedly involved in the pathogenesis of diseases. The autophagy exerts anti-cancer activity in pre-cancerous lesions, while it has oncogenic function in advanced stages of cancers. The current overview focuses on the connection between lncRNAs and autophagy in urological cancers is discussed. Notably, one possible role for lncRNAs is as diagnostic and prognostic variablesin urological cancers. The proliferation, metastasis, apoptosis and therapy response in prostate, bladder and renal cancers are regulated by lncRNAs. The changes in autophagy levels can also influence the apoptosis, proliferation and therapy response in urological tumors. Since lncRNAs have modulatory functions, they can affect autophagy mechanism to determine progression of urological cancers.
Collapse
Affiliation(s)
- Shizong Wang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Yang Bai
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Jie Ma
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Liang Qiao
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Mingqing Zhang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| |
Collapse
|
43
|
Nian Z, Dou Y, Shen Y, Liu J, Du X, Jiang Y, Zhou Y, Fu B, Sun R, Zheng X, Tian Z, Wei H. Interleukin-34-orchestrated tumor-associated macrophage reprogramming is required for tumor immune escape driven by p53 inactivation. Immunity 2024; 57:2344-2361.e7. [PMID: 39321806 DOI: 10.1016/j.immuni.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/29/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
As the most frequent genetic alteration in cancer, more than half of human cancers have p53 mutations that cause transcriptional inactivation. However, how p53 modulates the immune landscape to create a niche for immune escape remains elusive. We found that cancer stem cells (CSCs) established an interleukin-34 (IL-34)-orchestrated niche to promote tumorigenesis in p53-inactivated liver cancer. Mechanistically, we discovered that Il34 is a gene transcriptionally repressed by p53, and p53 loss resulted in IL-34 secretion by CSCs. IL-34 induced CD36-mediated elevations in fatty acid oxidative metabolism to drive M2-like polarization of foam-like tumor-associated macrophages (TAMs). These IL-34-orchestrated TAMs suppressed CD8+ T cell-mediated antitumor immunity to promote immune escape. Blockade of the IL-34-CD36 axis elicited antitumor immunity and synergized with anti-PD-1 immunotherapy, leading to a complete response. Our findings reveal the underlying mechanism of p53 modulation of the tumor immune microenvironment and provide a potential target for immunotherapy of cancer with p53 inactivation.
Collapse
Affiliation(s)
- Zhigang Nian
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yingchao Dou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yiqing Shen
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jintang Liu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xianghui Du
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yong Jiang
- Department of Anesthesiology, The first affiliated hospital of Anhui Medical University, Hefei, Anhui 230027, China
| | - Yonggang Zhou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Binqing Fu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaohu Zheng
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haiming Wei
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
44
|
Yang X, Zhang Q, Li D, Hu L, Wang Y, Yan X, Li Y, Wang Y, Zhang F, Shen J. A Multifunctional Nanodrug Increases the Therapeutic Sensitivity of Lenvatinib to Hepatocellular Carcinoma by Inhibiting the Stemness of Hepatic Cancer Stem Cells. Adv Healthc Mater 2024:e2401398. [PMID: 39359011 DOI: 10.1002/adhm.202401398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/17/2024] [Indexed: 10/04/2024]
Abstract
Drug resistance resulting from diverse mechanisms including the presence of cancer stem cells (CSCs) is the main obstacle for improving therapeutic efficacy of lenvatinib in hepatocellular carcinoma (HCC). Herein, a nanomedicine (siCD24-Len-MnO@PLAP) is developed by incorporating manganese oxide (MnO), lenvatinib (Len), and siRNA against CD24 (siCD24) into micelles composed of methoxypolyethylene glycol (mPEG), poly-L-lysine (PLLys), and polyasparagyl(N-(2-Aminoethyl)piperidine) (PAsp(PIP)) triblock copolymer. The nanomedicine can respond to the tumor microenvironment (TME) to release lenvatinib, and produce Mn2+ and O2, accompanied by changes in nanoparticle charge, which facilitates cellular endocytosis of siCD24-loaded nanoparticles. The released siCD24 and lenvatinib synergistically reduces CD24 expression, resulting in a more pronounced inhibition of stemness of CSCs. In the mouse models of HCC using Huh7-derived CSCs and Hepa1-6-derived CSCs, the nanomedicine shows remarkable anti-cancer effect by enhancing the therapeutic effects of lenvatinib against HCC via reducing the expression level of CD24 and decreasing the expression of hypoxia inducible factor-1α (HIF-1α). Moreover, in situ production of paramagnetic Mn2+ from the nanomedicine serves as an excellent contrast agent for magnetic resonance imaging (MRI) to monitor the therapeutic process. This study demonstrates that this multifunctional MRI-visible siCD24- and lenvatinib-loaded nanodrug holds great potential in enhancing therapeutic sensitivity for HCC lenvatinib therapy.
Collapse
Affiliation(s)
| | - Qiaoyun Zhang
- College of Chemistry and Materials Science, Jinan University, No.855 Xingye Road East, Guangzhou, Guangdong, 510632, China
| | - Dongye Li
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lanxin Hu
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu Wang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xinyu Yan
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yunhua Li
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, No.855 Xingye Road East, Guangzhou, Guangdong, 510632, China
| | - Fang Zhang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jun Shen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
45
|
Feng F, Wu J, Chi Q, Wang S, Liu W, Yang L, Song G, Pan L, Xu K, Wang C. Lactylome Analysis Unveils Lactylation-Dependent Mechanisms of Stemness Remodeling in the Liver Cancer Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405975. [PMID: 39099416 PMCID: PMC11481176 DOI: 10.1002/advs.202405975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Lactate plays a critical role as an energy substrate, metabolite, and signaling molecule in hepatocellular carcinoma (HCC). Intracellular lactate-derived protein lysine lactylation (Kla) is identified as a contributor to the progression of HCC. Liver cancer stem cells (LCSCs) are believed to be the root cause of phenotypic and functional heterogeneity in HCC. However, the impact of Kla on the biological processes of LCSCs remains poorly understood. Here enhanced glycolytic metabolism, lactate accumulation, and elevated levels of lactylation are observed in LCSCs compared to HCC cells. H3K56la was found to be closely associated with tumourigenesis and stemness of LCSCs. Notably, a comprehensive examination of the lactylome and proteome of LCSCs and HCC cells identified the ALDOA K230/322 lactylation, which plays a critical role in promoting the stemness of LCSCs. Furthermore, this study demonstrated the tight binding between aldolase A (ALDOA) and dead box deconjugate enzyme 17 (DDX17), which is attenuated by ALDOA lactylation, ultimately enhancing the regulatory function of DDX17 in maintaining the stemness of LCSCs. This investigation highlights the significance of Kla in modulating the stemness of LCSCs and its impact on the progression of HCC. Targeting lactylation in LCSCs may offer a promising therapeutic approach for treating HCC.
Collapse
Affiliation(s)
- Fan Feng
- Hubei Shizhen LaboratoryWuhan430065China
- School of PharmacyHubei University of Chinese MedicineWuhan430065China
| | - Jiaqin Wu
- School of Laboratory MedicineHubei University of Chinese MedicineWuhan430065China
- National Innovation and Attracting Talents “111” baseKey Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400000China
| | - Qingjia Chi
- Department of Engineering Structure and MechanicsSchool of ScienceWuhan University of TechnologyWuhan430070China
| | - Shunshun Wang
- Hubei Shizhen LaboratoryWuhan430065China
- School of PharmacyHubei University of Chinese MedicineWuhan430065China
| | - Wanqian Liu
- National Innovation and Attracting Talents “111” baseKey Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400000China
| | - Li Yang
- National Innovation and Attracting Talents “111” baseKey Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400000China
| | - Guanbin Song
- National Innovation and Attracting Talents “111” baseKey Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400000China
| | - Lianhong Pan
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir AreaChongqing Engineering Research Center of Antitumor Natural DrugsChongqing Three Gorges Medical CollegeChongqing400030China
| | - Kang Xu
- Hubei Shizhen LaboratoryWuhan430065China
- School of PharmacyHubei University of Chinese MedicineWuhan430065China
- Center of Traditional Chinese Medicine Modernization for Liver DiseasesHubei University of Chinese MedicineWuhan430065China
| | - Chunli Wang
- Hubei Shizhen LaboratoryWuhan430065China
- School of Laboratory MedicineHubei University of Chinese MedicineWuhan430065China
| |
Collapse
|
46
|
Zhang X, Du W, Huang X, Zhong H, Hu N. An overview of current research on cancer stem cells: a bibliometric analysis. Clin Transl Oncol 2024; 26:2466-2478. [PMID: 38625493 DOI: 10.1007/s12094-024-03486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Cancer stem cells (CSCs) represent a potential mechanism contributing to tumorigenesis, metastasis, recurrence, and drug resistance. The objective of this study is to investigate the status quo and advancements in CSC research utilizing bibliometric analysis. METHODS Publications related to CSCs from 2010 to 2022 were collected from the Web of Science Core Collection database. Various analytical tools including CiteSpace, VOSviewer, Scimago Graphica, and GraphPad Prism were used to visualize aspects such as co-authorship, co-occurrence, and co-citation within CSC research to provide an objective depiction of the contemporary status and developmental trajectory of the CSC field. RESULTS A total of 22,116 publications were included from 1942 journals written by 95,992 authors. Notably, China emerged as the country with the highest number of publications, whereas the United States exerted the most significant influence within the field. MD Anderson Cancer Center emerged as the institution making the most comprehensive contributions. Wicha M.S. emerged as the most prolific and influential researcher. Among journals, Cancers emerged as a focal point for CSC research, consistently publishing a wealth of high-quality papers. Furthermore, it was observed that most journals tended to approach CSC research from molecular, biological, and immunological perspectives. The research into CSCs encompassed a broad array of topics, including isolation and enrichment techniques, biomarkers, biological characteristics, cancer therapy strategies, and underlying biological regulatory mechanisms. Notably, exploration of the tumor microenvironment and extracellular vesicles emerged as burgeoning research frontiers for CSCs. CONCLUSION The research on CSCs has garnered growing interest. A trend toward multidisciplinary homogeneity is emerging within the realm of CSCs. Further investigation could potentially center on the patients of extracellular vesicles and the tumor microenvironment in relation to CSCs.
Collapse
Affiliation(s)
- Xueyang Zhang
- International Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Wenbo Du
- International Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Xizhi Huang
- International Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Haoting Zhong
- International Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Ning Hu
- The First Affiliated Hospital, Chongqing Medical University, No. 1 of Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
47
|
Balaji N, Kukal S, Bhat A, Pradhan N, Minocha S, Kumar S. A quartet of cancer stem cell niches in hepatocellular carcinoma. Cytokine Growth Factor Rev 2024; 79:39-51. [PMID: 39217065 DOI: 10.1016/j.cytogfr.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular Carcinoma (HCC), the most prevalent type of primary liver cancer, is known for its aggressive behavior and poor prognosis. The Cancer Stem Cell theory, which postulates the presence of a small population of self-renewing cells called Cancer Stem Cells (CSCs), provides insights into various clinical and molecular features of HCC such as tumor heterogeneity, metabolic adaptability, therapy resistance, and recurrence. These CSCs are nurtured in the tumor microenvironment (TME), where a mix of internal and external factors creates a tumor-supportive niche that is continuously evolving both spatially and temporally, thus enhancing the tumor's complexity. This review details the origins of hepatic CSCs (HCSCs) and the factors influencing their stem-like qualities. It highlights the reciprocal crosstalk between HCSCs and the TME (hypoxic, vascular, invasive, and immune niches), exploring the signaling pathways involved and how these interactions control the malignant traits of CSCs. Additionally, it discusses potential therapeutic approaches targeting the HCSC niche and their possible uses in clinical practice.
Collapse
Affiliation(s)
- Neha Balaji
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Samiksha Kukal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Anjali Bhat
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Nikita Pradhan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Shilpi Minocha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.
| | - Saran Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.
| |
Collapse
|
48
|
Huang Y, Zeng J, Liu T, Xu Q, Song X, Zeng J. ARHGEF39 targeted by E2F1 fosters hepatocellular carcinoma metastasis by mediating fatty acid metabolism. Clin Res Hepatol Gastroenterol 2024; 48:102446. [PMID: 39128592 DOI: 10.1016/j.clinre.2024.102446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) stands as the prevailing manifestation of primary liver cancer. Previous studies have implicated ARHGEF39 in various cancer progression processes, but its impact on HCC metastasis remains unclear. METHODS Bioinformatics analysis and qRT-PCR were employed to test ARHGEF39 expression in HCC tissues and cells, identified enriched pathways associated with ARHGEF39, and investigated its regulatory relationship with E2F1. The impact of ARHGEF39 overexpression or knockdown on cellular phenotypes in HCC was assessed through the implementation of CCK-8 and Transwell assays. Accumulation of neutral lipids was determined by BODIPY 493/503 staining, while levels of triglycerides and phospholipids were measured using specific assay kits. Expression of E-cadherin, Vimentin, MMP-2, MMP-9, and FASN were analyzed by Western blot. The interaction between ARHGEF39 and E2F1 was validated through ChIP and dual-luciferase reporter assays. RESULTS Our study demonstrated upregulated expression of both ARHGEF39 and E2F1 in HCC, with ARHGEF39 being associated with fatty acid metabolism (FAM) pathways. Additionally, ARHGEF39 was identified as a downstream target gene of E2F1. Cell-based experiments unmasked that high expression of ARHGEF39 mediated the promotion of HCC cell viability, migration, and invasion via enhanced FAM. Moreover, rescue assays demonstrated that the promotion of HCC cell metastasis by high ARHGEF39 expression was attenuated upon treatment with Orlistat. Conversely, the knockdown of E2F1 suppressed HCC cell metastasis and FAM, while the upregulation of ARHGEF39 counteracted the repressive effects of E2F1 downregulation on the metastatic potential of HCC cells. CONCLUSION Our findings confirmed the critical role of ARHGEF39 in HCC metastasis and unmasked potential molecular mechanisms through which ARHGEF39 fostered HCC metastasis via FAM, providing a theoretical basis for exploring novel molecular markers and preventive strategies for HCC metastasis.
Collapse
Affiliation(s)
- Yao Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China; Department of Hepatobiliary Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, 350212, China; Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Jianxing Zeng
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Teng Liu
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Qingyi Xu
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Xianglin Song
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Jinhua Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China; Department of Hepatobiliary Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, 350212, China; Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China.
| |
Collapse
|
49
|
Kong W, Gao Y, Zhao S, Yang H. Cancer stem cells: advances in the glucose, lipid and amino acid metabolism. Mol Cell Biochem 2024; 479:2545-2563. [PMID: 37882986 DOI: 10.1007/s11010-023-04861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/13/2023] [Indexed: 10/27/2023]
Abstract
Cancer stem cells (CSCs) are a class of cells with self-renewal and multi-directional differentiation potential, which are present in most tumors, particularly in aggressive tumors, and perform a pivotal role in recurrence and metastasis and are expected to be one of the important targets for tumor therapy. Studies of tumor metabolism in recent years have found that the metabolic characteristics of CSCs are distinct from those of differentiated tumor cells, which are unique to CSCs and contribute to the maintenance of the stemness characteristics of CSCs. Moreover, these altered metabolic profiles can drive the transformation between CSCs and non-CSCs, implying that these metabolic alterations are important markers for CSCs to play their biological roles. The identification of metabolic changes in CSCs and their metabolic plasticity mechanisms may provide some new opportunities for tumor therapy. In this paper, we review the metabolism-related mechanisms of CSCs in order to provide a theoretical basis for their potential application in tumor therapy.
Collapse
Affiliation(s)
- Weina Kong
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Yunge Gao
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Shuhua Zhao
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China.
| |
Collapse
|
50
|
Cai MN, Chen DM, Chen XR, Gu YR, Liao CH, Xiao LX, Wang JL, Lin BL, Huang YH, Lian YF. COLEC10 inhibits the stemness of hepatocellular carcinoma by suppressing the activity of β-catenin signaling. Cell Oncol (Dordr) 2024; 47:1897-1910. [PMID: 39080215 DOI: 10.1007/s13402-024-00972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Liver cancer stem cells (CSCs) contribute to tumor initiation, progression, and recurrence in hepatocellular carcinoma (HCC). The Wnt/β-catenin pathway plays a crucial role in liver cancer stemness, progression, metastasis, and drug resistance, but no clinically approved drugs have targeted this pathway efficiently so far. We aimed to elucidate the role of COLEC10 in HCC stemness. METHODS The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases were employed to search for the association between COLEC10 expression and HCC stemness. Colony formation, sphere formation, side population, and limiting dilution tumor initiation assays were used to identify the regulatory role of COLEC10 overexpression in the stemness of HCC cell lines. Wnt/β-catenin reporter assay and immunoprecipitation were performed to explore the underlying mechanism. RESULTS COLEC10 level was negatively correlated with HCC stemness. Elevated COLEC10 led to decreased expressions of EpCAM and AFP (alpha-fetoprotein), two common markers of liver CSCs. Overexpression of COLEC10 inhibited HCC cells from forming colonies and spheres, and reduced the side population numbers in vitro, as well as the tumorigenic capacity in vivo. Mechanically, we demonstrated that overexpression of COLEC10 suppressed the activity of Wnt/β-catenin signaling by upregulating Wnt inhibitory factor WIF1 and reducing the level of cytoplasmic β-catenin. COLEC10 overexpression promoted the interaction of β-catenin with the component of destruction complex CK1α. In addition, KLHL22 (Kelch Like Family Member 22), a reported E3 ligase adaptor predicted to interact with CK1α, could facilitate COLEC10 monoubiquitination and degradation. CONCLUSION COLEC10 inhibits HCC stemness by downregulating the Wnt/β-catenin pathway, which is a promising target for liver CSC therapy.
Collapse
Affiliation(s)
- Mei-Na Cai
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dong-Mei Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin-Ru Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu-Rong Gu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chun-Hong Liao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Le-Xin Xiao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia-Liang Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing-Liang Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China.
| | - Yue-Hua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Yi-Fan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|