1
|
Feng Z, Kuang Y, Qi Y, Wang X, Xu P, Chen X. Exogenous IL-33 promotes tumor immunity via macroscopic regulation of ILC2s. Sci Rep 2024; 14:26140. [PMID: 39478174 PMCID: PMC11525627 DOI: 10.1038/s41598-024-77751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Interleukin-33 (IL-33) is a pleiotropic molecule that plays various roles in the body. However, how exogenous IL-33 changes the tumor immune microenvironment remains unclear. Our study revealed that exogenous IL-33 exerts anti-tumor effects and effectively suppresses the progression of subcutaneous melanoma. scRNA-seq analysis revealed that exogenous IL-33 reduced neutrophils accumulation, thereby improving the inhibitory immune environment. Flow cytometry analysis revealed that exogenous IL-33 significantly increased the proportion of eosinophils and group 2 innate lymphoid cells (ILC2s). In addition, we identified genes encoding major histocompatibility complex (MHC) class II molecules in this group of ILC2s, suggesting that ILC2s may play a role in antigen presentation. In Il7rCreArg1flox/flox mice, the decrease of ILC2s led to a reduction in the proportion of eosinophils. Furthermore, we found that exogenous IL-33 effectively promoted the differentiation of ILC2s and their accumulation in tumors, thereby enhancing the anti-tumor immune response. These findings may pave the way for developing new cancer immunotherapies that use IL-33 as an activator to enhance anti-tumor immune responses.
Collapse
Affiliation(s)
- Zhenchu Feng
- Department of Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China
| | - Ye Kuang
- Department of Gynecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yuan Qi
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Wang
- Department of Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China
| | - Peng Xu
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin, 150086, China.
| | - Xi Chen
- Department of Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China.
| |
Collapse
|
2
|
Yu S, Yao X. Advances on immunotherapy for osteosarcoma. Mol Cancer 2024; 23:192. [PMID: 39245737 PMCID: PMC11382402 DOI: 10.1186/s12943-024-02105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
Osteosarcoma is the most common primary bone cancer in children and young adults. Limited progress has been made in improving the survival outcomes in patients with osteosarcoma over the past four decades. Especially in metastatic or recurrent osteosarcoma, the survival rate is extremely unsatisfactory. The treatment of osteosarcoma urgently needs breakthroughs. In recent years, immunotherapy has achieved good therapeutic effects in various solid tumors. Due to the low immunogenicity and immunosuppressive microenvironment of osteosarcoma, immunotherapy has not yet been approved in osteosarcoma patients. However, immune-based therapies, including immune checkpoint inhibitors, chimeric antigen receptor T cells, and bispecfic antibodies are in active clinical development. In addition, other immunotherapy strategies including modified-NK cells/macrophages, DC vaccines, and cytokines are still in the early stages of research, but they will be hot topics for future study. In this review, we showed the functions of cell components including tumor-promoting and tumor-suppressing cells in the tumor microenvironment of osteosarcoma, and summarized the preclinical and clinical research results of various immunotherapy strategies in osteosarcoma, hoping to provide new ideas for future research in this field.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Yao
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Sun J, Tian Y, Yang C. Target therapy of TIGIT; a novel approach of immunotherapy for the treatment of colorectal cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03346-7. [PMID: 39158733 DOI: 10.1007/s00210-024-03346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
The T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), a newly discovered checkpoint, is characterized by its elevated expression on CD4 + T cells, CD8 + T cells, natural killer (NK) cells, regulatory T cells (Tregs), and tumor-infiltrating lymphocytes (TILs). Research to date has been shown that TIGIT has been linked to exhaustion of NK cell both and T cells in numerous cancers. CD155, being the specific ligand of TIGIT in humans, emerges as a key target for immunotherapy owing to its crucial interaction with TIGIT. Furthermore, numerous studies have demonstrated that the combination of TIGIT with other immune checkpoint inhibitors (ICIs) and/or traditional treatments elicits a potent antitumor response in colorectal cancer (CRC). This review provides an overview of the structure, function, and signaling pathways associated with TIGIT across multiple immune system cell types. Additionally, focusing on the role of TIGIT in the progression of CRC, this study reviewed various studies exploring TIGIT-based immunotherapy in CRC.
Collapse
Affiliation(s)
- Jing Sun
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Yan Tian
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Changqing Yang
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China.
| |
Collapse
|
4
|
Iamsawat S, Yu R, Kim S, Dvorina N, Qiu K, Choi J, Baldwin WM, Min B. Single-Cell Analysis Uncovers Striking Cellular Heterogeneity of Lung-Infiltrating Regulatory T Cells during Eosinophilic versus Neutrophilic Allergic Airway Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1867-1876. [PMID: 38647384 PMCID: PMC11147735 DOI: 10.4049/jimmunol.2300646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Allergic airway inflammation results from uncontrolled immune responses to environmental Ags. Although it is well established that allergic immune responses exhibit a high degree of diversity, driven by primary effector cell types such as eosinophils, neutrophils, or CD4 T cells with distinct effector signatures, the mechanisms responsible for such pathogenesis remain elusive. Foxp3+ regulatory T cells (Tregs) are essential immune regulators during chronic inflammation, including allergic airway inflammation. Emerging evidence suggests that Tregs infiltrating inflamed tissues exhibit distinct phenotypes dependent on the specific tissue sites and can display heterogeneity and tissue residency. Whether diverse allergic airway inflammatory responses influence infiltrating Treg heterogeneity or Treg lung residency has not been explored. We employed an unbiased single-cell RNA sequencing approach to investigate lung-infiltrating Tregs in models of eosinophilic and neutrophilic airway inflammation. We found that lung-infiltrating Tregs are highly heterogeneous, and that Tregs displaying lung-resident phenotypes are significantly different depending on the types of inflammation. Treg expression of ST2, a receptor for alarmin IL-33, was predominantly associated with eosinophilic inflammation and tissue residency. Nevertheless, Treg-specific ST2 deficiency did not affect the development of eosinophilic allergic inflammation or the generation of lung-resident Tregs. These results uncover a stark heterogeneity among Tregs infiltrating the lungs during allergic airway inflammation. The results indicate that varying types of inflammation may give rise to phenotypically distinct lung-resident Tregs, underscoring a (to our knowledge) novel mechanism by which inflammatory cues may shape the composition of infiltrating Tregs, allowing them to regulate inflammatory responses through tissue-adapted mechanisms.
Collapse
Affiliation(s)
- Supinya Iamsawat
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rongzhen Yu
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Kevin Qiu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
5
|
Galluzzi L, Guilbaud E, Schmidt D, Kroemer G, Marincola FM. Targeting immunogenic cell stress and death for cancer therapy. Nat Rev Drug Discov 2024; 23:445-460. [PMID: 38622310 PMCID: PMC11153000 DOI: 10.1038/s41573-024-00920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/17/2024]
Abstract
Immunogenic cell death (ICD), which results from insufficient cellular adaptation to specific stressors, occupies a central position in the development of novel anticancer treatments. Several therapeutic strategies to elicit ICD - either as standalone approaches or as means to convert immunologically cold tumours that are insensitive to immunotherapy into hot and immunotherapy-sensitive lesions - are being actively pursued. However, the development of ICD-inducing treatments is hindered by various obstacles. Some of these relate to the intrinsic complexity of cancer cell biology, whereas others arise from the use of conventional therapeutic strategies that were developed according to immune-agnostic principles. Moreover, current discovery platforms for the development of novel ICD inducers suffer from limitations that must be addressed to improve bench-to-bedside translational efforts. An improved appreciation of the conceptual difference between key factors that discriminate distinct forms of cell death will assist the design of clinically viable ICD inducers.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | | |
Collapse
|
6
|
Mondal S, Saha S, Sur D. Immuno-metabolic reprogramming of T cell: a new frontier for pharmacotherapy of Rheumatoid arthritis. Immunopharmacol Immunotoxicol 2024; 46:330-340. [PMID: 38478467 DOI: 10.1080/08923973.2024.2330636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Rheumatoid arthritis (RA) is a persistent autoimmune condition characterized by ongoing inflammation primarily affecting the synovial joint. This inflammation typically arises from an increase in immune cells such as neutrophils, macrophages, and T cells (TC). TC is recognized as a major player in RA pathogenesis. The involvement of HLA-DRB1 and PTPN-2 among RA patients confirms the TC involvement in RA. Metabolism of TC is maintained by various other factors like cytokines, mitochondrial proteins & other metabolites. Different TC subtypes utilize different metabolic pathways like glycolysis, oxidative phosphorylation and fatty acid oxidation for their activation from naive TC (T0). Although all subsets of TC are not deleterious for synovium, some subsets of TC are involved in joint repair using their anti-inflammatory properties. Hence artificially reprogramming of TC subset by interfering with their metabolic status poised a hope in future to design new molecules against RA.
Collapse
Affiliation(s)
- Sourav Mondal
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| | - Sarthak Saha
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| | - Debjeet Sur
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| |
Collapse
|
7
|
Hsu CY, Mustafa MA, Kumar A, Pramanik A, Sharma R, Mohammed F, Jawad IA, Mohammed IJ, Alshahrani MY, Ali Khalil NAM, Shnishil AT, Abosaoda MK. Exploiting the immune system in hepatic tumor targeting: Unleashing the potential of drugs, natural products, and nanoparticles. Pathol Res Pract 2024; 256:155266. [PMID: 38554489 DOI: 10.1016/j.prp.2024.155266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024]
Abstract
Hepatic tumors present a formidable challenge in cancer therapeutics, necessitating the exploration of novel treatment strategies. In recent years, targeting the immune system has attracted interest to augment existing therapeutic efficacy. The immune system in hepatic tumors includes numerous cells with diverse actions. CD8+ T lymphocytes, T helper 1 (Th1) CD4+ T lymphocytes, alternative M1 macrophages, and natural killer (NK) cells provide the antitumor immunity. However, Foxp3+ regulatory CD4+ T cells (Tregs), M2-like tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) are the key immune inhibitor cells. Tumor stroma can also affect these interactions. Targeting these cells and their secreted molecules is intriguing for eliminating malignant cells. The current review provides a synopsis of the immune system components involved in hepatic tumor expansion and highlights the molecular and cellular pathways that can be targeted for therapeutic intervention. It also overviews the diverse range of drugs, natural products, immunotherapy drugs, and nanoparticles that have been investigated to manipulate immune responses and bolster antitumor immunity. The review also addresses the potential advantages and challenges associated with these approaches.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Atreyi Pramanik
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Rajiv Sharma
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Faraj Mohammed
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Iraq
| | | | - Imad Jasim Mohammed
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | | | - Munther Kadhim Abosaoda
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| |
Collapse
|
8
|
Yu Y, Liu S, Yang L, Song P, Liu Z, Liu X, Yan X, Dong Q. Roles of reactive oxygen species in inflammation and cancer. MedComm (Beijing) 2024; 5:e519. [PMID: 38576456 PMCID: PMC10993368 DOI: 10.1002/mco2.519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/21/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
Reactive oxygen species (ROS) constitute a spectrum of oxygenic metabolites crucial in modulating pathological organism functions. Disruptions in ROS equilibrium span various diseases, and current insights suggest a dual role for ROS in tumorigenesis and the immune response within cancer. This review rigorously examines ROS production and its role in normal cells, elucidating the subsequent regulatory network in inflammation and cancer. Comprehensive synthesis details the documented impacts of ROS on diverse immune cells. Exploring the intricate relationship between ROS and cancer immunity, we highlight its influence on existing immunotherapies, including immune checkpoint blockade, chimeric antigen receptors, and cancer vaccines. Additionally, we underscore the promising prospects of utilizing ROS and targeting ROS modulators as novel immunotherapeutic interventions for cancer. This review discusses the complex interplay between ROS, inflammation, and tumorigenesis, emphasizing the multifaceted functions of ROS in both physiological and pathological conditions. It also underscores the potential implications of ROS in cancer immunotherapy and suggests future research directions, including the development of targeted therapies and precision oncology approaches. In summary, this review emphasizes the significance of understanding ROS-mediated mechanisms for advancing cancer therapy and developing personalized treatments.
Collapse
Affiliation(s)
- Yunfei Yu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Shengzhuo Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Luchen Yang
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Pan Song
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Zhenghuan Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyang Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xin Yan
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Qiang Dong
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
9
|
Zhang Y, Huang Y, Hong Y, Lin Z, Zha J, Zhu Y, Li Z, Wang C, Fang Z, Zhou Z, Peng Y, Yu X, Liu L, Xu B. Lactate acid promotes PD-1 + Tregs accumulation in the bone marrow with high tumor burden of Acute myeloid leukemia. Int Immunopharmacol 2024; 130:111765. [PMID: 38447414 DOI: 10.1016/j.intimp.2024.111765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) displayed poor response to programmed death-1 (PD-1) blockade therapy. Regulatory T cells (Tregs) was one of major immunosuppressive components in Tumor microenvironment and plays a vital role in the resistance of immunotherapy. Coinhibitory receptors regulate function of regulatory Tregs and are associated with resistance of PD-1 blockade. However, the coinhibitory receptors expression and differentiated status of Tregs in AML patients remain to be unclear. METHODS Phenotypic determination of Tregs and CD8+ T cells in bone marrow of healthy donors and AML patients was performed by flow cytometry. Coculture experiments of AML and Tregs in vitro were performed and the concentrations of lactate acid (LA) in the supernatant were examined by ELISA. RESULTS More Tregs differentiated into effector subsets in AML patients. However, PD-1 and T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) expression on Tregs were comparable in healthy donors and AML patients. Further analysis showed that PD-1+ and PD-1+TIGIT+Tregs are more abundant in the bone marrow of patients with higher leukemic load. Moreover, PD-1+ Tregs accumulation was associated with higher level of senescent CD4+ T cells and increased frequencies of exhausted CD4+ as well as CD8+ T cells. Notably, neither Tregs nor their effector subsets were decreased among patients in complete remission. PD-1 expression was significantly downregulated in Tregs after achieving complete remission. Mechanistically, both AML cell line (KG-1α) and primary AML blasts produced high concentration of LA. Blockade of LA by lactate transporter inhibitor abrogated the upregulation of PD-1 by AML cells. CONCLUSION PD-1+ Tregs accumulation in bone marrow in higher leukemic burden setting was linked to lactate acid secreted by AML blasts and decreased after disease remission. Our findings provided a novel insight into Tregs in AML and possible mechanism for resistance of PD-1 blockade in AML.
Collapse
Affiliation(s)
- Yining Zhang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Yueting Huang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Yan Hong
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Zhijuan Lin
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Yuwen Zhu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Zhifeng Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Caiyan Wang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Zhihong Fang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Ziwei Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Yun Peng
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Xingxing Yu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China.
| | - Long Liu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China.
| |
Collapse
|
10
|
Haham N, Zveik O, Rechtman A, Brill L, Vaknin-Dembinsky A. Altered immune co-inhibitory receptor expression and correlation of LAG-3 expression to disease severity in NMOSD. J Neuroimmunol 2024; 388:578289. [PMID: 38301597 DOI: 10.1016/j.jneuroim.2024.578289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
Co-inhibitory receptors (CIR)s regulate T cell-mediated immune responses and growing evidence links co-inhibitory receptors to the progression of neuroimmunological diseases. We studied the expression levels of CIRs: TIM-3, TIGIT, PD-1 and LAG-3 in the peripheral blood mononuclear cells (PBMCs) of 30 patients with Neuromyelitis optica spectrum disorder (NMOSD), 11 Multiple sclerosis (MS) patients and 31 Healthy controls (HC). We found that the mRNA expression levels of TIM-3 were significantly increased in NMOSD compared with HC, and increased LAG-3 surface protein expression was also observed on T-cells of NMOSD patients. Moreover, we observed a negative correlation between LAG-3 expression and disease severity in NMOSD. Our findings suggest a protective effect of LAG-3 in the setting of NMOSD, and that the differential expression of CIRs observed in this study may play a role in the pathological process of NMOSD.
Collapse
Affiliation(s)
- Nitsan Haham
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel.
| | - Omri Zveik
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Ariel Rechtman
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Livnat Brill
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel.
| |
Collapse
|
11
|
Liu G, Chen T, Zhang X, Hu B, Shi H. Immune checkpoint inhibitor-associated cardiovascular toxicities: A review. Heliyon 2024; 10:e25747. [PMID: 38434280 PMCID: PMC10907684 DOI: 10.1016/j.heliyon.2024.e25747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionary effects on therapeutic strategies for multiple malignancies. Their efficacy depends on their ability to reactivate the host immune system to fight cancer cells. However, adverse reactions to ICIs are common and involve several organs, limiting their use in clinical practice. Although the incidence of cardiovascular toxicity is relatively low, it is associated with serious consequences and high mortality rates. The primary cardiovascular toxicities include myocarditis, pericarditis, Takotsubo syndrome, arrhythmia, vasculitis, acute coronary syndrome, and venous thromboembolism. Currently, the mechanism underlying ICI-associated cardiovascular toxicity remains unclear and underexplored. The diagnosis and monitoring of ICI-associated cardiovascular toxicities mainly include the following indicators: symptoms, signs, laboratory examination, electrocardiography, imaging, and pathology. Treatments are based on the grade of cardiovascular toxicity and mainly include drug withdrawal, corticosteroid therapy, immunosuppressants, and conventional cardiac treatment. This review focuses on the incidence, underlying mechanisms, clinical manifestations, diagnoses, and treatment strategies.
Collapse
Affiliation(s)
- Guihong Liu
- Guihong Liu Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Chen
- Tao Chen Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Zhang
- Guihong Liu Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Binbin Hu
- Guihong Liu Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huashan Shi
- Guihong Liu Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Qin D, Zhang Y, Shu P, Lei Y, Li X, Wang Y. Targeting tumor-infiltrating tregs for improved antitumor responses. Front Immunol 2024; 15:1325946. [PMID: 38500876 PMCID: PMC10944859 DOI: 10.3389/fimmu.2024.1325946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Immunotherapies have revolutionized the landscape of cancer treatment. Regulatory T cells (Tregs), as crucial components of the tumor immune environment, has great therapeutic potential. However, nonspecific inhibition of Tregs in therapies may not lead to enhanced antitumor responses, but could also trigger autoimmune reactions in patients, resulting in intolerable treatment side effects. Hence, the precision targeting and inhibition of tumor-infiltrating Tregs is of paramount importance. In this overview, we summarize the characteristics and subpopulations of Tregs within tumor microenvironment and their inhibitory mechanisms in antitumor responses. Furthermore, we discuss the current major strategies targeting regulatory T cells, weighing their advantages and limitations, and summarize representative clinical trials targeting Tregs in cancer treatment. We believe that developing therapies that specifically target and suppress tumor-infiltrating Tregs holds great promise for advancing immune-based therapies.
Collapse
Affiliation(s)
- Diyuan Qin
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yugu Zhang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pei Shu
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanna Lei
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Li
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Jiang S, Wang W, Yang Y. TIGIT: A potential immunotherapy target for gynecological cancers. Pathol Res Pract 2024; 255:155202. [PMID: 38367600 DOI: 10.1016/j.prp.2024.155202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Gynecological cancer represents a significant global health challenge, and conventional treatment modalities have demonstrated limited efficacy. However, recent investigations into immune checkpoint pathways have unveiled promising opportunities for enhancing the prognosis of patients with cancer. Among these pathways, TIGIT has surfaced as a compelling candidate owing to its capacity to augment the immune function of NK and T cells through blockade, thereby yielding improved anti-tumor effects and prolonged patient survival. Global clinical trials exploring TIGIT blockade therapy have yielded promising preliminary findings. Nevertheless, further research is imperative to comprehensively grasp the potential of TIGIT-based immunotherapy in optimizing therapeutic outcomes for gynecological cancers. This review primarily delineates the regulatory network and immunosuppressive mechanism of TIGIT, expounds upon its expression and therapeutic potential in three major gynecological cancers, and synthesizes the clinical trials of TIGIT-based cancer immunotherapy. Such insights aim to furnish novel perspectives and serve as reference points for subsequent research and clinical application targeting TIGIT in gynecological cancers.
Collapse
Affiliation(s)
- Siyue Jiang
- The third People's Hospital of Suining, Suining, Sichuan, China
| | - Wenhua Wang
- First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
14
|
Palmeri JR, Lax BM, Peters JM, Duhamel L, Stinson JA, Santollani L, Lutz EA, Pinney W, Bryson BD, Dane Wittrup K. CD8 + T cell priming that is required for curative intratumorally anchored anti-4-1BB immunotherapy is constrained by Tregs. Nat Commun 2024; 15:1900. [PMID: 38429261 PMCID: PMC10907589 DOI: 10.1038/s41467-024-45625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/30/2024] [Indexed: 03/03/2024] Open
Abstract
Although co-stimulation of T cells with agonist antibodies targeting 4-1BB (CD137) improves antitumor immune responses in preclinical studies, clinical success has been limited by on-target, off-tumor activity. Here, we report the development of a tumor-anchored ɑ4-1BB agonist (ɑ4-1BB-LAIR), which consists of a ɑ4-1BB antibody fused to the collagen-binding protein LAIR. While combination treatment with an antitumor antibody (TA99) shows only modest efficacy, simultaneous depletion of CD4+ T cells boosts cure rates to over 90% of mice. Mechanistically, this synergy depends on ɑCD4 eliminating tumor draining lymph node regulatory T cells, resulting in priming and activation of CD8+ T cells which then infiltrate the tumor microenvironment. The cytotoxic program of these newly primed CD8+ T cells is then supported by the combined effect of TA99 and ɑ4-1BB-LAIR. The combination of TA99 and ɑ4-1BB-LAIR with a clinically approved ɑCTLA-4 antibody known for enhancing T cell priming results in equivalent cure rates, which validates the mechanistic principle, while the addition of ɑCTLA-4 also generates robust immunological memory against secondary tumor rechallenge. Thus, our study establishes the proof of principle for a clinically translatable cancer immunotherapy.
Collapse
Affiliation(s)
- Joseph R Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Brianna M Lax
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Joshua M Peters
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jordan A Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Emi A Lutz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - William Pinney
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| |
Collapse
|
15
|
Cheng S, Wang H, Kang X, Zhang H. Immunotherapy Innovations in the Fight against Osteosarcoma: Emerging Strategies and Promising Progress. Pharmaceutics 2024; 16:251. [PMID: 38399305 PMCID: PMC10892906 DOI: 10.3390/pharmaceutics16020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Immunosuppressive elements within the tumor microenvironment are the primary drivers of tumorigenesis and malignant advancement. The presence, as well as the crosstalk between myeloid-derived suppressor cells (MDSCs), osteosarcoma-associated macrophages (OS-Ms), regulatory T cells (Tregs), and endothelial cells (ECs) with osteosarcoma cells cause the poor prognosis of OS. In addition, the consequent immunosuppressive factors favor the loss of treatment potential. Nanoparticles offer a means to dynamically and locally manipulate immuno-nanoparticles, which present a promising strategy for transforming OS-TME. Additionally, chimeric antigen receptor (CAR) technology is effective in combating OS. This review summarizes the essential mechanisms of immunosuppressive cells in the OS-TME and the current immune-associated strategies. The last part highlights the limitations of existing therapies and offers insights into future research directions.
Collapse
Affiliation(s)
- Shigao Cheng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Orthopedics, Hunan Loudi Central Hospital, Loudi 417000, China
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Hui Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Raskova Kafkova L, Mierzwicka JM, Chakraborty P, Jakubec P, Fischer O, Skarda J, Maly P, Raska M. NSCLC: from tumorigenesis, immune checkpoint misuse to current and future targeted therapy. Front Immunol 2024; 15:1342086. [PMID: 38384472 PMCID: PMC10879685 DOI: 10.3389/fimmu.2024.1342086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is largely promoted by a multistep tumorigenesis process involving various genetic and epigenetic alterations, which essentially contribute to the high incidence of mortality among patients with NSCLC. Clinical observations revealed that NSCLC also co-opts a multifaceted immune checkpoint dysregulation as an important driving factor in NSCLC progression and development. For example, a deregulated PI3K/AKT/mTOR pathway has been noticed in 50-70% of NSCLC cases, primarily modulated by mutations in key oncogenes such as ALK, EGFR, KRAS, and others. Additionally, genetic association studies containing patient-specific factors and local reimbursement criteria expose/reveal mutations in EGFR/ALK/ROS/BRAF/KRAS/PD-L1 proteins to determine the suitability of available immunotherapy or tyrosine kinase inhibitor therapy. Thus, the expression of such checkpoints on tumors and immune cells is pivotal in understanding the therapeutic efficacy and has been extensively studied for NSCLC treatments. Therefore, this review summarizes current knowledge in NSCLC tumorigenesis, focusing on its genetic and epigenetic intricacies, immune checkpoint dysregulation, and the evolving landscape of targeted therapies. In the context of current and future therapies, we emphasize the significance of antibodies targeting PD-1/PD-L1 and CTLA-4 interactions as the primary therapeutic strategy for immune system reactivation in NSCLC. Other approaches involving the promising potential of nanobodies, probodies, affibodies, and DARPINs targeting immune checkpoints are also described; these are under active research or clinical trials to mediate immune regulation and reduce cancer progression. This comprehensive review underscores the multifaceted nature, current state and future directions of NSCLC research and treatment.
Collapse
Affiliation(s)
- Leona Raskova Kafkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Immunology, University Hospital Olomouc, Olomouc, Czechia
| | - Joanna M. Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Prosenjit Chakraborty
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| | - Petr Jakubec
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc, Olomouc, Czechia
| | - Ondrej Fischer
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc, Olomouc, Czechia
| | - Jozef Skarda
- Institute of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Pathology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Petr Maly
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Immunology, University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|
17
|
Wang J, Zhu N, Su X, Yang R. Gut microbiota: A double-edged sword in immune checkpoint blockade immunotherapy against tumors. Cancer Lett 2024; 582:216582. [PMID: 38065401 DOI: 10.1016/j.canlet.2023.216582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Tumor cells can evade immune surveillance by expressing immune checkpoint molecule ligands, resulting in effective immune cell inactivation. Immune checkpoint blockades (ICBs) have dramatically improved survival of patients with multiple types of cancers. However, responses to ICB immunotherapy are heterogeneous with lower patient response rates. The advances have established that the gut microbiota can be as a promising target to overcome resistance to ICB immunotherapy. Furthermore, some bacterial species have shown to promote improved responses to ICBs. However, gut microbiota is critical in maintaining gut and systemic immune homeostasis. It not only promotes differentiation and function of immunosuppressive immune cells but also inhibits inflammatory cells via gut microbiota derived products such as short chain fatty acids (SCFAs), tryptophan (Trp) and bile acid (BA) metabolites, which play an important role in tumor immunity. Since the gut microbiota can either inhibit or enhance immune against tumor, it should be a double-edged sword in ICBs against tumor. In this review, we discuss the effects of gut microbiota on immune cells and also tumor cells, especially enhances of gut microbiota on ICB immunotherapy. These discussions can hopefully promote the development of ICB immunotherapy.
Collapse
Affiliation(s)
- Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
18
|
Liang J, Liao L, Xie L, Tang W, Yu X, Lu Y, Chen H, Xu J, Sun L, Wu H, Cui C, Tan Y. PITPNC1 Suppress CD8 + T cell immune function and promote radioresistance in rectal cancer by modulating FASN/CD155. J Transl Med 2024; 22:117. [PMID: 38291470 PMCID: PMC10826121 DOI: 10.1186/s12967-024-04931-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Radioresistance is a primary factor contributing to the failure of rectal cancer treatment. Immune suppression plays a significant role in the development of radioresistance. We have investigated the potential role of phosphatidylinositol transfer protein cytoplasmic 1 (PITPNC1) in regulating immune suppression associated with radioresistance. METHODS To elucidate the mechanisms by which PITPNC1 influences radioresistance, we established HT29, SW480, and MC38 radioresistant cell lines. The relationship between radioresistance and changes in the proportion of immune cells was verified through subcutaneous tumor models and flow cytometry. Changes in the expression levels of PITPNC1, FASN, and CD155 were determined using immunohistochemistry and western blotting techniques. The interplay between these proteins was investigated using immunofluorescence co-localization and immunoprecipitation assays. Additionally, siRNA and lentivirus-mediated gene knockdown or overexpression, as well as co-culture of tumor cells with PBMCs or CD8+ T cells and establishment of stable transgenic cell lines in vivo, were employed to validate the impact of the PITPNC1/FASN/CD155 pathway on CD8+ T cell immune function. RESULTS Under irradiation, the apoptosis rate and expression of apoptosis-related proteins in radioresistant colorectal cancer cell lines were significantly decreased, while the cell proliferation rate increased. In radioresistant tumor-bearing mice, the proportion of CD8+ T cells and IFN-γ production within immune cells decreased. Immunohistochemical analysis of human and animal tissue specimens resistant to radiotherapy showed a significant increase in the expression levels of PITPNC1, FASN, and CD155. Gene knockdown and rescue experiments demonstrated that PITPNC1 can regulate the expression of CD155 on the surface of tumor cells through FASN. In addition, co-culture experiments and in vivo tumor-bearing experiments have shown that silencing PITPNC1 can inhibit FASN/CD155, enhance CD8+ T cell immune function, promote colorectal cancer cell death, and ultimately reduce radioresistance in tumor-bearing models. CONCLUSIONS PITPNC1 regulates the expression of CD155 through FASN, inhibits CD8+ T cell immune function, and promotes radioresistance in rectal cancer.
Collapse
Affiliation(s)
- Junxian Liang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Limin Liao
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lang Xie
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - WenWen Tang
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang Yu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yinghao Lu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongzhen Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Juanli Xu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Sun
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huanmei Wu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Yujing Tan
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Chai C, Liang L, Mikkelsen NS, Wang W, Zhao W, Sun C, Bak RO, Li H, Lin L, Wang F, Luo Y. Single-cell transcriptome analysis of epithelial, immune, and stromal signatures and interactions in human ovarian cancer. Commun Biol 2024; 7:131. [PMID: 38278958 PMCID: PMC10817929 DOI: 10.1038/s42003-024-05826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
A comprehensive investigation of ovarian cancer (OC) progression at the single-cell level is crucial for enhancing our understanding of the disease, as well as for the development of better diagnoses and treatments. Here, over half a million single-cell transcriptome data were collected from 84 OC patients across all clinical stages. Through integrative analysis, we identified heterogeneous epithelial-immune-stromal cellular compartments and their interactions in the OC microenvironment. The epithelial cells displayed clinical subtype features with functional variance. A significant increase in distinct T cell subtypes was identified including Tregs and CD8+ exhausted T cells from stage IC2. Additionally, we discovered antigen-presenting cancer-associated fibroblasts (CAFs), with myofibroblastic CAFs (myCAFs) exhibiting enriched extracellular matrix (ECM) functionality linked to tumor progression at stage IC2. Furthermore, the NECTIN2-TIGIT ligand-receptor pair was identified to mediate T cells communicating with epithelial, fibroblast, endothelial, and other cell types. Knock-out of NECTIN2 using CRISPR/Cas9 inhibited ovarian cancer cell (SKOV3) proliferation, and increased T cell proliferation when co-cultured. These findings shed light on the cellular compartments and functional aspects of OC, providing insights into the molecular mechanisms underlying stage IC2 and potential therapeutic strategies for OC.
Collapse
Affiliation(s)
- Chaochao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | - Langchao Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | | | - Wei Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wandong Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
| | - Chengcheng Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hanbo Li
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Fei Wang
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
20
|
Zhang P, Liu X, Gu Z, Jiang Z, Zhao S, Song Y, Yu J. Targeting TIGIT for cancer immunotherapy: recent advances and future directions. Biomark Res 2024; 12:7. [PMID: 38229100 PMCID: PMC10790541 DOI: 10.1186/s40364-023-00543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/08/2023] [Indexed: 01/18/2024] Open
Abstract
As a newly identified checkpoint, T cell immunoreceptor with immunoglobulin and tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is highly expressed on CD4+ T cells, CD8+ T cells, natural killer (NK) cells, regulatory T cells (Tregs), and tumor-infiltrating lymphocytes (TILs). TIGIT has been associated with NK cell exhaustion in vivo and in individuals with various cancers. It not only modulates NK cell survival but also mediates T cell exhaustion. As the primary ligand of TIGIT in humans, CD155 may be the main target for immunotherapy due to its interaction with TIGIT. It has been found that the anti-programmed cell death protein 1 (PD-1) treatment response in cancer immunotherapy is correlated with CD155 but not TIGIT. Anti-TIGIT alone and in combination with anti-PD-1 agents have been tested for cancer immunotherapy. Although two clinical studies on advanced lung cancer had positive results, the TIGIT-targeted antibody, tiragolumab, recently failed in two new trials. In this review, we highlight the current developments on TIGIT for cancer immunotherapy and discuss the characteristics and functions of TIGIT.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Xinyuan Liu
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Zhuoyu Gu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yongping Song
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China.
| |
Collapse
|
21
|
Kennedy-Batalla R, Acevedo D, Luo Y, Esteve-Solé A, Vlagea A, Correa-Rocha R, Seoane-Reula ME, Alsina L. Treg in inborn errors of immunity: gaps, knowns and future perspectives. Front Immunol 2024; 14:1278759. [PMID: 38259469 PMCID: PMC10800401 DOI: 10.3389/fimmu.2023.1278759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Regulatory T cells (Treg) are essential for immune balance, preventing overreactive responses and autoimmunity. Although traditionally characterized as CD4+CD25+CD127lowFoxP3hi, recent research has revealed diverse Treg subsets such as Tr1, Tr1-like, and CD8 Treg. Treg dysfunction leads to severe autoimmune diseases and immune-mediated inflammatory disorders. Inborn errors of immunity (IEI) are a group of disorders that affect correct functioning of the immune system. IEI include Tregopathies caused by genetic mutations affecting Treg development or function. In addition, Treg dysfunction is also observed in other IEIs, whose underlying mechanisms are largely unknown, thus requiring further research. This review provides a comprehensive overview and discussion of Treg in IEI focused on: A) advances and controversies in the evaluation of Treg extended subphenotypes and function; B) current knowledge and gaps in Treg disturbances in Tregopathies and other IEI including Treg subpopulation changes, genotype-phenotype correlation, Treg changes with disease activity, and available therapies, and C) the potential of Treg cell-based therapies for IEI with immune dysregulation. The aim is to improve both the diagnostic and the therapeutic approaches to IEI when there is involvement of Treg. We performed a non-systematic targeted literature review with a knowledgeable selection of current, high-quality original and review articles on Treg and IEI available since 2003 (with 58% of the articles within the last 6 years) in the PubMed database.
Collapse
Affiliation(s)
- Rebeca Kennedy-Batalla
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Ma Elena Seoane-Reula
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- Pediatric Immuno-Allergy Unit, Allergy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Primary Immunodeficiencies Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Cohen JN, Gouirand V, Macon CE, Lowe MM, Boothby IC, Moreau JM, Gratz IK, Stoecklinger A, Weaver CT, Sharpe AH, Ricardo-Gonzalez RR, Rosenblum MD. Regulatory T cells in skin mediate immune privilege of the hair follicle stem cell niche. Sci Immunol 2024; 9:eadh0152. [PMID: 38181095 PMCID: PMC11003870 DOI: 10.1126/sciimmunol.adh0152] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/10/2023] [Indexed: 01/07/2024]
Abstract
Immune tolerance is maintained in lymphoid organs (LOs). Despite the presence of complex immune cell networks in non-LOs, it is unknown whether self-tolerance is maintained in these tissues. We developed a technique to restrict genetic recombination to regulatory T cells (Tregs) only in skin. Selective depletion of skin Tregs resulted in T cell-mediated inflammation of hair follicles (HFs). Suppression did not rely on CTLA-4, but instead on high-affinity interleukin-2 (IL-2) receptor expression by skin Tregs, functioning exclusively in a cell-extrinsic manner. In a novel model of HF stem cell (HFSC)-driven autoimmunity, we reveal that skin Tregs immunologically protect the HFSC niche. Finally, we used spatial transcriptomics to identify aberrant IL-2 signaling at stromal-HF interfaces in a rare form of human alopecia characterized by HFSC destruction and alopecia areata. Collectively, these results reveal the fundamental biology of Tregs in skin uncoupled from the systemic pool and elucidate a mechanism of self-tolerance.
Collapse
Affiliation(s)
- Jarish N. Cohen
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Victoire Gouirand
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Courtney E. Macon
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Margaret M. Lowe
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Ian C. Boothby
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | - Joshua M. Moreau
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Iris K. Gratz
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Angelika Stoecklinger
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical, University of Salzburg, Salzburg, Austria
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Michael D. Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Galassi C, Klapp V, Yamazaki T, Galluzzi L. Molecular determinants of immunogenic cell death elicited by radiation therapy. Immunol Rev 2024; 321:20-32. [PMID: 37679959 PMCID: PMC11075037 DOI: 10.1111/imr.13271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Cancer cells undergoing immunogenic cell death (ICD) can initiate adaptive immune responses against dead cell-associated antigens, provided that (1) said antigens are not perfectly covered by central tolerance (antigenicity), (2) cell death occurs along with the emission of immunostimulatory cytokines and damage-associated molecular patterns (DAMPs) that actively engage immune effector mechanisms (adjuvanticity), and (3) the microenvironment of dying cells is permissive for the initiation of adaptive immunity. Finally, ICD-driven immune responses can only operate and exert cytotoxic effector functions if the microenvironment of target cancer cells enables immune cell infiltration and activity. Multiple forms of radiation, including non-ionizing (ultraviolet) and ionizing radiation, elicit bona fide ICD as they increase both the antigenicity and adjuvanticity of dying cancer cells. Here, we review the molecular determinants of ICD as elicited by radiation as we critically discuss strategies to reinforce the immunogenicity of cancer cells succumbing to clinically available radiation strategies.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Vanessa Klapp
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| |
Collapse
|
24
|
Chamorro DF, Somes LK, Hoyos V. Engineered Adoptive T-Cell Therapies for Breast Cancer: Current Progress, Challenges, and Potential. Cancers (Basel) 2023; 16:124. [PMID: 38201551 PMCID: PMC10778447 DOI: 10.3390/cancers16010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Breast cancer remains a significant health challenge, and novel treatment approaches are critically needed. This review presents an in-depth analysis of engineered adoptive T-cell therapies (E-ACTs), an innovative frontier in cancer immunotherapy, focusing on their application in breast cancer. We explore the evolving landscape of chimeric antigen receptor (CAR) and T-cell receptor (TCR) T-cell therapies, highlighting their potential and challenges in targeting breast cancer. The review addresses key obstacles such as target antigen selection, the complex breast cancer tumor microenvironment, and the persistence of engineered T-cells. We discuss the advances in overcoming these barriers, including strategies to enhance T-cell efficacy. Finally, our comprehensive analysis of the current clinical trials in this area provides insights into the future possibilities and directions of E-ACTs in breast cancer treatment.
Collapse
Affiliation(s)
- Diego F. Chamorro
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
| | - Lauren K. Somes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
25
|
Qin L, Wu J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. ENVIRONMENTAL RESEARCH 2023; 239:116751. [PMID: 37507044 DOI: 10.1016/j.envres.2023.116751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral cavity carcinomas are the most frequent malignancies among head and neck malignancies. Oral tumors include not only oral cancer cells with different potency and stemness but also consist of diverse cells, containing anticancer immune cells, stromal and also immunosuppressive cells that influence the immune system reactions. The infiltrated T and natural killer (NK) cells are the substantial tumor-suppressive immune compartments in the tumor. The infiltration of these cells has substantial impacts on the response of tumors to immunotherapy, chemotherapy, and radiotherapy. Nevertheless, cancer cells, stromal cells, and some other compartments like regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs) can repress the immune responses against malignant cells. Boosting anticancer immunity by inducing the immune system or repressing the tumor-promoting cells is one of the intriguing approaches for the eradication of malignant cells such as oral cancers. This review aims to concentrate on the secretions and interactions in the oral tumor immune microenvironment. We review targeting tumor stroma, immune system and immunosuppressive interactions in oral tumors. This review will also focus on therapeutic targets and therapeutic agents such as nanoparticles and products with anti-tumor potency that can boost anticancer immunity in oral tumors. We also explain possible future perspectives including delivery of various cells, natural products and drugs by nanoparticles for boosting anticancer immunity in oral tumors.
Collapse
Affiliation(s)
- Liling Qin
- Gezhouba Central Hospital of the Third Clinical Medical College of Three Gorges University, Yichang, Hubei, 443002, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434000, China.
| |
Collapse
|
26
|
Zhang Z, Peng Y, Peng X, Xiao D, Shi Y, Tao Y. Effects of radiation therapy on tumor microenvironment: an updated review. Chin Med J (Engl) 2023; 136:2802-2811. [PMID: 37442768 PMCID: PMC10686612 DOI: 10.1097/cm9.0000000000002535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Cancer is a major threat to human health and causes death worldwide. Research on the role of radiotherapy (RT) in the treatment of cancer is progressing; however, RT not only causes fatal DNA damage to tumor cells, but also affects the interactions between tumor cells and different components of the tumor microenvironment (TME), including immune cells, fibroblasts, macrophages, extracellular matrix, and some soluble products. Some cancer cells can survive radiation and have shown strong resistance to radiation through interaction with the TME. Currently, the complex relationships between the tumor cells and cellular components that play major roles in various TMEs are poorly understood. This review explores the relationship between RT and cell-cell communication in the TME from the perspective of immunity and hypoxia and aims to identify new RT biomarkers and treatment methods in lung cancer to improve the current status of unstable RT effect and provide a theoretical basis for further lung cancer RT sensitization research in the future.
Collapse
Affiliation(s)
- Zewen Zhang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Yuanhao Peng
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xin Peng
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Desheng Xiao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Ying Shi
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
27
|
Huang MY, Chen YC, Lyu WY, He XY, Ye ZH, Huang CY, He XL, Chen X, Chen X, Zhang B, Kai G, Zhang X, Li T, Huang M, Lu JJ. Ginsenoside Rh2 augmented anti-PD-L1 immunotherapy by reinvigorating CD8 + T cells via increasing intratumoral CXCL10. Pharmacol Res 2023; 198:106988. [PMID: 37984507 DOI: 10.1016/j.phrs.2023.106988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Profiting from the sustained clinical improvement and prolonged patient survival, immune checkpoint blockade of programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis has emerged as a revolutionary cancer therapy approach. However, the anti-PD-1/PD-L1 antibodies only achieve a clinical response rate of approximately 20%. Herein, we identified a novel combination strategy that Chinese medicine ginseng-derived ginsenoside Rh2 (Rh2) markedly improved the anti-cancer efficacy of anti-PD-L1 antibody in mice bearing MC38 tumor. Rh2 combined with anti-PD-L1 antibody (combo treatment) further triggered the infiltration, proliferation and activation of CD8+ T cells in the tumor microenvironment (TME). Depletion of CD8+ T cells by mouse CD8 blocking antibody abolished the anti-cancer effect of combo treatment totally. Mechanistically, combo treatment further increased the expression of CXCL10 through activating TBK1-IRF3 signaling pathway, explaining the increased infiltration of T cells. Employing anti- CXC chemokine receptor 3 (CXCR3) blocking antibody prevented the T cells infiltration and abolished the anti-cancer effect of combo treatment. Meanwhile, combo treatment increased the percentage of M1-like macrophages and raised the ratio of M1/M2 macrophages in TME. By comparing the anti-cancer effect of combo treatment among MC38, CT26 and 4T1 tumors, resident T cells were considered as a prerequisite for the effectiveness of combo treatment. These findings demonstrated that Rh2 potentiated the anti-cancer effect of PD-L1 blockade via promoting the T cells infiltration and activation, which shed a new light on the combination strategy to enhance anti-PD-L1 immunotherapy by using natural product Rh2.
Collapse
Affiliation(s)
- Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Yu-Chi Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Wen-Yu Lyu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Xin-Yu He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Zi-Han Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Can-Yu Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Xin-Ling He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao Special Administrative Region of China
| | - Xiaobing Chen
- Increasepharm (Hengqin) Innovative Medicine Institute Limited, Zhuhai, China
| | - Baoxian Zhang
- Increasepharm (Hengqin) Innovative Medicine Institute Limited, Zhuhai, China
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China.
| | - Mingqing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao Special Administrative Region of China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao Special Administrative Region of China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Macao Special Administrative Region of China.
| |
Collapse
|
28
|
Zhang J, Wu G, Peng R, Cao J, Tu D, Zhou J, Su B, Jin S, Jiang G, Zhang C, Bai D. A Novel Scoring Model of Deubiquitination Patterns Predicts Prognosis and Immunotherapeutic Response in Hepatocellular Carcinoma. Transl Oncol 2023; 38:101789. [PMID: 37734237 PMCID: PMC10518587 DOI: 10.1016/j.tranon.2023.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Aberrant expression of deubiquitinases (DUBs) is significantly associated with tumorigenesis. However, the precise impact of deubiquitination on the tumour microenvironment (TME) and immunotherapy in hepatocellular carcinoma (HCC) remains unclear. In this study, we comprehensively characterized the transcriptional and genetic alterations of 26 overall survival (OS)-related DUBs in HCC. The consensus clustering algorithm was used to identify patients with distinct deubiquitination patterns. We then established a DUBscore model using the principal component analysis (PCA) algorithm to quantify the deubiquitination patterns of individual HCC patients. Finally, we performed weighted gene coexpression network analysis (WGCNA) to identify the key DUBs. Consequently, three distinct deubiquitination patterns were identified, each showing significant differences in the characteristics of the TME, immune response, and clinical prognosis. Further analysis revealed that the DUBscore was an independent prognostic factor and could predict the response to immunotherapy for patients with HCC. Ultimately, BRCC3 was identified as a key DUB based on the DUBscore, which was significantly overexpressed in tumour tissues, as confirmed by qRT‒PCR and immunohistochemistry (IHC). We analysed the distribution and expression of BRCC3 in various types of immune cells using single-cell RNA sequencing (scRNA-seq). In conclusion, our study revealed the crucial role of deubiquitination patterns in shaping TME complexity and diversity. A more personalized and effective antitumour immunotherapy strategy can be developed by utilizing the DUBscore model to identify deubiquitination patterns in individual HCC patients. Our findings also highlight that BRCC3 may serve as a potential therapeutic target in HCC and a predictive marker for immunotherapeutic response.
Collapse
Affiliation(s)
- Jiahao Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China; Dalian Medical University, Dalian 116000, China
| | - Gefeng Wu
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China; Dalian Medical University, Dalian 116000, China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Jun Cao
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Daoyuan Tu
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Bingbing Su
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China.
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China.
| |
Collapse
|
29
|
Wu R, Gao Y, Zhao X, Guo S, Zhou H, Zhang Y, Hou Y, Mei L, Zhi H, Wang P, Li X, Ning S, Zhang Y. Tumor biology, immune infiltration and liver function define seven hepatocellular carcinoma subtypes linked to distinct drivers, survival and drug response. Comput Biol Med 2023; 167:107593. [PMID: 37883849 DOI: 10.1016/j.compbiomed.2023.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND & AIMS Tumor heterogeneity is jointly determined by the components of the tumor ecosystem (TES) including tumor cells, immune cells, stromal cells, and non-cellular components. We aimed to identify subtypes using TES-related genes and determine subtype specific drivers and treatments for hepatocellular carcinoma (HCC). METHODS We collected 68 genesets depicting tumor biology, immune infiltration, and liver function, totaling 2831 genes, and collected mRNA profiles and clinical data for over 6000 tumors from 65 datasets in the GEO, TCGA, ICGC, and several other databases. We designed a three-step clustering pipeline to identify subtypes. The microenvironment, genomic alteration, and drug response differences were systematically compared among subtypes. RESULTS Seven subtypes (TES-1/2/3/4/5/6/7) were revealed in 159 tumors from the CHCC-HBV cohort. We constructed a single sample classifier using paired genes (sscpgsTES). TES subtypes were significantly associated with multiple clinical variables including etiology, and survival in 14 of 17 cohorts and the meta-cohort. TES-1 had the poorest prognosis and highest proliferation level. Both TES-2 and TES-7 were immune-enriched, however, TES-2 had a significantly worse prognosis, and hypoxic and immunosuppressive microenvironment. TES-4 had activated Wnt pathway, driven by CTNNB1 mutation. Good prognosis TES-6 exhibited the best differentiation. TES-5 and TES-3 were considered as novel subclasses by comparing with ten previous subtyping systems. TES-5 tumors had high AFP but good overall survival, and ∼45% of them harbored AXIN1 mutation. TES-3 was immune and stromal desert, may be driven by high copy number alteration burden, and had the poorest response to immune checkpoint inhibitor. TES-1 and TES-2 had significantly lower response to transarterial chemoembolization, but they showed significantly higher sensitivity to compound YM-155. CONCLUSIONS Tumor ecosystem subtypes expand existing HCC subtyping systems, have distinct drivers, prognosis, and treatment vulnerabilities.
Collapse
Affiliation(s)
- Ruihong Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China; Phase I Clinical Research Center, First Hospital of Jilin University, Chang chun, Jilin, China
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoxi Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hanxiao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yakun Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yaopan Hou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lan Mei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
30
|
Liu K, Yuan S, Wang C, Zhu H. Resistance to immune checkpoint inhibitors in gastric cancer. Front Pharmacol 2023; 14:1285343. [PMID: 38026944 PMCID: PMC10679741 DOI: 10.3389/fphar.2023.1285343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal malignancies worldwide. In the past decade, with the development of early diagnostic techniques, a clear decline in GC incidence has been observed, but its mortality remains high. The emergence of new immunotherapies such as immune checkpoint inhibitors (ICIs) has changed the treatment of GC patients to some extent. However, only a small number of patients with advanced GC have a durable response to ICI treatment, and the efficacy of ICIs is very limited. Existing studies have shown that the failure of immunotherapy is mainly related to the development of ICI resistance in patients, but the understanding of the resistance mechanism is still insufficient. Therefore, clarifying the mechanism of GC immune resistance is critical to improve its treatment and clinical benefit. In this review, we focus on summarizing the mechanisms of primary or acquired resistance to ICI immunotherapy in GC from both internal and external aspects of the tumor. At the same time, we also briefly discuss some other possible resistance mechanisms in light of current studies.
Collapse
Affiliation(s)
- Kai Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Shiman Yuan
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Chenyu Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hong Zhu
- Cancer Center, Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Zhang D, Yin H, Wu C, Li S, Nabi G, Peng L, Mao X, Jin Z, Li Z, Su X, Huang H. CTM2-2023-06-1111: Targeting regulatory T-cells in pancreas during acute pancreatitis: Programmed-death 1 blockage as a potential therapeutic for infectious pancreatic necrosis. Clin Transl Med 2023; 13:e1472. [PMID: 37987154 PMCID: PMC10660819 DOI: 10.1002/ctm2.1472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Affiliation(s)
- Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Shanghai, People's Republic of China, Shanghai, China
| | - Hua Yin
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Ningxia, People's Republic of China, Shanghai, China
| | - Chang Wu
- Department of Gastroenterology, Changhai Hospital, Shanghai, People's Republic of China, Shanghai, China
| | - Shiyu Li
- Department of Gastroenterology, Changhai Hospital, Shanghai, People's Republic of China, Shanghai, China
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Shanghai, People's Republic of China, Shanghai, China
| | - Xiaotong Mao
- Department of Gastroenterology, Changhai Hospital, Shanghai, People's Republic of China, Shanghai, China
| | - Zhendong Jin
- Department of Gastroenterology, Changhai Hospital, Shanghai, People's Republic of China, Shanghai, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Shanghai, People's Republic of China, Shanghai, China
| | - Xiaoju Su
- Department of Gastroenterology, Changhai Hospital, Shanghai, People's Republic of China, Shanghai, China
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Shanghai, People's Republic of China, Shanghai, China
| |
Collapse
|
32
|
Alfar R, Napoleon JV, Shahriar I, Finnell R, Walchle C, Johnson A, Low PS. Selective reprogramming of regulatory T cells in solid tumors can strongly enhance or inhibit tumor growth. Front Immunol 2023; 14:1274199. [PMID: 37928524 PMCID: PMC10623129 DOI: 10.3389/fimmu.2023.1274199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Folate receptor delta (FRδ) has been used as a biomarker for regulatory T cells (Tregs), because its expression is limited to Tregs and ovum. Although FRδ is unable to bind folate, we have used molecular docking software to identify a folate congener that binds FRδ with high affinity and have exploited this FRδ-specific ligand to target attached drugs (imaging agents, immune activators, and immune suppressors) specifically to Tregs in murine tumor xenografts. Analysis of treated tumors demonstrates that targeting of a Toll-like receptor 7 agonist inhibits Treg expression of FOXP3, PD-1, CTLA4, and HELIOS, resulting in 40-80% reduction in tumor growth and repolarization of other tumor-infiltrating immune cells to more inflammatory phenotypes. Targeting of the immunosuppressive drug dexamethasone, in contrast, promotes enhanced tumor growth and shifts the tumor-infiltrating immune cells to more anti-inflammatory phenotypes. Since Tregs comprise <1% of cells in the tumor masses examined, and since the targeted drugs are not internalized by cancer cells, these data demonstrate that Tregs exert a disproportionately large effect on tumor growth. Because the targeted drug did not bind to Tregs or other immune cells in healthy tissues, the data demonstrate that the immunosuppressive properties of Tregs in tumors can be manipulated without causing systemic toxicities associated with global reprogramming of the immune system.
Collapse
Affiliation(s)
- Rami Alfar
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - John V. Napoleon
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Imrul Shahriar
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Richard Finnell
- Departments of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Cole Walchle
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Austin Johnson
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Philip S. Low
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
33
|
Banerjee A, Narasimhulu CA, Singla DK. Immune interactions in pembrolizumab (PD-1 inhibitor) cancer therapy and cardiovascular complications. Am J Physiol Heart Circ Physiol 2023; 325:H751-H767. [PMID: 37594487 PMCID: PMC10659324 DOI: 10.1152/ajpheart.00378.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
The use of immunotherapies like pembrolizumab (PEM) is increasingly common for the management of numerous cancer types. The use of PEM to bolster T-cell response against tumor growth is well documented. However, the interactions PEM has on other immune cells to facilitate tumor regression and clearance is unknown and warrants further investigation. In this review, we present literature findings that have reported the interactions of PEM in stimulating innate and adaptive immune cells, which enhance cytotoxic phenotypes. This triggers secretion of cytokines and chemokines, which have both beneficial and detrimental effects. We also describe how this leads to the development of rare but underreported occurrence of PEM-induced immune-related cardiovascular complications that arise suddenly and progress rapidly to debilitating and fatal consequences. This review encourages further research and investigation of PEM-induced cardiovascular complications and other immune cell interactions in patients with cancer. As PEM therapy in treating cancer types is expanding, we expect that this review will inform health care professionals of diverse specializations of medicine like dermatology (melanoma skin cancers), ophthalmology (eye cancers), and pathology (hematological malignancies) about PEM-induced cardiac complications.
Collapse
Affiliation(s)
- Abha Banerjee
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| |
Collapse
|
34
|
Daguenet E, Magné N. B and T cells in immune responses - Friends, foes or innocent contributors? Indian J Cancer 2023; 60:593-594. [PMID: 38258872 DOI: 10.4103/ijc.ijc_1011_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/01/2021] [Indexed: 01/24/2024]
Affiliation(s)
- Elisabeth Daguenet
- Department of Clinical Hematology and Cellular Therapy, Lucien Neuwirth Cancer Institute, Saint-Priest-en-Jarez, France
- Department of Research and Teaching, Lucien Neuwirth Cancer Institute, Saint-Priest-en-Jarez, France
| | - Nicolas Magné
- Department of Research and Teaching, Lucien Neuwirth Cancer Institute, Saint-Priest-en-Jarez, France
- Laboratory of Cellular and Molecular Radiobiology, UMR CNRS5822/IN2P3, IPNL, PRISME, Villeurbanne, France
| |
Collapse
|
35
|
Topchyan P, Lin S, Cui W. The Role of CD4 T Cell Help in CD8 T Cell Differentiation and Function During Chronic Infection and Cancer. Immune Netw 2023; 23:e41. [PMID: 37970230 PMCID: PMC10643329 DOI: 10.4110/in.2023.23.e41] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
CD4 and CD8 T cells are key players in the immune response against both pathogenic infections and cancer. CD4 T cells provide help to CD8 T cells via multiple mechanisms, including licensing dendritic cells (DCs), co-stimulation, and cytokine production. During acute infection and vaccination, CD4 T cell help is important for the development of CD8 T cell memory. However, during chronic viral infection and cancer, CD4 helper T cells are critical for the sustained effector CD8 T cell response, through a variety of mechanisms. In this review, we focus on T cell responses in conditions of chronic Ag stimulation, such as chronic viral infection and cancer. In particular, we address the significant role of CD4 T cell help in promoting effector CD8 T cell responses, emerging techniques that can be utilized to further our understanding of how these interactions may take place in the context of tertiary lymphoid structures, and how this key information can be harnessed for therapeutic utility against cancer.
Collapse
Affiliation(s)
- Paytsar Topchyan
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Siying Lin
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
36
|
Ma Y, Xu X, Wang H, Liu Y, Piao H. Non-coding RNA in tumor-infiltrating regulatory T cells formation and associated immunotherapy. Front Immunol 2023; 14:1228331. [PMID: 37671150 PMCID: PMC10475737 DOI: 10.3389/fimmu.2023.1228331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023] Open
Abstract
Cancer immunotherapy has exhibited promising antitumor effects in various tumors. Infiltrated regulatory T cells (Tregs) in the tumor microenvironment (TME) restrict protective immune surveillance, impede effective antitumor immune responses, and contribute to the formation of an immunosuppressive microenvironment. Selective depletion or functional attenuation of tumor-infiltrating Tregs, while eliciting effective T-cell responses, represents a potential approach for anti-tumor immunity. Furthermore, it does not disrupt the Treg-dependent immune homeostasis in healthy organs and does not induce autoimmunity. Yet, the shared cell surface molecules and signaling pathways between Tregs and multiple immune cell types pose challenges in this process. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), regulate both cancer and immune cells and thus can potentially improve antitumor responses. Here, we review recent advances in research of tumor-infiltrating Tregs, with a focus on the functional roles of immune checkpoint and inhibitory Tregs receptors and the regulatory mechanisms of ncRNAs in Treg plasticity and functionality.
Collapse
Affiliation(s)
- Yue Ma
- Department of Gynecology, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
| | - Xin Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huaitao Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyan Piao
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
| |
Collapse
|
37
|
Wang B, Peng M, Yundan C, He Y, Fu M, Shen Y. Tregs defects caused delayed hypersensitivity reactions to multiple disinfectants following with debridement: A case report and literature review. Int J Surg Case Rep 2023; 109:108587. [PMID: 37557037 PMCID: PMC10424069 DOI: 10.1016/j.ijscr.2023.108587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION AND IMPORTANCE Following debridement, the skin and mucous membranes around the wound must be disinfected with broad-spectrum disinfectants like Iodophor, 75 % ethanol, chlorhexidine, and bromogeramine. Despite the fact that it is rarely reported, skin allergy to disinfectants is extremely detrimental to wound recovery after debridement. CASE PRESENTATION In this study, a 29-year-old man with no previous allergic history developed delayed contact dermatitis after being exposed to multiple disinfectants, including iodophor, 75 % ethanol, and Erythromycin ointment. Given the possibility of the patient's allergic constitution, skin patch tests were repeated to confirm the allergic disinfectants. To avoid the allergy, the wound was simply rinsed with 0.9 % sodium chloride solution and Cefdinir (0.1 g, tid) was taken orally, while all local disinfectants were discontinued. The wound healing process was gradually accelerated, and allergic symptoms were alleviated. Furthermore, our findings revealed that the frequency and immunosuppressive function of Tregs were significantly lower in patients than in healthy controls (P < 0.05). CLINICAL DISCUSSION By minimizing allergic reactions and providing appropriate wound care, the use of 0.9 % sodium chloride solution with oral antibiotics could expedite the healing process. This enabled the wound to close faster and reduces the risk of complications. CONCLUSION The use of 0.9 % sodium chloride solution for wound irrigation, combined with oral administration of antibiotics, could be modified to mitigate further allergic reactions and enhance the recovery process following debridement. However, individual patient characteristics and medical history should also be taken into consideration when making these alterations.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Prevention and Control of Infectious Diseases, CDC of Tibet Military Command, Lhasa, Tibet, China; Department of Emergency, General Hospital of Tibet Military Command, Lhasa, Tibet, China
| | - Mengjia Peng
- Department of Emergency, General Hospital of Tibet Military Command, Lhasa, Tibet, China
| | - Ciren Yundan
- Department of Thoracic Surgery, General Hospital of Tibet Military Command, Lhasa, Tibet, China
| | - Yanlin He
- Department of Orthopedics, 955 Hospital of Army, Qamdo, Tibet, China
| | - Mengmei Fu
- Department of Operating Theatre, General Hospital of Tibet Military Command, Lhasa, Tibet, China
| | - Yuandi Shen
- Department of Emergency, General Hospital of Tibet Military Command, Lhasa, Tibet, China; Department of Emergency, Naval Medical Center of PLA, Shanghai 200052, China.
| |
Collapse
|
38
|
Yang EJ, Rahim MA, Griggs E, Iban-Arias R, Pasinetti GM. Transient anxiety-and depression-like behaviors are linked to the depletion of Foxp3-expressing cells via inflammasome in the brain. PNAS NEXUS 2023; 2:pgad251. [PMID: 37614669 PMCID: PMC10443660 DOI: 10.1093/pnasnexus/pgad251] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
Forkhead box P3 (Foxp3) is a transcription factor that influences functioning of regulatory T cells (Tregs) that modulate peripheral immune response. Treg-mediated innate immunity and Treg-mediated adaptive immunity are receiving considerable attention for their implication in mechanisms associated with anxiety and depression. Here, we demonstrated that depletion of Foxp3-expressing cells causally promotes transient anxiety- and depression-like behaviors associated with inflammasome activation in "depletion of regulatory T cell" (DEREG) mice. We found that restoration of Foxp3-expressing cells causally reverses neurobehavioral changes through alteration of innate immune responses as assessed by caspase-1 activity and interleukin-1β (IL-1β) release in the hippocampal formation of DEREG mice. Moreover, we found that depletion of Foxp3-expressing cells induces a significant elevation of granulocytes, monocytes, and macrophages in the blood, which are associated with transient expression of the matrix metalloprotease-9. Similarly, we found that depletion of Foxp3-expressing cells in 5xFAD, a mouse model of Alzheimer's disease (AD), exhibits elevated activated caspase-1 and promotion of IL-1β secretion and increased the level of amyloid-beta (Aβ)1-42 and Aβ plaque burden in the hippocampal formation that coincided with an acceleration of cognitive decline at a presymptomatic age in the 5xFAD mice. Thus, our study provides evidence supporting the idea that Foxp3 may have a causal influence on peripheral immune responses. This, in turn, can promote an innate immune response within the brain, potentially leading to anxiety- and depression-like behaviors or cognitive decline.
Collapse
Affiliation(s)
- Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Md Al Rahim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elizabeth Griggs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
| |
Collapse
|
39
|
Hoffmann AD, Weinberg SE, Swaminathan S, Chaudhuri S, Almubarak HF, Schipma MJ, Mao C, Wang X, El-Shennawy L, Dashzeveg NK, Wei J, Mehl PJ, Shihadah LJ, Wai CM, Ostiguin C, Jia Y, D'Amico P, Wang NR, Luo Y, Demonbreun AR, Ison MG, Liu H, Fang D. Unique molecular signatures sustained in circulating monocytes and regulatory T cells in convalescent COVID-19 patients. Clin Immunol 2023; 252:109634. [PMID: 37150240 PMCID: PMC10162478 DOI: 10.1016/j.clim.2023.109634] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Over two years into the COVID-19 pandemic, the human immune response to SARS-CoV-2 during the active disease phase has been extensively studied. However, the long-term impact after recovery, which is critical to advance our understanding SARS-CoV-2 and COVID-19-associated long-term complications, remains largely unknown. Herein, we characterized single-cell profiles of circulating immune cells in the peripheral blood of 100 patients, including convalescent COVID-19 and sero-negative controls. Flow cytometry analyses revealed reduced frequencies of both short-lived monocytes and long-lived regulatory T (Treg) cells within the patients who have recovered from severe COVID-19. sc-RNA seq analysis identifies seven heterogeneous clusters of monocytes and nine Treg clusters featuring distinct molecular signatures in association with COVID-19 severity. Asymptomatic patients contain the most abundant clusters of monocytes and Tregs expressing high CD74 or IFN-responsive genes. In contrast, the patients recovered from a severe disease have shown two dominant inflammatory monocyte clusters featuring S100 family genes: one monocyte cluster of S100A8 & A9 coupled with high HLA-I and another cluster of S100A4 & A6 with high HLA-II genes, a specific non-classical monocyte cluster with distinct IFITM family genes, as well as a unique TGF-β high Treg Cluster. The outpatients and seronegative controls share most of the monocyte and Treg clusters patterns with high expression of HLA genes. Surprisingly, while presumably short-lived monocytes appear to have sustained alterations over 4 months, the decreased frequencies of long-lived Tregs (high HLA-DRA and S100A6) in the outpatients restore over the tested convalescent time (≥ 4 months). Collectively, our study identifies sustained and dynamically altered monocytes and Treg clusters with distinct molecular signatures after recovery, associated with COVID-19 severity.
Collapse
Affiliation(s)
- Andrew D Hoffmann
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sam E Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Suchitra Swaminathan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shuvam Chaudhuri
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hannah Faisal Almubarak
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew J Schipma
- NUseq Core Facility, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chengsheng Mao
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xinkun Wang
- NUseq Core Facility, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lamiaa El-Shennawy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nurmaa K Dashzeveg
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paul J Mehl
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Laura J Shihadah
- NUseq Core Facility, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ching Man Wai
- NUseq Core Facility, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Carolina Ostiguin
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuzhi Jia
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paolo D'Amico
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Neale R Wang
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuan Luo
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alexis R Demonbreun
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michael G Ison
- Division of Infectious Disease, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Division of Organ Transplantation, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Respiratory Diseases Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA.
| | - Huiping Liu
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
40
|
McManus CM, Maizels RM. Regulatory T cells in parasite infections: susceptibility, specificity and specialisation. Trends Parasitol 2023; 39:547-562. [PMID: 37225557 DOI: 10.1016/j.pt.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/26/2023]
Abstract
Regulatory T cells (Tregs) are essential to control immune system responses to innocuous self-specificities, intestinal and environmental antigens. However, they may also interfere with immunity to parasites, particularly in chronic infection. Susceptibility to many parasite infections is, to a greater or lesser extent, controlled by Tregs, but often they play a more prominent role in moderating the immunopathological consequences of parasitism, and dampening bystander reactions in an antigen-nonspecific manner. More recently, Treg subtypes have been defined which may preferentially act in different contexts; we also discuss the degree to which this specialisation is now being mapped onto how Tregs maintain the delicate balance between tolerance, immunity, and pathology in infection.
Collapse
Affiliation(s)
- Caitlin M McManus
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
41
|
Yang F, Li J, Ge Q, Zhang Y, Zhang M, Zhou J, Wang H, Du J, Gao S, Liang C, Meng J. Non-coding RNAs: emerging roles in the characterization of immune microenvironment and immunotherapy of prostate cancer. Biochem Pharmacol 2023:115669. [PMID: 37364622 DOI: 10.1016/j.bcp.2023.115669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Prostate cancer is the most common tumor among men. Although the prognosis for early-stage prostate cancer is good, patients with advanced disease often progress to metastatic castration-resistant prostate cancer (mCRPC), which usually leads to death owing to resistance to existing treatments and lack of long-term effective therapy. In recent years, immunotherapy, especially immune checkpoint inhibitors (ICIs), has made great progress in the treatment of various solid tumors, including prostate cancer. However, the ICIs have only shown modest outcomes in mCRPC compared with other tumors. Previous studies have suggested that the suppressive tumor immune microenvironment (TIME) of prostate cancer leads to poor anti-tumor immune response and tumor resistance to immunotherapy. It has been reported that non-coding RNAs (ncRNAs) are capable of regulating upstream signaling at the transcriptional level, leading to a "cascade of changes" in downstream molecules. As a result, ncRNAs have been identified as an ideal class of molecules for cancer treatment. The discovery of ncRNAs provides a new perspective on TIME regulation in prostate cancer. ncRNAs have been associated with establishing an immunosuppressive microenvironment in prostate cancer through multiple pathways to modulate the immune escape of tumor cells which can promote resistance of prostate cancer to immunotherapy. Targeting these related ncRNAs presents an opportunity to improve the effectiveness of immunotherapy in this patient population.
Collapse
Affiliation(s)
- Feixiang Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China.
| | - Jiawei Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Qintao Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Yuchen Zhang
- First School of Clinical Medicine, Anhui Medical University, Hefei 230022, China.
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Haitao Wang
- Center for Cancer Research, Clinical Research/NCI/NIH, Bethesda, MD 20892, USA
| | - Juan Du
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China.
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China; Gonghe County Hospital of Traditional Chinese Medicine, Hainan 813099, Qinghai, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
42
|
Jalil AT, Abdulhadi MA, Al-Marzook FA, Hizam MM, Abdulameer SJ, Al-Azzawi AKJ, Zabibah RS, Fadhil AA. NK cells direct the perspective approaches to cancer immunotherapy. Med Oncol 2023; 40:206. [PMID: 37318610 DOI: 10.1007/s12032-023-02066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/30/2023] [Indexed: 06/16/2023]
Abstract
Natural killer (NK) cells are innate immune cells with cytotoxic potentials to kill cancerous cells in several mechanisms, which could be implied for cancer therapy. While potent, their antitumor activities specially for solid tumors impaired by inadequate tumor infiltration, suppressive tumor microenvironment, cancer-associated stroma cells, and tumor-supportive immune cells. Therefore, manipulating or reprogramming these barriers by prospective strategies might improve current immunotherapies in the clinic or introduce novel NK-based immunotherapies. NK-based immunotherapy could be developed in monotherapy or in combination with other therapeutic regimens such as oncolytic virus therapy and immune checkpoint blockade, as presented in this review.
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon, Iraq.
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Farah A Al-Marzook
- College of Medical and Health Technologies, Al-Zahraa University for Women, Karbala, 56100, Iraq
| | | | - Sada Jasim Abdulameer
- Biology Department, College of Education for Pure Science, Wasit University, Kut, Wasit, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ali A Fadhil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
43
|
Erber J, Herndler-Brandstetter D. Regulation of T cell differentiation and function by long noncoding RNAs in homeostasis and cancer. Front Immunol 2023; 14:1181499. [PMID: 37346034 PMCID: PMC10281531 DOI: 10.3389/fimmu.2023.1181499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) increase in genomes of complex organisms and represent the largest group of RNA genes transcribed in mammalian cells. Previously considered only transcriptional noise, lncRNAs comprise a heterogeneous class of transcripts that are emerging as critical regulators of T cell-mediated immunity. Here we summarize the lncRNA expression landscape of different T cell subsets and highlight recent advances in the role of lncRNAs in regulating T cell differentiation, function and exhaustion during homeostasis and cancer. We discuss the different molecular mechanisms of lncRNAs and highlight lncRNAs that can serve as novel targets to modulate T cell function or to improve the response to cancer immunotherapies by modulating the immunosuppressive tumor microenvironment.
Collapse
|
44
|
Zhang T, Han X, Zhong Y, Kam HT, Qiao D, Chen Z, Chan KWY, Chong WP, Chen J. Regulatory T cell intravitreal delivery using hyaluronan methylcellulose hydrogel improves therapeutic efficacy in experimental autoimmune uveitis. BIOMATERIALS ADVANCES 2023; 151:213496. [PMID: 37290283 DOI: 10.1016/j.bioadv.2023.213496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Autoimmune uveitis refers to several intraocular inflammation conditions, which are mediated by autoreactive T cells. Regulatory T cells (Tregs) are immunosuppressive cells that have shown potential for resolving various autoimmune diseases, including uveitis. However, poor donor cell dispersion distal to the injection site and plasticity of Treg cells in an inflammatory microenvironment can present obstacles for this immunotherapy. We assessed the use of a physical blend of hyaluronan and methylcellulose (HAMC) as immunoprotective and injectable hydrogel cell delivery system to improve the efficacy of Treg-based therapy in treating experimental autoimmune uveitis (EAU). We demonstrated that the Treg-HAMC blend increased both the survival and stability of Tregs under proinflammatory conditions. Furthermore, we found that the intravitreal HAMC delivery system resulted in a two-fold increase in the number of transferred Tregs in the inflamed eye of EAU mice. Treg-HAMC delivery effectively attenuated ocular inflammation and preserved the visual function of EAU mice. It significantly decreased the number of ocular infiltrates, including the uveitogenic IFN-γ+CD4+ and IL-17+CD4+ T cells. In contrast, intravitreal injection of Treg cells without HAMC only achieved marginal therapeutic effects in EAU. Our findings suggest that HAMC may become a promising delivery vehicle for human uveitis Treg therapy.
Collapse
Affiliation(s)
- Tian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yajie Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hio Tong Kam
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Dijie Qiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zilin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Kannie Wai Yan Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Wai Po Chong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Jun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
45
|
Suzuki K, Kunisada Y, Miyamura N, Eikawa S, Hurtado de Mendoza T, Mose ES, Lu C, Kuroda Y, Ruoslahti E, Lowy AM, Sugahara KN. Tumor-resident regulatory T cells in pancreatic cancer express the αvβ5 integrin as a targetable activation marker. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542137. [PMID: 37292693 PMCID: PMC10245898 DOI: 10.1101/2023.05.24.542137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has abundant immunosuppressive regulatory T cells (Tregs), which contribute to a microenvironment resistant to immunotherapy. Here, we report that Tregs in the PDAC tissue, but not those in the spleen, express the αvβ5 integrin in addition to neuropilin-1 (NRP-1), which makes them susceptible to the iRGD tumor-penetrating peptide, which targets cells positive for αv integrin- and NRP-1. As a result, long-term treatment of PDAC mice with iRGD leads to tumor-specific depletion of Tregs and improved efficacy of immune checkpoint blockade. αvβ5 integrin + Tregs are induced from both naïve CD4 + T cells and natural Tregs upon T cell receptor stimulation, and represent a highly immunosuppressive subpopulation of CCR8 + Tregs. This study identifies the αvβ5 integrin as a marker for activated tumor-resident Tregs, which can be targeted to achieve tumor-specific Treg depletion and thereby augment anti-tumor immunity for PDAC therapy.
Collapse
|
46
|
Deer E, Herrock O, Campbell N, Cornelius D, Fitzgerald S, Amaral LM, LaMarca B. The role of immune cells and mediators in preeclampsia. Nat Rev Nephrol 2023; 19:257-270. [PMID: 36635411 PMCID: PMC10038936 DOI: 10.1038/s41581-022-00670-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 01/14/2023]
Abstract
Preeclampsia is a hypertensive disorder of major concern in pregnancy than can lead to intrauterine growth restriction, placental abruption and stillbirth. The pathophysiology of preeclampsia is multifactorial, including not only kidney dysfunction but also endothelial dysfunction, as the maternal endothelium becomes exposed to placental factors that are released into the circulation and increase systemic levels of vasoconstrictors, oxidative stress, anti-angiogenic factors and inflammatory mediators. Importantly, inflammation can lead to insufficient placental perfusion and low birthweight in offspring. Various innate and adaptive immune cells and mediators have been implicated in the development of preeclampsia, in which oxidative stress is associated with activation of the maternal inflammatory response. Immune cells such as regulatory T cells, macrophages, natural killer cells, and neutrophils are known to have major causative roles in the pathology of preeclampsia, but the contributions of additional immune cells such as B cells, inflammatory cytokines and anti-angiotensin II type 1 receptor autoantibodies are also now recognized. Immunological interventions, therefore, have therapeutic potential in this disease. Here, we provide an overview of the immune responses that are involved in the pathogenesis of preeclampsia, including the role of innate and adaptive immune cells and mediators.
Collapse
Affiliation(s)
- Evangeline Deer
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Owen Herrock
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nathan Campbell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Denise Cornelius
- Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sarah Fitzgerald
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lorena M Amaral
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Babbette LaMarca
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
47
|
Ramos TL, Bolivar-Wagers S, Jin S, Thangavelu G, Simonetta F, Lin PY, Hirai T, Saha A, Koehn B, Su LL, Picton LK, Baker J, Lohmeyer JK, Riddle M, Eide C, Tolar J, Panoskaltsis-Mortari A, Wagner JE, Garcia KC, Negrin RS, Blazar BR. Prevention of acute GVHD using an orthogonal IL-2/IL-2Rβ system to selectively expand regulatory T cells in vivo. Blood 2023; 141:1337-1352. [PMID: 36564052 PMCID: PMC10082364 DOI: 10.1182/blood.2022018440] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 12/01/2022] [Indexed: 12/25/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative option for patients with hematological disorders and bone marrow (BM) failure syndromes. Graft-versus-host disease (GVHD) remains a leading cause of morbidity posttransplant. Regulatory T cell (Treg) therapies are efficacious in ameliorating GVHD but limited by variable suppressive capacities and the need for a high therapeutic dose. Here, we sought to expand Treg in vivo by expressing an orthogonal interleukin 2 receptor β (oIL-2Rβ) that would selectively interact with oIL-2 cytokine and not wild-type (WT) IL-2. To test whether the orthogonal system would preferentially drive donor Treg expansion, we used a murine major histocompatibility complex-disparate GVHD model of lethally irradiated BALB/c mice given T cell-depleted BM from C57BL/6 (B6) mice alone or together with B6Foxp3+GFP+ Treg or oIL-2Rβ-transduced Treg at low cell numbers that typically do not control GVHD with WT Treg. On day 2, B6 activated T cells (Tcons) were injected to induce GVHD. Recipients were treated with phosphate-buffered saline (PBS) or oIL-2 daily for 14 days, then 3 times weekly for an additional 14 days. Mice treated with oIL-2Rβ Treg and oIL-2 compared with those treated with PBS had enhanced GVHD survival, in vivo selective expansion of Tregs, and greater suppression of Tcon expansion in secondary lymphoid organs and intestines. Importantly, oIL-2Rβ Treg maintained graft-versus-tumor (GVT) responses in 2 distinct tumor models (A20 and MLL-AF9). These data demonstrate a novel approach to enhance the efficacy of Treg therapy in allo-HSCT using an oIL-2/oIL-2Rβ system that allows for selective in vivo expansion of Treg leading to GVHD protection and GVT maintenance.
Collapse
Affiliation(s)
- Teresa L. Ramos
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
| | - Sara Bolivar-Wagers
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Sujeong Jin
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Govindarajan Thangavelu
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Federico Simonetta
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
- Translational Research Center for Oncohematology, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Po-Yu Lin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
| | - Toshihito Hirai
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Asim Saha
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Brent Koehn
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Leon L. Su
- Department of Molecular and Cellular Physiology, Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA
| | - Lora K. Picton
- Department of Molecular and Cellular Physiology, Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
| | - Juliane K. Lohmeyer
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
| | - Megan Riddle
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Cindy Eide
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Jakub Tolar
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - John E. Wagner
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA
| | - Robert S. Negrin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
48
|
Burke KP, Patterson DG, Liang D, Sharpe AH. Immune checkpoint receptors in autoimmunity. Curr Opin Immunol 2023; 80:102283. [PMID: 36709596 PMCID: PMC10019320 DOI: 10.1016/j.coi.2023.102283] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/04/2023] [Indexed: 01/30/2023]
Abstract
Immune checkpoint receptors such as programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), and T cell immunoglobulin and ITIM domain (TIGIT) have distinct and overlapping inhibitory functions that regulate Tcell activation, differentiation, and function. These inhibitory receptors also mediate tolerance, and dysregulation of these receptors can result in a breach of tolerance and the development of autoimmune syndromes. Similarly, antibody blockade of immune checkpoint receptors or their ligands for cancer immunotherapy may trigger a spectrum of organ inflammation that resembles autoimmunity, termed immune-related adverse events (irAE). In this review, we discuss recent advances in the regulation of autoimmunity by immune checkpoint receptors. We highlight coordinated gene expression programs linking checkpoint receptors, heterogeneity within autoreactive T-cell populations, parallels between irAE and autoimmunity, and bidirectional functional interactions between immune checkpoint receptors and their ligands.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dillon G Patterson
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dan Liang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
49
|
Palmeri JR, Lax BM, Peters JM, Duhamel L, Stinson JA, Santollani L, Lutz EA, Pinney W, Bryson BD, Wittrup KD. Tregs constrain CD8 + T cell priming required for curative intratumorally anchored anti-4-1BB immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526116. [PMID: 36778460 PMCID: PMC9915483 DOI: 10.1101/2023.01.30.526116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although co-stimulation of T cells with agonist antibodies targeting 4-1BB (CD137) improves antitumor immune responses in preclinical studies, clinical development has been hampered by on-target, off-tumor toxicity. Here, we report the development of a tumor-anchored ɑ4-1BB agonist (ɑ4-1BB-LAIR), which consists of an ɑ4-1BB antibody fused to the collagen binding protein LAIR. While combination treatment with an antitumor antibody (TA99) displayed only modest efficacy, simultaneous depletion of CD4+ T cells boosted cure rates to over 90% of mice. We elucidated two mechanisms of action for this synergy: ɑCD4 eliminated tumor draining lymph node Tregs, enhancing priming and activation of CD8+ T cells, and TA99 + ɑ4-1BB-LAIR supported the cytotoxic program of these newly primed CD8+ T cells within the tumor microenvironment. Replacement of ɑCD4 with ɑCTLA-4, a clinically approved antibody that enhances T cell priming, produced equivalent cure rates while additionally generating robust immunological memory against secondary tumor rechallenge.
Collapse
Affiliation(s)
- Joseph R Palmeri
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Brianna M Lax
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Joshua M Peters
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Ragon Institute of MIT, MGH, and Harvard; Cambridge, MA
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Jordan A Stinson
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Emi A Lutz
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - William Pinney
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Bryan D Bryson
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Ragon Institute of MIT, MGH, and Harvard; Cambridge, MA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| |
Collapse
|
50
|
Xu W, Wan S, Xie B, Song X. Novel potential therapeutic targets of alopecia areata. Front Immunol 2023; 14:1148359. [PMID: 37153617 PMCID: PMC10154608 DOI: 10.3389/fimmu.2023.1148359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Alopecia areata (AA) is a non-scarring hair loss disorder caused by autoimmunity. The immune collapse of the hair follicle, where interferon-gamma (IFN-γ) and CD8+ T cells accumulate, is a key factor in AA. However, the exact functional mechanism remains unclear. Therefore, AA treatment has poor efficacy maintenance and high relapse rate after drug withdrawal. Recent studies show that immune-related cells and molecules affect AA. These cells communicate through autocrine and paracrine signals. Various cytokines, chemokines and growth factors mediate this crosstalk. In addition, adipose-derived stem cells (ADSCs), gut microbiota, hair follicle melanocytes, non-coding RNAs and specific regulatory factors have crucial roles in intercellular communication without a clear cause, suggesting potential new targets for AA therapy. This review discusses the latest research on the possible pathogenesis and therapeutic targets of AA.
Collapse
Affiliation(s)
- Wen Xu
- School of Medicine, Zhejiang University, Hangzhou, China
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Sheng Wan
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiuzu Song,
| |
Collapse
|