1
|
Nian F, Chen Y, Xia Q, Zhu C, Wu L, Lu X. Gut microbiota metabolite trimethylamine N-oxide promoted NAFLD progression by exacerbating intestinal barrier disruption and intrahepatic cellular imbalance. Int Immunopharmacol 2024; 142:113173. [PMID: 39298816 DOI: 10.1016/j.intimp.2024.113173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide, with the gut microbiota and its metabolites are important regulators of its progression. Trimethylamine N-oxide (TMAO), a metabolite of the gut microbiota, has been closely associated with various metabolic diseases, but its relationship with NAFLD remains to be elucidated. In this study, we found that fecal TMAO levels correlated with NAFLD severity. Moreover, TMAO promoted lipid deposition in HepG2 fatty liver cells and exacerbated hepatic steatosis in NAFLD rats. In the colon, TMAO undermined the structure and function of the intestinal barrier at various levels, further activated the TLR4/MyD88/NF-κB pathway, and inhibited the WNT/β-catenin pathway. In the liver, TMAO induced endothelial dysfunction with capillarization of liver sinusoidal endothelial cells, while modulating macrophage polarization. In conclusion, our study suggests that gut microbiota metabolite TMAO promotes NAFLD progression by impairing the gut and liver and that targeting TMAO could be an alternative therapeutic strategy for NAFLD.
Collapse
Affiliation(s)
- Fulin Nian
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yueying Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiaoyun Xia
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chen Zhu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Longyun Wu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xiaolan Lu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| |
Collapse
|
2
|
Cui C, Du M, Zhao Y, Tang J, Liu M, Min G, Chen R, Zhang Q, Sun Z, Weng H. Functional Ginger-Derived Extracellular Vesicles-Coated ZIF-8 Containing TNF-α siRNA for Ulcerative Colitis Therapy by Modulating Gut Microbiota. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53460-53473. [PMID: 39303016 DOI: 10.1021/acsami.4c10562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Tumor necrosis factor-α (TNF-α) plays a causal role in the pathogenesis of ulcerative colitis (UC), and anti-TNF-α siRNA shows great promise in UC therapy. However, delivering siRNA with site-targeted stability and therapeutic efficacy is still challenging due to the complex and dynamic intestinal microenvironment. Here, based on the functional plant-derived ginger extracellular vesicles (EVs) and porous ZIF-8 nanoparticles, we propose a novel TNF-α siRNA delivery strategy (EVs@ZIF-8@siRNA) for UC targeted therapy. Ginger EVs show strong colon and macrophage targeting, as well as robust resistance to acidic degradation in the stomach. Moreover, 6-shogaol in ginger-derived EVs displays anti-inflammatory effects, which enhance the treatment efficiency by cooperation with TNF-α siRNA. In vitro experiments reveal that ZIF-8 nanoparticles have high TNF-α siRNA loading capacity and promote siRNA escape from cellular lysosomes. In vivo experiments show that the TNF-α level is reduced more significantly in colonic tissue than other nontargeted inflammation related factors, showing a good targeting of this composite nanoparticle. Furthermore, gut microbiota sequencing results demonstrate that the nanoparticles can promote intestinal barrier repair by regulating the intestinal microbial balance and restoring the intestinal health of UC mice. Therefore, the developed EVs@ZIF-8@siRNA nanoparticles may represent a novel colon-targeted oral drug, providing a promising therapeutic strategy for UC therapy.
Collapse
Affiliation(s)
- Chenyang Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Miao Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Yihang Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Jiaze Tang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Mengge Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Geng Min
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Rongchen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Qiang Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhaowei Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Haibo Weng
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| |
Collapse
|
3
|
Wekema L, Schoenmakers S, Schenkelaars N, Laskewitz A, Huurman RH, Liu L, Walters L, Harmsen HJM, Steegers-Theunissen RPM, Faas MM. Diet-Induced Obesity in Mice Affects the Maternal Gut Microbiota and Immune Response in Mid-Pregnancy. Int J Mol Sci 2024; 25:9076. [PMID: 39201761 PMCID: PMC11354285 DOI: 10.3390/ijms25169076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Maternal obesity during pregnancy is associated with adverse pregnancy outcomes. This might be due to undesired obesity-induced changes in the maternal gut microbiota and related changes in the maternal immune adaptations during pregnancy. The current study examines how obesity affects gut microbiota and immunity in pregnant obese and lean mice during mid-pregnancy (gestational day 12 (GD12)). C57BL/6 mice were fed a high-fat diet or low-fat diet from 8 weeks before mating and during pregnancy. At GD12, we analyzed the gut microbiota composition in the feces and immune responses in the intestine (Peyer's patches, mesenteric lymph nodes) and the peripheral circulation (spleen and peripheral blood). Maternal obesity reduced beneficial bacteria (e.g., Bifidobacterium and Akkermansia) and changed intestinal and peripheral immune responses (e.g., dendritic cells, Th1/Th2/Th17/Treg axis, monocytes). Numerous correlations were found between obesity-associated bacterial genera and intestinal/peripheral immune anomalies. This study shows that maternal obesity impacts the abundance of specific bacterial gut genera as compared to lean mice and deranges maternal intestinal immune responses that subsequently change peripheral maternal immune responses in mid-pregnancy. Our findings underscore the opportunities for early intervention strategies targeting maternal obesity, ideally starting in the periconceptional period, to mitigate these obesity-related pregnancy effects.
Collapse
Affiliation(s)
- Lieske Wekema
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.L.); (R.H.H.)
| | - Sam Schoenmakers
- Department of Obstetrics and Gynaecology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.S.); (N.S.); (R.P.M.S.-T.)
| | - Nicole Schenkelaars
- Department of Obstetrics and Gynaecology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.S.); (N.S.); (R.P.M.S.-T.)
| | - Anne Laskewitz
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.L.); (R.H.H.)
| | - Romy H. Huurman
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.L.); (R.H.H.)
| | - Lei Liu
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (L.L.); (L.W.); (H.J.M.H.)
| | - Lisa Walters
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (L.L.); (L.W.); (H.J.M.H.)
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (L.L.); (L.W.); (H.J.M.H.)
| | - Régine P. M. Steegers-Theunissen
- Department of Obstetrics and Gynaecology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.S.); (N.S.); (R.P.M.S.-T.)
| | - Marijke M. Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.L.); (R.H.H.)
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
4
|
Li K, Ding W, Li X, Gao H, Wang S, Li T, Zhao H, Zhang S. Intestinal Akkermansia muciniphila is Beneficial to Functional Recovery Following Ischemic Stroke. J Neuroimmune Pharmacol 2024; 19:43. [PMID: 39141019 DOI: 10.1007/s11481-024-10146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Recent studies have demonstrated the interaction between gut microbiota and brain on ischemic stroke, but the roles of gut microbiota in the pathophysiology of ischemic stroke remain largely unclear. In this study, we detected a significant increase of intestinal Akkermansia muciniphila (AKK) following ischemic stroke by a rose bengal photothrombosis model. To investigate the function and mechanism of AKK on ischemic stroke, we performed the AKK administration prior to stroke surgery. The results showed that mice treated with AKK gained significantly higher body weight and behaved better than those in PBS group at 3 days after ischemic stroke. Consistently, AKK administration remarkably decreased the infarct volumes as well as the density of degenerating neurons and apoptotic cells after ischemic stroke. Notably, AKK is a potential therapeutic target in immune-related disorders connected to the microbiota, and inflammation is crucially involved in the pathophysiological process of ischemic stroke. For the determination of underlying mechanisms of this protective effect, we investigated whether there are associations between AKK and neuroinflammation following ischemic stroke. The results suggested that AKK administration significantly reduced the activation of astrocytes and microglia but up-regulated multiple anti-inflammatory factors following ischemic stroke. Therefore, our study highlighted the beneficial roles of intestinal AKK on ischemic stroke and provided a new perspective for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Kemin Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| | - Wancong Ding
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| | - Xinrui Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| | - Hao Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| | - Shuang Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| | - Ting Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| | - Haiyu Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China.
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China.
| |
Collapse
|
5
|
Zheng B, Ao T, Zhao X, Chen Y, Xie J, Gao X, Liu L, Hu X, Yu Q. Comprehensive assessment of the anti-obesity effects of highland barley total, insoluble, and soluble dietary fiber through multi-omics analysis. Food Res Int 2024; 189:114535. [PMID: 38876588 DOI: 10.1016/j.foodres.2024.114535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
The impact of different forms of dietary fiber (total, insoluble or soluble) derived from the same source on health remains incompletely understood. In this study, the effects of total, insoluble, and soluble dietary fiber extracted from highland barley (HDF, HIDF, and HSDF) on combating obesity were evaluated and compared. A high-fat diet (HFD) was used to induce obesity in a murine model, followed by gavage administration of HDF, HIDF, or HSDF, and a comprehensive multi-omics approach was utilized to assess and compare the effects of these dietary fibers on obesity-related parameters. The results showed that all three dietary fibers significantly reduced body weight, modified blood lipid profiles, and ameliorated tissue damage in HFD-fed mice. Additionally, 16S rRNA sequencing analysis of mice feces showed that three types of dietary fiber exerted varying degrees of impact on the composition and abundance of gut microbiota while simultaneously promoting the biosynthesis of short-chain fatty acids. Specifically, HDF supplementation remarkably enhanced the abundance of Coprococcus, while HIDF and HSDF supplementation elevated the levels of Akkermansia and Allobaculum, respectively. Transcriptomic and proteomic results suggested the PPAR signaling pathway as a central regulatory mechanism influenced by these fibers. HDF and HIDF were particularly effective in modulating biological processes related to triglyceride and fatty acid metabolism, identifying Abcc3 and Dapk1 as potential targets. Conversely, HSDF primarily affected processes related to membrane lipids, ceramides, and phospholipids metabolism, with Pck1 identified as a potential target. Collectively, HDF, HIDF, and HSDF demonstrated distinct mechanisms in exerting exceptional anti-obesity properties. These insights may inform the development of personalized dietary interventions for obesity.
Collapse
Affiliation(s)
- Bing Zheng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Tianxiang Ao
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Xiaole Zhao
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Xingcai Gao
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Li Liu
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| |
Collapse
|
6
|
Tan Y, An K, Su J. Review: Mechanism of herbivores synergistically metabolizing toxic plants through liver and intestinal microbiota. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109925. [PMID: 38643812 DOI: 10.1016/j.cbpc.2024.109925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Interspecific interactions are central to ecological research. Plants produce toxic plant secondary metabolites (PSMs) as a defense mechanism against herbivore overgrazing, prompting their gradual adaptation to toxic substances for tolerance or detoxification. P450 enzymes in herbivore livers bind to PSMs, whereas UDP-glucuronosyltransferase and glutathione S-transferase increase the hydrophobicity of the bound PSMs for detoxification. Intestinal microorganisms such as Bacteroidetes metabolize cellulase and other macromolecules to break down toxic components. However, detoxification is an overall response of the animal body, necessitating coordination among various organs to detoxify ingested PSMs. PSMs undergo detoxification metabolism through the liver and gut microbiota, evidenced by increased signaling processes of bile acids, inflammatory signaling molecules, and aromatic hydrocarbon receptors. In this context, we offer a succinct overview of how metabolites from the liver and gut microbiota of herbivores contribute to enhancing metabolic PSMs. We focused mainly on elucidating the molecular communication between the liver and gut microbiota involving endocrine, immune, and metabolic processes in detoxification. We have also discussed the potential for future alterations in the gut of herbivores to enhance the metabolic effects of the liver and boost the detoxification and metabolic abilities of PSMs.
Collapse
Affiliation(s)
- Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Kang An
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
7
|
Geerlings SY, van der Ark K, Nijsse B, Boeren S, van Loosdrecht M, Belzer C, de Vos WM. Omics-based analysis of Akkermansia muciniphila cultivation in food-grade media. MICROBIOME RESEARCH REPORTS 2024; 3:36. [PMID: 39421255 PMCID: PMC11480725 DOI: 10.20517/mrr.2024.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 10/19/2024]
Abstract
Background and Aim: Over the past years, the gut microbiota and its correlation to health and disease has been studied extensively. In terms of beneficial microbes, an increased interest in Akkermansia muciniphila (A. muciniphila) has been observed since its discovery. Direct evidence for the role of A. muciniphila in host health has been provided in both mice and human studies. However, for human interventions with A. muciniphila cells, industrial-scale fermentations are needed, and hence, the used cultivation media should be free of animal-derived components, food-grade, non-allergenic and allow for efficient growth to high densities to provide cost-effective production platforms. In this study, we assessed the growth and performance of A. muciniphila in batch bioreactors using newly developed plant-based media. Methods: The bioreactors were supplemented with varying carbon sources, including different ratios of N-acetylglucosamine (GlcNAc) and glucose. We monitored the growth of A. muciniphila in the plant-based medium using optical density (OD600) measurements and microscopy. In addition, we used a combination of biochemical analysis as well as transcriptional and proteomics analysis to gain detailed insight into the physiology. Results: Comparisons between growth on these media and that on mucin revealed differences at both transcriptome and proteome levels, including differences in the expression of glycosyltransferases, signaling proteins, and stress response. Furthermore, elongated cells and higher OD600 values were observed using the plant-based media as compared to cultivation media containing mucin. Conclusion: These differences do not hamper growth, and therefore, our data suggest that the food-grade medium composition described here could be used to produce A. muciniphila with high yields for therapeutic purposes.
Collapse
Affiliation(s)
- Sharon Y. Geerlings
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Kees van der Ark
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Delft 2629 HZ, the Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
8
|
Cattero V, Roussel C, Lessard-Lord J, Roy D, Desjardins Y. Supplementation with a cranberry extract favors the establishment of butyrogenic guilds in the human fermentation SHIME system. MICROBIOME RESEARCH REPORTS 2024; 3:34. [PMID: 39421251 PMCID: PMC11480733 DOI: 10.20517/mrr.2024.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 10/19/2024]
Abstract
Background: Proanthocyanidins (PAC) and oligosaccharides from cranberry exhibit multiple bioactive health properties and persist intact in the colon post-ingestion. They display a complex bidirectional interaction with the microbiome, which varies based on both time and specific regions of the gut; the nature of this interaction remains inadequately understood. Therefore, we aimed to investigate the impact of cranberry extract on gut microbiota ecology and function. Methods: We studied the effect of a cranberry extract on six healthy participants over a two-week supplementation period using the ex vivo artificial fermentation system TWIN-M-SHIME to replicate luminal and mucosal niches of the ascending and transverse colon. Results: Our findings revealed a significant influence of cranberry extract supplementation on the gut microbiota ecology under ex vivo conditions, leading to a considerable change in bacterial metabolism. Specifically, Bifidobacterium adolescentis (B. adolescentis) flourished in the mucus of the ascending colon, accompanied by a reduced adhesion of Proteobacteria. The overall bacterial metabolism shifted from acetate to propionate and, notably, butyrate production following PAC supplementation. Although there were variations in microbiota modulation among the six donors, the butyrogenic effect induced by the supplementation remained consistent across all individuals. This metabolic shift was associated with a rise in the relative abundance of several short-chain fatty acid (SCFA)-producing bacterial genera and the formation of a consortium of key butyrogenic bacteria in the mucus of the transverse colon. Conclusions: These observations suggest that cranberry extract supplementation has the potential to modulate the gut microbiota in a manner that may promote overall gut health.
Collapse
Affiliation(s)
- Valentina Cattero
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
| | - Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
- Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec City G1V 0A6, Quebec, Canada
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
| |
Collapse
|
9
|
Bermúdez-Humarán LG, Chassaing B, Langella P. Exploring the interaction and impact of probiotic and commensal bacteria on vitamins, minerals and short chain fatty acids metabolism. Microb Cell Fact 2024; 23:172. [PMID: 38867272 PMCID: PMC11167913 DOI: 10.1186/s12934-024-02449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
There is increasing evidence that probiotic and commensal bacteria play a role in substrate metabolism, energy harvesting and intestinal homeostasis, and may exert immunomodulatory activities on human health. In addition, recent research suggests that these microorganisms interact with vitamins and minerals, promoting intestinal and metabolic well-being while producing vital microbial metabolites such as short-chain fatty acids (SCFAs). In this regard, there is a flourishing field exploring the intricate dynamics between vitamins, minerals, SCFAs, and commensal/probiotic interactions. In this review, we summarize some of the major hypotheses beyond the mechanisms by which commensals/probiotics impact gut health and their additional effects on the absorption and metabolism of vitamins, minerals, and SCFAs. Our analysis includes comprehensive review of existing evidence from preclinical and clinical studies, with particular focus on the potential interaction between commensals/probiotics and micronutrients. Finally, we highlight knowledge gaps and outline directions for future research in this evolving field.
Collapse
Affiliation(s)
- Luis G Bermúdez-Humarán
- Laboratory of Commensals and Probiotics-Host Interactions, Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, AgroParisTech, 78350, France.
| | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, Paris, France
- INSERM U1016, team Mucosal microbiota in chronic inflammatory diseases, CNRS UMR 8104, Université de Paris, Paris, France
| | - Philippe Langella
- Laboratory of Commensals and Probiotics-Host Interactions, Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, AgroParisTech, 78350, France.
| |
Collapse
|
10
|
Perino A, Demagny H, Schoonjans K. A microbial-derived succinylated bile acid to safeguard liver health. Cell 2024; 187:2687-2689. [PMID: 38788691 DOI: 10.1016/j.cell.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024]
Abstract
In this issue of Cell, Nie and co-authors report that the microbe-derived bile acid (BA) 3-succinylated cholic acid protects against the progression of metabolic dysfunction-associated liver disease. Intriguingly, its protective mechanism does not involve traditional BA signaling pathways but is instead linked to the proliferation of the commensal microbe Akkermansia muciniphila.
Collapse
Affiliation(s)
- Alessia Perino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hadrien Demagny
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Bai M, Wang X, Liu D, Xu A, Cheng H, Li L, Zhang C. Tolypocladium sinense Mycelium Polysaccharide Alleviates Obesity, Lipid Metabolism Disorder, and Inflammation Caused by High Fat Diet via Improving Intestinal Barrier and Modulating Gut Microbiota. Mol Nutr Food Res 2024; 68:e2300759. [PMID: 38651284 DOI: 10.1002/mnfr.202300759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/29/2024] [Indexed: 04/25/2024]
Abstract
SCOPE Tolypocladium sinense is a fungus isolated from Cordyceps. Cordyceps has some medicinal value and is also a daily health care product. This study explores the preventive effects of T. sinense mycelium polysaccharide (TSMP) on high-fat diet-induced obesity and chronic inflammation in mice. METHODS AND RESULTS Here, the study establishes an obese mouse model induced by high-fat diet. In this study, the mice are administered TSMP daily basis to evaluate its effect on alleviating obesity. The results show that TSMP can significantly inhibit obesity and alleviate dyslipidemia by regulating the expression of lipid metabolism-related genes such as liver kinase B1 (LKB1), phosphorylated AMP-activated protein kinase (pAMPK), peroxisome proliferator activated receptor α (PPARα), fatty acid synthase (FAS), and hydroxymethylglutaryl-CoA reductase (HMGCR) in the liver. TSMP can increase the protein expression of zona occludens-1 (ZO-1), Occludin, and Claudin-1 in the colon, improve the intestinal barrier dysfunction, and reduce the level of serum LPS, thereby reducing the inflammatory response. 16S rDNA sequencing shows that TSMP alters the intestinal microbiota by increasing the relative abundance of Akkermansia, Lactobacillus, and Prevotellaceae_NK3B31_group, while decreasing the relative abundance of Faecalibaculum. CONCLUSION The findings show that TSMP can inhibit obesity and alleviates obesity-related lipid metabolism disorders, inflammatory responses, and oxidative stress by modulating the gut microbiota and improving intestinal barrier.
Collapse
Affiliation(s)
- Mingjian Bai
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Xiaolong Wang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Dongyang Liu
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Aofeng Xu
- Special Medical Service Department Section Four, People's Liberation Army Strategic Support Force, Characteristics Medical Center, Beijing, 100000, China
| | - Hao Cheng
- Qiqihar Medical University Clinical Department, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Lin Li
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Chunjing Zhang
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| |
Collapse
|
12
|
Konstanti P, Ligthart K, Fryganas C, Constantinos P, Smidt H, de Vos WM, Belzer C. Physiology of γ-aminobutyric acid production by Akkermansia muciniphila. Appl Environ Microbiol 2024; 90:e0112123. [PMID: 38088552 PMCID: PMC10807452 DOI: 10.1128/aem.01121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/06/2023] [Indexed: 01/25/2024] Open
Abstract
Gut bacteria hold the potential to produce a broad range of metabolites that can modulate human functions, including molecules with neuroactive potential. One such molecule is γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter of the central nervous system in animals. Metagenomic analyses suggest that the genomes of many gut bacteria encode glutamate decarboxylase (GAD), the enzyme that catalyzes GABA production. The genome of Akkermansia muciniphila, a mucin specialist and potential next-generation probiotic from the human gut, is predicted to encode GAD, suggesting a contributing role in GABA production in the human gut. In this study, A. muciniphila was grown in batch cultures with and without pH control. In both experiments, A. muciniphila was found to produce GABA as a response to acid (pH <5.5), although only when GABA precursors, either glutamate or glutamine, were present in the medium. Proteomic analysis comparing A. muciniphila grown with and without precursors at pH 4 did not show a difference in GAD expression, suggesting that it is expressed regardless of the presence of GABA precursors. To further investigate the function of A. muciniphila GAD, we heterologously expressed the gad gene (encoded by locus tag Amuc_0372) with a His tag in Escherichia coli and purified the GAD protein. Enzyme assays showed GAD activity in a pH range between 4 and 6, with the highest specific activity at pH 5 of 144 ± 16 µM GABA/min/mg. Overall, our results demonstrate the ability of A. muciniphila to produce GABA as an acid response and unravel the conditions under which GABA production in A. muciniphila occurs.IMPORTANCEAkkermansia muciniphila is considered to be a beneficial bacterium from the human gut, but the exact mechanisms by which A. muciniphila influences its host are not yet fully understood. To this end, it is important to identify which metabolites are produced and consumed by A. muciniphila that may contribute to a healthy gut. In the present study, we demonstrate the ability of A. muciniphila to produce γ-aminobutyric acid (GABA) when grown in an acidic environment, which often occurs in the gut. GABA is the major inhibitory neurotransmitter in the central nervous system and is present in the human gut. For this reason, it is considered an important bacterial metabolite. Our finding that A. muciniphila produces GABA in acidic environments adds to the growing body of understanding of its relationship with host health and provides an explanation on how it can survive acid stress in the human gut.
Collapse
Affiliation(s)
- Prokopis Konstanti
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kate Ligthart
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Christos Fryganas
- Food Quality and Design, Wageningen University & Research, Wageningen, the Netherlands
| | - Patinios Constantinos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
13
|
Portincasa P, Khalil M, Graziani A, Frühbeck G, Baffy G, Garruti G, Di Ciaula A, Bonfrate L. Gut microbes in metabolic disturbances. Promising role for therapeutic manipulations? Eur J Intern Med 2024; 119:13-30. [PMID: 37802720 DOI: 10.1016/j.ejim.2023.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The prevalence of overweight, obesity, type 2 diabetes, metabolic syndrome and steatotic liver disease is rapidly increasing worldwide with a huge economic burden in terms of morbidity and mortality. Several genetic and environmental factors are involved in the onset and development of metabolic disorders and related complications. A critical role also exists for the gut microbiota, a complex polymicrobial ecology at the interface of the internal and external environment. The gut microbiota contributes to food digestion and transformation, caloric intake, and immune response of the host, keeping the homeostatic control in health. Mechanisms of disease include enhanced energy extraction from the non-digestible dietary carbohydrates, increased gut permeability and translocation of bacterial metabolites which activate a chronic low-grade systemic inflammation and insulin resistance, as precursors of tangible metabolic disorders involving glucose and lipid homeostasis. The ultimate causative role of gut microbiota in this respect remains to be elucidated, as well as the therapeutic value of manipulating the gut microbiota by diet, pre- and pro- synbiotics, or fecal microbial transplantation.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, Graz, Austria
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, Bari 70124, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| |
Collapse
|
14
|
Kuang H, Yang Y, Luo H, Lv X. The impact of three carbapenems at a single-day dose on intestinal colonization resistance against carbapenem-resistant Klebsiella pneumoniae. mSphere 2023; 8:e0047923. [PMID: 38009993 PMCID: PMC10732052 DOI: 10.1128/msphere.00479-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE The intestinal colonization of carbapenem-resistant Klebsiella pneumoniae (CRKP) is an important source of clinical infection. Our research showed that even single-day dose use of carbapenems caused CRKP colonization and continuous bacterial shedding, which reminds clinical doctors to prescribe carbapenems cautiously. Whenever possible, ertapenem should be the preferred choice over other carbapenems especially when the identified or highly suspected pathogens can be effectively targeted by ertapenem.
Collapse
Affiliation(s)
- Huan Kuang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yongqiang Yang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Huan Luo
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoju Lv
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| |
Collapse
|
15
|
Yin Y, Xie Y, Wu Z, Qian Q, Yang H, Li S, Li X. Preventive Effects of Apple Polyphenol Extract on High-Fat-Diet-Induced Hepatic Steatosis Are Related to the Regulation of Hepatic Lipid Metabolism, Autophagy, and Gut Microbiota in Aged Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20011-20033. [PMID: 38055797 DOI: 10.1021/acs.jafc.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Our previous study confirmed that the ameliorated effects of an intervention with an apple polyphenol extract (APE) on hepatic steatosis induced by a high-fat diet (HFD) are dependent on SIRT1. Since SIRT1 expression decreases with age, it remains unclear whether APE intervention is effective against hepatic steatosis in aged mice. Thus, 12-month-old C57BL/6 male mice were fed with an HFD to establish an aging model of hepatic steatosis and treated with 500 mg/(kg·bw·d) APE for 12 weeks. Young mice (two months old) and baseline mice were used as controls to examine the effects of natural aging on hepatic steatosis. Compared with baseline mice, no obvious difference in hepatic histopathological assessment was observed for both young and aged mice on normal diets. Meanwhile, HFD induced much higher nonalcoholic fatty liver disease (NAFLD) activity scores in aged mice than in young mice. APE intervention ameliorated lipid and glucose metabolic disorders and liver injury in HFD-fed aged mice, improved hepatic steatosis, and reduced NAFLD activity scores. The upregulated expressions of SIRT1, HSL, ATG5, Ulk1, and Becn1 and downregulated expressions of HMGCR and FOXO1 suggested improved lipid metabolism and activated autophagy. APE intervention decreased the ratio of Firmicutes/Bacteroidetes and elevated the Akkermansia probiotics abundance. In summary, HFD showed a more significant effect on hepatic steatosis compared to the natural aging process in aged mice, and APE might be a promising dietary ingredient for alleviating hepatic steatosis.
Collapse
Affiliation(s)
- Yan Yin
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yisha Xie
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhengli Wu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Qingfan Qian
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Hao Yang
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shilan Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xinli Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
16
|
Xie S, Li J, Lyu F, Xiong Q, Gu P, Chen Y, Chen M, Bao J, Zhang X, Wei R, Deng Y, Wang H, Zeng Z, Chen Z, Deng Y, Lian Z, Zhao J, Gong W, Chen Y, Liu KX, Duan Y, Jiang Y, Zhou HW, Chen P. Novel tripeptide RKH derived from Akkermansia muciniphila protects against lethal sepsis. Gut 2023; 73:78-91. [PMID: 37553229 DOI: 10.1136/gutjnl-2023-329996] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVE The pathogenesis of sepsis is complex, and the sepsis-induced systemic proinflammatory phase is one of the key drivers of organ failure and consequent mortality. Akkermansia muciniphila (AKK) is recognised as a functional probiotic strain that exerts beneficial effects on the progression of many diseases; however, whether AKK participates in sepsis pathogenesis is still unclear. Here, we evaluated the potential contribution of AKK to lethal sepsis development. DESIGN Relative abundance of gut microbial AKK in septic patients was evaluated. Cecal ligation and puncture (CLP) surgery and lipopolysaccharide (LPS) injection were employed to establish sepsis in mice. Non-targeted and targeted metabolomics analysis were used for metabolites analysis. RESULTS We first found that the relative abundance of gut microbial AKK in septic patients was significantly reduced compared with that in non-septic controls. Live AKK supplementation, as well as supplementation with its culture supernatant, remarkably reduced sepsis-induced mortality in sepsis models. Metabolomics analysis and germ-free mouse validation experiments revealed that live AKK was able to generate a novel tripeptide Arg-Lys-His (RKH). RKH exerted protective effects against sepsis-induced death and organ damage. Furthermore, RKH markedly reduced sepsis-induced inflammatory cell activation and proinflammatory factor overproduction. A mechanistic study revealed that RKH could directly bind to Toll-like receptor 4 (TLR4) and block TLR4 signal transduction in immune cells. Finally, we validated the preventive effects of RKH against sepsis-induced systemic inflammation and organ damage in a piglet model. CONCLUSION We revealed that a novel tripeptide, RKH, derived from live AKK, may act as a novel endogenous antagonist for TLR4. RKH may serve as a novel potential therapeutic approach to combat lethal sepsis after successfully translating its efficacy into clinical practice.
Collapse
Affiliation(s)
- Shihao Xie
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Critical Care Medicine, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Critical Care Medicine, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Fengyuan Lyu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qingming Xiong
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Yuqi Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiling Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingna Bao
- Department of Critical Care Medicine, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Xianglong Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rongjuan Wei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Youpeng Deng
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongzheng Wang
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yongqiang Deng
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhuoshi Lian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Ye Chen
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Ke-Xuan Liu
- Departmentof Anesthesiology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yi Duan
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hong-Wei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Di Ciaula A, Bonfrate L, Khalil M, Garruti G, Portincasa P. Contribution of the microbiome for better phenotyping of people living with obesity. Rev Endocr Metab Disord 2023; 24:839-870. [PMID: 37119391 PMCID: PMC10148591 DOI: 10.1007/s11154-023-09798-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 05/01/2023]
Abstract
Obesity has reached epidemic proportion worldwide and in all ages. Available evidence points to a multifactorial pathogenesis involving gene predisposition and environmental factors. Gut microbiota plays a critical role as a major interface between external factors, i.e., diet, lifestyle, toxic chemicals, and internal mechanisms regulating energy and metabolic homeostasis, fat production and storage. A shift in microbiota composition is linked with overweight and obesity, with pathogenic mechanisms involving bacterial products and metabolites (mainly endocannabinoid-related mediators, short-chain fatty acids, bile acids, catabolites of tryptophan, lipopolysaccharides) and subsequent alterations in gut barrier, altered metabolic homeostasis, insulin resistance and chronic, low-grade inflammation. Although animal studies point to the links between an "obesogenic" microbiota and the development of different obesity phenotypes, the translational value of these results in humans is still limited by the heterogeneity among studies, the high variation of gut microbiota over time and the lack of robust longitudinal studies adequately considering inter-individual confounders. Nevertheless, available evidence underscores the existence of several genera predisposing to obesity or, conversely, to lean and metabolically health phenotype (e.g., Akkermansia muciniphila, species from genera Faecalibacterium, Alistipes, Roseburia). Further longitudinal studies using metagenomics, transcriptomics, proteomics, and metabolomics with exact characterization of confounders are needed in this field. Results must confirm that distinct genera and specific microbial-derived metabolites represent effective and precision interventions against overweight and obesity in the long-term.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
18
|
Wang J, Liu X, Sun R, Mao H, Liu M, Jin X. Akkermansia muciniphila participates in the host protection against helminth-induced cardiac fibrosis via TLR2. PLoS Pathog 2023; 19:e1011683. [PMID: 37788279 PMCID: PMC10547169 DOI: 10.1371/journal.ppat.1011683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Helminth Trichinella spiralis (Ts) is one of the major pathogens of human infective myocarditis that can lead to cardiac fibrosis (CF). The gut microbiota involved in this pathology are of interest. Here, we use mice infected with Ts as a model to examine the interactions between gut microbes and host protection to CF. Infected mice show enhanced CF severity. We find that antibiotics treatment to deplete the microbiota aggravates the disease phenotype. Attempts to restore microbiota using fecal microbiota transplantation ameliorates helminth-induced CF. 16S rRNA gene sequencing and metagenomics sequencing reveal a higher abundance of Akkermansia muciniphila in gut microbiomes of Ts-infected mice. Oral supplementation with alive or pasteurized A. muciniphila improves CF via TLR2. This work represents a substantial advance toward our understanding of causative rather than correlative relationships between the gut microbiota and CF.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Animal Sciences, Jilin University, Changchun, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaolei Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ruohang Sun
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hanhai Mao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingyuan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
19
|
He Y, Xu M, Lu S, Zou W, Wang Y, Fakhar-E-Alam Kulyar M, Iqbal M, Li K. Seaweed polysaccharides treatment alleviates injury of inflammatory responses and gut barrier in LPS-induced mice. Microb Pathog 2023; 180:106159. [PMID: 37201636 DOI: 10.1016/j.micpath.2023.106159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Gastrointestinal (GI) disease is a common digestive tract disease effects health of millions of human globally each year, thus the role of intestinal microflora had been emphasized. Seaweed polysaccharides featured a wide range of pharmacological activities, such as antioxidant activity and pharmacological action, but whether they can alleviate the dysbiosis of gut microbial ecology caused by lipopolysaccharide (LPS) exposure has not been well conducted. In this study, we investigated the effects of different concentration of seaweed polysaccharides on LPS-induced intestinal disorder by using microscope and 16S rRNA high-throughput sequencing. Histopathological results indicated that the intestinal structure in the LPS-induced group was damaged. Furthermore, LPS exposure not only reduced the intestinal microbial diversity in mice but also induced momentous transformation in its composition, including a significantly increased in some pathogenic bacteria (Helicobacter, Citrobacter and Mucispirillum) and decreased in several beneficial bacteria (Firmicutes, Lactobacillus, Akkermansia and Parabacteroides). Nonetheless, seaweed polysaccharide administration could recover the gut microbial dysbiosis and the loss of gut microbial diversity induced by LPS exposure. In summary, seaweed polysaccharides were effective against LPS-induced intestinal damage in mice via the modulation of intestinal microecology.
Collapse
Affiliation(s)
- Yuanyuan He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Sijia Lu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wen Zou
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, 61100, Pakistan
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|