1
|
Shapiro JR, Corrado M, Perry J, Watts TH, Bolotin S. The contributions of T cell-mediated immunity to protection from vaccine-preventable diseases: A primer. Hum Vaccin Immunother 2024; 20:2395679. [PMID: 39205626 PMCID: PMC11364080 DOI: 10.1080/21645515.2024.2395679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
In the face of the ever-present burden of emerging and reemerging infectious diseases, there is a growing need to comprehensively assess individual- and population-level immunity to vaccine-preventable diseases (VPDs). Many of these efforts, however, focus exclusively on antibody-mediated immunity, ignoring the role of T cells. Aimed at clinicians, public health practioners, and others who play central roles in human vaccine research but do not have formal training in immunology, we review how vaccines against infectious diseases elicit T cell responses, what types of vaccines elicit T cell responses, and how T cell responses are measured. We then use examples to demonstrate six ways that T cells contribute to protection from VPD, including directly mediating protection, enabling antibody responses, reducing disease severity, increasing cross-reactivity, improving durability, and protecting special populations. We conclude with a discussion of challenges and solutions to more widespread consideration of T cell responses in clinical vaccinology.
Collapse
Affiliation(s)
- Janna R. Shapiro
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Mario Corrado
- Division of General Internal Medicine, University of Toronto, Toronto, ON, Canada
| | - Julie Perry
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Tania H. Watts
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Shelly Bolotin
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Health Protection, Public Health Ontario, Toronto, ON, Canada
| |
Collapse
|
2
|
Vera-Peralta H, Ruffié C, Najburg V, Brione M, Combredet C, Frantz P, Tournier JN, Tangy F, Mura M. Induction of tissue resident memory T cells by measles vaccine vector. Hum Vaccin Immunother 2024; 20:2436241. [PMID: 39693193 DOI: 10.1080/21645515.2024.2436241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Measles live attenuated vaccine (MV) induces strong humoral and cellular systemic memory responses allowing the successful control of measles since decades. MV has also been adapted into a promising vaccine platform with several vaccine candidates in clinical development. To understand and document the tissue-scaled memory response induced by MV, we explored the specific induction and persistence of resident memory T cells (Trm) in the lungs and the liver, two critical targeted tissues for vaccine development against several diseases. Trm are a subset of non-circulating highly specialized T cells. They are found at multiple barrier and mucosal sites, conveniently positioned to rapidly react against pathogens. The induction of Trm in different tissues is therefore critical for vaccine development. We demonstrated in mice the rapid generation of MV-specific and vectorized antigen-specific Trm in the liver and the lungs after a single dose, whatever the route of immunization. The intranasal route induced more Trm in the lungs than other routes, confirming the potential of intranasal vaccine administration of replicative viral vectors to generate a strong pulmonary immune response. MV-specific Trm cells were functionally active, with CD8+ Trm secreting granzyme B upon in vitro restimulation and CD4+ Trm cells secreting IFN-γ and TNF-α. We confirmed in human lymphocytes this tissue tropism by showing an overexpression of homing receptors directing them to epithelial and inflamed tissues. Vaccination strategies able to induce Trm cells at key sites represent a promising field to improve current vaccines, prioritize vaccine platforms and design future vaccines with enhanced protective efficacy.
Collapse
Affiliation(s)
- Heidy Vera-Peralta
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
- Interactions hôte-pathogène, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Claude Ruffié
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Valérie Najburg
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Matthias Brione
- Interactions hôte-pathogène, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Chantal Combredet
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Phanramphoei Frantz
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Jean-Nicolas Tournier
- Division recherche et innovation, Académie du Service de santé des armées, Paris, France
| | - Frédéric Tangy
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Marie Mura
- Interactions hôte-pathogène, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| |
Collapse
|
3
|
Xu H, Yue M, Zhou R, Wang P, Wong MYC, Wang J, Huang H, Chen B, Mo Y, Tam RCY, Zhou B, Du Z, Huang H, Liu L, Tan Z, Yuen KY, Song Y, Chen H, Chen Z. A Prime-Boost Vaccination Approach Induces Lung Resident Memory CD8+ T Cells Derived from Central Memory T Cells That Prevent Tumor Lung Metastasis. Cancer Res 2024; 84:3173-3188. [PMID: 39350665 PMCID: PMC11443216 DOI: 10.1158/0008-5472.can-23-3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/15/2024] [Accepted: 07/16/2024] [Indexed: 10/04/2024]
Abstract
Memory T cells play a key role in immune protection against cancer. Vaccine-induced tissue-resident memory T (TRM) cells in the lung have been shown to protect against lung metastasis. Identifying the source of lung TRM cells can help to improve strategies, preventing tumor metastasis. Here, we found that a prime-boost vaccination approach using intramuscular DNA vaccine priming, followed by intranasal live-attenuated influenza-vectored vaccine (LAIV) boosting induced higher frequencies of lung CD8+ TRM cells compared with other vaccination regimens. Vaccine-induced lung CD8+ TRM cells, but not circulating memory T cells, conferred significant protection against metastatic melanoma and mesothelioma. Central memory T (TCM) cells induced by the DNA vaccination were major precursors of lung TRM cells established after the intranasal LAIV boost. Single-cell RNA sequencing analysis indicated that transcriptional reprogramming of TCM cells for differentiation into TRM cells in the lungs started as early as day 2 post the LAIV boost. Intranasal LAIV altered the mucosal microenvironment to recruit TCM cells via CXCR3-dependent chemotaxis and induced CD8+ TRM-associated transcriptional programs. These results identified TCM cells as the source of vaccine-induced CD8+ TRM cells that protect against lung metastasis. Significance: Prime-boost vaccination shapes the mucosal microenvironment and reprograms central memory T cells to generate lung resident memory T cells that protect against lung metastasis, providing insights for the optimization of vaccine strategies.
Collapse
Affiliation(s)
- Haoran Xu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ming Yue
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- School of Biomedical Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Pui Wang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Michael Yik-Chun Wong
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jinlin Wang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Huarong Huang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Bohao Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Yufei Mo
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Rachel Chun-Yee Tam
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Biao Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Zhenglong Du
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Haode Huang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Li Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Zhiwu Tan
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- Center for Virology, Vaccinology and Therapeutics, Hong Kong, People's Republic of China
| | - Youqiang Song
- School of Biomedical Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Honglin Chen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- Center for Virology, Vaccinology and Therapeutics, Hong Kong, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- Center for Virology, Vaccinology and Therapeutics, Hong Kong, People's Republic of China
| |
Collapse
|
4
|
Mosmann TR, McMichael AJ, LeVert A, McCauley JW, Almond JW. Opportunities and challenges for T cell-based influenza vaccines. Nat Rev Immunol 2024; 24:736-752. [PMID: 38698082 DOI: 10.1038/s41577-024-01030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Vaccination remains our main defence against influenza, which causes substantial annual mortality and poses a serious pandemic threat. Influenza virus evades immunity by rapidly changing its surface antigens but, even when the vaccine is well matched to the current circulating virus strains, influenza vaccines are not as effective as many other vaccines. Influenza vaccine development has traditionally focused on the induction of protective antibodies, but there is mounting evidence that T cell responses are also protective against influenza. Thus, future vaccines designed to promote both broad T cell effector functions and antibodies may provide enhanced protection. As we discuss, such vaccines present several challenges that require new strategic and economic considerations. Vaccine-induced T cells relevant to protection may reside in the lungs or lymphoid tissues, requiring more invasive assays to assess the immunogenicity of vaccine candidates. T cell functions may contain and resolve infection rather than completely prevent infection and early illness, requiring vaccine effectiveness to be assessed based on the prevention of severe disease and death rather than symptomatic infection. It can be complex and costly to measure T cell responses and infrequent clinical outcomes, and thus innovations in clinical trial design are needed for economic reasons. Nevertheless, the goal of more effective influenza vaccines justifies renewed and intensive efforts.
Collapse
Affiliation(s)
- Tim R Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew J McMichael
- Centre for Immuno-Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | | | | | - Jeffrey W Almond
- The Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Younis BM, Wiggins R, Khalil EAG, Osman M, Santoro F, Sonnati C, Keding A, Novedrati M, Montesi G, Noureldein A, Elmukashfi ETA, Mustafa AE, Alamin M, Saeed M, Salman K, Suliman AJ, Musa AEA, Layton AM, Lacey CJN, Kaye PM, Musa AM. A randomized, double-blind phase 2b trial to evaluate efficacy of ChAd63-KH for treatment of post kala-azar dermal leishmaniasis. Mol Ther Methods Clin Dev 2024; 32:101310. [PMID: 39253357 PMCID: PMC11381778 DOI: 10.1016/j.omtm.2024.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024]
Abstract
In a recent phase 2a clinical trial, the candidate leishmaniasis vaccine ChAd63-KH was shown to be safe and immunogenic in Sudanese patients with post kala-azar dermal leishmaniasis (PKDL). However, its value as a stand-alone therapeutic was unknown. To assess the therapeutic efficacy of ChAd63-KH, we conducted a randomized, double-blind, placebo-controlled phase 2b trial (ClinicalTrials.gov: NCT03969134). Primary outcomes were safety and efficacy (≥90% improvement in clinical disease). Secondary outcomes were change in severity grade and vaccine-induced immune response. 86 participants with uncomplicated PKDL of ≥6 month duration were randomized to receive ChAd63-KH (7.5 × 1010 viral particles, once by the intramuscular route) or placebo. 75 participants (87%) completed the trial as per protocol. No severe or serious adverse events were observed. At day 90 post-vaccination, 6/40 (15%) and 4/35 (11%) participants in the vaccine and placebo groups, respectively, showed ≥90% clinical improvement (risk ratio [RR] 1.31 [95% confidence interval (CI), 0.40-4.28], p = 0.742). There were also no significant differences in PKDL severity grade between study arms. Whole-blood transcriptomic analysis identified transcriptional modules associated with interferon responses and monocyte and dendritic cell activation. Thus, a single vaccination with ChAd63-KH showed no therapeutic efficacy in this subset of Sudanese patients with PKDL.
Collapse
Affiliation(s)
- Brima M Younis
- Department of Clinical Pathology & Immunology, Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan
| | - Rebecca Wiggins
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York YO10 5DD, UK
| | - Eltahir A G Khalil
- Department of Clinical Pathology & Immunology, Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan
| | - Mohamed Osman
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York YO10 5DD, UK
| | - Francesco Santoro
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Chiara Sonnati
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Ada Keding
- Department of Health Sciences, University of York, Heslington, York YO10 5DD, UK
| | - Maria Novedrati
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Giorgio Montesi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Ali Noureldein
- Department of Clinical Pathology & Immunology, Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan
| | - Elmukashfi T A Elmukashfi
- Department of Clinical Pathology & Immunology, Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan
| | - Ala Eldin Mustafa
- Department of Clinical Pathology & Immunology, Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan
| | - Mohammed Alamin
- Department of Clinical Pathology & Immunology, Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan
| | - Mohammed Saeed
- Department of Clinical Pathology & Immunology, Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan
| | - Khalid Salman
- Department of Clinical Pathology & Immunology, Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan
| | - Ahmed J Suliman
- Department of Clinical Pathology & Immunology, Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan
| | - Amin E A Musa
- Department of Clinical Pathology & Immunology, Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan
| | - Alison M Layton
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York YO10 5DD, UK
| | - Charles J N Lacey
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York YO10 5DD, UK
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York YO10 5DD, UK
| | - Ahmed M Musa
- Department of Clinical Pathology & Immunology, Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan
| |
Collapse
|
6
|
Singh A, Boggiano C, Yin DE, Polakowski L, Majji SP, Leitner WW, Levy O, De Paris K. Precision adjuvants for pediatric vaccines. Sci Transl Med 2024; 16:eabq7378. [PMID: 39231242 DOI: 10.1126/scitranslmed.abq7378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Elucidating optimal vaccine adjuvants for harnessing age-specific immune pathways to enhance magnitude, breadth, and durability of immunogenicity remains a key gap area in pediatric vaccine design. A better understanding of age-specific adjuvants will inform precision discovery and development of safe and effective vaccines for protecting children from preventable infectious diseases.
Collapse
Affiliation(s)
- Anjali Singh
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - César Boggiano
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Dwight E Yin
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Laura Polakowski
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Sai P Majji
- Maternal and Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - Wolfgang W Leitner
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Garcia Castillo J, DeBarge R, Mende A, Tenvooren I, Marquez DM, Straub A, Busch DH, Spitzer MH, DuPage M. A mass cytometry method pairing T cell receptor and differentiation state analysis. Nat Immunol 2024; 25:1754-1763. [PMID: 39191945 DOI: 10.1038/s41590-024-01937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/16/2024] [Indexed: 08/29/2024]
Abstract
T cell antigen receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we present a mass cytometric (CyTOF) approach to track T cell responses by combining antibodies for specific TCR Vα and Vβ chains with antibodies against T cell activation and differentiation proteins in mice. This strategy identifies expansions of CD8+ and CD4+ T cells expressing specific Vβ and Vα chains with varying differentiation states in response to Listeria monocytogenes, tumors and respiratory influenza infection. Expanded T cell populations expressing Vβ chains could be directly linked to the recognition of specific antigens from Listeria, tumor cells or influenza. In the setting of influenza infection, we found that common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the TCR diversity and differentiation state of responding T cells. Thus, we present a method to monitor broad changes in TCR use paired with T cell phenotyping during adaptive immune responses.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Mice
- Listeria monocytogenes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Listeriosis/immunology
- Flow Cytometry/methods
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Mice, Inbred C57BL
- Orthomyxoviridae Infections/immunology
- Lymphocyte Activation/immunology
- CD4-Positive T-Lymphocytes/immunology
- Adaptive Immunity
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rachel DeBarge
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Abigail Mende
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany; Partner site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
8
|
Andreacchio G, Longo Y, Moreno Mascaraque S, Anandasothy K, Tofan S, Özün E, Wilschrey L, Ptok J, Huynh DT, Luirink J, Drexler I. Viral Vector-Based Chlamydia trachomatis Vaccines Encoding CTH522 Induce Distinct Immune Responses in C57BL/6J and HLA Transgenic Mice. Vaccines (Basel) 2024; 12:944. [PMID: 39204067 PMCID: PMC11360449 DOI: 10.3390/vaccines12080944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Chlamydia trachomatis remains a major global health problem with increasing infection rates, requiring innovative vaccine solutions. Modified Vaccinia Virus Ankara (MVA) is a well-established, safe and highly immunogenic vaccine vector, making it a promising candidate for C. trachomatis vaccine development. In this study, we evaluated two novel MVA-based recombinant vaccines expressing spCTH522 and CTH522:B7 antigens. Our results show that while both vaccines induced CD4+ T-cell responses in C57BL/6J mice, they failed to generate antigen-specific systemic CD8+ T cells. Only the membrane-anchored CTH522 elicited strong IgG2b and IgG2c antibody responses. In an HLA transgenic mouse model, both recombinant MVAs induced Th1-directed CD4+ T cell and multifunctional CD8+ T cells, while only the CTH522:B7 vaccine generated antibody responses, underscoring the importance of antigen localization. Collectively, our data indicate that distinct antigen formulations can induce different immune responses depending on the mouse strain used. This research contributes to the development of effective vaccines by highlighting the importance of careful antigen design and the selection of appropriate animal models to study specific vaccine-induced immune responses. Future studies should investigate whether these immune responses provide protection in humans and should explore different routes of immunization, including mucosal and systemic immunization.
Collapse
Affiliation(s)
- Giuseppe Andreacchio
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Ylenia Longo
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Sara Moreno Mascaraque
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Kartikan Anandasothy
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Sarah Tofan
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Esma Özün
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Lena Wilschrey
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Johannes Ptok
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Dung T. Huynh
- R&D Department, Abera Bioscience AB, 75184 Uppsala, Sweden
| | - Joen Luirink
- R&D Department, Abera Bioscience AB, 75184 Uppsala, Sweden
| | - Ingo Drexler
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| |
Collapse
|
9
|
Shen A, Garrett A, Chao CC, Liu D, Cheng C, Wang Z, Qian C, Zhu Y, Mai J, Jiang C. A comprehensive meta-analysis of tissue resident memory T cells and their roles in shaping immune microenvironment and patient prognosis in non-small cell lung cancer. Front Immunol 2024; 15:1416751. [PMID: 39040095 PMCID: PMC11260734 DOI: 10.3389/fimmu.2024.1416751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Tissue-resident memory T cells (TRM) are a specialized subset of long-lived memory T cells that reside in peripheral tissues. However, the impact of TRM-related immunosurveillance on the tumor-immune microenvironment (TIME) and tumor progression across various non-small-cell lung cancer (NSCLC) patient populations is yet to be elucidated. Our comprehensive analysis of multiple independent single-cell and bulk RNA-seq datasets of patient NSCLC samples generated reliable, unique TRM signatures, through which we inferred the abundance of TRM in NSCLC. We discovered that TRM abundance is consistently positively correlated with CD4+ T helper 1 cells, M1 macrophages, and resting dendritic cells in the TIME. In addition, TRM signatures are strongly associated with immune checkpoint and stimulatory genes and the prognosis of NSCLC patients. A TRM-based machine learning model to predict patient survival was validated and an 18-gene risk score was further developed to effectively stratify patients into low-risk and high-risk categories, wherein patients with high-risk scores had significantly lower overall survival than patients with low-risk. The prognostic value of the risk score was independently validated by the Cancer Genome Atlas Program (TCGA) dataset and multiple independent NSCLC patient datasets. Notably, low-risk NSCLC patients with higher TRM infiltration exhibited enhanced T-cell immunity, nature killer cell activation, and other TIME immune responses related pathways, indicating a more active immune profile benefitting from immunotherapy. However, the TRM signature revealed low TRM abundance and a lack of prognostic association among lung squamous cell carcinoma patients in contrast to adenocarcinoma, indicating that the two NSCLC subtypes are driven by distinct TIMEs. Altogether, this study provides valuable insights into the complex interactions between TRM and TIME and their impact on NSCLC patient prognosis. The development of a simplified 18-gene risk score provides a practical prognostic marker for risk stratification.
Collapse
Affiliation(s)
- Aidan Shen
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Aliesha Garrett
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Cheng-Chi Chao
- Department of Pipeline Development, Biomap, Inc., San Francisco, CA, United States
| | - Dongliang Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Zhaohui Wang
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Chen Qian
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yangzhi Zhu
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Chongming Jiang
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| |
Collapse
|
10
|
Iijima N. The emerging role of effector functions exerted by tissue-resident memory T cells. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae006. [PMID: 39193473 PMCID: PMC11213632 DOI: 10.1093/oxfimm/iqae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/14/2024] [Accepted: 06/04/2024] [Indexed: 08/29/2024] Open
Abstract
The magnitude of the effector functions of memory T cells determines the consequences of the protection against invading pathogens and tumor development or the pathogenesis of autoimmune and allergic diseases. Tissue-resident memory T cells (TRM cells) are unique T-cell populations that persist in tissues for long periods awaiting re-encounter with their cognate antigen. Although TRM cell reactivation primarily requires the presentation of cognate antigens, recent evidence has shown that, in addition to the conventional concept, TRM cells can be reactivated without the presentation of cognate antigens. Non-cognate TRM cell activation is triggered by cross-reactive antigens or by several combinations of cytokines, including interleukin (IL)-2, IL-7, IL-12, IL-15 and IL-18. The activation mode of TRM cells reinforces their cytotoxic activity and promotes the secretion of effector cytokines (such as interferon-gamma and tumor necrosis factor-alpha). This review highlights the key features of TRM cell maintenance and reactivation and discusses the importance of effector functions that TRM cells exert upon being presented with cognate and/or non-cognate antigens, as well as cytokines secreted by TRM and non-TRM cells within the tissue microenvironment.
Collapse
Affiliation(s)
- Norifumi Iijima
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), Ibaraki, Osaka, Japan
| |
Collapse
|
11
|
Zhuang Z, Zhuo J, Yuan Y, Chen Z, Zhang S, Zhu A, Zhao J, Zhao J. Harnessing T-Cells for Enhanced Vaccine Development against Viral Infections. Vaccines (Basel) 2024; 12:478. [PMID: 38793729 PMCID: PMC11125924 DOI: 10.3390/vaccines12050478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Despite significant strides in vaccine research and the availability of vaccines for many infectious diseases, the threat posed by both known and emerging infectious diseases persists. Moreover, breakthrough infections following vaccination remain a concern. Therefore, the development of novel vaccines is imperative. These vaccines must exhibit robust protective efficacy, broad-spectrum coverage, and long-lasting immunity. One promising avenue in vaccine development lies in leveraging T-cells, which play a crucial role in adaptive immunity and regulate immune responses during viral infections. T-cell recognition can target highly variable or conserved viral proteins, and memory T-cells offer the potential for durable immunity. Consequently, T-cell-based vaccines hold promise for advancing vaccine development efforts. This review delves into the latest research advancements in T-cell-based vaccines across various platforms and discusses the associated challenges.
Collapse
Affiliation(s)
- Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Jianfen Zhuo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Yaochang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| |
Collapse
|
12
|
Airola C, Andaloro S, Gasbarrini A, Ponziani FR. Vaccine Responses in Patients with Liver Cirrhosis: From the Immune System to the Gut Microbiota. Vaccines (Basel) 2024; 12:349. [PMID: 38675732 PMCID: PMC11054513 DOI: 10.3390/vaccines12040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Vaccines prevent a significant number of deaths annually. However, certain populations do not respond adequately to vaccination due to impaired immune systems. Cirrhosis, a condition marked by a profound disruption of immunity, impairs the normal immunization process. Critical vaccines for cirrhotic patients, such as the hepatitis A virus (HAV), hepatitis B virus (HBV), influenza, pneumococcal, and coronavirus disease 19 (COVID-19), often elicit suboptimal responses in these individuals. The humoral response, essential for immunization, is less effective in cirrhosis due to a decline in B memory cells and an increase in plasma blasts, which interfere with the creation of a long-lasting response to antigen vaccination. Additionally, some T cell subtypes exhibit reduced activation in cirrhosis. Nonetheless, the persistence of memory T cell activity, while not preventing infections, may help to attenuate the severity of diseases in these patients. Alongside that, the impairment of innate immunity, particularly in dendritic cells (DCs), prevents the normal priming of adaptive immunity, interrupting the immunization process at its onset. Furthermore, cirrhosis disrupts the gut-liver axis balance, causing dysbiosis, reduced production of short-chain fatty acids (SCFAs), increased intestinal permeability, and bacterial translocation. Undermining the physiological activity of the immune system, these alterations could impact the vaccine response. Enhancing the understanding of the molecular and cellular factors contributing to impaired vaccination responses in cirrhotic patients is crucial for improving vaccine efficacy in this population and developing better prevention strategies.
Collapse
Affiliation(s)
- Carlo Airola
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
| | - Silvia Andaloro
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
| | - Antonio Gasbarrini
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| |
Collapse
|
13
|
Tandel N, Patel D, Thakkar M, Shah J, Tyagi RK, Dalai SK. Poly(I:C) and R848 ligands show better adjuvanticity to induce B and T cell responses against the antigen(s). Heliyon 2024; 10:e26887. [PMID: 38455541 PMCID: PMC10918150 DOI: 10.1016/j.heliyon.2024.e26887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Poly(I:C) and R848, synthetic ligands that activate Toll-like receptor 3 (TLR3) and TLR7/8 respectively, have been well-established for their ability to stimulate the immune system and induce antigen-specific immune responses. These ligands are capable of inducing the production of cytokines and chemokines, and hence support the activation and differentiation of B and T cells. We saw the long-lasting and perdurable immune responses by these adjuvants essentially required for an efficacious subunit vaccine. In this study, we investigated the potential of poly(I:C) and R848 to elicit B and T cell responses to the OVA antigen. We assessed the stimulatory effects of these ligands on the immune system, their impact on B and T cell activation, and their ability to enhanced generation of B and T cells. Collectively, our findings contribute to the understanding how poly(I:C) and R848 can be utilized as an adjuvant system to enhance immune responses to protein-based subunit vaccines. In the end, this work provides insights for the development of novel vaccination strategies and improving the vaccine efficacy. Present work shall help formulate newer strategies for subunit vaccines to address the infectious diseases.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Digna Patel
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Mansi Thakkar
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Jagrut Shah
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Rajeev K. Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sarat K. Dalai
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| |
Collapse
|
14
|
Migayron L, Merhi R, Seneschal J, Boniface K. Resident memory T cells in nonlesional skin and healed lesions of patients with chronic inflammatory diseases: Appearances can be deceptive. J Allergy Clin Immunol 2024; 153:606-614. [PMID: 37995858 DOI: 10.1016/j.jaci.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Tissue-resident memory T (TRM) cells serve as a first line of defense in peripheral tissues to protect the organism against foreign pathogens. However, autoreactive TRM cells are increasingly implicated in autoimmunity, as evidenced in chronic autoimmune and inflammatory skin conditions. This highlights the need to characterize their phenotype and understand their role for the purpose of targeting them specifically without affecting local immunity. To date, the investigation of TRM cells in human skin diseases has focused mainly on lesional tissues of patients. Accumulating evidence suggests that self-reactive TRM cells are still present in clinically healed lesions of patients and play a role in disease flares, but TRM cells also populate skin that is apparently normal. This review discusses the ontogeny of TRM cells in the skin as well as recent insights regarding the presence of self-reactive TRM cells in both clinically healed skin and nonlesional skin of patients with autoimmune and inflammatory skin conditions, with a particular focus on psoriasis, atopic dermatitis, and vitiligo.
Collapse
Affiliation(s)
- Laure Migayron
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France; R&D Department, SILAB, Brive-la-Gaillarde, France
| | - Ribal Merhi
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France
| | - Julien Seneschal
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France; CHU de Bordeaux, Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, UMR Bordeaux, Bordeaux, France
| | - Katia Boniface
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France.
| |
Collapse
|
15
|
Castillo JG, DeBarge R, Mende A, Tenvooren I, Marquez DM, Straub A, Busch DH, Spitzer MH, DuPage M. A mass cytometry approach to track the evolution of T cell responses during infection and immunotherapy by paired T cell receptor repertoire and T cell differentiation state analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575237. [PMID: 38260336 PMCID: PMC10802618 DOI: 10.1101/2024.01.11.575237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
T cell receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we developed a mass cytometric (CyTOF) approach combining antibodies specific for different TCR Vα- and Vβ-chains with antibodies against T cell activation and differentiation proteins to identify antigen-specific expansions of T cell subsets and assess aspects of cellular function. This strategy allowed for the identification of expansions of specific Vβ and Vα chain expressing CD8+ and CD4+ T cells with varying differentiation states in response to Listeria monocytogenes, tumors, and respiratory influenza infection. Expanded Vβ chain expressing T cells could be directly linked to the recognition of specific antigens from Listeria, tumor cells, or influenza. In the setting of influenza infection, we showed that the common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the clonal diversity and differentiation state of responding T cells. Thus, we present a new method to monitor broad changes in TCR specificity paired with T cell differentiation during adaptive immune responses.
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Rachel DeBarge
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- These authors contributed equally
| | - Abigail Mende
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany; Partner site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| |
Collapse
|
16
|
Boniface K. Aetiopathogenesis of Vitiligo. Dermatol Pract Concept 2023; 13:dpc.1304S2a314S. [PMID: 38241397 PMCID: PMC10824321 DOI: 10.5826/dpc.1304s2a314s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/21/2024] Open
Abstract
Vitiligo is a chronic auto-immune disease characterized by skin depigmentation due to the loss of melanocytes. The better understanding of the disease mechanisms is currently undergoing a significant dynamism, opening a new era in therapeutic development. The pathophysiology of vitiligo has attracted the attention of researchers for years and many advances have been made in clarifying the crosstalk between the cellular players involved in the development of vitiligo lesions. The understanding of the complex interactions between epidermal cells (i.e. melanocytes and keratinocytes), dermal fibroblasts, and immune cells, led to a better characterization of the signals leading to the loss of melanocytes. Recent advances highlighted the role resident T memory cells in the development and recurrence of lesions. This narrative review aims to give an overview of the mechanisms leading to melanocyte disappearance in vitiligo, with a focus on the intercellular interaction network involved in the activation of the local skin immune response.
Collapse
Affiliation(s)
- Katia Boniface
- University of Bordeaux, CNRS, Immuno ConcEpT, UMR 5164, Bordeaux, France
| |
Collapse
|
17
|
Ramasamy R. COVID-19 Vaccines for Optimizing Immunity in the Upper Respiratory Tract. Viruses 2023; 15:2203. [PMID: 38005881 PMCID: PMC10674974 DOI: 10.3390/v15112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Rapid development and deployment of vaccines greatly reduced mortality and morbidity during the COVID-19 pandemic. The most widely used COVID-19 vaccines approved by national regulatory authorities require intramuscular administration. SARS-CoV-2 initially infects the upper respiratory tract, where the infection can be eliminated with little or no symptoms by an effective immune response. Failure to eliminate SARS-CoV-2 in the upper respiratory tract results in lower respiratory tract infections that can lead to severe disease and death. Presently used intramuscularly administered COVID-19 vaccines are effective in reducing severe disease and mortality, but are not entirely able to prevent asymptomatic and mild infections as well as person-to-person transmission of the virus. Individual and population differences also influence susceptibility to infection and the propensity to develop severe disease. This article provides a perspective on the nature and the mode of delivery of COVID-19 vaccines that can optimize protective immunity in the upper respiratory tract to reduce infections and virus transmission as well as severe disease.
Collapse
Affiliation(s)
- Ranjan Ramasamy
- ID-FISH Technology Inc., 556 Gibraltar Drive, Milpitas, CA 95035, USA
| |
Collapse
|
18
|
Hanna SJ, Thayer TC, Robinson EJS, Vinh NN, Williams N, Landry LG, Andrews R, Siah QZ, Leete P, Wyatt R, McAteer MA, Nakayama M, Wong FS, Yang JHM, Tree TIM, Ludvigsson J, Dayan CM, Tatovic D. Single-cell RNAseq identifies clonally expanded antigen-specific T-cells following intradermal injection of gold nanoparticles loaded with diabetes autoantigen in humans. Front Immunol 2023; 14:1276255. [PMID: 37908349 PMCID: PMC10613693 DOI: 10.3389/fimmu.2023.1276255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Gold nanoparticles (GNPs) have been used in the development of novel therapies as a way of delivery of both stimulatory and tolerogenic peptide cargoes. Here we report that intradermal injection of GNPs loaded with the proinsulin peptide C19-A3, in patients with type 1 diabetes, results in recruitment and retention of immune cells in the skin. These include large numbers of clonally expanded T-cells sharing the same paired T-cell receptors (TCRs) with activated phenotypes, half of which, when the TCRs were re-expressed in a cell-based system, were confirmed to be specific for either GNP or proinsulin. All the identified gold-specific clones were CD8+, whilst proinsulin-specific clones were both CD8+ and CD4+. Proinsulin-specific CD8+ clones had a distinctive cytotoxic phenotype with overexpression of granulysin (GNLY) and KIR receptors. Clonally expanded antigen-specific T cells remained in situ for months to years, with a spectrum of tissue resident memory and effector memory phenotypes. As the T-cell response is divided between targeting the gold core and the antigenic cargo, this offers a route to improving resident memory T-cells formation in response to vaccines. In addition, our scRNAseq data indicate that focusing on clonally expanded skin infiltrating T-cells recruited to intradermally injected antigen is a highly efficient method to enrich and identify antigen-specific cells. This approach has the potential to be used to monitor the intradermal delivery of antigens and nanoparticles for immune modulation in humans.
Collapse
Affiliation(s)
- Stephanie J. Hanna
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Terri C. Thayer
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Department of Biological and Chemical Sciences, Roberts Wesleyan University, Rochester, NY, United States
| | - Emma J. S. Robinson
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ngoc-Nga Vinh
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Nigel Williams
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Laurie G. Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, CO, United States
| | - Robert Andrews
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Qi Zhuang Siah
- John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Pia Leete
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, United Kingdom
| | - Rebecca Wyatt
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, United Kingdom
| | | | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, CO, United States
| | - F. Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jennie H. M. Yang
- Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Timothy I. M. Tree
- Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences and Crown Princess Victoria Children´s Hospital, Linköping University, Linköping, Sweden
| | - Colin M. Dayan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Danijela Tatovic
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
19
|
Dotiwala F, Upadhyay AK. Next Generation Mucosal Vaccine Strategy for Respiratory Pathogens. Vaccines (Basel) 2023; 11:1585. [PMID: 37896988 PMCID: PMC10611113 DOI: 10.3390/vaccines11101585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Inducing humoral and cytotoxic mucosal immunity at the sites of pathogen entry has the potential to prevent the infection from getting established. This is different from systemic vaccination, which protects against the development of systemic symptoms. The field of mucosal vaccination has seen fewer technological advances compared to nucleic acid and subunit vaccine advances for injectable vaccine platforms. The advent of the next-generation adenoviral vectors has given a boost to mucosal vaccine research. Basic research into the mechanisms regulating innate and adaptive mucosal immunity and the discovery of effective and safe mucosal vaccine adjuvants will continue to improve mucosal vaccine design. The results from clinical trials of inhaled COVID-19 vaccines demonstrate their ability to induce the proliferation of cytotoxic T cells and the production of secreted IgA and IgG antibodies locally, unlike intramuscular vaccinations. However, these mucosal vaccines induce systemic immune responses at par with systemic vaccinations. This review summarizes the function of the respiratory mucosa-associated lymphoid tissue and the advantages that the adenoviral vectors provide as inhaled vaccine platforms.
Collapse
Affiliation(s)
- Farokh Dotiwala
- Ocugen Inc., 11 Great Valley Parkway, Malvern, PA 19355, USA
| | | |
Collapse
|
20
|
Smith NP, Yan Y, Pan Y, Williams JB, Manakongtreecheep K, Pant S, Zhao J, Tian T, Pan T, Stingley C, Wu K, Zhang J, Kley AL, Sorger PK, Villani AC, Kupper TS. Resident memory T cell development is associated with AP-1 transcription factor upregulation across anatomical niches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560006. [PMID: 37873428 PMCID: PMC10592877 DOI: 10.1101/2023.09.29.560006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Tissue-resident memory T (T RM ) cells play a central role in immune responses to pathogens across all barrier tissues after infection. However, the underlying mechanisms that drive T RM differentiation and priming for their recall effector function remains unclear. In this study, we leveraged both newly generated and publicly available single-cell RNA-sequencing (scRNAseq) data generated across 10 developmental time points to define features of CD8 T RM across both skin and small-intestine intraepithelial lymphocytes (siIEL). We employed linear modeling to capture temporally-associated gene programs that increase their expression levels in T cell subsets transitioning from an effector to a memory T cell state. In addition to capturing tissue-specific gene programs, we defined a consensus T RM signature of 60 genes across skin and siIEL that can effectively distinguish T RM from circulating T cell populations, providing a more specific T RM signature than what was previously generated by comparing bulk T RM to naïve or non-tissue resident memory populations. This updated T RM signature included the AP-1 transcription factor family members Fos, Fosb and Fosl2 . Moreover, ATACseq analysis detected an enrichment of AP-1-specific motifs at open chromatin sites in mature T RM . CyCIF tissue imaging detected nuclear co-localization of AP-1 members Fosb and Junb in resting CD8 T RM >100 days post-infection. Taken together, these results reveal a critical role of AP-1 transcription factor members in T RM biology and suggests a novel mechanism for rapid reactivation of resting T RM in tissue upon antigen encounter.
Collapse
|
21
|
Longet S, Paul S. Pivotal role of tissue-resident memory lymphocytes in the control of mucosal infections: can mucosal vaccination induce protective tissue-resident memory T and B cells? Front Immunol 2023; 14:1216402. [PMID: 37753095 PMCID: PMC10518612 DOI: 10.3389/fimmu.2023.1216402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Affiliation(s)
- Stephanie Longet
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
| | - Stephane Paul
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
- Centre d'investigation clinique (CIC) 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|