1
|
Przygodzka P, Szulc-Kielbik I, Kielbik M, Pacholczyk M, Klink M. Neuromedin U in the tumor microenvironment - Possible actions in tumor progression. Biochim Biophys Acta Rev Cancer 2025; 1880:189269. [PMID: 39842617 DOI: 10.1016/j.bbcan.2025.189269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Tumor microenvironment (TME) has become a major focus of cancer research as a promising therapeutic target. TME comprises cancer cells surrounded by nonmalignant cells, vessels, lymphoid organs, immune cells, nerves, intercellular components, molecules and metabolites located within or near the tumor lesion. Neuromedin U (NMU), a secretory peptide identified in the TME, has gained much attention as an important player in cancer and nonmalignant cell crosstalk. NMU receptors were detected in cancer cells as well as in nonmalignant TME components, such as immune, stromal and endothelial cells. We propose here to discuss the concept that NMU secreted by cancer cells activates cellular components of TME and thus contributes to the formation of microenvironment that favors tumor growth and cancer progression. We summarized the available data on cancer tissues and cell types that have been identified as a source of NMU and/or receptor-expressing NMU targets. We made a critical selection of NMU-receptor positive cell types that are known components of the TME of most malignant tumors. Finally, we discussed whether NMUs and NMU receptors represent a potential therapeutic target for cancer treatment, and summarized information on the tools available to modulate their activity.
Collapse
Affiliation(s)
- Patrycja Przygodzka
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland.
| | - Izabela Szulc-Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Marcin Pacholczyk
- Silesian University of Technology, Department of Systems Biology and Engineering, 16 Akademicka Str., 44-100 Gliwice, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| |
Collapse
|
2
|
Elieh-Ali-Komi D, Shafaghat F, Alipoor SD, Kazemi T, Atiakshin D, Pyatilova P, Maurer M. Immunomodulatory Significance of Mast Cell Exosomes (MC-EXOs) in Immune Response Coordination. Clin Rev Allergy Immunol 2025; 68:20. [PMID: 39976807 PMCID: PMC11842441 DOI: 10.1007/s12016-025-09033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
Mast cells (MCs) communicate with other cells by direct cell-to-cell interaction, secreting mediators, and releasing exosomes (EXOs). MC-exosomes (MC-EXOs) contain proteins, lipids, mRNAs, and noncoding RNAs (ncRNAs), exhibit typical EXO markers such as heat shock proteins, tetraspanins, tumor susceptibility gene 101 protein (TSG101), and ALG-2-interacting protein X (ALIX), and are released constitutively or following MC degranulation. MC-EXOs also have signature MC markers like FcεRI and KIT (CD117), which allows for their identification and comparison with other EXO populations. Following their release, MC-EXOs may interact with the recipient cell(s) directly or be internalized and then release their protein and nucleic acid content. This may contribute to the regulation of immune responses and other biological processes and reprogramming of recipient cells. MC-EXO proteins may integrate and become a functional part of the recipient cell membrane. The mRNA transferred by MC-EXOs is functional and the transfer of exosomal RNA to other MCs results in the expression of donor MC proteins in the recipient MCs. Moreover, MCs may function as the recipients of EXOs that are released by other non-immune and immune cells, altering the secretome of MCs. In this review, we focus on how MC-EXOs modulate the biology of other cells and vice versa; and we highlight the role of MC-EXOs in the pathogenesis of allergic and non-allergic diseases.
Collapse
Affiliation(s)
- Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| | - Farzaneh Shafaghat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shamila D Alipoor
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-Structural Analysis Innovative Technologies, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St, 117198, Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036, Voronezh, Russia
| | - Polina Pyatilova
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
3
|
Gehlhaar P, Schaper-Gerhardt K, Gutzmer R, Hasler F, Röhn TA, Werfel T, Mommert S. Histamine and TH2 cytokines regulate the biosynthesis of cysteinyl-leukotrienes and expression of their receptors in human mast cells. Inflamm Res 2025; 74:32. [PMID: 39890627 PMCID: PMC11785601 DOI: 10.1007/s00011-024-01974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/28/2024] [Accepted: 11/25/2024] [Indexed: 02/03/2025] Open
Abstract
INTRODUCTION In skin lesions of atopic dermatitis (AD), a chronic inflammatory skin disease, mast cells beyond other immune cells are present in increasing numbers. Upon activation, mast cells release a plethora of mediators, in particular histamine and leukotrienes, as well as chemokines and cytokines, which modulate the immune response of cells in their microenvironment and may influence mast cells in an autocrine loop. This study investigated the effects of histamine and TH2 cytokines on the biosynthesis of cysteinyl leukotrienes (CysLTs) as well as CysLT receptor expression on human mast cells from healthy volunteers and patients with AD. METHODS Human mast cells were generated from CD34+ progenitor cells from peripheral blood. The cultured mast cells were stimulated with IL-4, IL-13, histamine and different histamine receptor selective ligands. Expression of enzymes in the biosynthesis of leukotrienes and expression of CysLT receptors were quantified by real-time PCR. The release of CysLTs was measured by ELISA. RESULTS Mast cells from AD patients showed higher expression of 5-Lipoxygenase (5-LO) and 5-Lipoxygenase activating protein (FLAP) compared to mast cells from healthy volunteers at baseline and in presence of histamine and TH2 cytokines. Expression of leukotriene C4 synthase (LTC4S), the biosynthesis of CysLTs, and mRNA expression of both CysLT receptors were induced by histamine and TH2 cytokines in mast cells from healthy volunteers and AD patients. CONCLUSION We provide evidence that in an acute allergic situation histamine and TH2 cytokines may activate the biosynthesis of pro-allergic cysteinyl leukotrienes and up-regulation of CysLT receptor expression in human mast cells. This suggests a novel mechanism for sustaining mast cell activation through a possible autocrine signalling loop under these conditions.
Collapse
Affiliation(s)
- Patricia Gehlhaar
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Katrin Schaper-Gerhardt
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Germany
| | - Ralf Gutzmer
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Germany
| | - Franziska Hasler
- Immunology Disease Area, Novartis BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Till A Röhn
- Immunology Disease Area, Novartis BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Susanne Mommert
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Lauletta G, Potestio L, Patruno C, Cantelli M, Napolitano M. The emerging role of Bruton's tyrosine kinase inhibition in urticaria management. Expert Opin Drug Saf 2025:1-6. [PMID: 39873106 DOI: 10.1080/14740338.2025.2460453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Bruton's tyrosine kinase (BTK) is a cytoplasmic signaling protein expressed across a variety of immune cells, terminally differentiated plasma cells, and natural killer cells. Due to the signal potential and targetable nature of BTK, the use of BTK inhibitors (BTKis) has been proposed for the management of several diseases. Currently, the use of BTKis is under investigations for several dermatological conditions such as pemphigus, systemic lupus erythematosus, hidradenitis suppurativa, atopic dermatitis, and chronic spontaneous urticaria (CSU). AREAS COVERED The aim of this review is to delve into the use of BTKis in the management of CSU, in order to explore the potential of therapeutic inhibition of BTK in patients with CSU. A thorough analysis of the existing medical literature was conducted across the PubMed, Ovid, Scopus, Embase, and Cochrane Library databases up to 17 August 2024. EXPERT OPINION BTK use may represent a breakthrough in the management of CSU. Indeed, their use is characterized by oral administration and a favorable mechanism of action that acts on a significant pathogenic pathway rather than a single molecule. However, long-term studies are needed to further investigate safety data, although data from registered trials appear to be reassuring.
Collapse
Affiliation(s)
- Giuseppe Lauletta
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Luca Potestio
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Cataldo Patruno
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Mariateresa Cantelli
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maddalena Napolitano
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Berenbrok N, Vargas-Delgado ME, Beitzen-Heineke A, Schmidt C, Gensch V, Loges S, Ben-Batalla I. Prolonged inhibition of intratumoral mast cells enhances efficacy of low-dose antiangiogenic therapy. Int J Cancer 2025; 156:186-200. [PMID: 39175105 DOI: 10.1002/ijc.35132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/24/2024]
Abstract
Low-dose antiangiogenic therapies have demonstrated the ability to enhance normalization of tumor vessels, consequently improving hypoxia levels, drug delivery, and promoting anticancer immune responses. Mast cells have been identified as contributors to resistance against antiangiogenic therapy and facilitators of abnormal neoangiogenesis. In this study, we demonstrate that by simultaneously targeting intratumoral mast cells with Imatinib and administering low-dose anti-VEGFR2 therapy, antitumor efficacy can be enhanced in preclinical models. Thus, combinatory treatment overcomes therapy resistance, while concurrently promoting tumor vessel normalization. Notably, histomorphometric analysis of tumor sections revealed that vessel perfusion could be improved through mast cell inhibition and, despite a significantly reduced microvessel density, the combination treatment did not result in elevated tumor hypoxia levels compared to anti-VEGFR2 therapy alone. Short-term Imatinib application effectively increased antitumor efficacy, and by prolonging the application of Imatinib tumor vessel normalization was additionally improved. The combination of mast cell depletion and antiangiogenic treatments has not been investigated in detail and promises to help overcoming therapy resistance. Further studies will be required to explore their impact on other treatment approaches, and subsequently to validate these findings in a clinical setting.
Collapse
Affiliation(s)
- Nikolaus Berenbrok
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center, Hamburg, Germany
| | - Maria Elena Vargas-Delgado
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center, Hamburg, Germany
| | - Antonia Beitzen-Heineke
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center, Hamburg, Germany
| | - Claudia Schmidt
- Light Microscopy Facility (W210), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Victoria Gensch
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center, Hamburg, Germany
| | - Sonja Loges
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center, Hamburg, Germany
| | - Isabel Ben-Batalla
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center, Hamburg, Germany
| |
Collapse
|
6
|
Turkiewicz A, Hellberg C, Dell'Isola A, Englund M. Antihistamine use and osteoarthritis or joint pain. Osteoarthritis Cartilage 2025; 33:176-179. [PMID: 39277027 DOI: 10.1016/j.joca.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/13/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVES Antihistamines have been reported to be linked with less pain in osteoarthritis. We aimed to estimate associations between antihistamine use and three outcomes: prevalent osteoarthritis, current joint pain, and developing osteoarthritis. METHODS We included 25 003 participants of EpiHealth - a cohort of persons aged 45 to 75 from Malmö/Uppsala in Sweden. Participants self-reported the presence of allergy, joint pain and osteoarthritis at a study visit between years 2010 and 2016. Further, we obtained data about diagnoses of allergy and osteoarthritis from health-care registers (primary, specialist and inpatient care). Exposure was prescribed dispensed antihistamines (H1-antagonists) during ∼6 years preceding the EpiHealth visit retrieved from the Prescribed Drugs Register. The outcomes were osteoarthritis (any location), pain in knees/hips/hands-wrists at the examination (cross-sectional) and future incident diagnosis of osteoarthritis (longitudinal, in a cohort free of osteoarthritis at EpiHealth). We report risk ratios (95% confidence intervals [CI]) from logistic regression and hazard ratios (HR) from Cox regression, from models adjusted for age, sex, body mass index, allergy and use of healthcare. We used prescribed dispensed penicillin as negative control. RESULTS The associations between use of antihistamines and osteoarthritis/joint pain at EpiHealth were 1.13 (95%CI 1.06, 1.20) and 1.02 (0.99, 1.05), respectively. The HR of future incident osteoarthritis diagnosis with use of antihistamines was 1.15 (1.03, 1.28). The association (HR) between penicillin use and future incident osteoarthritis diagnosis was 1.16 (1.07, 1.25). CONCLUSIONS In a large population-based observational cohort, use of antihistamines was neither associated with less joint pain/osteoarthritis nor lower risk of future osteoarthritis.
Collapse
Affiliation(s)
- Aleksandra Turkiewicz
- Clinical Epidemiology Unit, Orthopedics, Clinical Sciences Lund, Lund University, Sweden.
| | - Clara Hellberg
- Clinical Epidemiology Unit, Orthopedics, Clinical Sciences Lund, Lund University, Sweden
| | - Andrea Dell'Isola
- Clinical Epidemiology Unit, Orthopedics, Clinical Sciences Lund, Lund University, Sweden
| | - Martin Englund
- Clinical Epidemiology Unit, Orthopedics, Clinical Sciences Lund, Lund University, Sweden
| |
Collapse
|
7
|
Heidarzadeh-Asl S, Maurer M, Kiani A, Atiakshin D, Stahl Skov P, Elieh-Ali-Komi D. Novel insights on the biology and immunologic effects of histamine: A road map for allergists and mast cell biologists. J Allergy Clin Immunol 2024:S0091-6749(24)02415-1. [PMID: 39734034 DOI: 10.1016/j.jaci.2024.12.1081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024]
Abstract
Histamine (C5H9N3, molecular weight 111.15 g/mol) is a well-studied endogenous biogenic amine composed of an imidazole ring attached to an ethylamine side chain. It has a limited half-life of a few minutes within tissues and in circulation. Several cell types including mast cells (MCs), basophils, platelets, histaminergic neurons, and enterochromaffin cells produce varying amounts of histamine using histidine decarboxylase. However, only MCs and basophils have complex mechanisms to pack and store histamine in granules along with other mediators using serglycin and its carried glycosaminoglycan side chains. Relatively low granule pH (∼5.5) supports the binding of stored histamine to heparin, whereas exposure to neutral pH after degranulation weakens the binding and histamine becomes liberated. Histamine exerts multifaceted regulatory biofunctions by engaging its 4 types of heptahelical G protein-coupled receptors (H1R-H4R), which have different expression profiles and functions. MCs express H1R, H2R, and H4R, which gives them a dual role in histamine biology as producers and responsive target cells. Histamine plays a role in a variety of physiologic and pathologic processes such as cell proliferation, differentiation, hematopoiesis, vascular permeability, embryogenesis, tissue regeneration, and wound healing. The emergence of histamine receptor-deficient mouse models and the development of multiple histamine receptor agonists and antagonists have helped researchers better understand these physiologic and pathogenic functions of histamine. We review the biology of histamine with a focus on immunologic aspects and the role of histamine in allergy and MC biology.
Collapse
Affiliation(s)
- Sima Heidarzadeh-Asl
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-structural Analysis Innovative Technologies, RUDN University, Moscow, Russia; Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Voronezh, Russia
| | - Per Stahl Skov
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), Odense University Hospital, Odense, Denmark; RefLab ApS, Copenhagen, Denmark
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| |
Collapse
|
8
|
Hu W, Meng X, Wu Y, Li X, Chen H. Terpenoids, a Rising Star in Bioactive Constituents for Alleviating Food Allergy: A Review about the Potential Mechanism, Preparation, and Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26599-26616. [PMID: 39570772 DOI: 10.1021/acs.jafc.4c09124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Food allergies affect approximately 2.5% of the global population, with a notable increase in prevalence observed each year. Terpenoids, a class of natural bioactive constituents, have been widely utilized in the management of immune- and inflammation-related disorders, and their potential in alleviating food allergies is increasingly being recognized. This article summarizes various terpenoids derived from plant, fungal, and marine sources. Among them, triterpenoids, such as oleanolic acid, ursolic acid, and lupeol, possess the highest proportion and bioactivity in alleviating food allergy. Additionally, the mechanisms by which terpenoids may mitigate allergic diseases were categorically outlined, focusing on their roles in epithelial mucosal barrier function, immunomodulatory effects during the sensitization phase, inhibition of effector cells, oxidative stress, and regulation of microbial homeostasis. Finally, the advantages and limitations of natural extraction and artificial synthesis methods were compared, and the application of terpenoids in the food industry were also discussed. This article serves as a useful reference for the development of methods or functional foods based on terpenoids, which could represent a promising avenue for alleviating food allergy.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xuanyi Meng
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
9
|
Chen H, Luo Y, Li X, Zhang Y, Zheng S, Chen J, Sun Y, Xie Y. The differences of characteristics and allergenicity between natural and recombinant tropomyosin of Macrobrachium nipponense. Food Chem 2024; 460:140610. [PMID: 39068796 DOI: 10.1016/j.foodchem.2024.140610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/06/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Tropomyosin (TM) is the main allergen of Macrobrachium nipponense. Recombinant allergens have great prospects in the detection, diagnosis, and treatment of food allergens. The purpose of this study was to compare the differences in structure and allergenicity between natural TM and recombinant TM. Recombinant TM of M. nipponense with a molecular weight of 38 kDa was successfully expressed in the Escherichia coli system. The amino acid sequence as well as secondary structure between natural and recombinant TM were similar, which were verified by mass and CD spectrometry, respectively. Studies showed that both natural TM and recombinant TM had strong allergenicity, and recombinant TM was more allergenic, which could be used as a substitute for natural TM in the diagnosis and treatment of shrimp allergy. This study provided stable and reliable allergen components for the detection of crustacean allergens and the diagnosis and treatment of food allergies caused by crustacean allergens.
Collapse
Affiliation(s)
- Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China
| | - Yeqing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330009, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330009, China
| | - Yingxue Zhang
- Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Shuangyan Zheng
- Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China
| | - Jiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330009, China
| | - Yaobin Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330009, China
| | - Yanhai Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
10
|
He X, Yang X, Qin L, Zhang Q, Ji X, Tang W, Zhan Y, Zhang Y. Amphotericin B for injection triggers degranulation of human LAD2 mast cells by MRGPRX2 and pseudo-allergic reactions in mice via MRGPRB2 activation. Immunol Res 2024; 72:1337-1349. [PMID: 39223434 DOI: 10.1007/s12026-024-09532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Amphotericin B, a polyene macrolide antifungal agent, still plays an important role in the management of serious systemic fungal infections. Amphotericin B deoxycholate (AmBd) has been used to treat invasive fungal infections for over 60 years and remains the primary clinical formulation currently available. Anaphylactoid reactions triggered by AmBd in the clinic have been documented. However, the molecular and cellular events contributing to these reactions have not been clearly elucidated to date. This study demonstrates that the human Mas-related G protein-coupled receptor X2 (MRGPRX2) is the receptor that mediates these anaphylactoid responses. Molecular docking and cellular thermal shift assay (CETSA) indicate that AmBd exhibits potential affinity with MRGPRX2. In vitro, exposure to AmBd results in significant release of LAD2 mast cell granules and induces intracellular Ca2+ mobilization as well as activation of PLC-γ/IP3R and PI3K/AKT signaling pathways. However, these phenomena are reduced in MRGPRX2-knockdown LAD2 cells. In vivo, AmBd triggers paw swelling and a rapid drop in core body temperature in wild-type (WT) mice. However, these reactions are almost absent in MRGPRB2 (the mouse homolog of MRGPRX2) knockout mice (MRGPRB2MUT, MUT). The above results suggest that AmBd activates PLC-γ/IP3R and PI3K/AKT signaling via MRGPRX2 (in human LAD2 mast cells) or MRGPRB2 (in mice), leading to the release of mast cell granules and subsequent triggering of pseudo-allergic reactions. Taken together, this study clarifies the role of MRGPRX2 in triggering pseudo-allergic reactions to AmBd and suggests that MRGPRX2 could be a potential therapeutic target for controlling these reactions.
Collapse
Affiliation(s)
- Xu He
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Hanzhong Central Hospital, Hanzhong, 723000, P. R. China
| | - Xinxin Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Longyu Qin
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Qianqian Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Xiaolan Ji
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Wenjuan Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Yingzhuan Zhan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China.
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China.
| |
Collapse
|
11
|
Bernstein JS, Bernstein JA, Lang DM. Chronic Spontaneous Urticaria: Current and Emerging Biologic Agents. Immunol Allergy Clin North Am 2024; 44:595-613. [PMID: 39389712 DOI: 10.1016/j.iac.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Antihistamine refractory chronic spontaneous urticaria (CSU) has a prevalence of up to 50%. Anti-immunoglobulin E (IgE) therapies have revolutionized management of CSU, yet refractory cases persist, suggesting a role for biologic agents that impact alternative routes of mast cell stimulation independent of cross-linking at FcεR1. This review addresses anti-IgE and Th2-targeted therapies in the management of CSU. In addition, we explore novel treatments targeting alternative pathways of mast cell activation including MAS-related G protein-coupled receptor-X2 and sialic acid-binding immunoglobulin-like lectin-6, inhibiting intracellular signaling via Bruton's tyrosine kinase, and disrupting KIT activation by SCF.
Collapse
Affiliation(s)
- Joshua S Bernstein
- Division of Rheumatology, Allergy and Immunology, University of Cincinnati, 234 Goodman Street, Cincinnati, OH 45219, USA
| | - Jonathan A Bernstein
- Division of Rheumatology, Allergy and Immunology, University of Cincinnati, 234 Goodman Street, Cincinnati, OH 45219, USA
| | - David M Lang
- Department of Allergy and Clinical Immunology, Cleveland Clinic, 9500 Euclid Avenue, A90, Cleveland, OH 44195, USA.
| |
Collapse
|
12
|
Lim SYT, Huo J, Laszlo GS, Cole FM, Kehret AR, Li J, Lunn-Halbert MC, Persicke JL, Rupert PB, Strong RK, Walter RB. Optimizing Siglec-8-Directed Immunotherapy for Eosinophilic and Mast Cell Disorders. Cancers (Basel) 2024; 16:3476. [PMID: 39456570 PMCID: PMC11506601 DOI: 10.3390/cancers16203476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objective: Current treatments for eosinophilic and mast cell disorders are often ineffective. One promising target to improve outcomes is sialic acid-binding immunoglobulin-like lectin-8 (Siglec-8). As limitations, there are few Siglec-8 monoclonal antibodies (mAbs) available to date, and Siglec-8-directed treatments have so far primarily focused on unconjugated mAbs, which may be inadequate, especially against mast cells. Methods: Here, we used transgenic mice to raise a diverse panel of fully human mAbs that either recognize the V-set domain, membrane-distal C2-set domain, or membrane-proximal C2-set domain of full-length Siglec-8 as a basis for novel therapeutics. Results: All mAbs were efficiently internalized into Siglec-8-expressing cells, suggesting their potential to deliver cytotoxic payloads. Tool T cell-engaging bispecific antibodies (BiAbs) and chimeric antigen receptor (CAR)-modified natural killer (NK) cells using single-chain variable fragments from Siglec-8 mAbs showed highly potent cytolytic activity against Siglec-8-positive cells even in cases of very low target antigen abundance, whereas they elicited no cytolytic activity against Siglec-8-negative target cells. Siglec-8V-set-directed T cell-engaging BiAbs and Siglec-8V-set-directed CAR-modified NK cells induced substantially greater cytotoxicity against cells expressing an artificial smaller Siglec-8 variant containing only the V-set domain than cells expressing full-length Siglec-8, consistent with the notion that targeting membrane-proximal epitopes enhances effector functions of Siglec-8 antibody-based therapeutics. Indeed, unconjugated Siglec-8C2-set mAbs, Siglec-8C2-set-directed T cell-engaging BiAbs, and Siglec-8C2-set-directed CAR-modified NK cells showed high antigen-specific cytolytic activity against Siglec-8-positive human cell lines and primary patient eosinophils. Conclusions: Together, these data demonstrate Siglec-8-directed immunotherapies can be highly potent, supporting their further development for eosinophilic and mast cell disorders.
Collapse
Affiliation(s)
- Sheryl Y. T. Lim
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (S.Y.T.L.); (G.S.L.); (J.L.); (M.C.L.-H.)
| | - Jenny Huo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (S.Y.T.L.); (G.S.L.); (J.L.); (M.C.L.-H.)
| | - George S. Laszlo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (S.Y.T.L.); (G.S.L.); (J.L.); (M.C.L.-H.)
| | - Frances M. Cole
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (S.Y.T.L.); (G.S.L.); (J.L.); (M.C.L.-H.)
| | - Allie R. Kehret
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (S.Y.T.L.); (G.S.L.); (J.L.); (M.C.L.-H.)
| | - Junyang Li
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (S.Y.T.L.); (G.S.L.); (J.L.); (M.C.L.-H.)
| | - Margaret C. Lunn-Halbert
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (S.Y.T.L.); (G.S.L.); (J.L.); (M.C.L.-H.)
| | - Jasmyn L. Persicke
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (S.Y.T.L.); (G.S.L.); (J.L.); (M.C.L.-H.)
| | - Peter B. Rupert
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (P.B.R.); (R.K.S.)
| | - Roland K. Strong
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (P.B.R.); (R.K.S.)
| | - Roland B. Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (S.Y.T.L.); (G.S.L.); (J.L.); (M.C.L.-H.)
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Zhao C, Ding Y, Huang Y, Wang C, Guo B, Zhang T. Quercetin Attenuates MRGPRX2-Mediated Mast Cell Degranulation via the MyD88/IKK/NF-κB and PI3K/AKT/ Rac1/Cdc42 Pathway. J Inflamm Res 2024; 17:7099-7110. [PMID: 39398230 PMCID: PMC11468308 DOI: 10.2147/jir.s480644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024] Open
Abstract
Background CMRF35-like molecule-1 (CLM-1) is a receptor of the CD300 family that inhibits MRGPRX2-mediated mast cell degranulation. Understanding the role and mechanism of CLM-1 agonist has significant implications for the treatment of allergic disease. Quercetin is a natural small molecule compound derived from plants and vegetables that has been shown to prevent histamine release by immune cells. Objective This study aims to examine the inhibitory effects of quercetin on MRGPRX2-mediated mast cell degranulation via CLM-1. Results We found that C48/80 stimulation resulted in significantly increased release of β-hexosaminidase, histamine and Ca2+ in CLM-1-knockdown LAD2 cells than in NC-LAD2 cells. Surface plasmon resonance (SPR) and molecular docking analyses revealed high-affinity binding between quercetin and CLM-1 (K D = 2.962×10-5 mol/L) mediated by the formation of hydrogen bonds. In addition, quercetin can selectively bind to CLM-1 on mast cells, leading to SHP-1 phosphorylation and subsequent inhibition of downstream MyD88/IKK/NF-κB signaling. Furthermore, activation of CLM-1 modulated the surface expression of MRGPRX2 by inhibiting F-actin, leading to internalization of the MRGPRX2 receptor via the PI3K/AKT/ Rac1/Cdc42 pathway. Conclusion Quercetin is a promising treatment for allergic diseases by acting as a CLM-1 agonist that inhibits MRGPRX2-mediated mast cell degranulation.
Collapse
Affiliation(s)
- Chenrui Zhao
- Department of Anesthesiology, Xi’an Honghui Hospital, Xi’an Jiaotong University, Xi’an, 710054, People’s Republic of China
- College of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Yuanyuan Ding
- College of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Yihan Huang
- College of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Chao Wang
- College of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Bin Guo
- Department of Anesthesiology, Xi’an Honghui Hospital, Xi’an Jiaotong University, Xi’an, 710054, People’s Republic of China
| | - Tao Zhang
- College of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| |
Collapse
|
14
|
Puxeddu I, Pistone F, Pisani F, Levi-Schaffer F. Mast cell signaling and its role in urticaria. Ann Allergy Asthma Immunol 2024; 133:374-379. [PMID: 38663722 DOI: 10.1016/j.anai.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
Chronic urticaria is a mast cell (MC)-driven disease characterized by the development of itching wheals and/or angioedema. In the last decades, outstanding progress has been made in defining the mechanisms involved in MC activation, and novel activating and inhibitory receptors expressed in MC surface were identified and characterized. Besides an IgE-mediated activation through high-affinity IgE receptor cross-linking, other activating receptors, including Mas-related G-protein-coupled receptor-X2, C5a receptor, and protease-activated receptors 1 and 2 are responsible for MC activation. This would partly explain the reason some subgroups of chronic spontaneous urticaria (CSU), the most frequent form of urticaria in the general population, do not respond to IgE target therapies, requiring other therapeutic approaches for improving the management of the disease. In this review, we shed some light on the current knowledge of the immunologic and nonimmunologic mechanisms regulating MC activation in CSU, considering the complex inflammatory scenario underlying CSU pathogenesis, and novel potential MC-targeted therapies, including surface receptors and cytoplasmic signaling proteins.
Collapse
Affiliation(s)
- Ilaria Puxeddu
- Immunoallergology Unit, Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy.
| | - Francesca Pistone
- Immunoallergology Unit, Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - Francesco Pisani
- Immunoallergology Unit, Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
15
|
Abu SL, Hehar NK, Chigbu DI. Novel therapeutic receptor agonists and antagonists in allergic conjunctivitis. Curr Opin Allergy Clin Immunol 2024; 24:380-389. [PMID: 39079155 DOI: 10.1097/aci.0000000000001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
PURPOSE OF REVIEW Allergic conjunctivitis is characterized by the development of pathophysiological changes to the ocular surface, which occurs when pro-allergic and pro-inflammatory mediators interact with their cognate receptors expressed on immune and nonimmune cells. Traditional treatments with antihistamines and corticosteroids provide relief, but there is a need for more efficacious and tolerable long-term therapy with a better safety profile. This article aims to provide an overview of the mode of action and clinical application of agonist therapies targeting glucocorticoid, melanocortin, and toll-like receptors, as well as antagonist therapies targeting cytokine, chemokine, integrin, and histamine receptors. RECENT FINDINGS There has been considerable advancement in immunology and pharmacology, as well as a greater understanding of the cellular and molecular mechanisms of allergic conjunctivitis. Recent research advancing therapy for allergic conjunctivitis has focused on developing synthetic molecules and biologics that can interfere with the process of the allergic immune reaction. SUMMARY This review discusses novel therapeutic receptors being explored agonistically or antagonistically to develop alternative treatment options for allergic conjunctivitis. These novel approaches hold promise for improving the management of allergic eye diseases, offering patients hope for more effective and safer treatment options in the future.
Collapse
Affiliation(s)
- Sampson L Abu
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania, USA
| | | | | |
Collapse
|
16
|
Wollam J, Solomon M, Villescaz C, Lanier M, Evans S, Bacon C, Freeman D, Vasquez A, Vest A, Napora J, Charlot B, Cavarlez C, Kim A, Dvorak L, Selfridge B, Huang L, Nevarez A, Dedman H, Brooks J, Frischbutter S, Metz M, Serhan N, Gaudenzio N, Timony G, Martinborough E, Boehm MF, Viswanath V. Inhibition of mast cell degranulation by novel small molecule MRGPRX2 antagonists. J Allergy Clin Immunol 2024; 154:1033-1043. [PMID: 38971540 DOI: 10.1016/j.jaci.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Mas-related G protein-coupled receptor X2 (MRGPRX2) is a promiscuous receptor on mast cells that mediates IgE-independent degranulation and has been implicated in multiple mast cell-mediated disorders, including chronic urticaria, atopic dermatitis, and pain disorders. Although it is a promising therapeutic target, few potent, selective, small molecule antagonists have been identified, and functional effects of human MRGPRX2 inhibition have not been evaluated in vivo. OBJECTIVE We sought to identify and characterize novel, potent, and selective orally active small molecule MRGPRX2 antagonists for potential treatment of mast cell-mediated disease. METHODS Antagonists were identified using multiple functional assays in cell lines overexpressing human MRGPRX2, LAD2 mast cells, human peripheral stem cell-derived mast cells, and isolated skin mast cells. Skin mast cell degranulation was evaluated in Mrgprb2em(-/-) knockout and Mrgprb2em(MRGPRX2) transgenic human MRGPRX2 knock-in mice by assessment of agonist-induced skin vascular permeability. Ex vivo skin mast cell degranulation and associated histamine release was evaluated by microdialysis of human skin tissue samples. RESULTS MRGPRX2 antagonists potently inhibited agonist-induced MRGPRX2 activation and mast cell degranulation in all mast cell types tested in an IgE-independent manner. Orally administered MRGPRX2 antagonists also inhibited agonist-induced degranulation and resulting vascular permeability in MRGPRX2 knock-in mice. In addition, antagonist treatment dose dependently inhibited agonist-induced degranulation in ex vivo human skin. CONCLUSIONS MRGPRX2 small molecule antagonists potently inhibited agonist-induced mast cell degranulation in vitro and in vivo as well as ex vivo in human skin, supporting potential therapeutic utility as a novel treatment for multiple human diseases involving clinically relevant mast cell activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alan Vest
- Escient Pharmaceuticals, San Diego, Calif
| | - Jim Napora
- Escient Pharmaceuticals, San Diego, Calif
| | | | | | - Andrew Kim
- Escient Pharmaceuticals, San Diego, Calif
| | | | | | | | | | | | | | - Stefan Frischbutter
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany
| | - Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)-University Toulouse III, Toulouse, France
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)-University Toulouse III, Toulouse, France; Genoskin SAS, Toulouse, France
| | | | | | | | | |
Collapse
|
17
|
Kim AR, Jeon SG, Kim HR, Hong H, Yoon YW, Lee BM, Yoon CH, Choi SJ, Jang MH, Yang BG. Preventive and Therapeutic Effects of Lactiplantibacillus plantarum HD02 and MD159 through Mast Cell Degranulation Inhibition in Mouse Models of Atopic Dermatitis. Nutrients 2024; 16:3021. [PMID: 39275335 PMCID: PMC11396792 DOI: 10.3390/nu16173021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
As the relationship between the gut microbiome and allergies becomes better understood, targeted strategies to prevent and treat allergies through gut microbiome modulation are being increasingly developed. In the study presented herein, we screened various probiotics for their ability to inhibit mast cell degranulation and identified Lactiplatibacillus plantarum HD02 and MD159 as effective candidates. The two strains significantly attenuated vascular permeability induced by mast cell degranulation in a passive cutaneous anaphylaxis (PCA) model and, in the MC903-induced murine atopic dermatitis (AD) model, demonstrated comparable preventive effects against allergies, reducing blood levels of MCPT-1 (mast cell protease-1) and total IgE. In the house dust mite (HDM)-induced murine AD model, both L. plantarum HD02 and MD159 showed therapeutic effects, with L. plantarum HD02 demonstrating superior efficacy. Nevertheless, L. plantarum MD159 better suppressed transepidermal water loss (TEWL). Furthermore, L. plantarum HD02 and MD159 significantly increased the number of splenic Foxp3+ regulatory T cells, with L. plantarum MD159 having a more pronounced effect. However, only L. plantarum HD02 achieved a reduction in immune cells in the draining lymph nodes. Our findings highlight L. plantarum HD02 and MD159 as promising candidates for the prevention and treatment of allergies, demonstrating significant efficacy in suppressing mast cell degranulation, reducing the number of allergy biomarkers, and modulating immune responses in experimental models of AD. Their distinct mechanisms of action suggest potential complementary roles in addressing allergic diseases, underscoring their therapeutic promise in clinical applications.
Collapse
Affiliation(s)
- A-Ram Kim
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea
| | - Seong-Gak Jeon
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea
| | - Hyung-Ran Kim
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea
| | - Heeji Hong
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea
| | - Yong Won Yoon
- Maeil Innovation Center, Maeil Dairies Co., Ltd., Pyeongtaek 17714, Republic of Korea
| | - Byung-Min Lee
- Maeil Innovation Center, Maeil Dairies Co., Ltd., Pyeongtaek 17714, Republic of Korea
| | - Chung Hoo Yoon
- Maeil Innovation Center, Maeil Dairies Co., Ltd., Pyeongtaek 17714, Republic of Korea
| | - Soo Jin Choi
- Maeil Innovation Center, Maeil Dairies Co., Ltd., Pyeongtaek 17714, Republic of Korea
| | - Myoung Ho Jang
- Research Institute, GI Innovation Inc., Seoul 05855, Republic of Korea
| | - Bo-Gie Yang
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea
| |
Collapse
|
18
|
Rana TS, Bansode RR, Williams LL. Anti-Allergic and Anti-Inflammatory Signaling Mechanisms of Natural Compounds/Extracts in In Vitro System of RBL-2H3 Cell: A Systematic Review. Cells 2024; 13:1389. [PMID: 39195277 PMCID: PMC11353167 DOI: 10.3390/cells13161389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Various extracts are tested for anti-allergic or anti-inflammatory properties on in vitro models. RBL-2H3 cells are widely used in allergic or immunological studies. FCεRI and its downstream signaling cascades, such as MAPK, NF-κB, and JAK/STAT signaling pathways, are important allergic or inflammatory signaling mechanisms in mast and basophil cells. This systematic review aims to study common signaling pathways of the anti-allergic or anti-inflammatory compounds on RBL-2H3 cells. We selected the relevant research articles published after 2015 from the PubMed, Scopus, Science Direct and Web of Science databases. The risk of bias of the studies was assessed based on the modified CONSORT checklist for in vitro studies. The cell lines, treatments, assay, primary findings, and signaling pathways on RBL-2H3 cells were extracted to synthesize the results. Thirty-eight articles were included, and FCεRI and its downstream pathways, such as Lyn, Sky, PLCγ, and MAPK, were commonly studied. Moreover, the JAK/STAT pathway was a potential signaling mechanism in RBL-2H3 cells. However, the findings based on RBL-2H3 cells needed to be tested along with human mast cells to confirm its relevance to human health. In conclusion, a single plant extract may act as an anti-inflammatory reagent in RBL-2H3 cells via multiple signaling pathways besides the MAPK signaling pathway.
Collapse
Affiliation(s)
| | | | - Leonard L. Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC 28081, USA; (T.S.R.); (R.R.B.)
| |
Collapse
|
19
|
Cao M, Gao Y. Mast cell stabilizers: from pathogenic roles to targeting therapies. Front Immunol 2024; 15:1418897. [PMID: 39148726 PMCID: PMC11324444 DOI: 10.3389/fimmu.2024.1418897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Mast cells (MCs) are bone-marrow-derived haematopoietic cells that are widely distributed in human tissues. When activated, they will release tryptase, histamine and other mediators that play major roles in a diverse array of diseases/disorders, including allergies, inflammation, cardiovascular diseases, autoimmune diseases, cancers and even death. The multiple pathological effects of MCs have made their stabilizers a research hotspot for the treatment of related diseases. To date, the clinically available MC stabilizers are limited. Considering the rapidly increasing incidence rate and widespread prevalence of MC-related diseases, a comprehensive reference is needed for the clinicians or researchers to identify and choose efficacious MC stabilizers. This review analyzes the mechanism of MC activation, and summarizes the progress made so far in the development of MC stabilizers. MC stabilizers are classified by the action mechanism here, including acting on cell surface receptors, disturbing signal transduction pathways and interfering exocytosis systems. Particular emphasis is placed on the clinical applications and the future development direction of MC stabilizers.
Collapse
Affiliation(s)
- Mengda Cao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Nakamura Y, Urakami T, Ishimaru K, Vuong Tran NQ, Shimizu T, Sinko W, Takahashi T, Marappan S, Narayanan K, Poddutoori R, Terada Y, Nakao A. A highly selective KIT inhibitor MOD000001 suppresses IgE-mediated mast cell activation. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100249. [PMID: 38764489 PMCID: PMC11101940 DOI: 10.1016/j.jacig.2024.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 05/21/2024]
Abstract
Background The KIT receptor tyrosine kinase and its ligand, stem cell factor (SCF), control proliferation and survival of mast cells. Thus, targeting KIT signaling may show promise for the treatment of allergic diseases involving mast cells. Recently, we discovered a new compound, MOD000001, as a potential small-molecule KIT kinase inhibitor by using an in silico approach. Objective We sought to determine whether MOD000001 is highly selective to KIT, inhibits KIT signaling in mast cells, and affects IgE-mediated mast cell activation. Methods The interaction of MOD000001 with 468 human kinases and its inhibitory activity against KIT were profiled and evaluated by using KINOMEscan (Discover X/Eurofins Corporation, Fremont, Calif) and cell-free kinase assays, respectively. The effects of MOD000001 on SCF-dependent signaling were examined by using primary mouse and human mast cells. The effects of MOD000001 on SCF-induced degranulation and passive cutaneous anaphylaxis reaction were examined in mice. Results MOD000001 interacted with KIT and inhibited KIT kinase activity with high selectivity. MOD000001 suppressed SCF-induced KIT signaling in mouse and human mast cells and in mice. Passive cutaneous anaphylaxis reaction was suppressed in mice treated with MOD000001 both for a short-term (1 week) and for a long-term (7 weeks). Mice treated with MOD000001 for a long-term, but not for a short-term, showed skin mast cell reduction. Conclusions MOD000001 is a highly selective KIT inhibitor that can suppress IgE-mediated mast cell activation in vivo. MOD000001 may do so by reducing tissue mast cell numbers or by other unknown mechanisms. The findings suggest potential benefits of MOD000001 for allergic diseases involving IgE-mediated mast cell activation.
Collapse
Affiliation(s)
- Yuki Nakamura
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | | | - Kayoko Ishimaru
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Nguyen Quoc Vuong Tran
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | | | | | | | | | | | | | | | - Atsuhito Nakao
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Hu M, Scheffel J, Frischbutter S, Steinert C, Reidel U, Spindler M, Przybyłowicz K, Hawro M, Maurer M, Metz M, Hawro T. Characterization of cells and mediators associated with pruritus in primary cutaneous T-cell lymphomas. Clin Exp Med 2024; 24:171. [PMID: 39068637 PMCID: PMC11284195 DOI: 10.1007/s10238-024-01407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
Patients with primary cutaneous T-cell lymphoma (CTCL) often experience severe and difficult-to-treat pruritus that negatively affects their quality of life (QoL). However, the mechanisms of pruritus in CTCL, including mycosis fungoides (MF), remain largely unknown, and detailed characteristics of CTCL-associated pruritus is not fully elucidated. To characterize pruritus in CTCL, cutaneous B-cell lymphoma (CBCL), and large plaque parapsoriasis (LPP), and to identify potential itch mediators involved in the pathogenesis of pruritus in CTCL patients. Clinical data and blood samples were collected from 129 healthy subjects and 142 patients. Itch intensity, QoL impairment, psychological distress, and sleep quality were assessed using validated questionnaires and instruments. Blood levels of BDNF, CCL24, GRP, IL-31, IL-33, sST2, substance P, TSLP, tryptase and total IgE were measured using ELISA or ImmunoCAP. Pruritus was prevalent in CTCL, LPP and CBCL patients, with higher prevalence and severity observed in CTCL. In CTCL, pruritus correlated with significant impairment in QoL, sleep, psychological distress. Compared to healthy controls, elevated levels of IL-31, IL-33, substance P, total IgE, tryptase, and TSLP were found in MF patients. A comparison of MF patients with and without pruritus revealed higher levels of IL-31, substance P, GRP, and CCL24 in the former. Itch intensity positively correlated with IL-31, GRP, CCL24, and tryptase levels. Pruritus significantly burdens CTCL patients, necessitating appropriate therapeutic management. Our findings suggest that various non-histaminergic mediators such as tryptase and IL-31 could be explored as novel therapeutic targets for managing pruritus in MF patients.
Collapse
Affiliation(s)
- Man Hu
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Stefan Frischbutter
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Carolin Steinert
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ulrich Reidel
- Department of Dermatology, Allergology and Venereology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Max Spindler
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Katarzyna Przybyłowicz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Marlena Hawro
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Institute for Inflammation Medicine, University of Lübeck, Lübeck, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany.
| | - Tomasz Hawro
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Institute for Inflammation Medicine, University of Lübeck, Lübeck, Germany
| |
Collapse
|
22
|
Zuberbier T, Ensina LF, Giménez-Arnau A, Grattan C, Kocatürk E, Kulthanan K, Kolkhir P, Maurer M. Chronic urticaria: unmet needs, emerging drugs, and new perspectives on personalised treatment. Lancet 2024; 404:393-404. [PMID: 39004090 DOI: 10.1016/s0140-6736(24)00852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 07/16/2024]
Abstract
Chronic urticaria is a common and debilitating mast cell-driven skin disease presenting with itchy wheals, angio-oedema, or both. Chronic urticaria is classified as spontaneous (without definite triggers) and inducible (with definite and subtype-specific triggers; eg, cold or pressure). Current management guidelines recommend step-up administration of second-generation H1-antihistamines to four-fold the approved dose, followed by omalizumab and ciclosporin. However, in many patients, chronic urticaria does not respond to this linear approach due to heterogeneous underlying mechanisms. A personalised endotype-based approach is emerging based on the identification of autoantibodies and other drivers of urticaria pathogenesis. Over the past decade, clinical trials have presented promising options for targeted treatment of chronic urticaria with the potential for disease modification, including Bruton's tyrosine kinase inhibitors, anti-cytokine therapies, and mast cell depletion. This Therapeutics article focuses on the evidence for these novel drugs and their role in addressing an unmet need for personalised management of patients with chronic urticaria.
Collapse
Affiliation(s)
- Torsten Zuberbier
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany.
| | - Luis Felipe Ensina
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Pediatrics, Federal University of São Paulo, São Paulo, Brazil
| | - Ana Giménez-Arnau
- Department of Dermatology, Hospital del Mar Research Institute, Universitat Pompeu Fabra, Barcelona, Spain
| | - Clive Grattan
- St John's Institute of Dermatology, Guy's Hospital, London, UK
| | - Emek Kocatürk
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany; Department of Dermatology, Koç University School of Medicine, Istanbul, Türkiye
| | - Kanokvalai Kulthanan
- Urticaria Center of Reference and Excellence (UCARE), Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pavel Kolkhir
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
23
|
Shen Q, Cao M, Yu C, Tang J, Song L, Ding Y, Ju L, Wei JF, Li L, Huang W. Biodegradable Mesoporous Organosilica-Based Nanostabilizer Targeting Mast Cells for Long-Term Treatment of Allergic Diseases. ACS NANO 2024; 18:16934-16946. [PMID: 38907988 DOI: 10.1021/acsnano.4c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Allergic diseases are immune system dysfunctions mediated by mast cell (MC) activation stimulated by specific allergens. However, current small molecular MC stabilizers for allergic disease prevention often require multiple doses over a long period of time and are associated with serious side effects. Herein, we develop a diselenide-bridged mesoporous silica nanostabilizer, proving that it could specifically target sensitized MCs via the recognition of IgE aptamer and IgE. Meantime, the IgE aptamer can also mitigate allergic reactions by preventing re-exposure of allergens from the surface of sensitized MCs. Furthermore, the diselenide-bridged scaffold can be reduced by the intracellular excessive ROS, subsequently achieving redox homeostasis via ROS depletion. Finally, the precise release of small molecular MC stabilizers along with the biodegradation of nanocarrier can stabilize the membranes of MCs. In vivo assays in passive cutaneous anaphylactic (PCA) and allergic rhinitis (AR) mice indicated that our current strategy further endowed it with a high efficacy, long-term therapeutic time window, as well as negligible inflammatory side effects for allergic diseases, offering a promising therapeutic strategy for the clinical generalization of allergic diseases.
Collapse
Affiliation(s)
- Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Mengda Cao
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210044, China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jian Tang
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Lebin Song
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Yanan Ding
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Linjie Ju
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Ji-Fu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- The Institute of Flexible Electronics, Xiamen University, Xiamen 361005, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- The Institute of Flexible Electronics, Xiamen University, Xiamen 361005, China
| |
Collapse
|
24
|
Akin C, Siebenhaar F, Wechsler JB, Youngblood BA, Maurer M. Detecting Changes in Mast Cell Numbers Versus Activation in Human Disease: A Roadblock for Current Biomarkers? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1727-1737. [PMID: 38467332 DOI: 10.1016/j.jaip.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
The pathophysiology of mast cell (MC)-driven disorders is diverse, ranging from localized reactions to systemic disorders caused by abnormal accumulation and activation in multiorgan systems. Prompt and accurate diagnosis is critically important, both for informing treatment and objective assessment of treatment outcomes. As new therapeutics are being developed to deplete MCs or silence them (eg, by engaging inhibitory receptors that block activation), new biomarkers are needed that can distinguish between MC activation versus burden. Serum tryptase is the gold standard for assessing both MC burden and activation; however, commercial tryptase assays have limitations related to timing of release, lack of discernment between inactive (α) and active (β) forms of tryptase, and interpatient variability of baseline levels. Alternative approaches to measuring MC activation include urinary MC mediators, flow cytometry-based assays or gene expression profiling. Additional markers of MC activation are needed for use in clinical diagnostics, to help selection of treatment of MC diseases, and for assessing outcomes of therapy. We review the spectrum of disorders with known or suspected MC contribution, describe the utility and limitations of current MC markers and assays, and discuss the need for new markers that can differentiate between MC activation and burden.
Collapse
Affiliation(s)
- Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Joshua B Wechsler
- Division of Gastroenterology, Hepatology, and Nutrition, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | | | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| |
Collapse
|
25
|
Maurer M, Casale TB, Saini SS, Ben-Shoshan M, Giménez-Arnau AM, Bernstein JA, Yagami A, Stjepanovic A, Radin A, Staudinger HW, Patel N, Amin N, Akinlade B, Fan C, Bauer D, Yancopoulos GD, Patel K, Mannent LP, Laws E. Dupilumab in patients with chronic spontaneous urticaria (LIBERTY-CSU CUPID): Two randomized, double-blind, placebo-controlled, phase 3 trials. J Allergy Clin Immunol 2024; 154:184-194. [PMID: 38431226 DOI: 10.1016/j.jaci.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Chronic spontaneous urticaria (CSU) is a chronic inflammatory disease characterized by recurrent pruritic wheals (hives) and/or angioedema. Patients with CSU could remain symptomatic despite standard-of-care H1 antihistamines (H1-AH) or anti-IgE (omalizumab) treatment. Dupilumab blocks IL-4/IL-13 signaling and is approved for multiple type 2/atopic indications. OBJECTIVE We conducted two phase 3, randomized, placebo-controlled, double-blind trials comparing dupilumab with placebo in patients with symptomatic CSU despite H1-AH. METHODS In LIBERTY-CSU CUPID Study A, patients were omalizumab-naive (n = 138, aged ≥6 years). In Study B, patients were omalizumab-intolerant/incomplete responders (n = 108, aged ≥12 years). The primary end point was either change from baseline over 7 days in the Urticaria Activity Score (UAS7) or Itch Severity Score (ISS7) at week 24, with the other as a key secondary end point, depending on regional regulatory requirements. Studies were pooled for safety assessment. RESULTS In Study A, UAS7 and ISS7 improved with dupilumab versus placebo (difference -8.5 [95% CI, -13.2 to -3.9; P = .0003] and -4.2 [95% CI, -6.6 to -1.8; P = .0005]). In Study B, tested at α = 0.043 after interim analysis, UAS7 improved (difference -5.8 [95% CI, -11.4 to -0.3; P = .0390]), with a numerical trend in ISS7 (difference -2.9 [95% CI, -5.7 to -0.07; nominal P = .0449, not significant]). Pooled safety data were consistent between dupilumab and placebo and with the known dupilumab safety profile. CONCLUSIONS Dupilumab reduced urticaria activity by reducing itch and hives severity in omalizumab-naive patients with CSU uncontrolled with H1-AH. Although the primary end point for Study B was not met, dupilumab effects were small in patients who were omalizumab-intolerant/incomplete responders.
Collapse
Affiliation(s)
- Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität, Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| | - Thomas B Casale
- Division of Allergy and Immunology, Department of Medicine, University of South Florida, Tampa, Fla
| | | | - Moshe Ben-Shoshan
- Division of Allergy, Immunology, and Dermatology, Department of Pediatrics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ana M Giménez-Arnau
- Department of Dermatology, Hospital del Mar, Institut Mar D'Investigacions Mediques, Universitat Autónoma y Universitat Pompeu Fabra, Barcelona, Spain
| | - Jonathan A Bernstein
- Division of Allergy and Immunology, Department of Internal Medicine, University of Cincinnati College of Medicine, Partner Bernstein Allergy Group and Bernstein Clinical Research Center, Cincinnati, Ohio
| | - Akiko Yagami
- Department of Allergology, Fujita Health University School of Medicine, Aichi, Japan
| | | | - Allen Radin
- Regeneron Pharmaceuticals Inc, Tarrytown, NY
| | | | | | - Nikhil Amin
- Regeneron Pharmaceuticals Inc, Tarrytown, NY
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhou T, Fang YL, Tian TT, Wang GX. Pathological mechanism of immune disorders in diabetic kidney disease and intervention strategies. World J Diabetes 2024; 15:1111-1121. [PMID: 38983817 PMCID: PMC11229953 DOI: 10.4239/wjd.v15.i6.1111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetic kidney disease is one of the most severe chronic microvascular complications of diabetes and a primary cause of end-stage renal disease. Clinical studies have shown that renal inflammation is a key factor determining kidney damage during diabetes. With the development of immunological technology, many studies have shown that diabetic nephropathy is an immune complex disease, and that most patients have immune dysfunction. However, the immune response associated with diabetic nephropathy and autoimmune kidney disease, or caused by ischemia or infection with acute renal injury, is different, and has a com-plicated pathological mechanism. In this review, we discuss the pathogenesis of diabetic nephropathy in immune disorders and the intervention mechanism, to provide guidance and advice for early intervention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun 130021, Jilin Province, China
| | - Yi-Lin Fang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun 130021, Jilin Province, China
| | - Tian-Tian Tian
- School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Gui-Xia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
27
|
Jandus C, Jandus P. Effects of Intravenous Immunoglobulins on Human Innate Immune Cells: Collegium Internationale Allergologicum Update 2024. Int Arch Allergy Immunol 2024; 185:975-996. [PMID: 38852585 DOI: 10.1159/000539069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Intravenous immunoglobulin (IVIg) has been used for almost 40 years in the treatment of autoimmune and systemic inflammatory diseases. Numerous cells are involved in the innate immune response, including monocytes/macrophages, neutrophils, dendritic cells, mast cells, basophils, eosinophils, natural killer cells, and innate lymphoid cells. Many studies have investigated the mechanisms by which IVIg down-modulates inflammatory and autoimmune processes of innate immune cells. However, questions remain regarding the precise mechanism of action in autoimmune or inflammatory conditions. The aim of this work was to review the immunomodulatory effect of IVIg on only human innate immune cells. A narrative review approach was chosen to summarize key evidence on the immunomodulatory effects of commercially available and unmodified IVIg on human innate immune cells. SUMMARY Numerous different immunomodulatory effects of IVIg have been reported, with some very different effects depending on the immune cell type and disease. Several limitations of the different studies were identified. Of the 77 studies identified and reviewed, 29 (37.7%) dealt with autoimmune or inflammatory diseases. Otherwise, the immunomodulatory effects of IVIg were studied only in healthy donors using an in vitro experimental approach. Some of the documented effects showed disease-specific effects, such as in Kawasaki disease. Various methodological limitations have also been identified that may reduce the validity of some studies. KEY MESSAGE As further insights have been gained into the various inflammatory cascades activated in immunological diseases, interesting insights have also been gained into the mechanism of action of IVIg. We are still far from discovering all the immunomodulatory mechanisms of IVIg.
Collapse
Affiliation(s)
- Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Geneva Center for Inflammation Research, Geneva, Switzerland
- Translational Research Centre in Onco-Haematology (CRTOH), Geneva, Switzerland
| | - Peter Jandus
- Division of Immunology and Allergology, University Hospitals and Medical Faculty, Geneva, Switzerland
| |
Collapse
|
28
|
Friedman A, Kwatra SG, Yosipovitch G. A Practical Approach to Diagnosing and Managing Chronic Spontaneous Urticaria. Dermatol Ther (Heidelb) 2024; 14:1371-1387. [PMID: 38758422 PMCID: PMC11169305 DOI: 10.1007/s13555-024-01173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Chronic spontaneous urticaria (CSU) is an unpredictable inflammatory skin condition characterized by the spontaneous onset of itchy wheals, angioedema, or both, which occurs for longer than 6 weeks overall. Despite the relatively straightforward diagnostic algorithm for CSU, relying primarily on a detailed medical history and only limited laboratory tests, patients often wait years to be diagnosed, with many cycling through different healthcare practitioners before a diagnosis is made. Even then, current treatment options for CSU are limited, with approximately half of patients resistant to standard-of-care second-generation antihistamines at standard or higher doses. As such, there is an unmet need for improved, streamlined management for patients with CSU. Here, we review the evidence-based diagnostic algorithm for CSU, consider the required steps of the diagnostic workup, and provide practical, real-world advice on the management of CSU to improve the timely diagnosis and care of patients with this debilitating disease.
Collapse
Affiliation(s)
- Adam Friedman
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - Shawn G Kwatra
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA
- Maryland Itch Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gil Yosipovitch
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Coral Gables, FL, USA
| |
Collapse
|
29
|
Poto R, Marone G, Galli SJ, Varricchi G. Mast cells: a novel therapeutic avenue for cardiovascular diseases? Cardiovasc Res 2024; 120:681-698. [PMID: 38630620 PMCID: PMC11135650 DOI: 10.1093/cvr/cvae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 04/19/2024] Open
Abstract
Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve, and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodelling, and fibrosis. Mast cells release preformed mediators (e.g. histamine, tryptase, and chymase) and de novo synthesized mediators (e.g. cysteinyl leukotriene C4 and prostaglandin D2), as well as cytokines and chemokines, which can activate different resident immune cells (e.g. macrophages) and structural cells (e.g. fibroblasts and endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared with mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| | - Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| |
Collapse
|
30
|
Yang L, He H, Guo XK, Wang J, Wang W, Li D, Liang S, Shao F, Liu W, Hu X. Intraepithelial mast cells drive gasdermin C-mediated type 2 immunity. Immunity 2024; 57:1056-1070.e5. [PMID: 38614091 DOI: 10.1016/j.immuni.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/31/2023] [Accepted: 03/19/2024] [Indexed: 04/15/2024]
Abstract
A specialized population of mast cells residing within epithelial layers, currently known as intraepithelial mast cells (IEMCs), was originally observed over a century ago, yet their physiological functions have remained enigmatic. In this study, we unveil an unexpected and crucial role of IEMCs in driving gasdermin C-mediated type 2 immunity. During helminth infection, αEβ7 integrin-positive IEMCs engaged in extensive intercellular crosstalk with neighboring intestinal epithelial cells (IECs). Through the action of IEMC-derived proteases, gasdermin C proteins intrinsic to the epithelial cells underwent cleavage, leading to the release of a critical type 2 cytokine, interleukin-33 (IL-33). Notably, mast cell deficiency abolished the gasdermin C-mediated immune cascade initiated by epithelium. These findings shed light on the functions of IEMCs, uncover a previously unrecognized phase of type 2 immunity involving mast cell-epithelial cell crosstalk, and advance our understanding of the cellular mechanisms underlying gasdermin C activation.
Collapse
Affiliation(s)
- Liu Yang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Huabin He
- National Institute of Biological Sciences, Beijing, China
| | - Xue-Kun Guo
- Chinese Institutes for Medical Research, Beijing, China
| | - Jiali Wang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Wenwen Wang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Da Li
- National Institute of Biological Sciences, Beijing, China
| | - Shaonan Liang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Wanli Liu
- Institute for Immunology, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; The State Key Laboratory of Membrane Biology, Beijing, China
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China; The State Key Laboratory of Membrane Biology, Beijing, China.
| |
Collapse
|
31
|
Hu Y, Yu J, Xu M, Pu K. Bienzyme-Locked Activatable Fluorescent Probes for Specific Imaging of Tumor-Associated Mast Cells. J Am Chem Soc 2024; 146:12656-12663. [PMID: 38683724 DOI: 10.1021/jacs.4c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Tumor-associated mast cells (TAMCs) have been recently revealed to play a multifaceted role in the tumor microenvironment. Noninvasive optical imaging of TAMCs is thus highly desired to gain insights into their functions in cancer immunotherapy. However, due to the lack of a single enzyme that is specific to mast cells, a common probe design approach based on single-enzyme activation is not applicable. Herein, we reported a bienzyme-locked molecular probe (THCMC) based on a photoinduced electron transfer-intramolecular charge-transfer hybrid strategy for in vivo imaging of TAMCs. The bienzyme-locked activation mechanism ensures that THCMC exclusively turns on near-infrared (NIR) fluorescence only in the presence of both tryptase and chymase specifically coexpressed by mast cells. Thus, THCMC effectively distinguishes mast cells from other leukocytes, including T cells, neutrophils, and macrophages, a capability lacking in single-locked probes. Such a high specificity of THCMC allows noninvasive tracking of the fluctuation of TAMCs in the tumor of living mice during cancer immunotherapy. The results reveal that the decreased intratumoral signal of THCMC after combination immunotherapy correlates well with the reduced population of TAMCs, accurately predicting the inhibition of tumor growth. Thus, this study not only presents the first NIR fluorescent probe specific for TAMCs but also proposes a generic bienzyme-locked probe design approach for in vivo cell imaging.
Collapse
Affiliation(s)
- Yuxuan Hu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Jie Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
32
|
Bernstein JA, Maurer M, Saini SS. BTK signaling-a crucial link in the pathophysiology of chronic spontaneous urticaria. J Allergy Clin Immunol 2024; 153:1229-1240. [PMID: 38141832 DOI: 10.1016/j.jaci.2023.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Chronic spontaneous urticaria (CSU) is an inflammatory skin disorder that manifests with itchy wheals, angioedema, or both for more than 6 weeks. Mast cells and basophils are the key pathogenic drivers of CSU; their activation results in histamine and cytokine release with subsequent dermal inflammation. Two overlapping mechanisms of mast cell and basophil activation have been proposed in CSU: type I autoimmunity, also called autoallergy, which is mediated via IgE against various autoallergens, and type IIb autoimmunity, which is mediated predominantly via IgG directed against the IgE receptor FcεRI or FcεRI-bound IgE. Both mechanisms involve cross-linking of FcεRI and activation of downstream signaling pathways, and they may co-occur in the same patient. In addition, B-cell receptor signaling has been postulated to play a key role in CSU by generating autoreactive B cells and autoantibody production. A cornerstone of FcεRI and B-cell receptor signaling is Bruton tyrosine kinase (BTK), making BTK inhibition a clear therapeutic target in CSU. The potential application of early-generation BTK inhibitors, including ibrutinib, in allergic and autoimmune diseases is limited owing to their unfavorable benefit-risk profile. However, novel BTK inhibitors with improved selectivity and safety profiles have been developed and are under clinical investigation in autoimmune diseases, including CSU. In phase 2 trials, the BTK inhibitors remibrutinib and fenebrutinib have demonstrated rapid and sustained improvements in CSU disease activity. With phase 3 studies of remibrutinib ongoing, it is hoped that BTK inhibitors will present an effective, well-tolerated option for patients with antihistamine-refractory CSU, a phenotype that presents a considerable clinical challenge.
Collapse
Affiliation(s)
- Jonathan A Bernstein
- Department of Internal Medicine, Allergy and Immunology Section, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Sarbjit S Saini
- Johns Hopkins Asthma and Allergy Center, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
33
|
Du F, Rische CH, Li Y, Vincent MP, Krier-Burris RA, Qian Y, Yuk SA, Almunif S, Bochner BS, Qiao B, Scott EA. Controlled adsorption of multiple bioactive proteins enables targeted mast cell nanotherapy. NATURE NANOTECHNOLOGY 2024; 19:698-704. [PMID: 38228804 PMCID: PMC11105988 DOI: 10.1038/s41565-023-01584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Protein adsorption onto nanomaterials often results in denaturation and loss of bioactivity. Controlling the adsorption process to maintain the protein structure and function has potential for a range of applications. Here we report that self-assembled poly(propylene sulfone) (PPSU) nanoparticles support the controlled formation of multicomponent enzyme and antibody coatings and maintain their bioactivity. Simulations indicate that hydrophobic patches on protein surfaces induce a site-specific dipole relaxation of PPSU assemblies to non-covalently anchor the proteins without disrupting the protein hydrogen bonding or structure. As a proof of concept, a nanotherapy employing multiple mast-cell-targeted antibodies for preventing anaphylaxis is demonstrated in a humanized mouse model. PPSU nanoparticles displaying an optimized ratio of co-adsorbed anti-Siglec-6 and anti-FcεRIα antibodies effectively inhibit mast cell activation and degranulation, preventing anaphylaxis. Protein immobilization on PPSU surfaces provides a simple and rapid platform for the development of targeted protein nanomedicines.
Collapse
Affiliation(s)
- Fanfan Du
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Clayton H Rische
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yang Li
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Michael P Vincent
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Rebecca A Krier-Burris
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuan Qian
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Simseok A Yuk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Sultan Almunif
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Baofu Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
34
|
Bhowmik R, Shaharyar MA, Sarkar A, Mandal A, Anand K, Shabana H, Mitra A, Karmakar S. Immunopathogenesis of urticaria: a clinical perspective on histamine and cytokine involvement. Inflamm Res 2024; 73:877-896. [PMID: 38555555 DOI: 10.1007/s00011-024-01869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Urticaria is a clinical condition characterized by the appearance of wheals (hives), angioedema, or both. Over the last several decades, a better understanding of the mechanisms at play in the immunopathogenesis of urticaria has underscored the existence of numerous urticaria subtypes. Separating the different kinds of urticaria explicitly helps find the best detection method for the management of this skin disorder. Subtypes of urticaria also include both spontaneous and physical types. The conventional ones include spontaneous urticaria, constituting both acute and chronic urticaria. Therefore, a broad and effective therapy is essential for the diagnosis and treatment of urticaria. METHODS To understand the immunopathogenesis of urticaria, various databases, including PubMed, Scopus, and Web of Science, were used to retrieve original articles and reviews related to urticaria. While information on several clinical trials were obtained from clinicaltrials.gov database. RESULTS This article highlights the immunopathogenesis involved in the intricate interaction between cellular infiltration, immune reactions, coagulation cascades, and autoantibodies that underlie urticaria's pathophysiology. CONCLUSION The recent progress in understanding urticaria can help to understand the intricate characteristics in the immunopathogenesis of urticaria and could play a beneficial role in the management of urticaria.
Collapse
Affiliation(s)
- Rudranil Bhowmik
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Md Adil Shaharyar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Arnab Sarkar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Avishek Mandal
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Kumar Anand
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Humira Shabana
- Chaudhary Charan Singh University, Formerly, Meerut University, Meerut, Uttar Pradesh, India
| | - Achintya Mitra
- Regional Ayurveda Research Institute (RARI) CCRAS Under Ministry of AYUSH, Thapla, Ganiyadeoli, Ranikhet Almora, Uttarakhand, India
| | - Sanmoy Karmakar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
35
|
Canè L, Poto R, Palestra F, Iacobucci I, Pirozzi M, Parashuraman S, Ferrara AL, Illiano A, La Rocca A, Mercadante E, Pucci P, Marone G, Spadaro G, Loffredo S, Monti M, Varricchi G. Thymic Stromal Lymphopoietin (TSLP) Is Cleaved by Human Mast Cell Tryptase and Chymase. Int J Mol Sci 2024; 25:4049. [PMID: 38612858 PMCID: PMC11012384 DOI: 10.3390/ijms25074049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Thymic stromal lymphopoietin (TSLP), mainly expressed by epithelial cells, plays a central role in asthma. In humans, TSLP exists in two variants: the long form TSLP (lfTSLP) and a shorter TSLP isoform (sfTSLP). Macrophages (HLMs) and mast cells (HLMCs) are in close proximity in the human lung and play key roles in asthma. We evaluated the early proteolytic effects of tryptase and chymase released by HLMCs on TSLP by mass spectrometry. We also investigated whether TSLP and its fragments generated by these enzymes induce angiogenic factor release from HLMs. Mass spectrometry (MS) allowed the identification of TSLP cleavage sites caused by tryptase and chymase. Recombinant human TSLP treated with recombinant tryptase showed the production of 1-97 and 98-132 fragments. Recombinant chymase treatment of TSLP generated two peptides, 1-36 and 37-132. lfTSLP induced the release of VEGF-A, the most potent angiogenic factor, from HLMs. By contrast, the four TSLP fragments generated by tryptase and chymase failed to activate HLMs. Long-term TSLP incubation with furin generated two peptides devoid of activating property on HLMs. These results unveil an intricate interplay between mast cell-derived proteases and TSLP. These findings have potential relevance in understanding novel aspects of asthma pathobiology.
Collapse
Affiliation(s)
- Luisa Canè
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- CEINGE Advanced Biotechnologies F. Salvatore, 80131 Naples, Italy; (I.I.); (P.P.)
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Ilaria Iacobucci
- CEINGE Advanced Biotechnologies F. Salvatore, 80131 Naples, Italy; (I.I.); (P.P.)
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Marinella Pirozzi
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
| | - Seetharaman Parashuraman
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Amalia Illiano
- Thoracic Surgery Unit—Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (A.I.); (A.L.R.); (E.M.)
| | - Antonello La Rocca
- Thoracic Surgery Unit—Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (A.I.); (A.L.R.); (E.M.)
| | - Edoardo Mercadante
- Thoracic Surgery Unit—Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (A.I.); (A.L.R.); (E.M.)
| | - Piero Pucci
- CEINGE Advanced Biotechnologies F. Salvatore, 80131 Naples, Italy; (I.I.); (P.P.)
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Maria Monti
- CEINGE Advanced Biotechnologies F. Salvatore, 80131 Naples, Italy; (I.I.); (P.P.)
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
36
|
Morales-Primo AU, Becker I, Pedraza-Zamora CP, Zamora-Chimal J. Th17 Cell and Inflammatory Infiltrate Interactions in Cutaneous Leishmaniasis: Unraveling Immunopathogenic Mechanisms. Immune Netw 2024; 24:e14. [PMID: 38725676 PMCID: PMC11076297 DOI: 10.4110/in.2024.24.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 05/12/2024] Open
Abstract
The inflammatory response during cutaneous leishmaniasis (CL) involves immune and non-immune cell cooperation to contain and eliminate Leishmania parasites. The orchestration of these responses is coordinated primarily by CD4+ T cells; however, the disease outcome depends on the Th cell predominant phenotype. Although Th1 and Th2 phenotypes are the most addressed as steers for the resolution or perpetuation of the disease, Th17 cell activities, especially IL-17 release, are recognized to be vital during CL development. Th17 cells perform vital functions during both acute and chronic phases of CL. Overall, Th17 cells induce the migration of phagocytes (neutrophils, macrophages) to the infection site and CD8+ T cells and NK cell activation. They also provoke granzyme and perforin secretion from CD8+ T cells, macrophage differentiation towards an M2 phenotype, and expansion of B and Treg cells. Likewise, immune cells from the inflammatory infiltrate have modulatory activities over Th17 cells involving their differentiation from naive CD4+ T cells and further expansion by generating a microenvironment rich in optimal cytokines such as IL-1β, TGF-β, IL-6, and IL-21. Th17 cell activities and synergies are crucial for the resistance of the infection during the early and acute stages; however, if unchecked, Th17 cells might lead to a chronic stage. This review discusses the synergies between Th17 cells and the inflammatory infiltrate and how these interactions might destine the course of CL.
Collapse
Affiliation(s)
- Abraham U. Morales-Primo
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| | - Ingeborg Becker
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| | - Claudia Patricia Pedraza-Zamora
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Jaime Zamora-Chimal
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| |
Collapse
|
37
|
Theoharides TC, Twahir A, Kempuraj D. Mast cells in the autonomic nervous system and potential role in disorders with dysautonomia and neuroinflammation. Ann Allergy Asthma Immunol 2024; 132:440-454. [PMID: 37951572 DOI: 10.1016/j.anai.2023.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Mast cells (MC) are ubiquitous in the body, and they are critical for not only in allergic diseases but also in immunity and inflammation, including having potential involvement in the pathophysiology of dysautonomias and neuroinflammatory disorders. MC are located perivascularly close to nerve endings and sites such as the carotid bodies, heart, hypothalamus, the pineal gland, and the adrenal gland that would allow them not only to regulate but also to be affected by the autonomic nervous system (ANS). MC are stimulated not only by allergens but also many other triggers including some from the ANS that can affect MC release of neurosensitizing, proinflammatory, and vasoactive mediators. Hence, MC may be able to regulate homeostatic functions that seem to be dysfunctional in many conditions, such as postural orthostatic tachycardia syndrome, autism spectrum disorder, myalgic encephalomyelitis/chronic fatigue syndrome, and Long-COVID syndrome. The evidence indicates that there is a possible association between these conditions and diseases associated with MC activation. There is no effective treatment for any form of these conditions other than minimizing symptoms. Given the many ways MC could be activated and the numerous mediators released, it would be important to develop ways to inhibit stimulation of MC and the release of ANS-relevant mediators.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida; Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts.
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| |
Collapse
|
38
|
Sieminska I, Pieniawska M, Grzywa TM. The Immunology of Psoriasis-Current Concepts in Pathogenesis. Clin Rev Allergy Immunol 2024; 66:164-191. [PMID: 38642273 PMCID: PMC11193704 DOI: 10.1007/s12016-024-08991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Psoriasis is one of the most common inflammatory skin diseases with a chronic, relapsing-remitting course. The last decades of intense research uncovered a pathological network of interactions between immune cells and other types of cells in the pathogenesis of psoriasis. Emerging evidence indicates that dendritic cells, TH17 cells, and keratinocytes constitute a pathogenic triad in psoriasis. Dendritic cells produce TNF-α and IL-23 to promote T cell differentiation toward TH17 cells that produce key psoriatic cytokines IL-17, IFN-γ, and IL-22. Their activity results in skin inflammation and activation and hyperproliferation of keratinocytes. In addition, other cells and signaling pathways are implicated in the pathogenesis of psoriasis, including TH9 cells, TH22 cells, CD8+ cytotoxic cells, neutrophils, γδ T cells, and cytokines and chemokines secreted by them. New insights from high-throughput analysis of lesional skin identified novel signaling pathways and cell populations involved in the pathogenesis. These studies not only expanded our knowledge about the mechanisms of immune response and the pathogenesis of psoriasis but also resulted in a revolution in the clinical management of patients with psoriasis. Thus, understanding the mechanisms of immune response in psoriatic inflammation is crucial for further studies, the development of novel therapeutic strategies, and the clinical management of psoriasis patients. The aim of the review was to comprehensively present the dysregulation of immune response in psoriasis with an emphasis on recent findings. Here, we described the role of immune cells, including T cells, B cells, dendritic cells, neutrophils, monocytes, mast cells, and innate lymphoid cells (ILCs), as well as non-immune cells, including keratinocytes, fibroblasts, endothelial cells, and platelets in the initiation, development, and progression of psoriasis.
Collapse
Affiliation(s)
- Izabela Sieminska
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Pieniawska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz M Grzywa
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland.
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
39
|
Jayasinghe AMK, Kirindage KGIS, Kim SH, Lee S, Kim KN, Kim EA, Heo SJ, Ahn G. Leaves and pseudostems extract of Curcuma longa attenuates immunoglobulin E/bovine serum albumin-stimulated bone marrow-derived cultured mast cell activation and passive cutaneous anaphylaxis in BALB/c mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117529. [PMID: 38042384 DOI: 10.1016/j.jep.2023.117529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma longa, known as turmeric, is an herbaceous perennial plant belonging to the genus Curcuma. It is dispersed throughout tropical and subtropical regions worldwide. Since ancient times, turmeric has been used as an ethnomedicinal plant in the Ayurvedic system, particularly in Asian countries. Rhizomes of turmeric possess several pharmacological properties that give high value as a medicinal remedy for treating a range of conditions, including inflammation, pain, allergies, and digestive issues. Moreover, turmeric leaves and pseudostems also contain a variety of health-enhancing secondary metabolites, such as curcumin, flavonoids, and other phenolic compounds, which exhibit anti-inflammatory, antitumor, antibacterial, and antioxidant properties. AIM OF THE STUDY Allergic diseases are a group of immune-mediated disorders mainly caused by an immunoglobulin E (IgE)-dependent immunological response to an innocuous allergen. Therefore, this study aimed to investigate the effect of leaves and pseudostems extract of turmeric (TLSWE-8510) on IgE/bovine serum albumin (BSA)-stimulated allergic responses in mouse bone marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in BALB/c mice. MATERIALS AND METHODS The effect of TLSWE-8510 on mast cell degranulation has been evaluated by investigating the release of β-hexosaminidase and histamine in IgE/BSA-stimulated BMCMCs. Additionally, anti-allergic properties of TLSWE-8510 on IgE/BSA-stimulated BMCMCs were investigated using suppression of nuclear factor-kappa B (NF-κB), and spleen tyrosine kinase (Syk)-linker for T-cell activation (LAT)-extracellular-signal-regulated kinase (ERK)-GRB2 associated binding protein 2 (Gab2) signaling pathway and downregulation of allergy-related cytokines and chemokines expression. Furthermore, in vivo, studies were conducted using IgE-mediated PCA in BALB/c mice. RESULTS TLSWE-8510 treatment significantly inhibited the degranulation of IgE/BSA-stimulated BMCMCs by inhibiting the release of β-hexosaminidase and histamine dose-dependently. Additionally, TLSWE-8510 reduced the expression of high-affinity IgE receptors (Fc epsilon receptor I-FcεRI) on the surface of BMCMCs and the binding of IgE to FcεRI. Besides, the expression of cytokines and chemokines is triggered by IgE/BSA stimulation via activating the allergy-related signaling pathways. TLSWE-8510 dose-dependently downregulated the mRNA expression and the production of allergy-related cytokines (interleukin (IL)-1β, IL-3, IL-4, IL-5, IL-6, IL-13, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ), and chemokines (thymus and activation-regulated chemokine (TARC), and regulated upon activation, normal T cell expressed and secreted (RANTES)) by regulating the phosphorylation of downstream signaling molecules, NF-κB, and Syk, LAT, ERK and Gab2 in IgE/BSA-stimulated BMCMCs. Moreover, PCA reaction in IgE/BSA-stimulated BALB/c mice ears was effectively decreased by TLSWE-8510 treatment in a dose-dependent manner. CONCLUSIONS These results collectively demonstrated that TLSWE-8510 suppressed mast cell degranulation by inhibiting the release of chemical mediators related to allergies. TLSWE-8510 downregulated the allergy-related cytokines and chemokines expression and phosphorylation of downstream signaling molecules in IgE/BSA-stimulated BMCMCs. Furthermore, in vivo studies with IgE-mediated PCA reaction in the BALB/c mice ears were attenuated by TLSWE-8510 treatment. These findings revealed that TLSWE-8510 has the potential as a therapeutic agent for the treatment of allergic diseases.
Collapse
Affiliation(s)
| | | | - Sun-Hyung Kim
- French Korea Aromatics Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Seok Lee
- French Korea Aromatics Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Kil-Nam Kim
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, 61751, Republic of Korea.
| | - Eun-A Kim
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea.
| | - Soo-Jin Heo
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea.
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, 59626, Republic of Korea; Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, 59626, Republic of Korea.
| |
Collapse
|
40
|
Fan T, Jiang K, Wang Z, Chang Y, Tian H, Huang J. Crocetin inhibits mast cell-dependent immediate-type allergic reactions through Ca 2+/PLC/IP3 and TNF pathway. Int Immunopharmacol 2024; 128:111583. [PMID: 38286072 DOI: 10.1016/j.intimp.2024.111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Crocetin is a kind of glycocone naturally occurring in Crocus sativus L.. It is an active metabolite produced by biohydrolysis of Crocus sativus L.. Crocetin has anti-cardiovascular diseases and antioxidant effects, but its anti-allergic effect has not been reported. In this study, the inhibitory effect of crocetin on immunoglobulin E (IgE) - mediated allergic reaction and the mechanism of action were investigated. The passive cutaneous anaphylaxis (PCA) was used to elucidate the anti-allergic effects of crocetin in vivo. Degranulation assay, calcium imaging, and cytokine release assay were to evaluate the anti-allergic effect of crocetin in vitro. We found that crocetin IgE-mediated RBL-2H3 cell degranulation and allergy both in vitro and in vivo. The TNF pathway was inhibited by crocetin in our RNA-seq sequences, Furthermore, crocetin inhibits IgE-mediated calcium influx, and PLC / IP3 phosphorylation in RBL-2H3 cells. Our findings suggested that crocetin revealed prominent anti-allergy activity through TNF and Ca2+/PLC/IP3 pathway.
Collapse
Affiliation(s)
- Ting Fan
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Kai Jiang
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zixiao Wang
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yu Chang
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hua Tian
- Department of Respiratory and geriatrics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Jing Huang
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
41
|
Xiang Z, Yin X, Wei L, Peng M, Zhu Q, Lu X, Guo J, Zhang J, Li X, Zou Y. LILRB4 Checkpoint for Immunotherapy: Structure, Mechanism and Disease Targets. Biomolecules 2024; 14:187. [PMID: 38397424 PMCID: PMC10887124 DOI: 10.3390/biom14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
LILRB4, a myeloid inhibitory receptor belonging to the family of leukocyte immunoglobulin-like receptors (LILRs/LIRs), plays a pivotal role in the regulation of immune tolerance. LILRB4 primarily mediates suppressive immune responses by transmitting inhibitory signals through immunoreceptor tyrosine-based inhibitory motifs (ITIMs). This immune checkpoint molecule has gained considerable attention due to its potent regulatory functions. Its ability to induce effector T cell dysfunction and promote T suppressor cell differentiation has been demonstrated, indicating the therapeutic potential of LILRB4 for modulating excessive immune responses, particularly in autoimmune diseases or the induction of transplant tolerance. Additionally, through intervening with LILRB4 molecules, immune system responsiveness can be adjusted, representing significant value in areas such as cancer treatment. Thus, LILRB4 has emerged as a key player in addressing autoimmune diseases, transplant tolerance induction, and other medical issues. In this review, we provide a comprehensive overview of LILRB4, encompassing its structure, expression, and ligand molecules as well as its role as a tolerance receptor. By exploring the involvement of LILRB4 in various diseases, its significance in disease progression is emphasized. Furthermore, we propose that the manipulation of LILRB4 represents a promising immunotherapeutic strategy and highlight its potential in disease prevention, treatment and diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yizhou Zou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (Z.X.); (X.Y.); (L.W.); (M.P.); (Q.Z.); (X.L.); (J.G.); (J.Z.); (X.L.)
| |
Collapse
|
42
|
Abud EM, White AA. Mast Cells in Aspirin-Exacerbated Respiratory Disease. Curr Allergy Asthma Rep 2024; 24:73-80. [PMID: 38217825 DOI: 10.1007/s11882-024-01125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
PURPOSE OF REVIEW Aspirin-exacerbated respiratory disease (AERD) is a syndrome of high type 2 inflammation and is known to critically involve mast cell activation. The mast cell is an important cell in the baseline inflammatory processes in the upper and lower airway by maintaining and amplifying type 2 inflammation. But it also is prominent in the hypersensitivity reaction to COX-1 inhibition which defines this condition. RECENT FINDINGS Recent work highlights the mast cell as a focal point in AERD pathogenesis. Using AERD as a specific model of both high type 2 asthma and chronic sinusitis, the role of mast cell activity can be better understood in other aspects of airway inflammation. Further dissecting out the mechanism of COX-1-mediated mast cell activation in AERD will be an important next phase in our understanding of NSAID-induced hypersensitivity as well as AERD pathophysiology.
Collapse
Affiliation(s)
- Edsel M Abud
- Division of Allergy, Asthma, and Immunology, Scripps Clinic, San Diego, USA
- Scripps Research Translational Institute, Scripps Research, San Diego, USA
| | - Andrew A White
- Division of Allergy, Asthma, and Immunology, Scripps Clinic, San Diego, USA.
| |
Collapse
|
43
|
Elieh-Ali-Komi D, Bot I, Rodríguez-González M, Maurer M. Cellular and Molecular Mechanisms of Mast Cells in Atherosclerotic Plaque Progression and Destabilization. Clin Rev Allergy Immunol 2024; 66:30-49. [PMID: 38289515 DOI: 10.1007/s12016-024-08981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/28/2024]
Abstract
Mast cells (MCs) are commonly recognized for their crucial involvement in the pathogenesis of allergic diseases, but over time, it has come to light that they also play a role in the pathophysiology of non-allergic disorders including atherosclerosis. The involvement of MCs in the pathology of atherosclerosis is supported by their accumulation in atherosclerotic plaques upon their progression and the association of intraplaque MC numbers with acute cardiovascular events. MCs that accumulate within the atherosclerotic plaque release a cocktail of mediators through which they contribute to neovascularization, plaque progression, instability, erosion, rupture, and thrombosis. At a molecular level, MC-released proteases, especially cathepsin G, degrade low-density lipoproteins (LDL) and mediate LDL fusion and binding of LDL to proteoglycans (PGs). Through a complicated network of chemokines including CXCL1, MCs promote the recruitment of among others CXCR2+ neutrophils, therefore, aggravating the inflammation of the plaque environment. Additionally, MCs produce extracellular traps which worsen inflammation and contribute to atherothrombosis. Altogether, evidence suggests that MCs actively, via several underlying mechanisms, contribute to atherosclerotic plaque destabilization and acute cardiovascular syndromes, thus, making the study of interventions to modulate MC activation an interesting target for cardiovascular medicine.
Collapse
Affiliation(s)
- Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| |
Collapse
|
44
|
Wang Y, Liu Z, Zhou W, Wang J, Li R, Peng C, Jiao L, Zhang S, Liu Z, Yu Z, Sun J, Deng Q, Duan S, Tan W, Wang Y, Song L, Guo F, Zhou Z, Wang Y, Zhou L, Jiang H, Yu L. Mast cell stabilizer, an anti-allergic drug, reduces ventricular arrhythmia risk via modulation of neuroimmune interaction. Basic Res Cardiol 2024; 119:75-91. [PMID: 38172251 DOI: 10.1007/s00395-023-01024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Mast cells (MCs) are important intermediates between the nervous and immune systems. The cardiac autonomic nervous system (CANS) crucially modulates cardiac electrophysiology and arrhythmogenesis, but whether and how MC-CANS neuroimmune interaction influences arrhythmia remain unclear. Our clinical data showed a close relationship between serum levels of MC markers and CANS activity, and then we use mast cell stabilizers (MCSs) to alter this MC-CANS communication. MCSs, which are well-known anti-allergic agents, could reduce the risk of ventricular arrhythmia (VA) after myocardial infarction (MI). RNA-sequencing (RNA-seq) analysis to investigate the underlying mechanism by which MCSs could affect the left stellate ganglion (LSG), a key therapeutic target for modulating CANS, showed that the IL-6 and γ-aminobutyric acid (GABA)-ergic system may be involved in this process. Our findings demonstrated that MCSs reduce VA risk along with revealing the potential underlying antiarrhythmic mechanisms.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Wenjie Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Jun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Rui Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Chen Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Liying Jiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Song Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Zhongyang Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Ji Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Qiang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Shoupeng Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Wuping Tan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Yijun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Lingpeng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Fuding Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Zhen Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Yueyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China.
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
45
|
Tiligada E, Gafarov D, Zaimi M, Vitte J, Levi-Schaffer F. Novel Immunopharmacological Drugs for the Treatment of Allergic Diseases. Annu Rev Pharmacol Toxicol 2024; 64:481-506. [PMID: 37722722 DOI: 10.1146/annurev-pharmtox-051623-091038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The exponential rise in the prevalence of allergic diseases since the mid-twentieth century has led to a genuine public health emergency and has also fostered major progress in research on the underlying mechanisms and potential treatments. The management of allergic diseases benefits from the biological revolution, with an array of novel immunomodulatory therapeutic and investigational tools targeting players of allergic inflammation at distinct pathophysiological steps. Prominent examples include therapeutic monoclonal antibodies against cytokines, alarmins, and their receptors, as well as small-molecule modifiers of signal transduction mainly mediated by Janus kinases and Bruton's tyrosine kinases. However, the first-line therapeutic options have yet to switch from symptomatic to disease-modifying interventions. Here we present an overview of available drugs in the context of our current understanding of allergy pathophysiology, identify potential therapeutic targets, and conclude by providing a selection of candidate immunopharmacological molecules under investigation for potential future use in allergic diseases.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| | - Daria Gafarov
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| | - Maria Zaimi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joana Vitte
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
- Desbrest Institute of Epidemiology and Public Health, University of Montpellier, INSERM
- Montpellier, France
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
46
|
Zhu L, Jian X, Zhou B, Liu R, Muñoz M, Sun W, Xie L, Chen X, Peng C, Maurer M, Li J. Gut microbiota facilitate chronic spontaneous urticaria. Nat Commun 2024; 15:112. [PMID: 38168034 PMCID: PMC10762022 DOI: 10.1038/s41467-023-44373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Chronic spontaneous urticaria (CSU) comes with gut dysbiosis, but its relevance remains elusive. Here we use metagenomics sequencing and short-chain fatty acids metabolomics and assess the effects of human CSU fecal microbial transplantation, Klebsiella pneumoniae, Roseburia hominis, and metabolites in vivo. CSU gut microbiota displays low diversity and short-chain fatty acids production, but high gut Klebsiella pneumoniae levels, negatively correlates with blood short-chain fatty acids levels and links to high disease activity. Blood lipopolysaccharide levels are elevated, link to rapid disease relapse, and high gut levels of conditional pathogenic bacteria. CSU microbiome transfer and Klebsiella pneumoniae transplantation facilitate IgE-mediated mast cell(MC)-driven skin inflammatory responses and increase intestinal permeability and blood lipopolysaccharide accumulation in recipient mice. Transplantation of Roseburia hominis and caproate administration protect recipient mice from MC-driven skin inflammation. Here, we show gut microbiome alterations, in CSU, may reduce short-chain fatty acids and increase lipopolysaccharide levels, respectively, and facilitate MC-driven skin inflammation.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xingxing Jian
- Bioinformatics Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bingjing Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Runqiu Liu
- Department of Dermatology, the First people's Hospital of Yancheng, Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, China
| | - Melba Muñoz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Wan Sun
- BGI, Complex building, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Lu Xie
- Bioinformatics Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
47
|
Metz M, Kolkhir P, Altrichter S, Siebenhaar F, Levi-Schaffer F, Youngblood BA, Church MK, Maurer M. Mast cell silencing: A novel therapeutic approach for urticaria and other mast cell-mediated diseases. Allergy 2024; 79:37-51. [PMID: 37605867 DOI: 10.1111/all.15850] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023]
Abstract
Chronic urticaria (CU) is a mast cell (MC)-dependent disease with limited therapeutic options. Current management strategies are directed at inhibiting IgE-mediated activation of MCs and antagonizing effects of released mediators. Due to the complexity and heterogeneity of CU and other MC diseases and mechanisms of MC activation-including multiple activating receptors and ligands, diverse signaling pathways, and a menagerie of mediators-strategies of MC depletion or MC silencing (i.e., inhibition of MC activation via binding of inhibitory receptors) have been developed to overcome limitations of singularly targeted agents. MC silencers, such as agonist monoclonal antibodies that engage inhibitory receptors (e.g., sialic acid-binding immunoglobulin-like lectin8 -[Siglec-8] [lirentelimab/AK002], Siglec-6 [AK006], and CD200R [LY3454738]), have reached preclinical and clinical stages of development. In this review, we (1) describe the role of MCs in the pathogenesis of CU, highlighting similarities with other MC diseases in disease mechanisms and response to treatment; (2) explore current therapeutic strategies, categorized by nonspecific immunosuppression, targeted inhibition of MC activation or mediators, and targeted modulation of MC activity; and (3) introduce the concept of MC silencing as an emerging strategy that could selectively block activation of MCs without eliciting or exacerbating on- or off-target, immunosuppressive adverse effects.
Collapse
Affiliation(s)
- Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Pavel Kolkhir
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Sabine Altrichter
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
- Department of Dermatology and Venerology, Kepler University Hospital, Linz, Austria
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Martin K Church
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| |
Collapse
|
48
|
Giménez-Arnau AM, Manzanares N, Podder I. Recent updates in urticaria. Med Clin (Barc) 2023; 161:435-444. [PMID: 37537021 DOI: 10.1016/j.medcli.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 08/05/2023]
Abstract
Urticaria is a skin-condition characterized by sudden-onset pruritic wheals with/without angioedema. Urticaria can be acute or chronic. Chronic urticaria may be spontaneous or inducible, based on absence/presence of specific triggers. Chronic spontaneous urticaria is most frequent (∼80%). Urticaria is primarily a mast-cell mediated histaminergic-disorder. Recently, other inflammatory cells and pro-inflammatory cytokines have been implicated. Deeper understanding has unmasked two endotypes - IgE-mediated type I autoimmunity/autoallergy and IgG-mediated type IIb autoimmunity. Current treatment recommendation involving second-generation H1-antihistamines, omalizumab and cyclosporine is effective in 60-80% patients. So, newer treatment options are being explored based on emerging targets. Despite being non-lethal, urticaria considerably impairs patient's quality-of-life and may be associated with extra-cutaneous comorbidities. Several "patient reported outcome measures" have been proposed to evaluate disease-activity, impact and control, for effective treatment modulation till complete disease control. This review discusses the current understanding about urticaria and its future directions, to facilitate optimum evidenced-based care.
Collapse
Affiliation(s)
- Ana M Giménez-Arnau
- Department of Dermatology, Hospital del Mar-IMIM, Universitat Pompeu Fabra de Barcelona, Spain.
| | - Nerea Manzanares
- Department of Dermatology, Hospital del Mar-IMIM, Universitat Pompeu Fabra de Barcelona, Spain
| | - Indrashis Podder
- Department of Dermatology, College of Medicine and Sagore Dutta Hospital, Kolkata 700058, West Bengal, India
| |
Collapse
|
49
|
Pyatilova P, Bernstein JA, Aulenbacher F, Borges MS, Dimitrijević S, Hoehn G, Maurer M, Kolkhir P, Siebenhaar F. The diagnostic workup for systemic mastocytosis differs from consensus recommendations: Results of a worldwide survey. World Allergy Organ J 2023; 16:100838. [PMID: 38020286 PMCID: PMC10661596 DOI: 10.1016/j.waojou.2023.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Mastocytosis is a complex disorder affecting various organs. The diagnostic workup can be challenging and requires a multidisciplinary approach including the use of uncommon tests. To assess mastocytosis management around the globe, we conducted the first worldwide online survey for physicians. Methods A 21-item questionnaire was sent out to the members of the World Allergy Organization (WAO), the Global Allergy and Asthma European Network (GA2LEN), the Urticaria (UCARE) and Angioedema (ACARE) Centers of Reference and Excellence, the German Society of Allergology and Clinical Immunology (DGAKI), and the European Mast Cell and Basophil Research Network (EMBRN) in April-June 2021. Results Across 628 respondents from 79 countries 87.7% and 9.7% of physicians were allergists/clinical immunologists and/or dermatologists. Participating physicians were from all regions of the world (Europe, EU: 41.6%; North America, NA: 24.8%; Latin America, LA: 14.5%; Asia-Pacific, AP: 12.6%; and Africa/Middle East, AME: 6.5%). Only 2.2% of respondents worked at Specialized Mastocytosis Centers (SMCs) in North America or European Union. Physicians reported caring for 4 patients with mastocytosis per year, with higher numbers in European Union and Asia Pacific (5/year) compared to Latin America (2/year). Dermatologists and physicians who work at SMCs reported higher patient numbers (15/year and 80/year, respectively). Suspicion of mastocytosis in the allergology and dermatology community is commonly driven by anaphylaxis (82.9%), mastocytosis skin lesions (82.1%), or elevated tryptase levels (76.6%). Osteoporosis and gastrointestinal symptoms less often prompted suspicion of mastocytosis (21.4% and 49.9%, respectively). World Health Organisation (WHO)-diagnostic criteria and classification, regardless of the region, are only used by about 50% of physicians, with higher rates for SMCs (83.3%). Serum tryptase, bone marrow biopsy, and KIT D816V mutation analysis are included in the diagnostic workup by 90.9%, 61.5%, and 58.4% of physicians, respectively. The biggest challenges for the management of mastocytosis are the lack of more effective treatment options (51.1%), missing multidisciplinary networks (47.1%), and the lack of experience of specialists from other disciplines (39.0%). Conclusions The diagnostic workup for mastocytosis differs from consensus recommendations and varies between regions. This may be improved by establishing active multidisciplinary networks, increasing access to diagnostic procedures, consistently applying WHO criteria, and developing new Mastocytosis Centers of Reference and Excellence.
Collapse
Affiliation(s)
- Polina Pyatilova
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Jonathan A. Bernstein
- Allergy Section, Division of Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Felix Aulenbacher
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Mario Sanchez Borges
- Allergy and Clinical Immunology Department, Centro Médico Docente La Trinidad and Clinica El Ávila, Caracas, Venezuela
| | | | - Gerard Hoehn
- Blueprint Medicines Corporation, Cambridge, MA, USA
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Pavel Kolkhir
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Frank Siebenhaar
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| |
Collapse
|
50
|
Negi SS, Schein CH, Braun W. The updated Structural Database of Allergenic Proteins (SDAP 2.0) provides 3D models for allergens and incorporated bioinformatics tools. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100162. [PMID: 37781674 PMCID: PMC10509899 DOI: 10.1016/j.jacig.2023.100162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 10/03/2023]
Abstract
Background Allergenic proteins can cause IgE-mediated adverse reactions in sensitized individuals. Although the sequences of many allergenic proteins have been identified, bioinformatics data analysis with advanced computational methods and modeling is needed to identify the basis for IgE binding and cross-reactivity. Objective We aim to present the features and use of the updated Structural Database of Allergenic Proteins 2.0 (SDAP 2.0) webserver, a unique, publicly available resource to compare allergens using specially designed computational tools and new high-quality 3-D models for most known allergens. Methods Previously developed and novel software tools for identifying cross-reactive allergens using sequence and structure similarity are implemented in SDAP 2.0. A comprehensive set of high-quality 3-D models of most allergens was generated with the state-of-the-art AlphaFold 2 software. A graphics tool enables the interactive visualization of IgE epitopes on experimentally determined and modeled 3-D structures. Results A user can search for allergens similar to a given input sequence with the FASTA algorithm or the window-based World Health Organization/International Union of Immunological Societies (WHO/IUIS) guidelines on safety concerns of novel food products. Peptides similar to known IgE epitopes can be identified with the property distance tool and conformational epitopes by the Cross-React method. The updated database contains 1657 manually curated sequences including all allergens from the IUIS database, 334 experimentally determined X-ray or NMR structures, and 1565 3-D models. Each allergen/isoallergen is classified according to its protein family. Conclusions SDAP provides access to the steadily increasing information on allergenic structures and epitopes with integrated bioinformatics tools to identify and analyze their similarities. In addition to serving the research and regulatory community, it provides clinicians with tools to identify potential coallergies in a sensitive patient and can help companies to design hypoallergenic foods and immunotherapies.
Collapse
Affiliation(s)
- Surendra S. Negi
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Tex
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Tex
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Tex
| | - Catherine H. Schein
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Tex
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Tex
| | - Werner Braun
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Tex
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Tex
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Tex
| |
Collapse
|